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SYMMETRY AND FLAG MANIFOLDS
by
Alain Lascoux & Marcel-Paul Schiitzenbergen

in spite of its Links with the symmetnic group, the study of fLag
varieties has not yet fully used the customany technics (permutoédre,
Ehnesman's onden, Lehmen's code) of the theory of symmetrnic functions.

To the s0-called Schubert cycles are associated polynomials, which
are no othen than Schur functions in the case of Grassmann varieties,
and which can be studied through the help of symmetrizing operatons,
acting both on the cohomology ning, and the Grothendieck ning as special
cases. Conversely, the study of representations of the symmetrnic group benefits
§rom the geometrnical intuition coming grom the action of the symmetric
ghroup on the §lag variety.

As an example, we indicate how to effectively compute the projective
degnees of Schubert cycles. A note submitted to the Académie des Sciences
apply these methods to the caleulation of the Chean classes of the flag
variety - as for its hawmonic functions, the theory of which requirnes
some  properties of the plactic monoid, they will be the subject of a sepa-
nate anticle.

Hald of the authons warmly thanks Mittag Legfler Institute & the
University of Stockhofm forn their hospitality, the C.1.M.E. Foundation
o providing the oppontunity of displaying the symmetrizing operatonrs,
as well as A.Bjonner, D.laksov and F.Gherandeldi for their interest in
this wonrk.

Caution : the operators are placed on the right.
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§ 1 Symmetrizing operators.

It is always delicaté to distinguish between & permutation and its
inverse, or between right and left multiplication for the symmetric group,
if one does not take a set of "values" and a set of "places". To avoid
misunderstandings, we shall consider permutations of n+1 elements as
operators on the ring of polynomials Z[a,b,...] , {a,b,...} being a
totally ordered alphabet of cardinal n+1 .

E n bn—1 cn-2

Starting from the special element & = a .++ o One uses

the transpositions of consecutive letters to generate all

%b® T *°°
monomials (written in the lexicographic order) whose multidegrees are a

reordering of {0,1,...,n} .

This process gives us a ranked poset, as shown in the following figure,
the permutations being considered as paths (directed downwards) in the graph
of the poset (the graph is called the "permutoédre"). The permutoédre gives
us all the reduced decompositions of the elements of the symmetric group,
the length of a permutation being the length of any corresponding path; w
denotes the permutation of greatest length.

For example, the symmetric group on three letters gives

aE = a210 - a.2 b1 c0
°ab 0bc
a120 a201
qbc oab
a102 a021
oab 0bc
a012

FIGURE 1
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Moore's relations say that two paths having the same end points can be

obtained by a sequence of elementary transformations

1.1 [+ . O

- ab be * ©

ab = 0bc c,a.'b ch

a,b,c being any triple of consecutive letters

1.2 g . 0

ab de = 0de oab
if {a,b} N {d,e} =¢

The conventions are such that if 0.0'.0" ... is a path from aE to
i i
aI =a ob 1 ess s then with ww = io+1, i1+1, cens in+1 , one has aE ww = aI,

aI vil= a°b1c2 ... 3 less trivial operators on Z[a,b,...] appear when
applying Jacobi's procedure to generate symmetric polynomials through

alternating polynomials.
Define aab to be the operator

1.3 dp ¢ flasbse.) ~n [f(abye..) - £(bya,c...)]/(b-a)

and similarly for all pairs of consecutive letters, where f is an
arbitrary polynomial (or rational) function.

We can interpret any path of the permuto€dre as a product of operators
aab . Checking the relation similar to 1.1 (1.2 is trivial in this case),

one gets

1.4 Lemma. The product of operators corresponding to a path from w to w

is independant of the choice of the path and depends only upon w . It is

denoted aww .

The operators 3w are not always adequate because they systematically

decrease the degrees. To preserve the degree, one defines

1.5 Ty £~ (af) b

e = f ~ (bf) e
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and one checks that these new operators still verify relations 1.1 and 1.2,
so that a product of operators corresponding to a path depends only upon
the end points : L. is given by a path from w to w , m, by a path
from w‘1 to 123 ... .

Having at hand three operators verifying the same relations 1.1 ang 1.2,
one cannot resist in putting them in a single family.

Let p,q,r be fixed integers.

