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Abstract. The decomposition of a product of two irreducible representations of a linear group GI(¥, C) is
explicitly given by the Littlewood-Richardson rule, which amounts to finding how many Young tableaux
satisfy certain conditions. We obtain more general multiplicities by generating ‘vexillary’ permutations and
by using partially symmetrical polynomials (Schubert polynomials).

0. Introduction

Character expansion techniques are widely used in both particle and nuclear physics (cf.
[1, 6]). For what concerns SU(N) or GI(N), the fundamental functions are the Schur
Sfunctions, which also describe the irreducible representations of the symmetric group.
As a matter of fact, the ring generated by Schur functions is the ring of symmetric
polynomials (in an infinite number of variables), which can be given many inter-
pretations, among which are the representation ring of a symmetric group, of a linear
group, and the cohomology ring of a Grassmannian, i.e., of the classifying space BU,,,
etc.

The images of Schur functions in all these isomorphic rings are each time the
fundamental basis, but the product takes different interpretations (Table I).

Table L.
Interpretation Symmetric Representation Representation Cohomology
polynomials of the of the linear of the
sym. group group Grassmannian
Fundamental Schur Irreducible rep. Irreducible rep. Schubert
basis functions over C over C cycles
Product Product of Branching Tensor product Intersection
polynomials Gpr X 66y, n of vector spaces

The product was determined by Pieri, an Italian geometer, a century ago. He gave
the intersection of all Schubert cycles by special ones. The general intersection, or the
decomposition of the tensor product of two irreducible representations of the linear

* A la mémoire de S. Ulam, exemple et ami.
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group was given 50 years later by Littlewood and Richardson [4], and satisfactory
proof of the so-called Littlewood—Richardson rule was given only recently (cf. [5]).
Algebraically, it amounts to considering Schur functions as sums of Young tableaux of
a fixed shape, i.e., to give a noncommutative version of symmetric polynomials.

A different approach consists, not of studying symmetric polynomials, but rather the
action of a symmetric group on a ring of polynomials. The necessary objects for this
action are now the Schubert polynomials Y, (among which are the Schur functions)
indexed by sequences of positive integers. The Schubert polynomials have only partial
symmetries. Nevertheless, by restriction to a subset of variables, one recovers symmetric
functions which, of course, can be decomposed into a sum of Schur functions S;. In
other words, one has a morphism Y, —» X m(Z, J)S,, the m(, J) being positive integers
among which one can find the Littlewood—-Richardson multiplicities, as will be
explained below.

Indeed, we can do better than compute multiplicities: to each sequence, we attach
a set of ‘vexillary’ sequences. Now, a Schubert polynomial indexed by a vexillary
sequence gives exactly one Schur function by restriction, and the above multiplicity
m(l, J) is just the cardinal of vexillary sequences giving the Schur function S,. Vexillary
sequences play a role in geometry and correspond to flags of modules.

The algorithm for producing these vexillary sequences is much faster than all those
derived from the Littlewood—-Richardson rule, because it involves no ‘trial and error’
steps. In fact, we could totally ignore the Schur functions or Schubert polynomials.
What we are doing is describing certain properties (consequences of formula (3.3)) of
the so-called Ehresman—Bruhat order on the symmetric group, exactly as branching
rules for the symmetric or linear group can be described by paths in the lattice of
partitions, i.e., Young tableaux, Yamanouchi symbols, or equivalently Gelfand patterns.
Nevertheless, manipulating polynomials is more elementary!

