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KEYS & STANDARD BASES

ALAIN LASCOUX AND MARCEL-PAUL SCHUTZENBERGER*

1. Introduction. The irreducible characters of the linear group on C {Schur
Functions} are combinatorially interpreted as sums of Young tableauz.

Demazure [D1] [D2] has given a “Formule des caractéres” which interpolates
between a dominant weight, corresponding to a partition I, and the Schur function
of index I. For every permutation p, he obtains a “partial” character which can
be interpreted as the class of the space of section Vr , of the line bundle associated
to I over the Schubert variety of index p, in an appropriate Grothendieck ring;
identifying this ring with the ring of polynomials, we can view V; , as a polynomial
D(p, I).

An independent study of the same spaces Vr,, and more precisely, of their
“standard bases”, is due to Lakshmibai-Musili-Seshadri [L-M-S]. Extending the
work of Hodge, they interpret Young tableaux as products of Plicker coordinates
of the flag variety and associate to them chains of permutations to describe the
different bases (see also [L-W1).

The link between the two constructions is not immediate. Moreover, none of
these two point of view furnishes the multiplicative structure of sections which is
needed in geometry to describe the postulation of Schubert varieties. Indeed, the
product Vr,, ®-:-®Vr,, contains more than the sections corresponding to a multiple
of the weight I and thus the products of standard bases are not standard bases.

The answer comes from working in the free algebra rather than the Grothendieck
ring or the ring of coordinates. Young tableaux (2.1) are now words which are repre-
sentatives of certain congruence classes (th.2.4). More general words (frank words,
2.7) obtained from tableaux by permutation allow to associate to each congruence
class two special tableaux right and left keys (2.9). The set of keys (2.12) is in fact
the image of the embedding of the symmetric group in the set of tableaux (embed-
ding originally defined by Ehresmann [E] to describe how cells attach in a cellular
decomposition of the flag variety).

Now, a standard basis is a set (or a sum) of tableaux having the same right key
(th.3.6). To generate it, one uses symmetrizing operators (3.5) on the free algebra
which lift the operators on the ring of polynomial used by Demazure and Bernstein-
Gelfand-Gelfand. Thus, the polynomial D(I, ) is just the commutative image of a
sum of standard bases (th.3.8).

For what concerns the multiplicative structure of sections, the answer is also
given by keys: the product of two tableaux ¢,t' belongs to a standard basis iff the
right key of # is less than the left key of ¢’ (2.11 and 4.2) . This allows us in section 4
to give a combinatorial interpretation of the Hilbert function associated to a weight
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as an enumeration of chains of tableaux (th.4.3 and 4.4). See [L-S6] for the related
order on the symmetric group and its Eulerianity properties. The link between keys,
reduced decompositions of permutations and the Schubert cycles (i.e. the classes
of the Schubert varieties in the cohomology ring of the flag manifold) is given in
[L-S4].

In section 5, we explicit some different ways of describing the standard bases.

In appendix 6, we have isolated a property of actions of the symmetric group
which is of independent interest.

Caution. As usual, operators operate on their left.

2. Frank words and keys. Let A* be the free monoid generated by the
alphabet A = {a; < a2 < ..}. A word v = z1...z,(z; € R) is called a column
iff ¢y > ... >z, andarowiff z; <z <..- < z, . Let V denote the set of
all columns. Every word w € A* admits a unique factorisation as a product of a
minimal number of columns : w = vyvg -+ - v} (v,- € V). We shall call it the column

factorisation of w and denote it occasionally by w = v;-v;-... vk , v; being the left
column w£ of w and vi the right column w$ of w . The shape of w is the sequence
llwl] = ([v1], ..., Jvr]) of the degrees (or lengths) of the column factors of w.

To use a traditional term (see [Mc]), |jw]| is a composition of the integer |w|
and the |v;| are the parts of |w]|. On the set of compositions, one has the following
preorder: I > J iff for every k, the sum of the k biggest parts of I is bigger than
the sum of the k biggest parts of J. It is clear that if I > J and J > I, then I
is a permutation of J , and that if H is any composition, JH > JH & I > J.
One can imbed the set of compositions into the set of words : I = (11,21, ...,rI) —
(---1)(I+2D)---(UI+1)) - (U +2T+---+7D) - (L + 2T -+ (r=1)I)). We
note this word IM and call it a composition word. It can be looked as the maximal
element (as a permutation) of the Young group 8; < 8;74...4r7 . For instance, the
composition word (2,4,1)M is (21)(6543)(7) , which is the maximal element of the
subgroup 8; x 84 x 8; of 7.

