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1. Introduetion

Consider the fixed finite chain [n]={1<2<...<n}. With each mapping s of
[n] into itself one associates its inwversion number INV s defined as the number
of pairs (i, j) such that 1 =i<j=n and s(i) >s(j). One also defines the down set
of s by

DOWNs={i:1=i=n—1, s(i)>s(i+1)},
and the major index MAJ s of s as the sum (possibly zero) of the elements in
DOWN s.

When § is the set of all mappings s such that the sequence card s~1(j) (1 =j =n)
has a fixed value, the generating function for the inversion number over S has a
remarkably simple form (see [13] chap. 4 and [6] p. 108). Major MacMaHON to
whom we owe the consideration of the major index ([11] § 104) found that it
has the same generating function ([10], [12]). A combinatorial proof of this
theorem was obtained in [7]. Further results on these parameters are due to
Carwrrtz ([1], [4]) and STANLEY [18].

The case where S is the set of all the »! permutations of [n], enjoys special
properties. In the present paper we restrict our attention to that case. We can
then speak of the idown set of s, denoted by IDOWN s, and defined by

IDOWN s=DOWN s7%,

with s~1 the inverse of s in the group S. The notions of down and idown sets are
classical. CArLITZ [ 3] referred to* patterns’ and FourLkes [8] to “up-down’ and
“inversion sequences’’. The pattern or updown sequence of s is a sequence of
(n—1) plus or minus signs whose i-th term is + or—according as s(i) is greater
than s (14 1) or not. Our down set is simply the set of all indices ¢ for which the
i-th term of the pattern (or up-down sequence) is a plus. Clearly, the integer ¢ of
in] belongs to IDOWN s if and only if there exists a pair (j, £) such that 1 =
=j<k=n, s(j)=1i+1 and s(k)=1i, that is to say, if ¢+ 1 is to the left of 7.
For instance, with
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one gets the pattern + — + — + — — +, the down set {1, 3, 5, 8}, and the idown
set {1, 3, 5, 6, 8}.
Our first result is the following theorem.

Theorem 1. There exists a bijection ¢: S -8 preserving IDOWN and exchanging
INV and MAJ. In other words, one has identically

IDOWN ¢(s)=IDOWN s and INV ¢(s)=MAJ s.

Theorem 1 has two corollaries which are easily stated. For each s in S let
IMAJ s be the sum of the elements in IDOWN s, just as MAJ s was the sum of
the elements in DOWN s.

Corollary 1. The three pairs of parameters (MAJ, INV), (IMAJ, INV) and
(IMAJ, MAJ) have the same bivariate distribution over the n! elements of S.

As the distribution of the pair (IMAJ, MAJ) is symmetric by definition, the
same holds for (MAJ, INV). Professor CrUNG C. WaNe, of the University of
Kentucky, has published [19] tables of the distribution of (MAJ, INV) up to
n="17 and so observed the symmetry. A sharper form of this property is expressed
in the next corollary.

Coroilary 2. There exists an involution y on S with the property that INV yp(s) =
=MAJ s and MAJ y(s) =INV s hold identically.

It may be pointed out that this symmetry is not be observed in general for
other sets S of mappings covered by MacMaHON’s theorem, which only asserts
that the marginal distributions of (MAJ, INV) are equal.

Let us now state our second resuilt.

Theorem 2. There exists an involution j of S preserving IDOWN and exchanging
DOWN with its complement to n. In other words one has identically

IDOWN js=IDOWN s
and
DOWN js={n—x: ¢ DOWN s} .

The two bijections ¢ and j involved in theorems 1 and 2 were introduced in
earlier papers ([7] and [17]). Hereafter their properties will be systematically
explored. The construction of j given here involves the ROBINSON correspondence
between permutations and ordered pairs of standard YounNe tableaux. it would
be interesting to find a proof of theorem 2 that could avoid the use of that corre-
spondence. The constructions of ¢ and ¢! appear in section 2. Theorem 1 and
its two corollaries are proved in section 3 that also contains the construction of
the involution y. The proof of theorem 2 will be completed in section 6.

For each s in S let us define the numerical parameters

DES s=card DOWN s and IDES s=card IDOWN s.