1. Schubert Polynomials

Let A = {a,,...,a,} = 4, be a set of variables and Z(4) the corresponding ring of
polynomials. The Schubert polynomials are a Z-basis of Z(4) (cf. [2]); its elements are
indexed (bijectively) by sequences (or vectors) I =1,,...,I,)eN* and each Y, is
homogeneous of degree |I| = I, + - -+ + I, = the weight of I. The indexing is such that
iff,.,=1,,,="-"=1,=0,the polynomial Y, does not depend upon a,,, , ,, ..., a,
and, in fact, Y, = Y,,, where Y, is the Schubert polynomial in the variables of
A,, ={ay,...,a,} thatis indexed by the restriction I' = (1}, ..., I,,) e N" of I to its m
first components. Accordingly, one usually omits the zeroes on the right of a sequence
indexing a Schubert polynomial.
We shall use, without proof, two basic facts (we refer to [2, 3]):

PROPOSITION (1.1). If I is increasing (i.e., if [, < I, < -+ < I,), then Y, is equal to
the Schur function S;.(A,)), where I' is the partition of |I| obtained by omitting the initial
zeroes in I.
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Thus, for instance, Y5104 = S124(45)-

PROPOSITION (1.2). Assume that I, J € N" satisfy the following conditions for some
m:1,. =0 for every m'>m; J,=0 for any p<Max{j+1:1<j<m}. Then
Yo=Y, Y, where K =1+ J.

Forinstance, I = 0141 andJ = 0721 = 000000021 satisfy these conditions with m = 4
since 8 is larger than 1 + 0, 2 + 1, 3 + 4, and 4 + 1. According to Proposition (1.2),
Yo1410021 is equal to the product of Y5141 by Yo00000021-

In fact, one could rather easily derive the two preceding properties from our
transition equations (Section 3) and the determinantal expression of vexillary poly-
nomials (1.4). However, we abstain from doing so because these properties are special
cases of a more general type using concepts outside the scope of this Letter.

The only other result that we shall use without proof is Monk’s rule giving the product
of a Schubert polynomial by a variable. It is given in Section 3, but we already have all
the tools needed to describe our argument.

Let I’ and J’ be partitions. Takem > [I'| + J' |, p=>2m+ 1+ |I'l,n=p*|J'|. By
introducing sufficiently many zeroes, we can find I,J e N” such that ¥, = S,.(4,,),
Y, =S,(4,) and that the conditions of Proposition (1.2) are satisfied. Therefore,
Y=Y, Y, where K =1+ J. Denote by Y n 4,, the restriction to the variables in
A,,={ay,...,a,} of any polynomial Y. Equivalently, Y n 4,, is the value of Y for
Q,.1="""=a,=0. We have

YKmAm= (YInAm).(YJmAm)’ (1'3)

where Y, nA4,,=S,(4,)=Y, by definition, and where Y,n4,=
S;(4,)nA4,,=S,(4,,) since the Schur functions are symmetric in their arguments.
The right member of (1.3) can be expressed in a unique manner as the sum of Schubert
polynomials Y., because these polynomials constitute a basis of Z(4,,,). Since the Schur
functions themselves are a basis of the ring of symmetric polynomials, the Y. appearing
in this sum are also Schur functions. Therefore, the desired expression of the product
S; - S, as the sum of Schur function Sy is obtained by computing Y, N 4,,, i.e., by
developing the Schubert polynomial Y in a,, @,,_1, ..., a,,,; and keeping only the
terms in which none of these letters appear. An algorithm to do so is given in Section 4.
The reader will see that it would suffice for this goal to consider only the maximal ones
among what we call transition equations. However, we have found it more interesting
to treat these equations in full generality, at the cost of proving some technical results
in Section 2 which would not otherwise be needed.

Vexillary polynomials are special Schubert polynomials which constitute the simplest
generalization of Schur functions. Given a set of variables B, and a partition
K=K, <K,<- - <K, the Schur function S (B) has the determinantal expression

(cf. [5])
SK(B) = !SKj+j-i(B)!1<i,jsm . (1-4)

We can generalize it to the case of m sets B, ..., B of variables by defining
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Sx(BY, ..., B™) to be the determinant S ., ;_,(B”)!. Now, the only Schubert
polynomials which are of this last type are the vexillary polynomials. In this case,
B, ... ,B™is a flag,ie., BV 5 -+ 5 B, As the restriction of S (B, ..., B™)
to a set A is the Schur function S,(4) if 4 is contained in BV, ..., B“, q fortiori, the
restriction of a vexillary polynomial is a Schur function.

