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Birkhoff’s Theorem [1] asserts that a family of algebras is an equational
variety if and only if the family is closed under the operations of passing
to subalgebras and quotient algebras and also under arbitrary direct
products. The objective of this paper is to study what happens to this
notion and the theorem above if one restricts ones attention to finite
algebras only. This is motivated by applications to the theory of automata.

In the body of the paper, we shall only consider monoids. At the end,
we shall remark how the results can be extended to more general species
of algebras.

A family V of finite monoids is called a pseudovariety if the following
conditions hold

(1) If SeVand T is a submonoid of S, then T'e V.
(2) If SeVand T is a homomorphic image of S, then T'e V.
(3) If S, TeV,thenS x TeV.

There are two points in which this definition differs from that of a
(Birkhoflian) variety. One is that all the monoids in V are assumed to be
finite. The second one (implied by the first) is that V is closed only under
finite direct products. For example finite groups form a pseudovariety,
but groups do not form a variety of monoids. Indeed, a submonoid of an
(infinite) group need not be a group. It should however be noted that a
finite monoid S is a group if and only if, for all # sufficiently large, and
for all x € S, the equation

xf =1
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holds, where 7 is the least common multiple of all the integers 1 < 7 < 7.
The objective of this paper is to show that such a phenomenon holds
for all pseudovarieties.

Let &* be the free monoid generated by the infinite sequence of
letters xy ,..., &, ,... and let u, v € Z*. We shall say that a monoid S
satisfies (u, v) (or that the equation u = v holds in S) if up = v for
every morphism ¢: Z* — S. Finite monoids satisfying (u, v) clearly
from a pseudovariety that we shall denote by V(«, ).

Given a sequence of pairs

(u; , v;) € B* X B*, i>1,

we may consider two pseudovarieties

V’ = n V(u, y ‘vi),
i=1

Cs
s

V= V(u; , vy).

k

I
=

14

I

A (finite) monoid is in V" if it satisfies all of the equations u; = v, , while
it is in V if it satisfies the equations #; = v; for all 7 sufficiently large. We
shall say that V' is defined by the equations u; = v;, and that V is
ultimately defined by the equations u; = v, .

Our main result is

THEOREM 1. Each nonempty pseudovariety V is ultimately defined
by a sequence of equations.

We denote by Z,* the submonoid of Z* generated by the letters
Xy yeeey %, . In F, ¥, we shall consider congruences. Such a congruence ~
in X, * is said to be finite provided the quotient monoid =, */~ is finite.
An important fact in the proof of Theorem 1 is

PROPOSITION 2. A finite congruence ~ in B, * is finitely generated, i.e.,
there exists a finite set W C 5, * X E, * such that u ~ v for all (u, v) € W,
and such that ~ is the smallest congruence with this property.

Proof. Since the congruence ~ is finite, there exists an integer 2 > 0
such that each congruence class contains an element w with length
jw | < k. Define

W=A{u,v) u~o, juj <k v, <k}
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Clearly, card W < (1 + n)*-1, Let = be the congruence generated
by W. Clearly, # = v implies # ~ v. To prove the opposite implication,
we need the following assertion

(4) For each we &, *, there exists @' € 5,* such that |o' | <k
and w = w'.

We prove this by induction with respect to jw |. If |w | < &, there
is nothing to prove since (w, w) € W. Assume now that / > k and that (4)

holds for all w with {w | <[l Consider we &,*, jw| = I Then,
w = uo with ju| = [ — 1. Consequently u = «’ for some u’ with

| #' | < k. This implies w = u'o. Since | #'c | = k, the definition of W
implies that (#'c, w') € W for some @’ such that | @' | < k. It follows
that w = @’ as required.

Now, assume # ~ v. By (4) we have u =#' and v = ¢’ with
(4| <k, v <k Sinceu’ ~ o', it follows that (&', 2') € W and thus,
u' = ¢’. Consequently, # = v. This proves that ~ and = coincide and
thus, ~ is finitely generated.

Having proved Proposition 2, we now proceed with the proof of
Theorem 1.

We first construct a sequence

S15 82 500y Sy yeens

in V with the following two properties

(5) S, is isomorphic to a quotient of .S, ,; .
(6) If SeV,then Sisisomorphic to a quotient of S, for some 7 > 1.

To construct such a sequence, we write a sequence 13, Ty ,..., T}, ,...,
which contains all the elements of V up to an isomorphism, and then
define S, = Ty X --- X T,.