Of course, DES s is the number of descents of s. Its generating function over S
is the classical EvrLERian polynomial (see [3] or [14] pp. 213-216). The joint
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distribution of (DES, MAJ) is its g-generalization, as was shown by CARLITZ [4].
Finally, the joint distribution of (DES, IDES) was studied by CARLITZ et al. [5]
who obtained explicit formulas in connection with Simoxn NEWCOMB’S problem.
This motivates the second part of our paper in which we examine the symmetries
of the joint distribution of all those statistics.

For each s in S let V(s) be the 4-vector (DES s, IDES s, MAJ s, IMAJ s)
and for each 4-vector v let N(v) denote the number of s in S for which V(s)=wv.
We suggest that the reader has a look. at tables 2 where this function is displayed
for n=3, 4, 5 and 6, since our theorem 3 is nothing but the proof that the regu-
larities observed there still hold for arbitrary n. The display shows sublocks
corresponding to fixed values (a, b) of (DES, IDES). There are symmetries
within the whole table, symmetries within each subblock, and symmetries
between subblocks. More precisely notice the following facts.

(i) The symmetry along the main diagonal. It results trivially from the de-
finition of (IDES s, IMAJ s) as (DES s~1, MAJ s~1), where s »s~1is an involution
of 8. This leads to the identity

N(a,b,z,y)=N(b, a,y, x) .
(ii) Consider the subblock corresponding to the value (@, b) of (DES, IDES).

It has one horizontal (resp. vertical) axis of symmetry, with ordinate (resp.
abscissa) MAJ =na/2 (resp. IMAJ =nb/2). This suggests introducing the notation

N'(a,b,2',y") for N(a,b,z +(na)/2, y' +(nb)/2),

that is to say, replacing x and y by their distances z’=x— (na)/2, y' =y — (nb)/2

to the appropriate ““central values’ (na)/2 and (nb)/2. One then obtains that

N'(a, b, 2’, y') depends only on the absoiute values of 2" and ¥/, i.e.
N(a,b,z,y)=N'(a, b, T2, ty’).

(iii) The subblocks corresponding to DES =a, IDES =5, and to DES=n—1 —a,
IDES=n—1-b are equal. By using the same notations in terms of the ‘““centra-
lized”” variables this gives

N(a,b, 2",y )=N'(n—1—a,n—1-b,2',y’) .

These remarks are summarized in the next theorem.

Theorem 3. The following identities hold

@) N(ar b, x, y):N(b’ a,Y, z);

() N, b,z,y)=N'(a, b, £2', y');
(i) N'(a, b, 2",y )=N'n—1—a,n—1-b,2",y') .

By combining these identities one finds that each v=(a, b, z, ) belongs to

a set of sixteen (=2X4X2) vectors for which N takes the same value. The
underlying group G is the direct product of the dihedral group D, of order 8 by a
group of two elements. In section 4 we describe a version for the dihedral group D,.
Section 5 contains the construction of the group @ by means of the ROBINSON
correspondence. Finally, the proofs of theorems 2 and 3 are completed in section 6.
10 Math. Nachr. Bd. 83



146 Foata/Schiitzenberger, Major Index

2. Construection of the bijection ¢

For the construction of ¢ it will be convenient to regard each permutation s
of [»] as an associative monomial or word w=s(1) s(2) ... s(n) in the »n distinct
letters s(1), s(2), . . ., s(n). In the same manner, let 1 =m == and v=s(1) s(2) ...
s(m) be a word with m distinct letters taken out of [n]. Denote by {t(1)<#(2)<. . .
<t(m)} the increasing chain made of the m elements of the set {s(1), s(2), ..
s(m)}. Then the word v will be regarded as the permutation

A

v:t()>s(i) (1=1,2,...,m)
of the set {#(1), #(2),...,¢m)}. Let p=1 and wy, w,, ..., w, be p non-empty
words. If w is the concatenation product of wy, w,, .. ., w,, in this order, i.e.,

if w=wwy . ..w, it is said that
(wy, wy, . . ., w,) is a factorization of w.
Let z be an integer and » a non-empty word. If the last letter of v is greater
(vesp. smaller) than x, the word v admits a unique factorization
(@191, VY2, -+ -5 VpYp)
called its z-factorization having the following properties

(1) y; is a letter satisfying y,>x (resp. y;,<z) for each i=1,2,..., p;

(il) w; is a word which is either empty, or has all its letters smaller (resp.
greater) than z (1 =i =p).