There is another notation for Schubert polynomials which simplifies the combinatorial
constructions. Let u = p, ... p,, be a permutation of {1, 2, ..., m}. Define the code pL
of u as the vector L € N such that, for any i:1 <i<m,

L,=Card{j>i:p<p}. (1.5)

Thus, L, < m — i identically and |uL| is the number At(u) of inversions of yu (which
some authors call the length I(u) of p).

For instance, (41532)L = (30210); (14532)L = (02210); (41325)L = (30100).

Note that if we consider u as a permutation on {1, ..., m’'} where m’ > m by adding
fixed points to its right, it has no other effect on the code than to add zeroes on its right.
For instance, (4132)L = (3010), (41325)L = (30100), (413256)L = (301000) etc. Note
also that with this convention, the correspondence L between sequences and permu-
tations is bijective up to adjunction on the right of the zeroes to the sequences, or of
fixed points to the permutations. Indeed, given a sequence J, we retrieve the permutation
p such that yL =J by computing successively u, =J; + 1, y,=J,+1 or J, + 2
depending upon J, < J; or not, puy =J; + 1, J; + 2 or J; + 3 depending upon the
inequalities satisfied by J;, J, and J;, etc. This nice trick to encode permutations is due
to A. Lehmer and it is classical among computer scientists.

It is customary to use the notation X, to denote the Schubert polynomial Y.
Therefore, X35, Xa1325> Xa13256 - - - a0d Yo015 Y0105 Ya0100 - - - are just different names
for the same polynomial (which is, in fact, a?a, + a?a,). With this notation, the set of
polynomials X, where y is a permutation of {1, ..., n} is for any given n a basis of the
module spanned by the Y, where I € \” identically satisfies [, <n -k, 1l <k <n.

2. Vexillary Permutations

ToeachI=(l,,...,I,)eN" we associate the sequence IR obtained by rearranging its
coordinates I, in an increasing order. Therefore, IR can be identified with a partition
of |I].
We recall that the partitions of an integer p are a lattice when they are ordered in the
following manner:
J=Uy....)>T =, ..., J,) iff @.1)

e+ ¥+ -+, <Jp +Jp + -+, forallk<n.

We denote by ~ the transposition of the partitions (which is the exchange of rows and
columns in the Ferrers diagram representing them). This involution reverses the order,
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ie.,
J>J <J">J 2.2)

For example, 1125 > 126 and 111123 > 11124.

We now turn to the definition of vexillary permutations. Note that the simplest
sequence K to admit a (nontrivial) decomposition K = I + J, as in Proposition (1.2), is
K = 101. It is the code of the permutation 2143. We call vexillary every permutation p
which does not contain any subpermutation isomorphic to 2143, i.e., such that there
does not exist four integers i < j < h < k such that u; < u, < w, < ,. It is clear that
is vexillary iff its inverse u~! is such.

LEMMA (2.3). Let u be permutation, uL its code, uLR the associated partition. The
g~ 'LR > uLR" and there is equality if and only if p is vexillary.

Proof. We suppose that the lemma is true for any (e®,_,. Take
u=0 ... _x_1nl,_g... {,_ . Onechecksthat uLR is deduced from {LR by adding
a part equal to k, and thus uLR" is deduced from {LR" by increasing by one the k largest
parts of this last partition.

On the other hand, p~ 'L is obtained from {~'L by increasing the k parts by one.
If {"'LR is strictly larger than (LR, then the strict inequality remains valid for p.
Conversely, if { is vexillary, and k # 0, then u~! contains at least a subpermutation
isomorphic to 2143 iff there exist i, j,h:i<j<h<n such that p~'>p ',
p~'<n+1-k<y; ' Take a subpermutation isomorphic to 2143 for which # is
maximal. The inequality u; ' <n + 1 — k < p, ! implies that x = {~'L,> {~'L, _,.
Thus, one gets u~ LR from {~'LR by increasing by one the value y < x without
increasing x. This forces the inequality uLR™> p~ ' LR to be strict.

