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Abstract. Rational functions of a free monoid A* into the free cyclic monoid t* generated by a
unique element ¢ can be viewed as assigning an integer to every word u € A*. We investigated
those functions which count occurrences of some fixed (and special) subsets X < A* in all words
of A* and show that they are exactly those which satisfy a Lipschitz condition relatively to some
metric on the free monoid.

Résumé. Les fonctions rationnelles d’'un monoide libre A* dans le monoide libre cyclique t*
engendré par 'unique élément ¢ peuvent étre considérées comme des applications qui & tout mot
u € A* associent un entier. Nous étudions plus précisément celles qui comptent les occurrences
d’ensembles fixes (et particulier) X < A* dans chaque mot de A*. Nous montrons que ce sont
exactement celles qui vérifient une condition de Lipschitz pour une certaine métrique du monoide
libre.

1. Introduction

Rational functions of a free monoid A* into another B* are obtained by providing
a finite, not necessarily deterministic automaton 2 with an output function, thus
associating a word in B* with every transition of 2. Morphisms of A* into B* are
special cases of such functions.

Numerous areas of computer science are directly dealing with rational functions:
codes (encoding and decoding of messages), lexical analysers (assigning a token
to some portion of a program), sorting (the Soundex encoding of surnames, cf.
[8, p. 391], defines a special case of rational function [7]), text editing (systems like
Multics or Unix provide a large range of commands substituting to all occurrences
of some rational expression a given word) etc. ..

The importance of rational functions is also theoretical since they play, with
respect to free monoids, a role similar to that of rational fractions with respect to
complex numbers. In both cases these functions are directly defined from the
structure on which they act (concatenation in the former case, addition and multipli-
cation in the latter).

We are here concerned with a problem which has long been considered in automata
theory, to wit what automata can possibly count. Refining the notion of threshold
and modulo counting, various classes of rational languages were defined. In the
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present paper we consider rational functions « of the input monoid A* into the
free cyclic monoid t* generated by the single symbol . Then for every u € A* the
length of its image by «, i.e., |ua], is an integer and therefore “counts” something.
More precisely, we are interested in characterizing those rational functions which
count occurrences of some rational subset H of A*: we call such functions counting.
A necessary condition on H in order to ensure the linear growth of the image ua
is that there do not exist an infinite chain (in the ordering “being-factor-of”’) of
distinct words. This again is equivalent to H being a finite union of rational
semaphores, i.e., of rational subsets for which two elements may not be a proper
factor of each other (cf. [2, Chapter II, 5]).

The characterization requires a notion close to continuity of functions as used in
analysis. We say that a function a : A* > t* satisfies the Lipschitz condition if there
exists an integer k> 0 such that

—kn <|ua|—|va|< kn

holds for all u, v A*, where n is the minimum number of letters which have to be
erased in u and v in order to obtain a common subword. Then our main result (cf.
Theorem 5.1) states that (after a possible partition of A* into finitely many rational
subsets, which we ignore here for the simplicity of the exposition) counting and the
Lipschitz condition are essentially the same notions for rational functions.

In Section 2, basics on rational functions and their transducers are presented.
Some important distances based on the notions of prefix, factor and subword are
defined on free monoids, and the Lipschitz condition, extending the classical notion
of real metric spaces, is precisely stated. Section 3 establishes a characterization of
the rational functions which satisfy the Lipschitz condition with respect to the
subword distance in terms of their transducers. Section 4 deals -with rational
semaphores and counting functions. A few closure properties of these functions are
proved and one implication of our theorem, to wit: “all counting functions satisfy
the Lipschitz condition”, is established. Section 5 is devoted to the main theorem
which is proved by induction on the cardinality of the finite transition monoid
underlying the transducer. We have gathered in the Appendix all the technical
results concerning the combinatorics of words which may be omitted at first reading.

2. Preliminaries

2.1. Free monoids

Let A be a finite nonempty set—or alphabet—: let A* and A" respectively be the
free monoid and the free semigroup which it generates. An element w of A* is a
word and its length is denoted by |w|. The identity of A* or empty word is denoted
by 1: A" = A*—{1}. The elements of A are called letters.



Counting with rational functions 83

Given a factorization w = w,w,w; we say that w, is a factor, w, is a prefix and w,
is a suffix of w. A subword v of w is a word obtained from w by erasing some letters
in w. Thus, abb is a subword of aababa (aababa).

Given a subset X < A", the number of occurrences of elements of X in a word
w is denoted by |w|,. In particular, we have |w| =Y ,ca [W],.

Example 2.1. If A={q, b} and X = ab*q, then |w|, = max(0, |w|, —1).

2.2. Rational relations

Given arbitrary sets X and Y, we consider a relation p from X to Y, denoted
p:X Y, as an application of X into the powerset of Y. Its domain is the subset
dom p ={x € X |xp # 0} and its graph is the subset #p ={(x, y)e X X Y|y e xp}. We
will cons: .- any function @ : X - Y as a relation from X to Y where xa contains
at most one element.

Assume now X and Y are respectively the free monoids A* and B*. A relation
p:A¥-> B*is rational if its graph is a rational subset of the product monoid A* x B*
(cf., e.g., [5, p. 236]). Designating by Rat M the semiring of all rational subsets of
an arbitrary monoid M, the rational relations are characterized as follows (cf., e.g.,
[1, Theorem 7.1] or [12]).

