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Abstract : Rational functions of a free monoid A* into the free cyclic monoid t*
generated by a unique element t, can be viewed as assigning an integer to every
word ueA*. We investigate those functions which count occurrences of some fixed
(and special) subsets XCA* in all words of A* and show that they can be
characterized in terms of "bounded variation”, a notion which is close to
continuity of functioms.

Résumé : Les fonctions rationnelles d'un monoide libre A* dans le monoide libre
cyclique t* engendré par 1'unique élément t peuvent é&tre considérées comme des
applications qui a tout mot u€A* associent un entier. Nous étudions plus
précisément celles qui peuvent étre définies comme comptant les occurrences d'un
ensemble fixe (et particulier) XCA* dans chaque mot de A*. Nous montrons qu'elles
peuvent é&tre caractérisées en termes de "variation bornée" une notion proche de
celle de continuité des fonctions.

1. INTRODUCTION.

Rational functions of a free monoid A* into another B* are obtained by
providing a finite, not necessarily deterministic automaton ¥ with an output
function, associating thus a word in B* with every transition of 9. Morphisms of
A* into B* are special cases of such functions.

Numerous areas of computer science are directly dealing with rational
functions : codes (encoding and decoding of messages), lexical analysers
(assigning a token to some portion of a program), sorting (the Soundex encoding of
surnames, cf. [Kn p. 391], defines a special case of rational function [Jo]), text
editing (systems 1like Multics or Unix provide a large range of commands
substituting to all occurrences of some rational expression a given word) etc...

The importance of rational functions is also theoretical since they play,
with respect to free monoids, a role similar to that of rational fractions with
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respect to complex numbers. In both cases these functions are directly defined
from the structure on which they act (concatenation in the former case, addition
and multiplication in the latter).

We are here concerned with a problem which has long been considered in
automata theory where it was asked what automata could possibly count. Refining
the notion of threshold and modulo counting, various classes of rational languages
were defined. In the present paper we consider rational functions o of the input
monoid A* into the free cyclic monoid t* generated by the single symbol t. Then
for every u€A* the 1length of its image by «, i.e., |ux|, is an integer and
therefore "counts" something. More precisely, we are interested in characterizing
these rational functions which count occurrences of some rational subset H of A* ¢
we call such functions counting. A nécessary condition on H in order to insure the
linear growth of the image uax is that there do not exist ah infinite chain (in the
ordering "being factor of") of distincts words. This again is equivalent to H
being a finite union of rational gemaphors i.e. of rational subsets XCA* for which
two elements may not be a proper factor of each other (cf. [BePer], Chap. II,5).

The characterization requires a notion close to continuity of functions as
used in analysis. We say that a function « : A*#t* has bounded variation if there
exists an integer k<0 such that :

- kn€|uee| - |vo|<kn
holds for all u,v€A* where n is the minimum number of letters which have to be
erased in u and v in order to obtain a common subword. Then our main result states
that (after a possible partition of A* into finitely many rational subsets, which
we ignore here for the simplicity of the exposition) counting and bounded
variation are essential the same notions for rational functionms.

Basics on rational functions are recalled in Section 2. In section 3 we
define various distances on free monoids and the related notions of bounded
variation (with respect to one type of distance) by their rational transducers,
and focuses on the case where the image free monoid is cyclic. The last section
gives a sketch of the proof.

ELI

Let A a non empty finite set - or alphabet, A* and A* respectively the
free monoid and semigroup which it generates. An element w of A* is a word and its

length is denoted by |w|. The identity of A* or empty word is denoted by 1 : A*
=pA%-{1}.