Define

1.6 Dab(p,q,r) S SRV (f)(paab +am, + roab)

and similarly for all pairs of consecutive letters.
It is a simple, but not totally trivial verification, that conditions

1.1 and 1.2 are still fulfilled, so that one can write Dw(p,q,r) .

To accelerate computations one may remark that symmetric functions are

scalars with respect to the Dv :
.l:l f.g € Z[&,b,..] B foa'b =f = (fg)Dab = gDa'bf .
In fact Dw(p,q,o) is & symmetrizer in the whole alphabet, i.e.

VI eE Z[a-,b'---] s Vw, [ Dm(P’Qso)]V =wa(P9q’°) .

One can show that, up to a change of variables, the operators Dw(p,q,o) .are
the most general symmetrization operators verifying certain natural conditions,

and thus we cannot find a family with more parameter:s containing them.
More precisely concerning Dw(p,q,o) , one has:

1.8 fDm(p,q,o) =7 (£ qu)w
sum on all permutations, qu being the generalization of Vandermonde's

determinant:

Aoy = Teey (PHax)/(x-y).
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1.9 Remark. fm = (faE)am =] (—1)z(w)(fa?)w /¥ (_1)2(w) e}

al m  is the classical Schur function of index i ,i_ _,...,1
w e n’ n-1 0

(cf Macdonald).

Thus the operators Dw(1,0,0) = Bm and Dw(0,1,0) are essentially the same,
and formula 1.8 becomes in this case Jacobi's expression of Schur functions,
Weyl's character formula for the linear group and Bott's theorem for the

cohomology of line bundles on flag manifolds.

We did not use the square D2

ab of an operator; in fact, one has

1.10 DS = q D_. + r(q+r)

ab
so that one is really working with a representation of the Hecke algebra

of the symmetric group.

§ 2 Schubert polynomials.

As the action of aw » or m as well, transforms a monomial into
a Schur function, the operators Dw will give generalizations of Schur
functions.

Following Demazure, and independently, Bernstein-Gelfand and Gelfand,

we shall define, for every permutation w , the polynomial Xw by

_ _E
2.1 Xw =a aww s

at being the monomial a® bn_1 cn_2 -+« « Thus, the X_ are obtained just

by pushing down Xw = aE along the edges of the permutoédre.
Figure 2 gives the result in the case of four letters.

One could generate the Xw through the m_ 3 this more complicated process

leads to a combinatorial representation of the X, -
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POLYNOMES
z 3210 ; abZc! DE
SCHUBERT

LB B 2

: aZb? 3021 :adb+adc 3102 : adb

*
*
*
*
*
*
*
*
*

2 2 .2
0321:a"b+a“c+ab” 1302 :a2beab?  2031:aZbta’c 2103:a2b 3012:a

1230:abc
+abc+b2c

\\ x
-
*o »
(]
* x
* x
*
* T
¥
* (N
* X S
* * s -~ \\ ¥
x ~ (YN
2 2 2 . a2

0231:ab+ac+bc 0312:a"+ab+b 1032:a"+ab+ac 1203 : ab 2013 : a
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One notices on the example that Xw is a polynomial of degree £(w)
with positive coefficients, and that X, is symmetrical in the i-th and

i+1-th letters of A if and only if W, <wy 3 in other words, the shape

+1
of w (i.e. the sequence of its up's and down's) gives the symmetries of
the polynomial Xw . For those permutations which are called grassmannian
germutations (i.e. the ones which have only one descent), then Xw is a
Schur function in the first letters of A, e.g. X2h13 , which has to be

symmetrical in a,b and also in c¢,d is indeed the Schur function
812(a+b) = agb + ab2

(we identify an alphabet A = {a,b,...} and S1(A) = at+b+...) .

As for Schur functions, the first problem will be to multiply two
polynomials. The simplest case is due to Monk, but first we need to enlarge
the permutoédre. For each pair of permutations (v,w) , such that v and w
differ only by a transposition: v = ... Vi e vj e ¥ YW= L. vj"' V..
and that 2(w) = 2(v) + 1 , one draws between v and w j-i edges, of
respective "colors" (i+1, i), ..., (j, j-1) (remember that on the permutoédre,
an edge of color (i+1, i) meant the transposition of the letters at place
i and i+1).

