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Abstract. We give a formula, involving circular words and symmetric functions of the eigenvalues, for the
determinant of a sum of matrices. Theorem of Hamilton—Cayley is deduced from this formula.

Given a square matrix x over a commutative ring, define functions A, (x) by the equality
det(l —tx) =1 - tA;(x) + 2A,(x) + - - + (-1)"t"A,(x) + - - (1)

Of course, these functions are the coefficients of the characteristic polynomial of x. In
particular, A, is the trace, and if x is of order n, A, is the determinant and

A,.1,=0=A,,,=.... Note also that the functions A, are invariant under conjuga-
tion, or equivalently
Ay (uv) = A, (o). @

We shall give a formula expressing A,,(x + y + * - *) as a polynomial in the A,(w), where
i < n and where w is a product of x and y’s.

We start with the example n = 3, illustrated by Figure 1. In fact, on this figure, we
have drawn all N-sets (sets with multiplicities) of primitive (without period) circular
words on x, y of cardinality 3. Each N-set gives rise to a monomial in the A,(w), w being
determined by the circular words and i being its multiplicity; moreover, the sign is
computed as for a permutation (+ for a word of odd length, — for a word of even
length).

Then A;(x + y) is the sum of the 8 monomials obtained above.

More generally, let X = {x, y,...} be an alphabet. A circular word on X is a
conjugation class of words on X; recall that two words are conjugate if they may be
written respectively uv and vu, for some words u and v. A circular word is primitive if
it has no period. Define the length | c| of ¢ to be the length of any word representing
it, and its sign to be sgn(c) = +1 if its length is odd, -1 if it is even. Hence,
sgn(c) = (- 1)'el* L

Let

m=cp...cs (3)
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be a monomial of primitive circular words. Then by definition its length is i, |¢;| and
its sign is II,(sign c;)".

If wis aword and i > 1, define A,(w) to be the matrix function obtained in the obvious
manner.

Note that if w, w’ are conjugate, then A,;(w) = A, (w") in view of Equation (2). Hence,
A;(c) is a well defined matrix function for any circular word c.

More generally, for m as in Equation (3), let A(m) be defined by A(m) = I1;A, (c)),
where the ¢’s of Equation (3) are assumed to be distinct.

We can now state and prove our main result.

THEOREM Let x,, ..., x;, be square matrices of the same order and n > 1.
Then

A (xy + 200+ x) = ) sgn(m)A(m) “
where the sum is extended to the k" monomials of length n of primitive circular words on

Xiewns X
Proof. Let A = {a, <...<a,} be a totally ordered alphabet. A Lyndon word is a
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primitive word which is the smallest element of its conjugation class (for the lexico-
graphic order on the free monoid 4* generated by A). Obviously, Lyndon words are in
bijection with primitive circular words. By a theorem of Lyndon (see [2] th. 5.1.5), each
word w in A* may be written uniquely as

w=1I. . s

where the [;’s are Lyndon words such that/; > ... >/ and i, ..., i, > 1. In the algebra
of noncommutative power series on A over Z, this is written

(l—al—...--ak)‘1=1;[(1—l)‘1 5)

where the product is taken over all Lyndon words in decreasing order. Now, let
X, ..., X; be generic matrices (it is enough to prove the theorem in this case). Then
invert Equation (5), apply the homomorphism g, — x, and take the determinant. We
obtain

det(1-x, —... —x) =[] det(1-1) (6)

where we still write / for the image of / under the above homomorphism. Now, observe
that

det(1 - x) = 1= Ay(x) + Ap(x) + -+ + (=1 A (X) + « - .

Hence, we obtain

S DA+ e+ =] (.zo(—l)"A,-a))

i=z0

™)

Taking on both sides the terms of degree n, we obtain almost Equation (4). To conclude,
observe that if m is defined by Equation (3) and is of length », then

sgn(m) = H Sgn(cj)ij - (_ I)Zij lejl ( _ I)Zi, = (_ 1)n+zij

which derives completely Equation (4) from Equation (7). O

We now show how the theorem of Hamilton—Cayley may be derived from Equation (4).
Take two generic matrices x, y of order n. Then

An+1(x+y)=0'

Now, using Equation (4), take in A, , ;(x + y) all the terms of degree nin x, 1 in y.
By homogeneity, their sum is equal to 0. But these terms are:

3 (-, A6 = 0.
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Now, A, is linear, hence

A <(i (“l)iAn-i(x)xi)y) =0.

Now, it is well-known that tr(ay) = 0 for any matrix y, implies a = 0.
Thus, we obtain

S (~1YA,_(x)x‘ =0
i=0

which is the Hamilton—Cayley theorem. It is also possible to derive directly from
Equation (4) the multilinear version of the HC theorem, well-known to pi-algebraists:
take the multilinear part of the equation A, , ; (x, ..., X, ;) = 0, where the x/s are
n + 1 generic matrices of order n.

REMARKS: (1) In the proof of the theorem, we have used Lyndon words and the fact
that they provide a factorization of the free monoid (see [2] chapter 5). In fact, in view
of corollary 5.4.2 of [2], any complete factorization would also work for the proof. The
interest of Lyndon words is that Equation (4) may be efficiently computed using them:
generate all the words w of length n on x, ..., x;, then decompose them into Lyndon
words using Duval’s linear algorithm [1].

(2) Let m,, denote the number of terms in Equation (4) whose sign is — (the total
number of terms is k”). It may be shown that m,, = (k*" — k")/2 and
m,, ., = (k*"*! - k"*1)/2. Hence, there are asymptotically as many + as — in the
formula. Note that m,, is also the number of words of length » having an odd number
of Lyndon words of even length in their decomposition (and similarly for any complete
factorization of A*).

Acknowledgements

This work was done during a three weeks stay of the second author, on invitation of
the Groupe de Combinatoire de 'UQAM, with support of the Fondation de 'UQAM.

References

1 Duval, J.-P., Factorizing words over an ordered alphabet, J. Algorithms 4, 363-381 (1983).
2 Lothaire, M., Combinatorics on Words, Addison-Wesley, 1983.

Added in proof: The authors have learnt that S. A. Amitsur had already proved, by a
different method, the formula of the theorem: On the characteristic polynomial of a sum
of matrices, Linear and Multilinear Algebra 8, 177-182 (1980).