Given arbitrary sets X and Y, we shall view a relation p from X to Y,
denoted by p : X4Y, as an application of X into the power set of Y. Such a
relation is a function if the image of every element X€X contains at most an
element, i.e. if it defines a partial mapping of X into Y. The relation operates
to the right, writing thus xp instead of p(x) and the domain of p is denoted by :

domp={x€X |Jy€Y yeExpl

We are mainly concerned with relations p from a free monoid A* into

another B*, and more precisely with those which are rational i.e. whose graph :
p={(u,v) € A*xB* | veup]

is a rational subset of the product monoid A*xB* (cf. [Ei] P. 236).
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Designating by RatM the semiring of all rational subsets of an arbitrary
monoid M, the rational relations are characterized as follows (cf. e.g. [Be] Thm.
7.1. or [Ni]) :

THEOREM 1 :
Let p : A*+#B* be a relation. The following conditions are equivalent :

1) p is rational

2) there exist a finite non empty subset Q and a morphism p of A* into the
multiplicative monoid of QxQ-matrices with entries in Rat B*, an Q-row vector A
and a Q columm vector v such that

up = Afup) v

holds for all u€A*.

We say that the triple (A,p,7), or simply p, is a transducer realizing p.
The set Q is wusually called the set of states and its cardinality n is the
dimension of the transducer.

A rational function is simply a rational relation which is a function
(notice that this property is decidable, (cf. [Sch 1] p. 245). Then without loss
of generality we may assume from now on that all entries in A,7 and ap (a€A) are
in B*y{gl}.

Particularly important both from historical and conceptual points of view
are the sequential functions studied by Ginsburg and Rose, cf. [GiRo], which are
rational functions realized by transducers where A has all entries equal to 0
except one equal to 1,7 has all entries equal to 1 and for every a€A, ap is row
monomial i.e. has at most one non zero entry in each row. The resulting transducer
and by extension p itself is called sequential. In this case, taking advantage of
the "monomiality" of the matrices, the following more concise notations are
useful. Let q_€Q be the index of the non empty entry of the vector A. Then for
every ¢€Q and u€A* we set q.u=q' if q' is the wunique, if any, element of Q
satisfying “"aq"“' With our conventions, q.u=g, if the q-row of up has only empty

entries. Further, we set q*u=up  where q'=q.u€Q and q*u=g if q.u=g.
qq

Then the following identities are easily verified :

(1) q.(uv)=(q.u).v for all q€Q u,vEA*
(2) q*uv={(q*u) ((q.u) *v) for all q€Q u,veA*
(3) q_*u=ux for all u€A*.

The subsequential functions have been introduced in [Sch2] where they were
shown to satisfy a noticeable functional equation. They generalize the notion of
sequential functions in the sense that T is an arbitrary vector with entries in
B*u{gl while A and p satisfy the same conditions as for sequential functions.
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. D .
For i = 1,2,3,4 vwe define the different distances over A* by setting :

d (uw,v) = |u| + |v|] - 2L (uv)

vwhere :
L, (u,v) = max {|z]| | u,v € zA*}
L, (u,v) = max {|z]| | u,v € A*z}
L, (u,v) = max {|z]| | u,v € A*zA*}
L, (u,v) = max {|z]| | u,v € A*z RA*...z A* where z=21...zr}.

These distances are respectively called prefix - suffix - factor - and
subword - distance.

Assume A* and B* are respectively equipped with the distances dl and
dJ ,i,j€{1,2,3,4}. Then a function o : A* 4 B* has bounded variation (abbreviated
b.v.) for (dl,dj) if there exists k>0 such that

di(uu,va) <k d‘(u,v) holds for all u,v€ dom .

In the case vwhere i=j we simply way that o has b.v. for dl - or b.v.
without any reference to dl when the distance is understood.

Some families of rational functions can be characterized in terms of
distances. As a striking example let us recall the following result which extends
Ginsburg and Rose's theorem on sequential functions (cf. [Ch]).

JHEOQREN 1
A function o« : A* -+ B* is subsequential iff it satisfies the following
conditions :

1) « has bounded variation for the prefix distance
2) for all Y € Rat B* we have

Y&! = [x€A* | xac€Y]€Rat B*.

It is possible to compare the different notions of bounded variations when
A* and B* are arbitrarily equipped with the different distances. As an example we
have :

PROPOSITION 3,

Let « : A* +» B* be a rational function which has b.v. for the factor
distance. Then it has b.v. for the subword distance.

The converse does not hold in general. However, when B is reduced to one
single element, then every rational function which has b.v. for the subword
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distance, has b.v. for the prefix - suffix - and factor - distances. As a
consequence of Theorem 1 we have :

ol 3
If B is reduced to one letter, then every rational function « : A* -+ B*
which has b.v. for the subword distance is subsequentifal.