Taking the underlying set of a column defines a bijection v — {v} between the
set V of the columns and the family 2 of the subsets of A ; one extends to V the
order < on A by letting u < v iff there is an increasing injection of {u} into {v}.
Thus u < v is the least order on V that contains both the inclusion order {u} C {v}
and the term to term order between equipotent subsets of A.

DEFINITION 2.1. A contretableau is a word which is an increasing product of
columns.

For instance, if A = {1 <2< 3<---}, the word 2 3 41 421 is a contretableau
because of 2 < 3 < 41 < 421.

It is convenient to define another order > on V by letting u b v iff there is a
decreasing injection of {v} into {u} and to call a tableau any product ujug - - - Uk
where the columns u; are decreasing for > , i.e. u; b ug b --- > ug. For instance,
321 31 2 4 is a tableau because 321> 315 2p 4.
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The two orders < and b are linked by the fact that ub v iff v’ < u' where v — v’
is the bijection on V induced by the “reversal” of the alphabet A assumed to be
finite (i.e. by the morphism a; — a,+1—; , n being the cardinal of A).

It follows from the definitions that the shape of any tableau ¢ is a partition of its
degree. This suggests writing the letters of ¢ into the boxes of the Ferrers diagram

3
of |it]] . For instance, 321 31 2 4 can be represented by 23 . A similar remark
1124

holds for contretableaux and we can represent 2 3 41 421 by 12. It is a direct

1
consequence of the definition of the orders < and b that each row of the planar
writings of tableaux or contretableaux is a weakly increasing sequence of letters.

There is essentially one natural congruence = on A* that admits as a section
the set of contretableaux, where natural means that it commutes with the order
preserving injections of alphabets. It is called the plactic congruence. As shown by
D. Knuth, it can be defined by the following identities where a, b, c are any three
letters of A such that a< b< ¢ :

(2.2) baa = aba ; bba = bab; cab = acb; bca = bac

As it has been observed by [K-L], these generating congruences are exactly all
the pairs of words of degree 3 that are not a column nor a line and that differ by the
transposition of two adjacent letters. Thus one member of each pair is a tableau
(e.g. :c or :a) and the other one, a contretableau (e.g. b: or °: ).

It turns out that the set of all tableaux is also a section of the plactic congruence
and the defining relations (2.2) are simply the expression of this fact for the words
of degree 3.

Another remarkable property of the plactic congruence is that every tableau (or
contretableau) is congruent to the word obtained when reading by rows (from top
to bottom) its planar representation. For instance, 3213124 = 323 1124 or
2341421 = 234412 1.

This phenomenon is closely tied with another definition of the plactic congruence

= as one of the least congruences on A* such that the subalgebra of Z(A*/ =)
generated by the (non commutative) symmetric sums

Ap=) {v:veV,pl=p}, p=12,

is a commutative algebra isomorphic to the usual algebra of symmetric polynomials
in the letters of A .

To obtain the complete characterisation of the plactic congruence, one needs to

add a further condition which follows immediately from 2.2 and which will be used
later.

PROPOSITION 2.3. The plactic congruence = is the least congruence on A*
for which AyA, = AyA;, and which moreover satisfies for any interval B of A the
relation

=vw' =z3wnB*=wNB*
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(w N B* denotes the word obtained by erasing the letters not in B ).

Taking B equal to a single letter, 2.3 implies that the plactic congruence com-
mutes with the natural morphism w — w of A* onto the free commutative monoid;
this can also be directly checked on relations 2.2.

The plactic congruence is no other than the algebraic formalization of Schen-
sted’s construction, whose main result can be summarized in the following theorem
([Sche], [L-S1}).

THEOREM 2.4. 1) Each plactic class contains a unique tableau t and a unique
contretableau.

2) The elements of the class of t are in bijection with the set of permutation
tableaux (called insertion tableauz) of the same shape ast .

By a permutation tableau, we mean, of course, a permutation (of any alphabet)
which is at the same time a tableau. Given any word w, we denote wR the tableau
congruent to it and w@ its insertion tableau. It is well known (see [Schu]) that the
involution w — w™! on permutation words corresponds to the exchange of wR. and
w@ ; we shall not use this fact.

More explicitely, the insertion tableau (which is the Q-symbol of Schensted) of
a word w = z;z;... describes the increasing sequence of the shapes of the tableaux
1R, z12oR | z12923R ,... . The particular choice of the alphabet being irrel-
evant, ; , §5 and 4., with @ < f# < 7, must be considered as the same insertion

< 4

tableau representing the sequence of shapes @ w0 — | — _ .