The graph so obtained, when one forgets about the colours and the

multiplicities of the edges, is due to Ehresman, and more generally, for

Coxeter groups, to Bruhat. Let us call it the coloured Ehresmanoédre.

Now, choose one colour (i+1, i) , and consider the monocolour subgraph

r obtained by erasing the edges of colour different from the choosen one.

i+l i
Then, writing i+1 i for the permutation 1 ... i-1 i+1 i i+2 ... ,
one has Monk's formula

2.2 Ko - X, = L X,

sum on all w : &(w) = &(v) + 1, vw is an edge of T.

141 i° i.e. there is

an edge of colour (i+1 i) between v and w .
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It is not too difficult to verify by induction this formula. The
remarkable fact is that there is no multiplicity in this multiplication.
Pieri's formula asserts that the multiplication of a Schur function by a
special Schur function of any degree (i.e. elementary or complete symmetric
functions, cf. Macdonald) produces no multiplicities. The same thing happens
more generally for Schubert polynomials, i.e. the multiplication of a Schubert
polynomial by a special one gives rise to no multiplicities (cf. L & S for
the description of the w coming in the summation). Thus Monk's formula is
the initial degree one-case of the general Pieri's formula.

As a by-product, one obtains a commutation property which is valid for

all finite Coxeter groups.

Let 021, C32 .+. Dbe the matrices of the directed graphs F21, F32, cees
i.e. we put 1 at the place (v,w) of the matrix Ci+1 i if (v) < &(w) ,
and vw 1is an edge of Fi+1 I and 0O otherwise. Then one has
2.3 Lemma: The matrices Ci+1 i commute.

Proof.: As the multiplication of Schubert polynomials by Xi+1 i is described

by the matrix C. . The lemma is equivalent to the fact that the product

i+1 1

X X X_ 1is equal to X. X

541 * X, 5415 . X for every v .

i+1i” it1 i
This specific property of Bruhat order on Coxeter groups has to be proved

in itself without reference to multiplication of Schubert polynomials.
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§ 3 Cohomology of the flag manifold.

The reader who wants to use Figure 2 to multiply a3(== xh12?) by
a(=X213h) finds no edge with colour 21 from 4123 upwards. So he must disagree
with Monk's formula as stated above. But if he enlarges the alphabet by just

one letter, he certainly obtains that

3. _ . _ _ b
872 = X) 1035 * Xpq3u5 = X5qp3y = 8 -

More generally, to use Monk's formula for the symmetric group Wn , one
must for safety reasons imbed it into Wn+1 .
Alternatively one can also notice that

a.h = Sh(a+b+c+d) - (bt+c+d) s3 (a+b+c+d) + (be+bd+ed) 82 (a+b+c+d) - bed(a+b+e+d)

which has the consequence that all belongs to the ideal generated by the

polynomials summetrical in a,b,c,d .

Definition: The cohomology ring of the flag manifold associated to the

symmetric group Wn+1 is

3.1 H= zla,b,...]1 /1

where I 1is the ideal generated by the symmetric polynomials (with no constant
term!) in all the variables (in other words, the ideal generated by the

invariants of Wn+1).

It is easy to show by induction on n that H has two natural Z-bases:

i) the monomials aI =a b 2 ... with 0<i<E

ii) the Schubert polynomials Xw (the class of a Schubert polynomial
in H 1is called a Schubert cycle).