Theorem 2.2. Let p: A* > B* be a relation. The following conditions are equivalent:

(i) p is rational,;

(ii) there exist a finite nonempty set Q, a morphism u of A* into the multiplicative
monoid (Rat B*)?*? of Q x Q-matrices with entries in Rat B*, and a Q-row and a
Q-column vectors A and vy with entries in Rat B* such that ua = Aupy holds for all
ue A*

We shall say that the triple (A, w, y) or simply w is a transducer realizing p. Then
Q is the set of stqtes and its cardinality |Q| is the dimension of the transducer.

From now on, unless otherwise stated, we only deal with rational relations which
are functions. Then it can be easily verified that, without loss of generality, we may
assume the following to hold:

(1) all entries in A, ¥ and au (a € A) are in B*uU {@}.

(2) all states g € Q are useful in the sense that there exist u, v € A* such that

(Aup) 4 (vpy)g # 0.

We define the norm ||u|| of a transducer u realizing a function, as the maximum
length of all non-zero entries in the matrices au, where ac A. We set ||u| =0
whenever all au are the zero matrix.

It is convenient to consider a transducer u as an ordinary finite automaton with
outputs in B*. Its transitions are the triples (g, a, q') where ¢, q'€ Q, ac A and
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apgy # 9. With such a triple the output x = au,, is associated. Then uu,, = x, where
ue A*, xe B*, and q, q'€ Q, can be interpreted as saying that there exists a path
from q to g’ with label u and output x.

We shall use the notation:

q9—— q' inplaceof wup,,=x

and, more generally,

u

u 2 u

1 r
Qo— > — > x> ——>(q,
X1 X2 Xy

will stand for the product:

u ... urﬂqoqr = ulﬂqoql s u,-ll,q'_lqr =Xpeoo X

We shall need two operations on the class of functions of A* into B*. Given two
functions a, 8: A* > B* having disjoint domains, we define their disjoint union as
the function y: A*> B* whose graph is the union of the graphs of a and B: #vy=
#a U #P.

Now, for arbitrary, not necessarily rational functions a, 8:A*—> B*, we define
their product as the function y:A*-> B* satisfying uy=uauB for all ue A*. In
particular, the domain of vy is the intersection of the domains of « and B. Beware
that our definition differs from the usual product of composition of relations and
from the componentwise product of relations.

Example 2.3. Let A={a}, B={a, b} and consider the two functions defined by
a"a=a"b and a"B = ba". The componentwise product of @ and B is not a function
since it assigns {a’b’a""'|0<i<n}to a".

2.3. Distances—Lipschitz functions

Based on the notions of prefix, factor and subword, three distances over A* may
be defined by setting:

di(u, v) =|u|+|v|-2Li(u,v) i=1,2,3

where L,(u, v) (respectively L,(u, v), L;(u, v)) is the maximum length of a prefix
(respectively factor, subword) common to u and v.

Indeed, let us verify the triangular inequality d;(u, v)<d;(u, w)+d;(w, v). We
may consider a word u € A* as a mapping of the interval [1, |u|] into A and denote
by u(i) the ith occurrence of u: u =u(1) ... u(Ju|). For an arbitrary subset I =[1, |u|]
we set u(I)=wu(i,)...u(i,), where 1<i,<---<i <|ul is the set of elements of L

For i=1,2,3 the triangular inequality is equivalent to L;(u, w)+ Li(w, v)<
|w|+ L;(u, v). Let I, J be two subsets of [1, |w|] and x =w(I), y=w(J) be the two
subwords of w satisfying L;(u, w) =|x| and L;(w, v) =|y|. Then we obtain

L;(u, w)+ Ly(w, v) =|x|+|y| =card(I U J)+card(I n J).
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Since z=w(InJ) is a subword of x and y we have card(I nJ)=|z|< L;(u, w).
Furthermore, card(I n J)<|w]|, thus completing the verification.

We say that d, (respectively d,, d;) is the prefix- (respectively factor-, subword-)
distance. The following inequalities are straightforward:

d3(u, U)sd2(u5 v)sdl(u9 U)9 (3)
ds(xuy, zot) - |xyzt| < dy(u, v) < ds(xuy, zot) +|xyz|, (4)
if A is reduced to one letter, then d,(u, v) = d>(u, v) = ds(u, v). (5)

The following technical result shows that if two words are close relatively to the
subword distance, then they have a large common factor.

Lemma 2.4. Let u, ve A* be two words such that |u|+|v|=L and d;(u, v) = k. then
u and v have a common factor of length (L—k)/(2(k—1)).

Proof. Assume u=uow,u,...w,u, and v=uvyw,v,...wv, where w,...w, is a
maximal subword common to u and v, i.e.,

dy(u, v) =|uy. .. u|+|vy... v, |=k.
Let w; satisfy |w;|=|w;| for j=1,..., r. Then we have
L=|u|+|v|<k+2rF where F=|w,].

Thus, F= (L~ k)/2r. Since u;jv; # 1 holds for j =0, ..., r, we have k=Y, |ujv;| =
r+1 which yields (L—k)/(2(k—-1)). O

The previous notions of distances are meant to help studying the functions of a
free monoid A* into another B*.

Assume A* and B* are equipped with the distances d; and d; respectively,
i,je{1,2,3}. Then we say that a:A*—> B* is a Lipschitz function whenever there
exists an integer k>0 satisfying d; (ua, va) < kd; (u, v) for all u, ve dom a. The
next section will give an example of such functions.