Finally, if p is vexillary, one must have n + k — 1 < y, for every triple i<j<h<n
such that g, ' > pu; ' and p; ' > Max{n + k — 1, y,” '}. One checks that in this case,
{~'LR - u~'LR consists of increasing by one the k largest parts of {~ ! LR, and thus
pLR = p~'LR. O

EXAMPLE. Let { = 361245; its code is 240000; the inverse {~! 341562 has code
220110. The partition 1122 is the transposition of 24; therefore, { is vexillary. We
indicate p, u= ', L, p~ 'L, LR, p~ 'LR and pLR" for the insertion of 7 at the places
2,3,4,5in {:

3761245 4516732 254 330221 245 12233 = 12233
3671245 4516723 244 33022 244 2233 =2233
3617245 3516724 2403 23022 234 2223 1233
3612745 3416725 24002 22022 224 2222 #1133,

The first two permutations are vexillary, contrary to the last two (which contain the
subpermutation 3174).

We can see that a permutation is vexillary on its code. But first, we geometrically
represent the code of a permutation.

To a permutation u, we associate the set of points %, (1, u,), (2, #2), (3, 3), ... in



116 ALAIN LASCOUX AND MARCEL-PAUL SCHUTZENBERGER

the integral planelN x IN. Each point creates a shadow on its right on the same horizontal,
and above on the same vertical. The set of integral points : (i, j), i, j > 0, which are
left in the light is the diagram of the permutation (it generalizes the Ferrers’ diagram of
a partition). We can recover the code of the permutation by reading the number of &
in each column: uL; is the number of ¢ which have the absciss i. For example,
u = 34165278... has the diagram given in Figure 1 and the code 220210000...

I

& A

*
*
& O OO S
OO
2 2 0 2 1 0 0 0 O
Fig. 1.

Now, it is easy to check that u does not admit a subpermutation of the type 2143 iff
any two columns of the diagram of u are comparable for the inclusion, i.e., given i, j such
that uL; < pL;, then for each > of the absciss i, there exists a <> of the absciss j on
the same horizontal. This condition is, in fact, symmetrical with respect to the symmetry
exchanging the axes, i.e., with u — u ~ !. Translating the condition in terms of codes, we
obtain the following characterization of vexillary permutations.

PROPOSITION (2.4). The sequence K = (K, ..., K,)e N" is vexillary, i.e., the code of
a vexillary permutation iff

(1) if'i is such that K;> K, , ,, then K;> K, for any j > i,

(2) if i, h are such that K, > K,, then card {j:i<j<h K, < K{} <K, - K,.

3. Transitions

We first state without proof Monk’s rule giving the multiplicative structure of Z(4) in
terms of Schubert’s basis. If y is a permutation of {1,...,n} and if 7= 1, is the
transposition exchanging the values located at the places j and k, one says that tis p.p.
on p iff ht(ut) = 1 + ht(u). It is known that this is equivalent to the two following
conditions:

sign(j — k) = sign(w; — ) (3.1
for each i # j, k in the interval [ j, k], p, is outside the interval [u, p, 1.  (3.2)
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MONK'’S RULE. Assume k < n and p,, = n. Then
X, a, =) sign(j-k)X,,, (3.3)
where the summation is over all the places j such that 7, , is p.p. on p.
For instance, if yu = 41325, one finds:
X,a1 = Xs1324 5 X0y = Xa3125 + Xana1s s
Xuas = —Xy3125 + Xays23 5 X”a4 = —Xao315 + Xay3s52 -

The condition k < n and p,, = n is sufficient to insure that no new terms would arise in
the multiplication if further fixed points were added to the right of u. For instance,

Xa325693 = ~Xuz126 + Xar15236-
We shall call transition any relation of the type

X, =X, a+ J/Z\P X, (34)
the summation being on a set ¥ of permutations depending upon j, { and pu.