Put

Vo(0) =Y101YoV2 « - YV, -

(Note that v=v,y192¥5 . . . v,%,.) The bijection ¢ will be defined by induction on
the length of the words. If w has length one, let

glw)=w.
If w has length at least two, write w=vx with x its last letter and put

P(va) =y,(p)) .
In other words, define ¢(v) by induction, apply ¥, to the word ¢(v) and put the
letter x at the end of the transformed word y,(¢(v)).

It was proved in [7] that ¢ was bijective. It seems convenient for further
reference to describe the effective algorithms for both ¢ and its inverse ¢p~1

Algorithm for ¢. Let w=s(1) s(2) . . . s(n) be a permutation.

(i) Define w;=s(1); assume that w; has been defined for some k with 1 =k<n,
then

(ii) if the last letter of w, is greater (resp. smaller) than s (k+1), split w; after
each letter greater (resp. smaller) than s (£+1); then
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(iii) in each compartment of w, determined by the splits move the last letter to
the beginning; for obtaining w;_, put s (k+1) at the end of the transformed
word ; replace £ by k+1;
(iv) if k=n, then p(w)=w,; if not, return to (ii).

For instance, the image under ¢ of the word w=7492 6 1 5 8 3 is obtained
as follows

w1=7,
wy="T |4
wy=T 49

w,=T7 4,9 2]
wy;=41712,96]
we=4]7 2,9 6 1]
w;=4,2,71119 6|5]
wg=4,2 7,1 6,;9,5]8]
pw)=wg=4 7 2 6 1 9 5 8 3

Algorithm for ¢~1. Let v=1(1) ¢(2) . ... ¢{(n); for getting w=s(1) s(2)...s(n)=
=@~ 1(v) apply the following procedure to v;
(i) put v,_,=t(1) t(2) ...t (n—1) and s(n)=#(n); assume that the word v, and
the integers s (k+1), s (k+2),...,s(n) have been defined for some %k with
1=k<n;
- (ii) if the first letter of v, is greater (resp. smaller) than s (k+1), split v, before
each letter greater (resp. smaller) than s (£+1);
(iii) in each compartment of v, determined by the splits move the first letter to
the end ; for obtaining v;,_, delete the last letter of the transformed word; further-
more, put s(k) equal to that deleted letter;
(iv) if =1 then ¢~ %v)=s(1) s(2) . . . s(n); if not, replace k by £—1 and return to
instruction (ii).
For instance the image of v=6497 25 8 1 3 under ¢~ 1is

)
|
v,=6]4 9]2]7/5]1.8 =s(8)
v6=6]9,4,2]7,5.1 =5(7)
v3=6,9 4 2,7.5 =5(6)
v,=6,4,2 9.7 =s(5)
v3=6,4,9.2 =s(4)
v,=6 4.9 =s(3)
v,=6.4 =s(2)
6 =s(1)

w=¢~iv)=6 4 9 2 7 5 1 8 3
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3. Symmetry of the distribution of the major index and inversion number

In [7] it was proved that ¢ was bijective and satisfied the identity
INV ¢(s)=MAJ s
under very general conditions. Thus we only have to verify the further identity
IDOWN ¢(s)=IDOWN s,
that holds only for permutations. Let us first establish the following lemma.

Lemma 3.1. Let m=1 and w=s(1) s(2)...s(m+1) be a word with (m+1)
distinct letters. Put v=s(1) s(2) . .. s(m) and x=s (m+1). Then
(i) IDOWN v2=1DOWN v if x=max {s(1),s(2),...,s(m+1)}

=IDOWN oU {«} otherwise;
(ii) IDOWN y,(v) =IDOWN w.

Proof. Assertion (i) is straightforward, for « belongs to IDOWN vz if and
only if 4+ 1 occurs in v, i.e. if z is not the maximum letter of vx.