Notice that H is of rank 1 in the maximal degree &(w) = n(n+1)/2 and

that X = aE .
w

Now, Monk's formula is perfectly valid: passing from an alphabet of

n+1 letters to n , one annihilates exactly the Schubert polynomials Xw
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3 2 MULTIPLICATION
3 abe PAR a+b DANS
* L' ANNEAU
: DE COHOMOLOGIE
a2b2c a3bc a3b2
* 5 . * *
* x » * * *x
* * *
* » » «
* » - * *
* * * * * *
* . * x * *
»
* % . x N *
* 3 . * « *
* X » = *
* x * *
2 ® % 22 3
abc (a+b) a“be a“b a” (b+c) a’b
«¥ * '4’;"; x ¥
x " * T ox » x»
« ¥ ) » ¥ 5 *‘4 ¥ x %
- » ‘;; » » x & ¥ »
¥  * » » Xy ¥ »
* » * e 3
« » g » ¥y x ¥
» ‘l‘ » » x L ¥
* * * * x * v
- » L el » x ¥
» '\‘ » * » * * * »
x » » » * x 4’ 3 »
* 2 2% M e 2 ¥ 3
abc a“b+a c;ab +abc ab(a+b) a“(b+c) a‘b a
+b4c ¥ =x
* » L 2 * ¥ * * »
» » * ¥ o » » *
» » ¥ ¥
. ., ® x » t* » » n
» % » 5 x ¥ ¥¥¥ %
» ™ » * ¥ " * x
» * * . » . i " * »
x * e o ® * M ¥ * »
» * *a, » ¥ » ¥ » .
» * » 4‘ r ¥ :‘ L )
» *t » ',¥ P 2 ’4 ** » x
»
» x *, ¥
ab+ac+be a2+ab+b a(atb+c) ab a2
x % * &
» * 4 * *
» « »* * * *
» * * * *
* * * * * x
»* * * *« ™ &
* *
* * * * * *
* % * * « 0
» » * x 5
* g * * -
» * % *
a+b+c a+b a
&«
' .
« (a+b) X 48 the sum of the
«
&«
1

poLynomials directly above X,
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for those w such that LA # n+l .

But another difficulty comes: how can we see that two polynomials are

equivalent modulo the invariants of Wn+1 ?

Ehresman, generalizing classical results on Grassmann varieties, has
shown that the multiplication in H does induce a pairing on the basis of

Schubert cycles: for w,w' such that &(w) + L(w') = 2(w) , then

3.2 Xw . Xw' = a or O

according to w' = ww or not.

This result is due to Chevalley for arbitrary Coxeter groups.

Since the operators D preserve the ideal T ( (fg)Dab =gD, °f if

f oab = f ), they are indeed operators on H .

Using aan = 1 , one gets:

3.3 Let P Dbe a homogeneous polynomial of degree £(w) . Then

P = (P aw) aF mod T .

Thus, combining with 3.2, the decomposition of a polynomial in the basis Xw

is given by
3.4 P= Z(P-xw)ams-xW

sum on all permutations w , the augmentation morphism ¢ : Zla,b,...] +% ,

@€ = be = ... = 0 taking care of the decomposition of P into its homogeneous

components.

Now, if one does not have at hand the explicit expression of the
Schubert polynomials, one must improve the method to be able to determine when

two polynomials are equivalent modulo the ideal I . This will be done in § 6.
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§ 4 Projective degree of Schubert cycles.

Consider a graded ring H , call the graduation codimension, and assume
that H is of rank 1 in maximal codimension (assumed different from
infinity!) : e~z .

Let Y in H be an element of codimension 1, and X of codimension 4 .

Then the degree of X relative to Y 1is the image in Z of X. Ymax—d .

When H is the cohomology ring of a projective variety, one chooses
an imbedding in a projective space and Y 1is the class of the intersection
with an hyperplane.

In our case, for the natural embedding of the flag variety, which is
due to Pliicker, Y is equal to the sum of all Schubert polynomials of

codimension 1 :

4.1 Y = x213h... + X132h... + X12h3... + ... =na+ (n-1)b + (n-2)c + ...

(To distinguish between the degree of X relative to Y and the degree of

X as a polynomial, we call the first projective degree and the second

codimension.)

To compute the projective degrees, it is sufficient to know them for
the Schubert cycles. In the case of grassmennians (& certain quotient of H )
one obtains the degrees of the irreducible representations of the symmetric
group, so these projective degrees should be interesting by themselves,

regardless of their geometrical interpretations.

We have already done most of the work: as the multiplication by

X

;41 j corresponds to the edges of colour (i+1 i) in the coloured Ehres-—

manoedre, one gets:

4.2 Proposition. The projective degree of Xw is the number of paths

from w to w in the coloured Ehresmanoédre.
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ORDRE D'EH RESMAN
- SUR LE
\\GROUPE SYMETRIQUE

colon 21

YRR colon 32

---------- colon 43
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in position w 4s indicated
the pwjective degree 0§ X,
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This proposition is equivalent to the following induction:
4.3 proj.deg X = Zv m(w,v) proj.deg X,

sum on all permutations v: &(v) = &(w) + 1 , with m(w,v) = number of edges

from wtov .
Another formulation is:
L, b (1-!)-1 = (1 - (na + (n-1)b + ...))-‘1 = z proj.deg (Xw) wa in H .