2.4. Subsequential functions

Among the class of rational functions, particularly important are the subsequential
functions introduced in [14] where they were shown to satisfy a noticeable functional
equation. Subsequential functions are realized by transducers (A, w, y) where A has
all entries equal to 0 except one equal to 1, and where all au for a€ A are row
monomial, i.e., have at most one non-zero entry in each row. These functions are
a natural generalization of the sequential functions studied by Ginsburg and Rose
(cf. [6]). Indeed, a subsequential transducer is sequential if all entries of y are 0 or
1. Taking advantage of the ‘“monomiality” of the matrices, the following more
concise notations are useful.
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We first define a transition function Q x A* > Q by setting
qu=q" iff up,, #0.
Similarly, we define an output function Q X A* > B* by setting

{uy,qq, if forsome qg'e Q,qu=g¢q’,
“lo otherwise.
It can be verified easily that the transition and output functions are perfectly
determined by their values on Q X A and the induction rules for all g€ Q, ue A*
and ac€ A:

(i) g1=gq,

(i) g*1=1,

(iii) q.ua=(q.u)a,

(iv) q*ua=(q*u)((q.u)*a).

Denoting by gq_ the index of the non-zero entry of A we have for all ue A*

Aupy = (q-* u)¥Yq_ .-

The following characterization of subsequential functions will be useful (cf. [4]).

Theorem 2.5. A function o : A* > B* is subsequential iff the following two conditions
hold :

(1) for all Le Rat B* we have La™'€ Rat A*;

(2) «@ is a Lipschitz function for the prefix distance.

3. Transducers of Lipschitz functions

In this section, unless otherwise stated, we shall assume that all free monoids are
equipped with the subword distance which we shall denote by d and to which the
term Lipschitz refers. Furthermore, all transducers are supposed to satisfy conditions
(1) and (2).

We shall establish the following characterization of the transducers realizing
rational Lipschitz functions.

Theorem 3.1. Let a: A*—> B* be a rational function realized by a transducer u. Then
the following conditions are equivalent:
(i) a is a Lipschitz function;
(ii) there exists an integer k>0 such that for all we A* and for any two entries
x, x' € B* of the matrix wu we have d(x, x') <k;
(iii) for all we A* and for all diagonal entries x = wu,, € B*, X' = wu, . € B*, the
words x and x' are conjugate, i.e., xy = yx' for some y € B¥.

Proof. By standard arguments akin to Eilenberg’s normalization procedure (cf. [5,
p- 138]), we may assume that dom a = A" and that for some g_# g, € Q we have
wa = wu, .. for all we A*.
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(i) = (ii): Let wu,, = x and wu,,»= x" be two entries different from (. There exist
words u, u', v, v'e A* of length less than or equal to |Q| and words z, z/, t, t'€ B*
such that

u,u,qfq =z DP’P‘H = t’ } (6)
Uy g=12, V', =1

Then we have
d(zxt, z'x't') < kd (uwv, u'wo') < 4k|Q)|.

By condition (4) this implies d(x, x') <4|Q|(k+ | u|).

(ii) = (i): Let u, ve A* be two words of dom a and let u=uow,u,...wu,,
v =vyW; U, ... wn, be two factorizations such that w, ... w, is a common subword
of maximal length. Consider the two paths:

u w. u w u

0 1 1 r r

q- 9 y 41 Q> >4 —>Pr— >4+,
X0 z, Xy z, x,
v, w. v w, v
o ’ ! ’ 1 ' >eiesg — s pl —" s

q- q1 P q2 q- pr 9+
Yo h Y1 t Yr

By (4) we have

d(ua,va)<|x,... x|+ Y d(z,t).

1<sisr
Since u;v; #1, i=0,...,r, we obtain

d(u,v)=|ug...u|+|ve...0]= Y |uvi|=r+1,

o<i<r
which yields
d(ua, va)< (|| +k)d(u, v)—k.

(ii) = (iii): By hypothesis, using notations (6) with g=p and q'=p’, for all
integers i>0 we have d(zx't, z’x''t')<k. In view of (6) this implies d(x’, x") <
k+|zz'tt'). In virtue of Lemma 2.4 for some large enough i, x’ and x"* have a common
factor greater than or equal to |x|+|x’|, which by Proposition A.5 of the Appendix
implies that x and x’ are conjugate.

(iii) = (ii): Assume we have wu,, = x € B* and wu,, = x' € B*. Intuitively, what
we want to prove is that there exist two paths leading from g to p and from q’ to
p' labelled by w and admitting the same factorization of their label, such that almost
all occurrences of w belong to a loop.

More formally, we claim that there exist an integer r>0 and a factorization of
W = Uy, U, . .. v,u, such that

luo. .. u,| <|Q7, (7)
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and that there exist two paths

4o Y U v,
q9=490 9 Uh L2 >G> 41 =P,
20 4 z t
u v u v,
[ o ' 1 ' ! I'seveg! r 1t
9= h—>91—>92 9r—>4r+1=PD -
zp [ 5] zy t,

Indeed, assume (7) is not verified. Then there exists a factorization
Uoly ... U, = WoWw; W, Where w; # 1

and two paths (omitting the outputs):

q s s p,

w.
’ 0 ' 1 ’ 2 ’

q s s D

This yields a factorization

u=uhvy... v, with [uf...ul|<|uo...u,

and we may conclude by minimality.

Now, observe that by Theorem A.1 of the Appendix there exists an integer k>0
such that tu,, = X, tu, = x' imply d(x, x") < k. Furthermore, because of |u;| # 0 for
i=1,...,r—1, we have r<|Q?*+1. Then we compute

d(zotozy. ... 4,2, 25t0z) ... hzh) <|zo...z,|+|z5... )|+ Y. d(t;,1t})

1=isr

<2[ulQ+k(Q+1),
completing the proof. [

As a consequence we have the following proposition.