Let t=t(1) #(2) ...t (m+1) be the increasing rearrangement of the word
w=wvx. There so exists a unique integer [ with 1=I/=m+1 and {(l)==. If I=1,
i.e. z=min {s(1), s(2), ..., s (m+1)} (resp. I=m+1, i.e. x=max {s(1), s(2), ...,
s (m+1)}), the a-factorization of v is simply (s(1), s(2),...,s(m)). With the
notations of the preceding section the v,/s are empty, p=m and y,=s(t) for i=
=1,2,...,p. Hence

ya‘(v) =0,
and

IDOWN y,(»)=IDOWN v .
Assume 2 =l =m. The integer #(i) (1 =i =m; i) belongs to IDOWN v if and only
if ¢ (i +1) is to the left of (i) in ». Note that ¢ (I—1) is in neither IDOWN v, nor
IDOWN y,(v). Assume that 1 =i=m and i+=1—1, I. If #(i) and ¢ (i+ 1) are letters
of two different factors of the x-factorization (v,y,, voy,, . . . , v,y,) of v, say vy;
and vy, they are also letters of yv; and y;v,. Hence #(i) is in IDOWN y,(v) if and
only if #(i) belongs to IDOWN w. If #(i) and (i + 1) are letters of the same factor,
say v,1/;, of the z-factorization of v, neither one can be the letter y;, for either
1=t(t) <t (i+1) <z, or x<it(i) <£(: +1) =m 41 must hold. Thus the mutual order
of #(i) and ¢(¢ 4+ 1) remains the same in both v and y,(v),

q.e. d.

The proof of theorem 1 is completed as follows. Let w=vx be a word with

final letter x. Then
IDOWN g¢(w) =IDOWN ¢(v2) =IDOWN y,(¢(v)) z (by definition of ¢)
=IDOWN y,(¢(v)) or IDOWN y(p())U{z} (by
lemmarl (7))
=IDOWN ¢(v) or IDOWN ¢(v)U {z} (by lemma 1(ii))
=IDOWN » or IDOWN oU {z} (by induction),

according as  is the maximum letter of v or not.
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Thus
IDOWN ¢(w)=IDOWN vz (by lemma 1(3))
=IDOWN w,

qg.e.d.

Let us turn our attention to the two corollaries of theorem 1. Denote by %

the involution of § that maps each s in S onto its inverse s~1=1is. By the very
definition of INV one has

(1) INVis=INVs.
On the other hand, as IMAJ s=card IDOWN s, theorem 1 implies that
(2) IMAJ ¢(s)=IMAJ s.

Consider the sequence

i (p"l i @ 1
(3) §—>8 —> 89— 83 —> 8§, —> S5 .

From theorem 1, (1) and (2) it follows that
MAJ s=IMAJ s; =IMAJ s,=MAJ s3=INV s,=INV g5
INV s=INV 81=1WAJ S?=IMAJ 83=IMAJ 84=MAJ 85 .

As every mapping occurring in (3) is bijective, the pairs (MAJ, INV), (IMAJ,
INV) and (IMAJ, MAJ) are identically distributed. This proves corollary 1.

Next form the composition product y =ipip~14 that maps s onto s;, as shown
in (3). Direct computation shows that yy is the identity map. Thus » is an invo-
lution of S. Furthermore

MAJ s=INV s5=INV p(s) .
INV s=MAJ sy =MAJ p(s) .
This establishes corollary 2.

4. The dihedral group D,

Denote by )/ the group of all the permutations of S. Three elements of 3]
are now defined. First ¢ is the inverse operation already introduced

t:8—>s71,
Second ¢ is the complement to (n+1). If s=s(1) s(2) . . . s(n), then
cs=(n+1-s(1)) (n+1—35(2)) ... (n+1—s(n)).

Finally, r sends each s=s(1) s(2) . ..s(n) onto its reversal rs=s(n)...s(2)s(1).
Direct computation shows that r=4dci. The next property is stated for the sake
of completeness.

Property 4.1. The subgroup of 3] generated by {3, ¢} is isomorphic to the dihedral
group D, of order 8.
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Proof. Consider the product [n]X[n], regarded as a square with the four
vertices (1, 1), (1,n), (»n, n), (n,1). Let I' be the graph of a permutation s. It
consists of a set of n points (1, s(1)), (2, s(2)), ..., (n, s(r)) contained in the
square. When the reflection about the horizontal axis of ordinate (n+1)/2 (resp.
about the major diagonal) is performed, the graph I" is transformed into the
graph of the permutation €s (resp. is). As those two reflections generate all the
symmetries of the square and the correspondence between graphs and mappings
is one-to-one, the proof of the lemma is completed, q.e. d.