From (3.3), it follows that the product X, - a; gives a transition iff
there exists a unique k > j such that v, ; is p.p. on { (3.9)
(for this k, {1; , = u gives the left-hand side of Equation (3.4));
¥ is the family of permutations (; ; such that i <j and 7, , is p.p. on (. (3.6)

Graphically (Figure 2), if we represent the permutation p as the set of points w
(1, uy), (2, ), - . ., then condition (3.5) is equivalent to the condition that the area 0 is
void. The family (3.6) includes those permutations (7 ,, i < j, for which the area 4 is
void. In ¥, we distinguish the element {7, , for which i is maximal, and call it the leader.
It amounts to imposing that the area 1 is void. We shall always suppose that ¥ is
nonvoid by eventually embedding 6, in &, X G,,.

e
l e [ 2 ¥ *
l"l
‘ 1 3
i j k
Fig. 2.

EXAMPLE. Let u = 52186347; there are three transitions:
X, = Xs31843675 + Xs2a81367 + Xsa182367 5
X, = Xs217634894 + Xs2716348 + Xs57126348 + X72156348

X,u = Xs1286437%2 -
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In this last case, the embedding p— 163297458 changes the transition into

X163297458 = X162397548 as + X261397548 .

REMARK (3.7). Transitions are compatible with the inversion of permutations:
X# = Xcaj + Z X¢=>X”w1 = Xc—lah + Z le—l ’

with & = p;. Indeed, the geometrical conditions (3.5) and (3.6) are preserved by symme-
try (with respect to the principal diagonal), and this symmetry is precisely p— pu~ 1.

The following lemma shows that transitions are also compatible with the order of
partitions. We call the critical place of a permutation p the largest r for which
uL, <pl, < - - <uL,.

LEMMA (3.8). Let X,=X.a;+ XX, be a transition. Then for every ye'¥,
ULR > YLR; the inequality is strict iff \J is not the leader; if j > r (= the critical place of
W), the critical place of every Ye ¥ is >r.

Proof. Let Y e ¥, and i be the corresponding integer: = {7, ;. Let m,, n,, p; be the
respective number of stars % in the open zones 1, 2, 3 of the graphical representation
of u (Figure 2). One easily checks that YL, = uL, if A # i, j and that

uL;, =m; + p;, uLj=n,.+pi+1,
yL,=m;+p,+n+1, YL, =p;.

Let us suppose that the difference d = pL; — uL;is >0, which implies that m; > 0. Then
YL, - yL;=d + 2n; + 1 > 0 and, thus, uLR > YLR, the inequality being strict.

In contrast, let d <0; then YL, - YL; = uL; — pL, + 2 m;. The same conclusion
holds if m; # 0; if m; = 0, which exactly means that is the leader, then YL is deduced
from pL by the exchange of uL,; and pL;, an operation which leaves invariant the
associated partitions Y LR = uLR.

We now verify the assertion concerning the critical places. The preceding compu-
tations have shown that YL, = uL for each s # i, j and that YL, > uL,. Assume that
Jj > r. The fact that the critical place ' of {is >ris clear if i > r, therefore we have only
to consider the case when i < r. Because of our hypothesis j > r, it implies i + 1 < j and
uL; < pL, . ,. Since zone 4 is void, this last relation is equivalent with p;, , > .. It
follows that ¥, (=u,) < ¥;, , (=, ) and, accordingly, YL, < YL, , concluding the
proof. O

COROLLARY (3.9). For any ye ¥, (uLR, = 'LR) > (YLR, y~ ' LR); the inequality
is strict iff the cardinal of Y is different from 1.

The assertion follows from the fact that y and ! are simultaneously leaders only
in the case that the cardinal of ¥ is 1.

Transitions are especially simple in the case of vexillary permutations as the following
property shows.

LEMMA (3.10). For a transition such that  is vexillary, then ¥ is reduced to one element
V which is vexillary, and yLR = yLR.
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Proof. According to Lemma (2.3), yLR" > y~ ' LR, or equivalently, y~ ' LR > LR
for any Yye¥. On the other hand, Remark (3.7) implies YLR > uLR and
Yy 'LR>u"'LR, ie, p 'LR>y 'LR. It follows that p 'LR >
Y~ 'LR > yLR > uLR; p being vexillary, these four partitions are equal,  is also
vexillary and from Corollary (3.7), the family ¥ is reduced to one element. O

A special type of vexillary permutation is associated to the Grassmann varieties. We
say that pu is a Grassmann permutation iff there exists j: uL, < --- <upL, and pL, = 0
for all k > j. Equivalently, u is Grassmannian iff its critical place r is the largest j for
which pL; > 0. In that case (cf. [3]), X,, is the Schur function which is indexed by the
partition uL,, ..., uL; in the variables {a,, ..., a;}. For example, X, 6934575 is the Schur
function S, (a,, a5, a3, a,), because the code of u is 003500000, and j = 4.