More generally, any word congruent to w@ will be called an insertion word for
w. Insertion words are compatible with restriction of alphabets (see [L-S1]):

LEMMA 2.5. Given any word w = 3.2 —1Tm-- T4 rLmtr41---, then the word
w@N {m,...,m +r} is an insertion word for the factor T, - - Tontr -

In particular, as pointed out by Schensted, w@ contains the subword m m + 1
iff £y < Tm41 and the subword m + 1 m iff 2, > zy41. Call file of a permutation
of {1,2,3...} any maximal subword of the type (m + k) - - - (m + 1)m. The shape
|lw|| corresponds to the files of any insertion word for w. More precisely, one has
the following lemma:

LEMMA 2.6. Let w =v; - ... vk be a word, u an insertion word for w . Then

1) The files of p are the same as those of the composition word ||w||M.
2) |lw]l £ ||lwRY||; equality happens iff |jw||M is an insertion word for w.

3) For each permutation J of the shape ||wRf||, there exists one and only one
word of shape J congruent to w.

Proof. Assertion 1) is a direct corollary of 2.5: the files of y are the same as
the files of w@ and they encode exactly the inequalities z; < z;41 or z; > Ti41 for
all the pairs of adjacent letters in w . For what concerns 2), it is easy to check that
the tableau uR has shape greater than the composition corresponding to the files
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of u ; this composition being ||w|| and the shape of uR = w@ being equal to that
of wR, we get the required inequality. In the case of equality, the tableau uR is
determined by its files : consecutive entries in a file must be in consecutive rows
of uR. A mild intimacy with the jeu de taquin shows that this last condition is
equivalent to requiring that ||w||M = uR. Finally, condition 8) is a rewriting of
the case where |lw|| is a permutation of |wR||; we just saw that in this case the
insertion tableau w@ is uniquely determined, which means, thanks to the bijection
2.4.2 that w is uniquely determined. []

For example, w = 53 - 61 - 2 - 4 has shape 2211 < 321 = ||wR|| ; the sequence of
5

tableaux congruent to the left factors of w : & — 5 — i — ; ¢ — >3 —
16

5 5 4

36 — 3 6 shows that w@ = 2 5 ; w admits the insertion word u = 452361,

12

since pu = w@ the files of p are 21 43, 5, 6 and are identical to those of the

composition word ||w||M = 21 43 5 6. On the other hand, in the same congruence
class, we have a unique word w' of shape 213; it is determined by its insertion

6
tableau congruent to the composition word 213M = 213654 = 25 . Indeed,

134

w' = 51 3 642 as we can check from the sequence of tableaux congruent to its
) 5 5 5 56

left factors : & — 5 —» LT 13 T 136 — 134 — 36 . The words

124
corresponding to the other permutations of 321 are given next page.

The preceding lemma has detached in the congruence class of a tableau ¢, the
set of those words w (among which the tableau and the contretableau) for which
|lw|| is a permutation of ||¢||:

DEFINITION 2.7. A word w is frank iff ||w| is a permutation of |[wR]| .

Equivalently, thanks to 2.6.2, a word w is frank iff it admits the composition
word ||w||M as an insertion word.

For a two-columns tableau ¢, finding its congruent contretableau ' can be con-
sidered as using the generator b of the symmetric group §(2) to tra.nso the two

columns of ¢ . This is best done with the jeu de taquin ([L-S1])

. We shall write ¢' = t* and ¢ = t". Notice that t$ =62 is a subword of

t'$ = 632 and that t' £= 41 is a subword of t£= 431.

More generally, on the set of k-columns words, one has an action (not everywhere
defined; we use the symbol & when it is not defined) of the symmetric group 8(k) .
First, if the factor v,v,4; of w = vy -... vt , v; € V, is a tableau or a contretableau,
then the image of w by the simple transposition o, , 1 < r < k , is set equal to
vy - Vo1 (VpUp g )bvr.n - - - v; if moreover this last word has still k¥ columns. In
all other cases, the image of w by o, is set equal to @. It is checked in section 6
that this extends to an action of the symmetric group for which frank words play a
special réle that we summarize in the following theorem (1 and 2 being a rewriting

of 2.6.2 and 2.6.9):

129



THEOREM 2.8.

1) For each word w , one has ||w| > ||wR|| , with equality iff w is frank.
2) The set of frank words in the plactic class of a tableau t is in bijection with
the set of permutations of the shape of t .

3) The product of two frank words w , w' is frank iff u$.u'£ is frank for any
pair of frank words u,u', withu =w and u' = w' .