Note that the following relations hold re=er, ir=ct, irc=rci.

Property 4.2. For each s in S one has
DOWN es=[n—1]\DOWN s;
DOWN res=n—DOWN s={n—i:i¢ DOWN s} .

Proof. Let s=s(1)s(2)...s(n), es=s(1)s'(2)...s'(n) and res=s"(1)
8”(2)...8"(n), where by definition s'(j)=n+1—s(j) and s"(j)=n+1—-s(n+
+1—3). Suppose j in DOWN s. This is equivalent with j€[n — 1] and s(j) >s (j + 1),
hence with s'(j)<s’ (j+1) and with s"'(j"")<s" (" +1) where j” =n+1—j—1.1t
follows immediately that j belongs to DOWN s if and only if j belongs to [n—1]
and, in equivalent fashion, j¢ DOWN ¥s or n—j€ DOWN res,

q.e.d.

5. The Rosixson correspondence

In what follows we have to rely upon the ROBINSON correspondence, that
establishes a bijection between our set S and a new set, say T®, of the pairs of
standard Youxe tableaux of the same shape. The reader is referred to the excel-
lent exposition of the relevant material given in ([9], pp. 48 —72) by DoNALD
E. KnutH, of Stanford University. However our treatment will be axiomatic
in the sense that nothing will be used that is not stated in the following
theorem.

Theorem 4. There exists a surjection ROB: § ~Z onto a set T having the follow-
ing properties

(1) s—~(ROB s, ROB s) is injective;
(i) if s, 8'€8 and ROBs=ROB ¢/,
then ROB rs=ROB rs’ and ROB ¢s=ROB ¢s’;
(iii) if s, '€ S and ROB is=ROB is’, then DOWN s=DOWN s';
(iv) for each s in S there exists an element s’ of S satisfying

(ROB s, ROB is’) =(ROB rs, ROB ris) .

Of course, theorem 4 does not say the full truth: ¥ is indeed the set of all
standard Youna tableaux of order n. On ¥ there is the equivalence “to have the
same shape’’, which is such that the mapping s—(ROB s, ROB is) is bijective



Foata/Schiitzenberger, Major Index 151

upon the pairs of equivalent tableaux. Furthermore, the operation P -~ P” below
is the transposition. The algorithm called “S”’ by K~xutH ([9], pp. 57 —59) trans-
forms each standard Youne tableau P into a tableau P’. Replacing each integer
iin P’ by n+1—i yields a new tableau denoted by P’. The transposed tableau
of P’ is precisely P¥ that is further introduced. The fundamental discovery that
there exists a surjection ROB: S ~Z having property (ii) was made by RoBINSON
[15]. ScHENSTED [16] proved the part of the above property concerning 7',
namely the first part of (ii). The remaining proofs were given in [17]. A numerical
example is given at the end of section 6.

As ROB is surjective, each element of T can be written as ROB s with s in S.
From (ii) it follows that we may define the two mappings P~ P7T and P - P¥ of
¥ into itself by

(ROBs)"=ROBrs and (ROBs)’=ROBes.

Property 5.1. The operations T and F are involutions of ¥ that commute with
each other, i.e.

T2=F2=1 and TF=FT.
Proof. From 72=1 we deduce that
ROB s=ROB 72 = (ROB rs)”=(ROB s)7".
Thus 72=1. In the same manner
ROB s=ROB ¢ = (ROB ¢s)¥ = (ROB s)F*,
showing that F2=1. Finally, from er=rc we get
(ROB s)™ = ((ROB 5)")"=(ROB #s)" =ROB ers
=ROB res=(ROB ¢s)” =((ROB s)*)”=(ROB s)” .
Thus TF=FT, q-e.d.

Next put J=FT. Clearly J is involutive and commutes with 7. Let ® be
the set of all ordered pairs (ROB s, ROB is) where s runs over all of S.