From now on, we suppress the freedom of choice and take only the transition (the
maximal transition) X, = X,a; + £ X, for which jis maximal. This number jis precisely
the largest one such that uL, # 0; call it the maximal place of p.

LEMMA (3.11). Let p = p©@ - u® - -« - u® be a sequence of permutations, where
every term u** "V is a member of ¥ in the maximal transition of u®, and none of the u®
is Grassmannian (0 < k < p). Then p < (m — r)ht(p).

Proof. The last statement in Lemma (3.8) shows that 7@ < rV < - - - <r?, where
r® is the critical place of u®. Since none of the u® is Grassmannian, we have
identically m® > r® for k < p, where m® is the maximal place of u®. Because u*+ 1
is a term in the maximal transition of pu®), we have either m**D <m® or
m®*D = m® (=m), and then u*+* VYL, < pu®L,,. O

4. The Algorithm

We associate the following tree to any permutation u: if u is vexillary, the tree is reduced
to one vertex {u}; otherwise, we take the maximal transition X, = X, a, + X, draw
the edges [uy/] for all Y e ¥ and attach to each its tree. This is well defined, as in any
sufficiently long sequence of transitions, one meets a Grassmann permutation according
to Lemma (3.11). Proposition (2.4) would give a way to deal exclusively with sequences,
without using permutations. However, such a procedure is rather clumsy for human
computations.

THEOREM. Let y be a permutation, r its critical place, m an integer r, {0} = © the set
of end points of the tree of root u. Then

Xu N Am = z SOLR(Am) .

e ®

Proof. To build the tree, we have taken the maximal transitions X, = X a;. + £ X,
for which j' is greater than the critical place of u’. According to Lemma (3.11), it implies
j'> r. Thus, for all these transitions

X, n4d,=XX,nA4,,
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and finally,
XumAm= ZXGmAm': ZSGLR(Am)' D

EXAMPLE (Figure 3) (above each permutation, we have written its code):

012001200
135247968
012002100
135248769
01300200 01201200
13624857 13526847
0140010 01302000 01202100
1372465 13627458 13527648
0140100 0330000 0132000 0220200 0121200
1372546 1562347 1365247 1452736 1354726
0240000 0141000 0230100 0222000 0131100 0122100
1472356 1374256 1462537 1456237 1364527 1356427

Fig. 3.

The codes of the end points are 024, 0141, 033, 0132, 02301, 0222, 01311, 01221 and,
consequently, S12812 =84+ 833+ 8114 +2813 + 8o + 81115+ St1225 as
Yo12001200 factorizes into Yy, - ¥500001200-

5. Vexillary Classes

From now on, P is a fixed partition and #'= #(P) is the set of all vexillary sequences
K having P as their associated partition, i.e., P ~ KR where ~ means equality up to
adjunction or deletion of the zeroes on the left.

The purpose of this section is to show that transitions induce a natural order on %~
that turns ¥ (or more accurately, a certain section ¥~ of #  with respect to the
equivalence ~) into a distributive lattice having the remarkable generating function
described in Corollary (5.8).

This requires some definitions. First, the inversion number of a sequence K € \N” is the
number of pairs (i, k) such that K, > K, where 1 < i < k < m, m being the maximal place
of K.
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For example, Inv(0353012100) =4 + 5+ 4 + 0 + 0 + 1 = 14. Itis clear that Inv(K)
does not depend upon the zeroes on the right or on the left of K.
Secondly, to each sequence K eN”, we associate another sequence KDeN” by
putting, for 1 <i<n:

D=0 ifK,=0,
{K' 5 G.1)

KD, =Max{j:i<j<n:K,<K;} otherwise.