Proposition 3.2. Let o : A* > B* be a rational function. Assume B* is equipped with
the subword distance. Then « is a Lipschitz function when A* is equipped with the
subword distance iff it is a Lipschitz function when A* is equipped with the factor distance.

Proof. In view of (3) we may only prove that the condition is necessary. Let u be
a transducer realizing o and satisfying the same conditions as those of the previous
theorem. Consider a word w e A* and two entries Wi, = X, Wiy, = X". Then there
exist two paths

u w v u’ w' v’

q- q P q+, q— , q , P , 9+,

y x z y x z

where u, u’, v, v’ have length less than or equal to |Q|. By hypothesis, there exists
an integer k>0 depending only on 4|Q| such that

ds(yxz, y'x'z') < d,(yxz, y'x'z') < k,
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ie.,
dy(x, x") < 4{Ql[| | +k

which, by condition (ii) of the previous theorem, completes the proof. [l

4. Counting functions

4.1. Semaphores

By a semaphore we mean a subset H < A™ containing none of its proper factors
Hn(A*HA" N A*HA*) =. Thus, a semaphore is a biprefix code.

For any integer k=1 we define the semaphore H ) consisting of all the words
starting and ending in H and having exactly k occurrences of H. Formally, we first
introduce the family L,, k>0, by setting

L,=HA*nA*H and L,,,=HA*nA'L, k=1.

Then we have H® = L, — L, ,, thus showing that H™ is rational if H is. Clearly,
HV=H.

Example 4.1. If H ={a}, then H® =[a(A—a)*]*'a. If H ={aa}, then we H" iff
w has a factorization

w=a"ua™...ua"™
where u;€ (A—a)A*NA*(A—a)— A*a’A* for i=1,...,r, ;=2 for i=0,...,r
and ny+---+n.,=k+r+1.
The following trivial statements will be useful later on:
| Wty = max(0, |w|y —k+1), (8)
[ul 1 < |oeuy|p <|x|[+|uly + |yl 9

As a consequence of (8), assume u is a maximal factor common to w; and w;:
w, = x,uy; and w, = x,uy,. Then we have

—dy(wy, wy) <|wi|y =Wyl < dy(wy, wy). (10)

4.2. Counting functions

From now on we assume that B consists of the unique element ¢: B ={t}.

A function a: A* > * with rational domain X is an elementary counting function
if one of the following two conditions is satisfied:

(11) there exists an s €N such that |[wa|=s for all we X;

(12) there exist a rational semaphore H € A* and a rational number r> 0 such
that |wa| = r|w|y for all w € X. Furthermore, it is required that max{|w|y |we X} = 0.
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In the second case we say that a counts H.

A function a:A*- t* with rational domain X is a counting function if there
exists an integer n>0 and, for i=1,..., n, there exist a rational semaphore H, €
Rat A* and a rational number r; € Q, and if there exists a partition X = X, U+ - U X,,
of X into m rational subsets and, for j=1,..., m, there exists a rational number
s; € Q such that, for all we X;, we have

lwa|=s;+ Y rlwly,.

1=<i<n

Example 4.2. Assume A ={a, b} and on the subset X ={we A*||w|,=1[3] and
|w|,=1[2]} consider the function a:A* - t* defined by

|wa|=3|wl|, +3|w|, —2.

Then « is counting function.

The following result shows how the elementary counting functions generate all
counting functions.

Proposition 4.3. Every counting function is a finite disjoint union of products of
elementary counting functions.

Proof. Clearly, it suffices to consider the case where, in the previous definition,
m=1. For all we X we have
lwa|=s+ ¥ nlwlu, (14)
1<i<n
where s, r; € Q.
Without loss of generality we may assume

>0, i=1,...,n (15)

Indeed, set I ={1<i<n|r,<0}. Then, forall i€ I, |w|y < K for some fixed integer
K. We may partition X into finitely many rational subsets over which |wl|,, is a
constant 0< 9J; < K; i.e., over which we have

|wa| = (S+ ) "i’ﬂi) + ¥ rwly,.
iel igl
If r;=0 for all i¢ I, then « is a constant. Otherwise, we may assume r;>0 if i & I,
possibly after deleting some H;’s.
Set s=s'/N and r,=r]/ N where s'eZ and N,r; are positive integers. Without
loss of generality we may add to condition (15):

|W|x,=0mod N. (16)
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Then X may be partitioned into finitely many rational subsets over which |w|y, = A;
for some fixed 0<A; <N, i=1,..., n. Over each of these subsets, by (8), we have

||, (X;+1)=0mod N.

Under condition (16) s is an integer. It finally suffices to prove that we may
assume that s is positive. If n =1, then (14) reduces to

|war| = s +r|w|g,

Let AN be the least integer such that s+ Ar, N = s"=0. Then we have |w|y = NA
for all we X ; thus,

[wa|=s"+r(|W|g,—AN) =s"+r|w|g (AN +1).
More generally, for an arbitrary n>1 we have

[wa|=(s+r|wly)+ X rnlw,.
2<i<n
Let AN be the greatest integer (if it exists) such that s+ Ar; N <0. By induction
hypothesis, the result holds for all restrictions of X to the subsets of words containing
IN (0= 9 =<A) occurrences of H,. Over the subset of words w containing more
than AN occurrences of H, we have
[wa|=(s+(A+1)r,N)+n|wlg(A+1)N+1+ Y rlw|y,. O

2<i=n

Corollary 4.2. Let a: A*~ t* have finite image. Then « is rational iff a is a counting
function.