4. TRANSDUCERS OF FUNCTIONS WITH b.v.

In this paragraph we assume A* and b* are equipped with the subword
distance.
The functions with b.v. may be characterized by their transducers.

THEOREN 1

Let a« : A*4B* be a rational function realized by a transducer p. Then the
following conditions are equivalent :

1) o has bounded variations

2) there exists an integer k>0 such that for all we€A* and for any
two entries x,x'€B* of the matrix wp, we have : d(x,x')<k

3) for all weA* and for any two diagonal entries

Xx= wpqueB*, x'=wuq,q, €B* the words x ans x' are conjugate, i.e.

xy=yx' for some y€B*.

The implications 1) = 2) = 3) are proved by standard arguments. The crux
of the implication 3) = 1) it the following result which is interesting in its own
right.

LEMNA 2

Let S be a semigroup of the product monoid B*xB* such that u and v are
conjugate for all (u,v) € S. Then for some z€B* the equality
uz = zv
holds for all (u,v)ES.

Based on this last technical result and using an iteration property (see
e.g. [Schl]) the proceding result provides an algorithm to decide whether a given
rational function has b.v. for d‘.

Let us study more precisely the case where B consists of one single letter
t. By Theorem 3.1 and Corollary 3.3 any function o« : A* + t* which has b.v. can be
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realized by a subsequential transducer (A,p,7), where as we saw, up is a monomial
matrix for all u€A*. This leads to the following definitioms.

For any positive integer n>0 let !L (or simply fi) denote the monoid of nxn
matrices with entries in {glut* which are row-monomial.

Given a matrix m€f let mp be the longest factor common to all non zero
entries of m and m% be the unique matrix satisfying :
m = mp nf
Thus, unless m is the empty matrix, m® necessarily has an entry equal to
the empty word 1.

The following identities are straightforward :
(1) nm% = (mlﬂ) (mzﬂ)ﬂ
(2) m%p=mw%pmﬁmﬂm

As a consequence, ¢iven any morphism p : A*+4f{, the relation u.v (or more

L
simply u ~ v when p is understood) defined for all u,v € A*, such that upRi=vpm is
a congruence. Then the following is the converse of Corollary 3.3.

PROPOSITION 3

Let « : A* -+ t* be a rational function realized by a subsequential

transducer p. Then « has b.v. iff the congruence ~ as finite index.
P

5 COUNTING FUNCTIONS.

In this paragraph, B is reduced to the letter t.
By a semaphor HCA* we mean a subset containing no proper factor :

HN(A*HA*UA*HA*) = g

A function « : A* + t* with recognizable domain X=domax is an elementary
counting function if there exists a recognizable semaphor HERecA* and two rational
numbers r,s€Q such that :

(1) |wee|= rlvll +'s

where lwll denotes the number of different occurrences of H in w We say that o
counts H.

A counting function is defined as a function o :A*4t* for which there
exists a partition of A* into finitely many recognizable subsets :
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A*= lJ X, and for each 1<i<n a family o FEETRYL of elementary counting
161
functions of domain X such that :

Vo= We .. oWe
holds for all wexl.
It is not hard to see that the restrition of « to Xl has b.v. but « itself

has not necessarily b.v.

Notice that every rational function with finite image is a counting
function (take r=0 in (1)).

It is not difficult to construct a transducer realizing a counting
function, i.e. :

PROPOSITION 1
Every counting function is rational.

The main theorem requires a few closure properties of counting functions.

PROPOSITION 2
Let A,B be two alphabets and B : B* -+ t* be a counting function.

Assume A = AlUA 2 vhere Az # @ 1s a partition and let 7 : B* +» A* be a

mumuswnﬂumnuthtU bauapnﬁﬁmofﬁh.
beB

Then T"'B : A* 3 t* is a counting function.

Reducing the proposition to the case where £ is an elementary counting
function counting a semaphor H as in the definition, the proof consists in showing

that the function v"'f "counts" occurrences of the semaphor :
K= Az(Ha) C A*

PROPOSITION 3
Let D=AUB be a partition with A=y and Bzg and let « A*st* be a counting
function. Consider the function B : D*+t* defined by :

1 if ueax
= i *
up U %...u o if uo,...,uuek
and u=u Bu ...Bu
(] 1 n

Then B is counting function.