Finally, the ‘drapeau’ KDR of X is the rearrangement of KD (in increasing order).
For instance, if K =0003530210...0, one finds KD = 0006560890...0,
KDR =0...056689.

We now give a rather pedestrian description of #. Let p be the largest part of P, r
its multiplicity and let P’ be the partition obtained by suppressing one part ¢’ in P.

REMARK (5.2). If r> 1 there is a bijection between W (P) and W (P'), each sequence
K € W(P) being obtained by inserting a new value equal to p to the right of the rightmost
value equal to p’ in any K' € W (P).

If D' = K'BR, one obtains D = KDR by increasing by one every positive part of D' and
then repeating the smallest one.

Proof. 1t is an immediate consequence of condition (1) in Proposition (2.4) that the
r components of K which are equal to p, are located at adjacent places. The result
follows. O

—

EXAMPLE. Let K’ = 000353021. Its drapeau is D’ = 000056689. We have p = 5,
r—1 =1 and we deduce K = 0003553021, having drapeau D = 000066779 10.

We assume now r = 1 and let p’ < p be the largest component of P’ and ' be its
multiplicity.

REMARK (5.3). If r = 1, every K € W (P) is obtained bijectively from a K' € W(P') by
inserting a component equal to p either to the right of the rightmost component equal to p’
in K', or to the left of this part at a distance <p — p' + r'. The drapeau D is obtained by
adding to D' a new least part equal to the place j where the value p has been inserted.
Proof. 1t again immediately follows from the two conditions in Proposition (2.4). []

EXAMPLE. Letthenew partbe p = 5andlet K’ = 00440121. Its drapeau is 00044778.
We have p’ = 4, ¢’ = 2. Adding the new part p = 5 gives the four following sequences:

K D
004450121 000555889
004540121 000455889
005440121 000355889
050440121 000255889
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We introduce an order on #” by defining its consecutivity relations as follows:

DEFINITION (5.4). If K, K' € #W(P) = ¥, K is immediately above K’ iff, on the one
hand, Inv(K') > Inv(K) and, on the other hand, Y. is the leader in a transition
equation of Y.

As we have seen in Proposition (2.4), this last condition implies that K’ = K1, where
T, 1s a transposition. More accurately, one has:

REMARK (5.5). Assuming that K is vexillary, a necessary and sufficient condition that K
be immediately above K' is that K' = K7, (i < k) where the following conditions are
satisfied:

(1) i is the largest place <k for which K; < K.

(2) if k is the maximal place of K, then K, is not the least positive component of K.

(3) k=norK,>K,.,.

(4) Card{j:i<j<k:K,<K}<K,-K,.

Assuming that it is so, K' DR is obtained from KDR by reducing by one unit all the parts
of KDR that are equal to k except the last one.

Proof. Again, by induction on the largest part of P using Proposition (2.4) and the
explicit description provided by the last two remarks. O

For instance K = 0081242 is immediately above the following three sequences K':
0801242, 0081422, 0082241. We have KDR = 0036777 and the drapeaux of the above
sequences K’ are 0026777, 0035777, 0036667.

Let I = I(P) be defined by the condition that Inv (/) = Max {Inv(K) : K€ #'(P)} and
that 7; > 0. Using the same induction technique, one finds that I(P) can be described
symbolically by

I=prs0%pr-i ... 0%ph

where 0 < p, <p, <+ <p, are the parts of P, r, is the multiplicity of p, and d, the
difference p, — p,_,. This abbreviated notation means, as usual, that the r, first
component of I are equal to p,, the next d; ones are equal to 0, etc. Thus /e \” where
n = p, — p; + Z r;and the number of components of  which are equalto Oisd = p, — p;.

For instance, if P = 12455, one finds that n = 9, d = 4, I(P) = 550400201  \°.