Proof. Assume A*a ={x,,...,x,} < t*. If « is rational, then x,a ' = X, Rat A*
fori=1,...,n(cf,e.g. [1, Corollary 4.2]). Then « is the finite union of the constant
functions

wa; =x; for all we X.

Conversely, if « is a counting function, by the previous proposition, it is a finite
union of constant functions with rational domain. Moreover, such functions are
rational since their graphs are of the form

X xxeRat A*xt* (X eRat A* xet*). O

The following result proves our main Theorem 5.1 in one direction. Because of
Proposition 3.2 the term “Lipschitz” refers indifferently to the subword or to the
factor distance.
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Proposition 4.5. If a: A*—> t* is a counting function, then it is a rational Lipschitz
function.

Proof. Let w,, w, belong to the domain of «. For some maximal factor u common
to w, and w,, we have w, = x,uy, and w, = x,uy,. Then by (10) and (13) we obtain
d(w,a, wya)<s+rd(w;, w,),

where r=) _,_,.|r| and s =max{s;||j=1,..., m}.

In order to prove that « is rational, let us first verify that all elementary counting
functions are rational. By Corollary 4.4, it suffices to consider the case wa = r|w|y
as in (12). We first prove a lemma (a subset X is suffix if A*X n X =9).

Lemma 4.6. Let H € Rat A* be suffix. Then there exists a rational function B : A* > t*
such that |wB|=|w|y.

Proof. Let A =(Q, i, T) be the minimal automaton recognizing the left ideal A*H.
We transform it into a sequential transducer by defining

{t ifqaceT,
1 otherwise.

q*a=
The resulting rational function a:A* - t* satisfies |wB|=card{uec A*H|w e uA*}.
Since H is suffix, this last integer equals |w|y. [

Proof of Proposition 4.5 (continued). We now return to the proof of Proposition
4.5. If r= p/n where p, n €N, then the previous lemma shows that « is the composi-
tion of the three rational functions 8 (as in the lemma ) and v, & : t* - * respectively
defined by their graphs #vy = (t", t)* and #8 = (¢, t”)*. Since rational relations are
closed under composition (cf., e.g., [1, Theorem 4.4.), any elementary counting
function is rational.

Now, because of the characterization of Theorem 2.2, a rational function o : A* >
t* may be viewed as a rational series in the noncommutative unknowns. A over the
commutative semiring Rat t*. The Hadamard product of such series (corresponding
to the product of functions defined in Section 2.2.) is a rational series, thus a rational
function (cf., e.g., [1,2] or [3, Theorem 1, p.21]). Then the result follows from
Proposition 4.3. [

4.3. Some closure properties of counting functions

We are mainly concerned here with closure properties of counting functions under
certain compositions.

Proposition 4.7. Let A=A, U A, be a partition and 1 the projection of A* onto A¥.
If B: A¥ > t* is a counting function then a = w8 : A* > t* is itself a counting function.

Proof. By Proposition 4.3, we may assume, without loss of generality, that wB =
rlw|y+s holds for all we X =doma, with reQ,, seN and HecRatB* a
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semaphore. Set K = Hn ' —(A¥A*U A*A,). Clearly, K is a rational semaphore.
Since |w|x =|wmw|y holds for all we A*, we obtain

|lwa|=|wmB|=r|lwB|g+s=rlw|x+s O

Proposition 4.8. Let A, B be two alphabets and B : B* > t* a counting function. Consider
a partition A=A,V A,, A,n A,=0, and a surjective mapping vy of Y = A¥A, onto
B such that by '€ Rat A* for all be B. Extend vy to A* by setting wy=w,y...w,y
ifm>0,w=w,...wW,, 1, w,eY, fori=1,..., nand w,, € A¥. Then a = yB: A*~>
t* is itself a counting function.

Proof. As in the previous proposition, we may assume, without loss of generality,
that wB = r|w|y +s holds (with the same meaning for r, s and H). The subset
K = A,(Hy™") is a rational semaphore. We define

X,=(Hy H)A*n X and X,=X —(Hy ")A*
Then we have
iyl ={|ul,< +1 %fue X,
|u|x ifueX,.
This yields

rluylg+s=rlulx+s+1 ifueX,,

. O
rluylg+s=rlulx +s ifueX,.

lua|=quB|={

Proposition4.9. Let A=A, U A,, A, n A, =0 be a partition and B : A¥ > t* a counting
function. Define a:A*->t* by wa=u,B...u,8 where n>0, u,,...,u,cA¥ and
we u,AuA, . .. U,_1Asu,,. Then a is a counting function.

Proof. Clearly, if X is the domain of B, then (XA,)*X is the domain of a. We
adopt the notations of the definition of a counting function. Thus the following holds:

|wa|= Z rille.-+ Z sjlwlAzxjAz+A’
1<isn 1sjsm
where
Az{sj ifwe X;u XA,0U AX],
Sj + Sk ifwe Xj(Azx)*Azxk.

It then suffices to observe that A,XA, is a rational semaphore. [l

Proposition 4.10. If «, a': A*> t* are counting functions, so is their product up =
uaua’'.

Proof. Without loss of generality we may assume that dom @ =dom a'= X, and
that both functions admit the same decomposition X =|_J,<j<n H;. If a, a' satisfy



for all we X,

lwa|= ¥ riIWiH,.*‘Sj, wa'|= ¥ rilWiH§+s]",

1<is<n 1s<isn’

then we obtain

]wBi=(l<z< rilw|Hi+1<_Z< Ir,-{wi,,;>+(sj+s,’-). O

5. The main theorem

The purpose of this section is to establish our main theorem which characterizes
the counting functions of A* into a free cyclic monoid, i.e., a free monoid generated
by a single element . Because of (5) and Proposition 3.2, the term ““Lipschitz” refers
indifferently to the factor or the subword distance.