Property 5.2. If (P, Q) belongs to T® then the following three pairs

@ P), (P,@), (P7,Q")

also belong to T™.
Proof. Let s be the element of § with=(P,@Q)=(ROBs, ROB is). Then

(@, P)=(ROB is, ROB tis) also belongs to T according to theorem 4 (i). Next
consider the pair (ROB s, (ROB is)’). As rei=7rir, we get

(ROB is)” = (ROB is)¥”=ROB rcis=ROB rirs .
Hence (ROB s, (ROB is)’) = (ROB 7rs, ROB rirs). From theorem 4 (iv) there
exists an element s’ of S with the property that

(ROB rrs, ROB rirs)=(ROB s’, ROB is’) ,
that is, (ROB s, (ROB is)”) belongs to T®. Finally (P7, @7)=(ROB rs, ROB ris)
is also in T® according to theorem 4 (iv), q-e.d.
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We can then define the following operations on T®

¥(P,Q)=@ P); j(P,Q)=(P,Q"); (P,Q=(P",Q").

Let G’ be the subgroup of the permutation group acting on T that is generated
by {t',j’, t'}. The relations

i/2=j/2=tl2= (irj/)4___ 1’

zIt’=tl 'I’ j’t’:tlj’
follow immediately from the above definition for ¢, j’, ¢ and property 5.1. The
CAYLEY diagram of the group ¢ is shown in figure 1.
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\\ 7,
_______ P
N @
QpIr
fig. 1

Clearly G’ is the direct product of the dihedral group D, (generated by {i’,j’})
by the group of two elements {1, #'}.
T into 2i*~1 by

A(ROB is)=DOWN s .

From theorem 4 (iii) it also follows that we may define a mapping A of
Hence, we get

A(ROB s)=IDOWN s .
Property 5.3. For each @ in T one has

4@ =n—A4@Q)
4@Q")=[n—1]\4@Q) .
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Proof. Let s be such that ROB is=Q. Then (ROB is)’=(ROB is)""=
=ROB reis=ROB ires. Hence 4(Q’)=DOWN res=n-DOWN s according to
property 4.2. Thus A4(@”)=n—A(Q).

In the same manner

(ROB is)"=ROB ris=ROB ics .
Again, from property 4.2
AQT)=A(ROB ics)=DOWN e¢s=[n—1]\DOWN s
=[n—11\4@), q.e.d.

6. Proofs of theorems 2 and 3

From theorem (i) and the very definition of T® the mapping
o:s—(ROB s, ROB is)
is a bijection of S onto . Let
J=0"Y'e and t=p .

As i=p"1i'p, we see that the subgroup G of X generated by {t, j, t} is isomorphic
to G’. In particular, the following relations hold

2=j2=82=(f)i=1, it=4, jt=1j.
Also the group @ contains the dihedral group D, generated by {i, ¢}, since we
can easily verify the following relations
r=%=jt and c=ijti.
In fact, if o(s) = (P, @), we have the relations
e(rs)=(P*,Q’") and o(es)=(P’",Q").
Let us now complete the proof of theorem 2. With s in § we get
o(js)=(ROBs, (ROB is)’) .
Hence
IDOWN js=A4(ROB js)=4(ROB s) =IDOWN s .
Thus the involution j preserves IDOWN. Furthermore
DOWN js=A(ROB ijs)=A((ROB is)’) .
From property 5.3 it then follows that
DOWN js=n—A4(ROB is)=n—DOWN s .
This completes the proof of theorem 2.
Property 6.1. For each s in S the following identities hold
DOWN ts=[n—1\DOWN s
IDOWN #s=[n—1]\IDOWN s .
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Proof. Again property 5.3 implies that
DOWN ts=A(ROB its)=A((ROB is)” =[n—1]\4(ROB is)
=[n—1]\DOWN s .

Also IDOWN #s=DOWN its=DOWN tis=[n—1]\DOWN ts=[n—1\IDOWN s

qg.e.d

We are now ready to prove theorem 3. Recall that N(a, b, z, y) is the set of

all s in S with DES s=a, IDES s=b, MAJ s=x, IMAJ s=y. Clearly the involu-
tion 2: s—~s~1 of § maps in a one-to-one manner each set

{s€8: DES s=a, IDES s=b, MAJ s=2, IMAJ s=y}
onto the set
{s€S: DES s=b, IDES s=a, MAJ s=y, IMAJ s=x} .

This proves the first identity N(a, b, z, y)=N(b, @, y, x) .