For example, in the case n = 2
(1 - (2a.+b)'-1 =1+ a+ (ath) + 382 + 3ab + 6a’b (and so the proj.deg are

1,1,1,3,3,6) taking into account that in H , a2 + ab + b2 = 0 ,

a3 =b = aab + ab2 = 0 modulo the symmetric functions in a,b,c.

One can show this way that proj.deg x123 = (n(n+1)/2) H

Since more information is contained in the Ehresmanoedre, one can do
better than only counting the paths, by reading the paths as words of colours.
So denote colours (21), (32), ... by a, B, ..., and read a path as a
sequence of colours, i.e. a word in the Greek alphabet.

Define the non-commutative degree of Xw as the sum of the words given

by all the paths from w to w . Then the commutation property 2.3 insures
that this non commutative degree is a "Partie reconnaisable" (terminology

from the theory of monoids) i.e. is invariant by permutation: whenever you

meet the word aofy , you have also the word yaBa with the same frequency.

4.5 Example. For X321h » one gets the noncommutative degree

(a+B+y) (By+YB+YY) + (B+Y)(ay+ya) + y(aB+Ba+BBR) .

Thus, the non commutative degree is given by restricting to the

increasing words; in the above examples, the degree is obtained by permutation

of (6) aBy + (3) ayy + (3) BBY +(3) Byy + (1) yyy
(inside the parenthesis, we have indicated how many words are associated in

the non-commutative degree).
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In other words, if ¢ : Z[[ a,B,...]] + Z[la,B,...] is the natural
morphism (the evaluation) from the ring of non-commuting variables to the
ring of polynomials, then the non-commutative degree is the inverse image of

a polynomial Zw v that we call the colour-degree of X, -
9’

More generally, one defines the polynomials Zv,w > when &(v) > &(w) ,
to be the sum of all increasing paths from v to w (this will correspond to
the degree of the intersection of two Schubert cycles); put Zv,w =0 if
2(v) < &w) .

If moreover, one defines M, to be the matrix: the entry (v,w) is
o or 0 , according as #(v) = £(w) + 1 and there is an edge of colour o
between v and w , or not, and similarly for MB’ MY ..., One obtains from
2.3 the commutation of the matrices Ma’ MB’ oo o
Exercise. Prove that 2 =7 ot Bj Yk «es » SuUm On &1l
—_— n+1 12..n, 12..n+1

different monomials of total degree n , with i <n, j < n-1, k < n-2, ...

e.g. Zy103, 1234 = a(oa + aB + BB + ay + By) .

§ 5 The G-polynomials.

Instead of taking the cohomology ring of the flag manifold as we did
in § 3, it is more fruitful to take another quotent of the ring of polynomials,

which is called the Grothendieck ring of the flag manifold; denote the

variables by La’ Lb’ ... to distinguish from the preceeding case, and keep
the same notations for the operators aab, Mep® *-°» 88 DO ambiguity is to be
feared.

Call © the specialization ring-morphism: Lae = Lbe = ...=1 and let

J Ybve the ideal generated by the relations

5.1 V f€ZL,L,...] , fm =fmo
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i.e. the totally symmetric polynomials are equalled to their value for

5.2 Definition. The Grothendieck ring of the flag manifold is

K=Z[La, Ls NS VA

The properties of this ring are strongly linked with those of symmetric

functions, whose theory has been formslized in the theory of A-rings.

As J is invariant under the action of the D‘r » these operators
still act on K . Of course, taking relations 5.1 instead of 3.1 do not change
the Z-bases of the quotient ring, so that one has
i i

5.2 The set of monomials LI=La1Lb2... s for 0<I<E.is a

Z-basis of K .

5.3 The Schubert polynomials (in the alphabet La.’ Lb’ ...) are a Z-basis

of K.

As I’a Lb Lc ... =1 , we see that the ring K contains the inverse
of the variables I"a’ Lb’ .+« « The inversion of La’ Lb, ... extends to an
involution morphism of K which is called duality by reference to vector

bundles (La’ I‘b’ ... are the tautological line bundles of the flag menifold).