Theorem 5.1. A function a: A* - t* is counting iff it is a rational Lipschitz function.
Besides the results of Section 4, the proof requires further preliminary results.

5.1. A congruence of finite index

We first prove the following proposition.

Proposition 5.2. If a function a:A* - t* is a rational Lipschitz function, then it is
subsequential.

Proof. It suffices to verify the two conditions of Theorem 2, 5. The first one is a
general property of rational relations (cf., e.g., [1], Corollary 4.2]). The second
condition foliows from (3). [

Let us denote by ./ the monoid of row monomial Q X Q-matrices with entries in
t* U {@}. Because of the previous result, a rational Lipschitz function a : A* - t* can
be realized by a subsequential transducer (A, u, y) where u: A* > L.

We introduce the following notation. For all non-zero matrices m € J{, mp denotes
the shortest non-zero entry of m and we define the matrix mz by the equality
m = mpmsr. The following identities are straightforward:

mym,m = (mymmym)m, (17)
mymyp = m;pm,p(mywmym)p. (18)

As a consequence, given a morphism u:A*- ./, the relation u~,v (or, more
simply, u ~ v when u is understood), defined for all u, v € A* such that upm = vum,
is a congruence.
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We denote by o the morphism of A* into the monoid of Q x Q-matrices with
boolean entries which to every u € A* assigns its support:

{1 if upg, # 0,
uo,, = .
|0 otherwise.

Then we have the following proposition.

Proposition 5.3. Let a: A*—> t* be a rational function realized by some subsequential
transducer p. Then a is a Lipschitz function iff the congruence ~ , has finite index.

Proof. Assume « is a Lipschitz function. Then, by Ramsey’s Theorem, for some
integer N all words w € A* of length greater than or equal to N can be factorized
into w = w,w,w;w,, where |w,||w;| # 0 and w,o = w50 is an idempotent. Because of
condition (iii) of Proposition 3.1, there exists k>0 such that w,w;u = t“w,u, i.e.,
Wiwowswap = t“w,wow,au. This implies w~,ww,w,, thus showing that the con-
gruence has finite index.

Conversely, assume « is not a Lipschitz function. By theorem 3.1, there exist two
indices g, '€ Q, and a word u € A* such that up,, # up, . Then all u"um, n>0,
are different. [

5.2. Proof of the theorem

In view of Proposition 4.5, it suffices to prove that every rational Lipschitz function
is a counting function. Thus let @:A* - t* be a rational Lipschitz function. By
Proposition 5.2, a is realized by some subsequential transducer (A, u, v). As in
Section 2.4, with u we associate its transition and output functions denoted by
(g, u)~> q.u and (q, u) > q * u respectively.

Furthermore, given any u € A*, we denote by uo the support of the matrix uu
as defined in the previous section. The semigroup S = A*o may be viewed as acting
on the set Q. Indeed if x€ S, then q.x =q’ iff qu=q’ for some uo = x.

With the notations of the previous section we have the identity ua = uup (Aupmy).
Since, by Proposition 5.3, Aupmy is a rational function of finite image, « is a
counting function iff wp is.

Our result thus amounts to proving the following claim:

(19) if u: A*> M satisfies condition (iii) of Theorem 3.1, then u - uup is a counting

Sfunction.

We shall prove (19) by induction on the cardinality of the semigroup S=A*c

via the following result due to Krohn and Rhodes (cf., e.g., [9, Lemma 7.2.7]).

Proposition 5.4. Given a morphism o of A* into a finite semigroup S, one of the
Sfollowing cases occurs:

(1) S is cyclic;

(2) S consists of a unique P-class and (possibly) the identity;

(3) there exists a partition A= A, U A, such that (A¥A,)*o and A¥o are proper
subsemigroups of S.
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Proof (Basis of the induction): We first prove our result under the following
hypothesis:
(20) all elements of S have the same minimal image P< Q: Vx € S,lim,, o, Qx" =P.
Let I < A* be the right ideal of all words whose image is P:

I={we A*|Qw=P}.
Its minimal generator set W=1—IA" is finite and we have
A* = WA* v Wo,

where W, is the set of all proper prefixes of the words in W.
Let we W be a fixed element and denote by ¢: A*—>Q the additive morphism
defined for all a€ A by

ap = Z |p * al.

IPI re
We shall prove the identity

Y |p*uol. (21)
|P| peP

Indeed, since the word u induces a permutation on P we have

uvp =

% Ipeuvl =7 3 (1p * ul+|(pu) = o]
|P|,, |P|,,
zlp* u|+ |(p-u) * v| = up + vp = uve.
lPIPEP IP!pue

We now claim that the following holds:
pu=pe P implies |p * u| = ugp. (22)

Indeed, let n be the order of the permutation induced by u on P. Since q.u" =q
holds for all g€ P and since g * u” does not depend on g€ P, (21) yields

prul=tlpsut=—is % |qu’|=2u'p =u
== === L lgxu’|=—u"¢ = ue.
n |P|q

Set p=q_.w and consider an arbitrary word u € A*. There exists v € A* such that
p-uv = p. Because of (22) we have

lg— * wuv|=|q_ = w|+|p * uv| = |q_* w|+up +ve =|q_ * wu|+|(p.u) * v];
thus

lwua| = ZA aplul, +(|q- * w|+ve —|(p.u) * v])
which completes the proof in the present case.