For each n > 1, we define the congruence ~, in Z,* as follows:
u ~, v iff up = vp for all morphisms ¢: 5, * — S, . Consider the
quotient monoid V7,2 of &,* by the congruence ~, . The following
facts are clear

(7) V, is isomorphic to a submonoid of some finite product of S,
with itself.
This implies
8) V,eV.

Since V, is finite, Proposition 2 may be applied to the congruence
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~, , yielding a finite set W, C &, * X 5, *, such that ~, is generated
by W, . Since 5, * is a subset of Z*, we obtain the countable set

W=\ W,
n=1
in % x Z*, We assert that 17/ ultimately defines V.

First, assume that S € V. Since S is isomorphic to a quotient of S, for
some 7z > 1, and since S, satisfies the equations W, , it follows that S
satisfies the equations W, . However, S, is isomorphic to a quotient
of S, for all & > 0 and thus, S also satisfies all the equations W,
for all & > 0. Thus, S satisfies all but a finite number of equations in .

Conversely, assume that .S is a finite monoid satisfying all but a finite
number of equations in W. Choose # > 1 with the following two
properties

(9) 7 > card S,
(10) S satisfies the equations W, .
Let
p: B.%— S,
be a surjective morphism. If (¥, v) € W, , then up = vp since S satisfies
the equation # = v. Since the pairs (%, v) in W, generate the congruence

~, , it follows that u ~,, v implies up = vp. This implies that ¢ admits
a factorization

&4

>V -4 S,
and that ¢ is a surjective morphism. Since V, € V, it follows that Se V"
This concludes the proof of Theorem 1.

A pseudovariety V is said to be equational if it is defined by a family
of equations. This holds if and only if V is the class of ail finite monoids
in some (Birkhoffian) variety of monoids. However, two distinct varieties
may yield the same pseudovariety.

An immediate consequence of Theorem 1 is

CoRrOLLARY 3. Each pseudovariety is the union of an ascending sequence
of equational pseudovarieties.

A pseudovariety V is said to be finitely generated, if there exists a
finite sequence of monoids M, ,..., M, such that V is the smallest
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pseudovariety containing M, ,..., M, . Replacing this sequence by the
single monoid M = M; X --+ X M; , shows that each finitely generated
pseudovariety is generated by a single monoid M. A consequence of
Corollary 3 is

CoROLLARY 4. Each finitely generated pseudovariety is equational.

The remarks above lead in a natural way to consider the following two
properties of a finite monoid M

(11) The variety generated by M is defined by a finite number of
equations.

(12) The pseudovariety generated by M is defined by a finite
number of equations.

The implication (11) = (12) is clear. Whether the implication
(12) = (11) holds is an open question. Oates and Powell {3] have shown
that (11) holds for any finite group. This easily implies (12) for any
finite group. Perkins [4] has constructed a monoid containing six elements
for which (11) faiis. It is an open question whether (12) holds for this
monoid. Perkins’ monoid may be described as the monoid of all partial
functions f: {0, 1} — {0, 1}, but excluding the two constant functions
and the function that interchanges 0 and 1.

Although we have limited our attention to monoids, the entire develop-
ment can be carried out for any algebraic theory based on a finite number
of finitary operations. The role of Z* and &, * is then taken over by the
free algebras generated by x, ,..., %, ,..., and by #, ,..., x,, . For ue 5%
or u € 2, %, the integer | u | must be defined in such a way that the proof
of Proposition 2 remains valid. A fact needed in this proof is the finiteness
of the sets {ujue&,* |u| < k}. This follows from the assumption
that there is only a finite number of basic operations.

Pseudovarieties of monoids and of semigroups have applications in
the theory of automata. The interested reader is referrred to Eilenberg [2],
where the ultimate equations of many interesting pseudovarieties are
derived.

In connection with pseudovarieties of semigroups, the following
interesting fact should be noted. Finite groups form a pseudovariety
G of monoids. However, G is not a pseudovariety of semigroups because
it does not contain the empty semigroup. If, however, the empty semi-
group is adjoined to G, a pseudovariety G’ of semigroups is obtained. Its
ultimate equations are obtained by replacing each equation x" = 1
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used to ultimately define G by the pair of equations x"y = y = yx”.
These new equations ultimately define G’ as a pseudovariety of semi-
groups, and G as a pseudovariety of monoids. This method of eliminating
the unit element is quite general.
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