It is convenient to introduce new variables x = 1 - L:, y=1- L;1,

z=1- LE‘ «es « The symmetrizers associated to x, y, ... are related to

those of La’ Lb’ «es ¢ One checks

5.4 VEEK, fm, =(f-1fy)d

and similarly for all pairs of consecutive letters,which, incidentally, shows
that a change of variables induces a non trivial transformation of the
symmetrizers. As in § 2, we choose a maximal element

Gm = xE = xn y11—1 zn—2
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and we define the G-polynomial indexed by the permutation w by

5.5 G"’=Gw'll’ww .

Figure 6 gives the case n = 3.

It is clear from lemma 5.4 that the homogeneous part of smallest
degree (= f(w)) of Gw is the Schubert polynomial X, (in the variables
Xy¥s.o+ 1instead of a,b,...). Thus the Schubert polynomials are nothing but

the leading term of the Gw .

Schubert polynomials (in x,y,...) being a basis of K , one can express
the Gw in term of the xv , or conversely, the xw in term of the Gw N

the matrix being triangular.

e.g. for (w) =4 , one has

we

Xou13 = Couq3 * G310 3 Xpgyq = CGogy

%3142 = G3q4p * G3pq 3 X351) = CG3a9)
Xju32 = Gqu3p * Wpy3q * G3upq * G390 3 Xygpg = Gyqp3 -

To express the multiplication in the basis of Gw is more complicated
than in the basis X, . We shall give elsewhere the corresponding "Pieri-

formula". For example, one reads on figure 5 that

2
Gi3oy Gy3oy = (X4 = X¥)T = Gpgyy + Gyppg = Gpyyg -
(We previously had x132h’x132h = X231h + x1h23 3 here we had to substract
the supremum of 2314 and 1423 which is 2413 ; bigger intervals are involved

in general.)

To understand the link between the two rings H and K , one must recall
the existence and properties of Chern classes:

Denote by 1 + H+ the multiplicative monoid of polynomials with constant
term 1 (and coefficients in Q ). There exists & homomorphism:

c:K+1+H+
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such that c(1) = 1, c(E+F) = ¢(E)+ ¢(F) . On the basis LI , it takes
the values
ipdpk =1+ 1a + jb + +
c(La Lo L, ces) =1 +ia+ jb+ke+ .o.
(Of course the multiplication in K induces a "product" in 1 + H , for
whose explicit description one needs Schur functions - see Macdonald.)

Now one can check
- (=)¥W) 1)1 '
e(a,) =1 - (1) (2(w)-1)! X +X
where X' is a polynomial of degree > 2(w) . (cf. SGA6, exp. O formule 1.18).

If G is asum I n G, with w of constant length &(w) = d (one says
¢ ek
- - d - 1
c(G) = 1= (-1)" (a-1) In X +X
and

a-1
c(GWab) =1=(-1) (a-2)! I n, xwaab + X' aab

so that one sees that:

5.6 Proposition: -(d—l/“1 aab is the image by the Chern homomorphism

of w. acting on K.

§ 6 Quadratic form on the cohomology ring.

Most of the preceeding description relies heavily upon the natural
bases of the cohomology or Grothendieck ring of the flag variety. To be able
to eompute without restriction in these rings, one must be able to express
a general element (in a finite time) in the bases already defined.

The operators corresponding to the permutation of greatest length are
the most effective rool for this purpose. It amounts to define on each of

the spaces H and K a quadratic form.
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We consider sequences as vectors in Znﬂ and thus can write I +J ;
through the identification Ir\:aI , the symmetric group acts on sequences:
I~ Iv

recall that E 1is the sequence n, n-1, ..., 0 .

Now, when -E < I

IA

Ew , one checks from formula 1.9 that

6.1 aI L aI+E Bm = (-1)2(") if there exists w such that I + E = Ew
= 0 otherwise.

1. _,.-I S .
Moreover, a m = (a w)ﬂm »and a m =0 if i+ ...+ 1n+1(_|1“ #0.