Now we claim that the previous verification covers the cases when S satisfies
either condition (1) or (2) of Proposition 5.4. Indeed, assume the alphabet may be
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partitioned into A= A, U A, where a € A, iff it induces the identity on Q, and where
A¥o satisfies (20).

For all u € A* we denote by u, and u, its projections over A¥ and A¥ respectively.
Since au is a diagonal matrix with the same non-zero entry for all a€ A,, we have
up = u pu,u and thus, upp = u;pupupup.

Now the function u; > u,up is a morphism of A} into ¢*, thus it is a counting
function. By the previous study, u,—> u,up is a counting function from Aj into r*.
Applying twice Proposition 4.7 and then Proposition 4.10 completes the verification.

Induction step
We now assume that there exists a partition A= A, U A, such that S, = A¥o and
s, =(AfA,)*o are proper subsemigroups of S. Let v be a surjective mapping of
A¥ A, onto a (finite) set B defined for all u, u’c Af¥a, a'€ A, by
uay=u'a’y iff a=a' and upmr =u'pw.
Define a morphism w,: B* > / by setting bu, = uum forallue by . Letu,, ..., u, €
Af¥A, and b;=u;y for all i=1,..., n. Then we have
by...bpurs=byus...byu,=uum. .. uum
and thus,
(by...byur)m=(uypmr... Uyum)mw =14y ... U1
Therefore, u, satisfies condition (iii) of Theorem 3.1 and so does obviously the

restriction u, of u to A¥. Thus, we may apply the induction hypothesis to u, and
po. Consider the partition

A*¥=Afu [ U A*Azx(p/rr)_l].
xeA’{‘;u-r

We shall verify that the restriction of « to every subset of the partition is a counting

function and that all semaphores are counted with the same coefficient.

Clearly, by induction hypothesis, the restriction of @ to A¥ is a counting function.
Now let xe Afum be a fixed element. Every word we A*A,(um)”" has a unique
factorization w = v,a, ... v,a,v,., where ;€ A,,i=1,...,r,0,€ A, i=1,...,r+1.
We have

WU =01Q 1k . . . UGrfhUpiq [
S VIQIUP - . . VP VpsaJhf Dy QAT . . . DA AT Uy JATT. (23)
We set b, =va;y, i=1,...,r. Because of
Vi = Di@iphp V;QikT = Difhp QifhP VifbTT QL TT,
there exists z e t* depending only on b; such that zvup = via;up. Setting b=z
defines a morphism 7: B* - t*. Then (23) yields
wpp = (01p1p . .. V1 pt1p)(by ... b7)(by . .. bys)pA, (24)

where A has finite image.
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Let us verify that each of the three terms in (24) is a counting function of A*
into t*. Since w,p is a counting function by induction hypothesis, by virtue of
Proposition4.9, w > v,u,p . .. v,u,p is also a counting function. Now 7 is a morphism,
thus a counting function of B* into t*. By Proposition 4.8, w— b, ... b,7 is a counting
function of A* into t*. Finally, u,p:B*-t* is a counting function by induction
hypothesis. Then Proposition 4.8 shows that w— (b, ... b,u,)p is also a counting
function from A* into t*. O

A. Appendix
In this section we shall prove the following result.

Theorem A.1. Let M be a submonoid of A*x A*. The following conditions are
equivalent:

(i) for all (u, v)€ M, u and v are conjugate,

(ii) there exists a t € A* such that ut = tv holds for all (u, v) e M.

We first recall a few basic results on free monoids.

A.1. Primitivity—conjugacy

A word we A* is primitive if it is not a power of some shorter word: w=u"
implies n=1. The following result shows that each word we A" is the power of
some unique primitive word called its root and denoted by vw. By convention we
set v1=1 although the empty word is not primitive (cf. [10, Lemmas 3 and 4]).

Proposition A.2. Given u, v € A*, the following conditions are equivalent:
(i) uv=vu;
(ii) there exists we A" and i, j> 0 such that u=w' and v=w;
(iii) there exist n, m >0 such that u" =v™.

As a consequence, restricted to the free semigroup A*, the relation of commutation
is an equivalence relation.

By analogy with groups, two words u, v are conjugate if there exists a conjugacy
factor w e A* such that uw = wo. Conjugate words are characterized by the following
result (cf. [10, Theorem 3]).

Proposition A.3. Given u,ve A" and w e A*, the following conditions are equivalent:
(i) uv=wu;
(ii) there exist x,y € A* and i=0 such that u=xy, w=(xy)'x and v = yx;
(iii) there exist two unique integers i, j =0 and two words x, y € A*, y # 1, such that
xy is primitive and u = (xy)', w= (xyYx and v = (yx)".
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In particular, two words u, v are conjugate iff there exist x, y such that u =xy
and v = yx. As a result, the relation of conjugacy is an equivalence relation and we
write u ~ v iff u and v satisfy either of the last three conditions.

The next result implies that two words u and v are conjugate iff vVu and vv are
conjugate.

Corollary A4. Given u, ve A" and w e A¥, the following conditions are equivalent:
(i) there exist n, m >0 such that u"w = wo™;
(ii) there exist u,, v,€ A" and integers p, q> 0 satisfying np=mgq, u=u?, v=uf
and u,w = wo,.

Proof. Clearly, (ii)=>(i).