In the opposite direction, let J = J(P) be the sequence in N* obtained by prefixing P
with d zero components. One has Inv(J) = 0, by definition, and it is readily seen that
there exists a chain from J(P) to I(P) in which every term is immediately below the
preceding one. Therefore, the interval ¥ (P) with top element J(P) and bottom element
I(P)is a section of #7(P). As an example, we have given in Figure 4 below the diagram
corresponding to ¥(1224).

We now examine the drapeau of the sequences in ¥(P). It follows immediately from
the definition that J(P) DR is the vector 09n" ~“ made up of d components 0 and n — d
components equal to #. Similarly, one finds that /(P)DR is a vector E = E(P)e N"~“
having positive components prefixed by d zero components.

We take as order on the drapeaux the natural one, i.e., we let D > D’ iff D, > D; for
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each place i and we introduce the following

DEFINITION (5.6). %(P) is the set of all drapeaux D € N*~< which satisfy the two
conditions

(1) ESD<n" 4,
(2) D,,,-D,<E,,,—-E, foralli<n-d.

THEOREM (5.7). The operator DR establishes an isomorphism from ¥ (P) onto %U(P).
Proof. That DR is a bijection follows from Remarks (5.2) and (5.3), and that it is an
isomorphism follows from Remark (5.5). O

It is clear that %(P) is a distributive lattice, since its definition implies that it is an
interval of N" ~ 4 considered as an ordered set, i.e., considered as a direct product of the
chains.

COROLLARY (5.8). The Poincaré polynomial of ¥(P) is
a- q(ps—ps-ﬁrs-;))(l - q2(ps_1—ps~z+rs_z)) . (1 — q(s—l)(pz—p1+r|))/
(1-9(1-¢%...(1-¢°~")=H(q).

Proof. Condition (2) in Definition (2.6) implies that if any two adjacent parts E; and
E,, , areequal, the same is true of any drapeau in ¥ Therefore, 7 (P) has the same order
structure as 7(P’) when P’ is the partition such that the corresponding extremal
sequence J(P') = J' satisfies the following two conditions:

(i) J(P') has the same maximal place » as J = J(P),

() J; =J,ifi=norifi<nandJ, , = 0; otherwise, J; = 0.

In equivalent fashion, P’ is the unique partition with wunequal parts
O<py<py<-++<p. is such that p/ ,-p/ +1=p,,,—-p;+r. where
0 <p, < - <p,arethe distinct parts of P. We assume henceforth that P = P',i.e., that
all parts in P are different and, for convenience, we let m = n — d.

Let D = n™; since ¥ is a distributive lattice there is a minimal D € ¥ such D is NOT
< the drapeau D’ = (n — 1y~ 'n. Call it F and let D" be the drapeau n'™~ ' n, where
n' is the second largest part of E, i.e.,n' = E,, _,.

The intervals [D, F] and [D"”, E] are isomorphic because the differences D — F and
D" — E are equal vectors in N,

By construction 7" is equal to the disjoint union of the intervals [D, F] and [D’, E].
Set D' = (n — 1y and let E be obtained by replacing in E the largest part n by n — 1.
By induction, we have the explicit expression of the Poincaré polynomial H,(g) of the
interval [D’, E]. In similar manner, if D” and E” € N~ ! are obtained from D" and E”
by dropping their last part n, we find that [D”, E” ] has the Poincaré polynomial H,(g).
Letting 4 = | F| — | E! be the height of F in ¥(P), we finally obtain the desired result
H=H, +q"H,.

EXAMPLE (Figure 4). Let P = 0001224. ¥(P) is the following set, with the drapeaux
written between brackets. The Poincaré polynomialis (1 — ¢g°)(1 — ¢%)/(1 - ¢)(1 — ¢?).
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0001224 (7777)
l

0001242 (6777)
|

/

0001422 (5777) 0002241 (6667)
| |

/

0004122 (4777) 0002421 (5667)
| |
) |

/
/

0040122 (3777) 0004221 (4667) 0022401 (5557)
|

|
|

0040221 (3667) 0024201 (4557)
|

0400221 (2667) 0042201 (3557)
|

/
/

|

/Y

040?201 (2557)

4002201 (1557)
Fig. 4.
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