BE.g. I = -3102 =» I+E = 0312 1is a permutation of E and so is -Iw+ E
(=-20-13 + 3210 = 1203).
Owing to this symmetry between I and -Iw, one defines a scalar product

on H by its values on the basis aI (for 0<IC<E):

6.2 (al, &7) = oT@~Y L

For example, for four letters and degree 3

ololojolo] o
~|l~jlo|lalo|a I
N|j~|N]—]Mn] O J
ojof{ojojo|-1 2100
0joj0}jo0j-1} © 1110
0jo|O0|=-1]1] 1 1200
ofo|-1]of1]1 2010
o|-1]1]|1]-1{ 0 3000
-1]0j1}1]0]-1 0210

On the example one sees that the quadratic form, for a given weight, is
positive or negative definite, and triangular for an appropriate ordering of

the monomials.
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Instead of describing the ordering, which directly comes from the
interpretation of sequences I such that 0 < I < E as coding permutations,

one can do better and give the adjoint basis of aI .

6.3 Let P =T, <p<n Aip (An_p) .

Ap being the alphabet of the first p letters, and Ai the elementary

symmetric function of degree i ; then one has

6.4  Proposition! The family (—1)'1'{PI} with 0 < I <E , is the adjoint

basis of {a'} .

For example, for n=3, I = 2010 , PI = A2 (a+b+c) A1(a) = aab + an + abc ,
and one checks from the preceeding table that

(al, P)=-1, (a7, P)=0 if J#I.

6.5 Corollary (Bott-Rota's straightening).

If Y is en homogeneous polynomial of degree d , them in H , (—1)d Y=

= I (Y, PI) al = T (Y, aI) PI sum on all sequences I such that 0 < I < E .

Thanks to 6.1, this straightening is an efficient way of decomposing in
H the class of a polynomial. For the decomposition in the basis Xﬁ , We
already have 3.hL.

We note that X av =0 if &(v) = &(w) and v # v » because

X, av =X, wa av , SO that either wwv= w, or 2owv) < (w) =« aww Bv

can be written a".au au Bw" (= 0) . Thus we have the other way of

decomposing a polynomial Y .

6.6 Y = I (Yed _)e X

-1 W
w

sum on all permutations w , which Pe = term of degree o of P , as in 3.L.
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§ 7 Quadratic form on the Grothendieck ring.

As Schubert polynomials are still a basis of the Grothendieck ring K ,
one could still keep the scalar product for which the Schubert polynomials are
an orthonormal basis. This would not fit well with the action of the operators

on K.
Remembering that T sends K to its subring Z , one can define
I vV P,Q€EK, <P’Q)= (PQ)"m§

on the basis Gw » the quadratic form takes only the values O or 1 .

For example, for S3 , the multiplication table is

G G G

123 213 132 Gpsy G314 Gapy

G123 G123 G213 G132 G231 €312 G321
G135 Go13 G312 |G312%0231 | O34 0 0

G324
432 G132 |G312%0231|  Go3y 0 G321 0
Y

G231 G231 G321 0 0 0 0
G312 G312 0 G321 0 0 0
Gyo1 Gapq 0 0 0 0 0

and the quadratic form is the image of this table by L (noting that

Vw , Gw"w'1 ):

1 1 1 1 1 1

1 1 1 1 0 0
1 1 1 0 1 0
1 1 0 0 0] 0
1 0 1 0 0 0
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We shall not prove here the two following propositions which generalize

3.4 and 6.6.

7.2 Proposition. For any w , let Hw be the sum of G-polynomials

2(v)-2(w)
zvzw (~-1)A\VImHw G, -

Then {wa} is the adjoint basis of {Gw} (with respect to £, 7 ).
For example,

((;132 = Gpgy = Gyqp + O3y cw) =0 except for w =312 = w132 .

7.3 Proposition. Let 6 be the specialization morphism

L39=Lb8=...=1.Then VPEK, Vw, 4Y,Gw>=Y‘nw_19.

As for every w , <Gw’ 1= (Gw- 1) L 1 the fact that
<Hw’ 1> =0 generalizes the property of the Moebius function (for the

Bruhat order) to be 1 .

§ 8 Applications.