Conversely, assume u"w = wo™ holds. By Proposition A.3(iii), we have u" = (xy)’
and v»™ = (yx)’, where xy is primitive and y # 1. Then yx is also primitive since
yx=1t" implies xy =t"" for some word ¢’ which is a conjugate of t. By Proposition
A.2, there exist p and q such that u=(xy)” and v =(yx)% It then suffices to set
u;=xy and v;=yx. 0O

The following is a sharp characterization of conjugate words (cf. [10, Theorem 4]).

Proposition A.5. Two words u, ve A* are conjugate iff, for some n, m > 0, the powers
u" and v™ have a common factor of length |u|+|v| —ged(|ul, |v]).

We end this section with a technical result which will be of very convenient use
in the sequel.

Lemma A.6. If xy is a primitive word such that y # 1 and if, for some z € A*, zyx is
a prefix of a power (xy)", then z=(xy)'x for some i =0.

Proof. Let us set xy=u and zyxt=u". There exist an integer 0<i<n and a
factorization u = u,u,, u,# 1 such that z=u'u,. Arguing on the lengths we obtain
yX = u,u,, i.e., by Proposition A.2(ii), x=u, and y=wu,, completing thus the
proof. [

A.2. Proof of Theorem A.1

Before proving Theorem A.1 we examine a special degenerate case.

Lemma A.7. Let u,, u,, v,, v,€ A" satisfy u,~ v, and u,~ v,. The following four
conditions are equivalent:
(i) uyuy=u,u, and v,v,= v,v;;
(ii) wu, = uu; and uu, ~ v,0y;
(iii) vyv,=v,v, and v,v,~ U u,;
(iv) for all te A*, u t = tv, iff urt = tv,;
(v) there exist two distinct elements t,, t,€ A* such that

Uty = 4oy, Uty =140y, Ul = oy, Uz ly = 150;.
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Proof. Assume first that condition (i) is satisfied and denote by w and z the roots
which are common to u; and u, and to v, and v, respectively:

U =w, Uu,=w, v, =2, v,=72.

(i)=>(ii): Since w and z are conjugate, so are u,u,=w'"” and v,v,=z'" by
Corollary A.4.

(i)=(iv): In view of Corollary A.4. we have u,t = tv, iff wt =tz iff u,t =tv,

(ii)=>(i): There exist two conjugate words w and z such that u, = w’, u,=w’ and
v,0,=z"". The equalities |u;|=|v,| and |u,|=|v,| imply v,=z' and v,=7'; i.e.,
V10, = 0.

(iv)=(v): Trivial.

(v)=(i): By Proposition A.3, without loss of generality, we may assume that ¢,
is a suffix of t,: t, = zt,. Then we obtain

uIle = u1t2 = tzvl = Ztlvl = Zu1t1
and
UyZly = Uyly = LU, = ZE U, = ZUy L, .

This implies u,z = zu, and u,z = zu,, i.e., u,u, = u,u, since z # 1. Similarly, v, v, = v,0,
holds.
Finally, by symmetry, (i) and (iii) are equivalent. []

We now turn to the proof of Theorem A.1.

Clearly, only (i)=>(ii) requires a verification. In the first place, we shall establish
that any two pairs (u,, v,), (4,, v,) € M have a common conjugacy factor u,t = tv,
and u,t = tv,.

Because of Lemma A.7, we may assume without loss of generality that u,u, # u,u,
and v,v, # v,v,. Two cases need be considered.

Case 1: u, and u, are not powers of two conjugate words.

Let n, m > 0 satisfy the inequality:

lu| =uz'| = max(|u|, |up|) +2 min(|u,| +[u,]). (A1)
Since uiu3' and vjv3 are conjugate, we have

ufuy =tz and vjvy =zt
We claim that the following holds:

uiuy't=tvivy, ut=tv, and u,t=tv,. (A2)

Indeed, since u, and v, are conjugate, there exist two words x€ A* and ye A", and
an integer i =0 such that xy is a primitive word and u, = (xy)’ v, = (yx)". Arguing
on the symmetry of conjugacy we may assume |¢|<|u]|=|u3'|. In particular, u; and
vy have a common factor of length |¢|. By Proposition A.5, this implies |t|<|t,| =
[ty +|v]o] = |uy| +|uo|. Now,

uiuy't=rtvivy (A3)
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holds, which shows that tyx is a prefix of u} = (xy)™. By virtue of Lemma A.6, this
implies ¢ = (xy)’x for some j=0, i.e., u,t = tv,. Simplifying (A.3) by u} to the left
yields u3't = tv3', thus u,t = tv, by Corollary A.4.

Case 2: u, and u, are powers of two distinct conjugate words.

We set u; = u2u3 and v; = viv3. Then u, and u; are not powers of two conjugate
words since otherwise we would have u,u; = usu, and thus u,u, = u,u,. According
to the previous case there exists a word ¢ such that u,t = tv, and v;¢ = tv;. Then,

2.2 2
1302 = tos = ust = uiuit = ultvl.

After simplification we get ti=ultie. tv,=u,t

It now suffices to prove that there exists a conjugacy factor which is common to
all elements (u, v) € M.

By Lemma A.7, we may assume that there exist (u,, v;) and (u,, v,) such that
u,u, # u,u; and v, v, # v,0,. Possibly after using the same trick as in Case 2, we may
further assume that u, and u, are not provers of two conjugate words. For some
unique ¢ the following holds: u,t = tv, and u,t = tv,. Let (u;, v;) € M. Without loss
of generality we may assume u;v; # v;u;. Choosing n and m as in (A.1) we get

uiuyt'=t'vivy and ust'=1t"v;.

Then (A.1) shows that ¢t and t' are equal, thus completing the proof. [
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