For example, the class of 531 62 4 contains the six frank words (read vertically!)
which correspond to the six permutations of the shape 321 :

56
13 — 5
24 136 -
s 4 N
5 2 ~ 156
36 34
124 2
e
N .
™5 15 //
3 — 36
126 24
4

On the other hand, the product of the two frank words 31 42 and 4 51 is not
frank: the insertion tableau of 31 42 4 51 is 721 43 5 6, which is not congruent to
21 43 5 76. Indeed, 4 51 = 41 5, and condition 3) is violated, because 42 - 41 is
not frank.

We now come to the study of keys.

By definition, a key is a tableau such that its columns are pairwise comparable
for the inclusion order. This condition implies that the action of the symmetric
group giving the frank words is simply the permutation of the columns because
this is true (and easily verified) in the special case of two-columns keys, where the
operation b reduces to just commutation. For example, 531 53 3 is a key and the
frank words in its congruence class are

55
33 s
13 335 \\
e 3 .
5 /,- 1 \N355
35 33
133 , 1
N, Vs
\\5 35 ///
3 e 35
135 13
3
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DEFINITION 2.9. The right key tK 4 of a tableau t (or of any word congruent to
t) is the tableau of the same shape as t whose columns belong to the set of columns
{u$ , v =t and u frank}. The left key tK_ of t is the tableau of the same shape
as t whose columns belong to the set {u£f, u =t and u frank}.

In other words, the left key (resp. right key) of ¢ is made of the left (resp. right)
columns, repeated the appropriate number of times so as to fill the shape of t, of
the frank words in the class of ¢ . For instance, the above hexagon for the tableau

6

5
531 62 4 give the keys tK_ = 35 and tK; = 46 . Notice that a tableau is

a key iff it is equal to its right (réséx.l left) key. In otfl;r4case, the keys of a tableau
belong to different plactic classes.

Since the test that the product of two frank words w, w’ is frank involves exactly
the columns composing wK and w'K_, we can reformulate th.2.8:

THEOREM 2.10. 1) A word w is frank iff ||wR|| is a permutation of ||lw||.
2) A product ww' of two frank words w,w' is frank iff the shape of ww'R is the
union of the shapes ||wR|| and ||w'R].
3) A product ww' of two frank words w,w' is frank iff (wK4 )(w'K_) is frank.

If a pair of columns satisfies u < v , then u’ < v’ for any other pair of columns
v',v' such that {u'} C {u},{v'} 2 {v}; similarly, u > v implies u' b v' for any pair
such that {u'} D {u}, {v'} C {v}. Thus, in the special case of two frank words
w,w' having the same shape up to a reordering, condition §) can be restricted to
the comparison of columns in wK4 and w'K_ of the same length instead of all
pairs of columns (as required by 2.8.9). Recall that for columns of the same length,
the order < is the componentwise order on words of the same degree (that we can
denote by the same symbol < ). In short, one can replace in that case 2.10.8 by:

THEOREM 2.11. Assume that w,w’' are two frank words such that |wR| =
|lw'R|| , then ww' is frank iff WK, < w'K_.

For example, the product of the two tableaux w = 421 41 3 and w' = 432 32 4
isnot frank ; condition 2) is violated since (421 41 3)(432 32 4)R = 42143143234
is a tableau of shape (= 33311) different from 332211. In fact, 421 413 = 421143
and 432 32 4 = 32432 4, but (43 32)* = &, and thus condition $) of the theorem
is violated. Condition 2.11 has the same fate, since 431 43 3 ( = (421 41 3)K,) is
not smaller than 432 32 3 ( = (432 43 4)K_).

On the other hand, 421 31 3 432 32 4 R = 421 431 32 32 3 4 has shape
332211, as is insured by the inequality 431 31 3 ( = (421 31 3)K4) < 432323 (=
(432 43 4)K_) required by 2.11.

Definition 2.12. Key of a permutation: to each pair consisting of a permu-
tation { € §(n), and a partition I = (11,2I,...), Ehresmann [E] has associated a
key, noted K((, I), by taking the sequence of left reordered factors of { (considered
as a word) of successive degrees 11,21, ....

For example, ( = 316452 and I = 532 give the key 65431 631 31.
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In case that I = n...21, we shall simply write K(({) instead of K(({,n...21); thus
¢ — K(() is an embedding of §(n) into the set of tableaux of shape n...21. The
reader may notice that the so-called “strong”, “Bruhat order” on permutations (see
[Bj]) is a special case of the pervading order on words (componentwise) which we

have been repeatedly using, by way of the equivalence due to Ehresmann :
(2.13) n1<¢ & K(n) < K(()

For example, the keys associated to ( = 3241,n = 2143 and p = 1423 are
K({) = 4321432323, K(n) = 4321 421 21 1, K(pu) = 4321 421 41 1; thus
¢ > n, but ( and p are not comparable since the two columns 32 and 41 are not
comparable.