As in the preceding Proposition the proof consists in showing that if o
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"counts" occurrences of H € A* then B "counts" all occurrences of H and of B.

(] T EORE!

The main result of this paper is the following :

Theoren
Let a« : A* 4 t* be a rational function with b.v. Then « is a counting
function.

We shall briefly sketch the proof of this result.

Let p : A* +» T be a sequential transducer of dimension n realizing «. For
every word u€A* let uc be the support of the matrix up, i.e. the boolean matrix of
dimension n defined by :

1if we | 20

1)
@ otherwise

We proceed by induction on the cardinality of the monoid A*o=M. Indeed, by
Krohn and Rhodes' classification, M satisfies one of the following conditions
(cf.e.g. [La) Lemma 7.2.7) :

1) M is cyclic.
2) M is reduced to one L-class (possibly with an identily).

3) There exists a partition A=A VA, such that A:U and
(A*A’)c are proper subsemigroups of M.

The main arguments for the first two cases which constitue the basis of
the induction, are present in the case where M is a group of permutation (i.e.
every letter a€A defines a permutation of the set of states) which we prove here
thoroughly.

Using the notations of section 2, let ¢ : A*4f) where Q is the additive
monoid of rational numbers be the function defined by :

u¢p = 1 Z |q*u|
)

Since every u€A* defines a permutation on Q, ¢ is a morphism.

Assume u€A* acts as the identity on Q. Then because of assertion 3) of
Theorem 4.1 we have : |[q*u|=u¢ for all q€Q. More generally the assumption q.u=q
implies |q*u|=ué.
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Let us now prove that for an arbitrary u€A*, |uc| - u¢ depends only on
q_.u=q. Indeed, consider a fixed w€A* such tat q_.uw=q_. Then by definition we
have :

juwe| = Jue| + |q*w]| = uwé

Jue| - E: (ad) [ul = (q*w + vo)
a€h
which completes the proof, by taking H=A.

The induction itself consists essentially in proving that the restriction
o' of o to A* Az is a counting function. This is done by associating with every
element of A: Az its class in the congruence ;. Let B be a finite alphabet in
bijection with the set of the classes thus obtained and 7 :
B* +(A: Az)‘ =1+A* A, the rational substitution naturally defined. Then « may be

factrorized as «'= T!' p where P : B*at* is a counting function (induction
hypothesis). It then suffices to apply Proposition 5.2.

7. REFERENCES.
[Be] BERSTEL J., "Transductions and Context-Free Languages", Teubner, 1979
[Be Per] BERSTEL J.,& D. PERRIN, "Theory of codes", 1985, Academic Press.

[Ch] CHOFFRUT C., A generalization of Ginsburg and Rose's characterization of
g-s-m mappings. Proceedings of the 6th ICALP Conférence, 1979, p. 88-103.

[Ei]  EILENBERG 8., "Automata, Languages and Machines", Vol. A. 1974, Academic
Press.

[6iRo] GINSBURG 8. & G.F. ROSE, A characterization of machine mappings, Can. J.
of Math., 18, 1986, p. 381-388.

[Jo] JOHNSON J.H., Formal models for string similarity, PhD thesis, University of
Waterloo, 1983 (also Research Report C8-83-32).

[Kn] KNUTH D.E., " The Art of Computer Programming”, vol. 3., 1973,
Addison-Wesley.

[La] LALLEMENT G.,"Semigroups and Combinatorial Applications”, 1979,
Wiley-Interscience.

[Ni]  NIVAT M., Transductions des langages de Chomsky, Ann. de 1'Inst. Fourier,
18, 1986 p. 339-456.



88

[Sch 1] SCHUTZENBERGER M.P., Sur 1les relations rationnelles entre monoides
libres, Theoret. Comput. Sci., 3, 1976, p. 243-259.

[Sch 2] SCHUTZENBERGER M.P., Sur une variante des fonctions séquentielles,
Theoret. Comput. Sci., 4, 1977, p. 243-259.