We have mainly described the tools to study the cohomology or
Grothendieck ring of the flag manifold. Many questions arising from the

theory of groups or algebraic geometry can be then easily studied.

on H or K . One must

8.1 The representation of the symmetric group LA
note that as Z-modules, H and K are isomorphic to the regular representation
of Wo4q Dut that the degree gives us an extra information; in fact, the
multiplicity of an irreducible representation can be considered as a polynomial
(which happens to be a Kostka-Foulkes polynomial coming in the theory of
representation of the finite linear groups). More generally, De Concini et

Procesi have studied the quotients of H associated to the variety of flags

fixed by a given unipotent matrix.
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8.2 Enumerative geometry on the flag manifold.

We have only given the projective degree of a Schubert cycle in § L.

One needs also the postulation of the cycle xw with respect to a
line bundle Al by definition, it is I (—1)i dim Hi (0;, LI) ; once given
the rules of the translation, it simply becomes (LIGH) LI which is also
equal to LI ﬂ"_1 0 , as asserted in T.3.

The Chern classes of a variety are the first invariants of it that one
tries to get. In the case of the flag manifold, the tangent bundle T has
class

LyeLy | +LoL7 +L1 7 4. in K
so that its Chern class is
e(T) = (1+a-b) (1+a-c)(1+b-c) ...
and it remains to compute c(T) in the basis of Schubert cycles. This will

be done elsewhere.

8.3 Representations of the linear group G£(¢n+1).

One can consider the ring of invariants of W_ . Z[a,1/a,b,1/'b,...]w

to be the ring of formal sums of representations of Gl(Cn+1)

Bott's theorem evaluates in this ring, for any line bundle LI, I€ Zn+1,
and any i , the representation Hi(x, LI) » X being the flag manifold.

We have obtained here a little less:

p-0b it = ah g,

(in fact, all the Hi(x, LI) are {0} except at most one, so that the two
computations are not very different).

One can also look for syzygies of the Schubert variety corresponding to
W , i.e. try to get a complex of locally free bundles which "solves" the ring
of the Schubert variety. The class of the complex in Z[a,1/a,b,1/b,..] 1is
given by

[(1-La_1)n (1—1..0)"‘1 el

but, of course there remains to describe the morphisms inside the complex.

This, we shall not do.



143

8.4 Root systems and Coxeter groups.

Most of the properties of the operators Dw can be extended to other
finite Coxeter groups, as shown first by Demazure and independently Bernstein,
Gelfand-Gelfand.

In the case of the symmetric group, if o, B, ..., are the simple roots,
and p half the sum of positive roots, then ea, eB, ... are respectively
LaLb_1’ Lch-1, ooy 8nd ep

If I is weakly decreasing (LI is dominant), then Weyl's character formula

. E
is equal to L~ up to a power of LaL'ch cee o

for the corresponding irreducible representation EI is
en(E) = £ (-0 (W'tFw / £ (-1
and as we have remarqued in 1.9, it can be written
ch(E;) = (L1E) 3, 3
an equivalent result, using instead the operator LA is
I

ch(EI) =L T

vhich is in fact Bott's formula.

8.5 Determinants.

For m : 0 <m < n+1 , one can consider The Grassmann variety of

subvector spaces of dim m+1 of Cnﬂ . The associated cohomology ring is

[] "
the subring HW xW

of #H inveriant under the product of symmetric groups
W!'XW" (W' being the group on the first m+1 letters, W', on the remaining
letters).

[ "
A Z-basis of H' Y

is the set of Schubert polynomials xw for the
w of minimum length in their class modulo W' xW" . In this case X, is

8 Schur function on the alphabet of the first m+1 letters, and all the
properties of the cohomology ring of the Grassmamvariety (or of the Grothen-

dieck ring) can be translated in term of Schur functions. In particular, the

determinantal expression of Schur function gives rise to a determinantal



144

expression for X (due to Giambelli), for G, » for the postulation
(due to Hodge), etc...

Unfortunately, not all permutations in general give determinants. We
have given in [L & S] several characterizations of those permutations for
which xw, Gw’ ... are determinants (permutations vexillaires); for them,

the computations are very similar to the ones in the more special case of

Grassmannvariety.

8.6 Combinatorics.

A combinatorial and powerful description of Schur functions is given
by Ferrers diagrams and Young tableaux. One can similarly associate to any
permutation a diagram (due to Riguet), and fill it according to rules deduced
from Pieri-Monk's formula 2.2. This seems to be an interesting generalization

of Young tableaux and the plactic monoid.
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