Now remember that DES s (resp. IDES s) is the number of elements in
DOWN s, while MAJ s (resp. IMAJ s) is the sum of the elements in DOWN s
(resp. IDOWN s). It then follows from theorem 2 that

IDESjs=IDESs and IMAJjs=IMAJs.
Also
DES js=DES s
and
MAJ js=2X {n—2: € DOWN s}=n DES s—MAJ s .
Thus the involution j maps each set
{s€S: DES s=a, IDES s=b, MAJ s=x, IMAJ s=y}
onto
{s€S:DES s=a, IDES s=b, MAJ s=na—x, IMAJ s=y},
which establishes the identity
N(a,b,z,y)=N(a, b, na—=z,y).
Hence
N'(a,b,2',y)=N'(a, b, —2', y').
Combining with the first identity of theorem 3 gives
N'(a,b,2',y'y=N'(a, b, £2', +y').
The last identity of theorem 3 is a consequence of property 6.2. We have
DESts=n—1—DESs; IDESts=n—1-IDESs.
Also, as the sum of the elements in [n—1] is » (n—1)/2 we deduce
MAJ ts=n (n—1)/2—MAJ s and IMAJ&s=n(n—1)/2—IMAJs.
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Thus the identity
N(@,b,z,y)=N(n—1—a,n—1-b,n (n—1)/2—z,n (n—1)/2—y)
holds, as well as the identities
N'(a,b,2',y')=N'(n—1—a,n—1-b, —2', —y’)
and
N'(a,b,2',y)=N'(n—1—a,n—1-b,2',9y’)
because of theorem 3 (ii).

Example 6.2, Consider the two standard Youne tableaux of order 5

As mentioned in the beginning of section 5 the two tableaux P’ and @’ are
obtained by first applying algorithm ““S”’ (as described in [9], pp. 57—59) to
P and @, then replacing each integer i by 6 —i:

45| 3 ]5]
Pi=l 23] @=[1]2]4]
Hence - - i
5] 5] 3 4]
2] 4] 34 2|5 125
PT=t|3] Q"=[1|2| P71 ]e|  Q7=[1]3]

When the group G acts on the above pair (P, Q) we get the sixteen pairs of
tableaux of figure 1. Each of these pairs is associated under the inverse p~1 of the
Robinson correspondence (see [9], p. 52) with a permutation of {1, 2, 3, 4, 5}, as
shown in the next table.

Table 1.
tableaux ’ permutations ‘ tableaux permutations
PQ=0(s) s=31425 | PTQT ts=25143
PQJ js=34152 ; PT JT rs=52413
PIQ 41523 P”'T cs=35241
PIg’ 14253 P-’TQ”' 32514
QP is=24135 QTPT 31542
QP 35124 Q’TPT 42531
QPrJ 24513 QTpIT 53142
Q'pPJ 13524 Q'TpIT 42153

Note that DOWN s={1, 3}

DOWN js={2,4}=5—{1, 3}
and
IDOWN s=IDOWN js={2} .
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Tables 2 show the distribution of the vector V= (DES, MAJ, IDES, IMAJ)
over the n! permutations of [n] for n=3, 4, 5, 6.

Note that the last two columns show the ¢-EuLrRrian numbers 4, ,(q) (see
[1] p- 336) and the EuLERian numbers 4,, ; .

Tables 2.
B IDES>| o0 | 1 2 n=3
IMAJ-> 0 12 3 A3 x(9) A3
DES MAJ
v v L ] _ )
o | o 1 1 1
1 1 11 2
2 11 2 4
2 1 1 1
- IDES>| 0 1 2 3 n=4
IMAJ~> 0 123 345 6 A1) Asp
DES MAJ
¥ v ;
o | 0 1 1 1
1 3
111
1 2 121 1 5 u
3 111 3
3 111 3
2 4 1 121 5 11
5 111 3
3 6 1 1 1
B IDES>| o | 1 | 2 3 | 4 n=>5
IMAJ>| 0 1234 34567 6789 10 | Asplg) | Asy
DES MAJ
-— + * — - — -— —_ N - -
0 0 1 1 1
1 1111 4
1 2 1221 111 9 26
3 1221 111 9
4 1111 4
3 11211 6
4 11 13431 11 16
2 5 11 24642 11 22 66
6 11 13431 11 16
7 11211 6
6 1111 4
7 111 1221 9
3 8 111 1221 9 26
9 1111 4
4 | 10 - 1 1 1
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