3. Symmetrizations. The definition of tableaux is strictly dependent upon a
chosen total order on A . It is remarkable that nonetheless the commutative image
of the sum Sy of all tableaux of a given shape I be a symmetrical function: this is
the most constructive definition of the Schur Function of index I. To understand
this phenomenon (see nevertheless Knuth’s proof [B-K]), one must define an action
of the symmetric group on the free algebra such that the Sy are invariant under this
action. Further, this action must induce the usual action of the symmetric group
when projected by w — w on the commutative algebra. By the duality w — w™?
for permutation words, the new action we shall define now can be specialized to
give the action that we have been using in our study of frank words.

Consider first the case of a two-letters alphabet A = {a,b} . It is clear that
the image by the transposition o = g, of the tableau t = (ba)*a*b™ must be 17 =
(ba)*a™b* , since 7 is the only tableau of the same shape as t whose commutative
image is the monomial a™+kph+k,

More generally, because words w in a, b are determined by their insertion tableau
w@ and their commutative image w (we recover wR from its content w and its
shape, equal to that of w@ ), one defines w? to be the word:

(3.1) W)@ =we & (w)° =(w°)

In other terms o , as it has been defined, preserves the insertion tableau and com-
mutes with the projection Z < a,b >— Z[a, b].

For example, the image by o of the word baa a bbaa aa b is baa b bbaa bb b
(we have marked the letters which change) because these two words have the same

167 75 and a%b” in

insertion tableau, equal to .. ooy

Z[a,b].

Since the column ba commutes (plactically) with a and b , shifting the factors
ba of a word w in a, b generates the congruence class of w. This remark implies the
following easy algorithm to compute w — w?:

and they project onto a

(3.2) {ﬁx the successive factors ba of w, then change the remaining

subword a¥b™ into a™b".
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For instance the preceding word gives (ba) aa (b(ba)a) aab and we have to
change the remaining word aa aab into ab bbb to get (ba) ab (b(ba)a) bbb = w°.

Consider now the more general case of a simple transposition o; of consec-
utive letters a;,a;4; . One defines w? to be the word in which the subword
w N {a;,ai4+1} has been modified according to 3.1 or 3.2, the other letters being
left unchanged. For example, denoting by z...z any word in letters different from a
and b, the above computation shows that the image of bzazazazbrbrarazrazazb is
brazazbzbzbrarazbzbzb.

It is proven in [L-S1] that w — w? extends to an action of the symmetric
group on Z(A), i.e. that given a permutation x and a word w, all factorizations of

p=ocad...o"

into simple transpositions produce the same word ((w®)” " )v
denoted w*.

One can note in reference to a previous remark that in section 2, we have
acted on the insertion words to generate from a tableau the frank words which are
congruent to it, thus preserving wR, and that the action described here preserves
w@.

At the commutative level, on Z[A], we have at our disposal other actions of the
symmetric group 8(A) (see [L-S 2]).

In particular, two operators ¥, and 7, on Z[A] are associated to each permuta-
tion pu. For a simple transposition o; the operator 7,, (abbreviated 7; , and acting
as always on its left) is

(33) f— (= f) [ (1= aifai) = f7
and the operator 7; is just the sum of 7; and the identity :
(3.4) m=7i+1

k

Let w = va¥ € Z[A], with p symmetrical in a; and a;4;.

Then direct computation gives

k k— k
wr; = vaf +vaf aipy 4o +2afy,

i.e. wm; is the sum of all monomials between w and w? , and w7; is the same sum
apart from the first term (=w) missing,.

This indicates how we can lift 7; into an operator, denoted 6;, on the free
algebra. Given ¢ and a word w, let its degree in a;41 be m and its degree in a; be
m + k. Then w and w? differ by the exchange of a subword a¥ into a¥,, if £ >0,
or of a,-‘+"1 into a; * if k < 0.

In the first case, we define wé; to be the sum of all words in which the subword
a¥ has been changed respectively into af_la.-.H s af"za? 1 afH; in the second,
we put wé; = —(w" ")9,- as in the commutative case. In other terms, 6; interpolates
between the identity and o; for the words having more occurences of a; than of a;41.
The corresponding algorithm is in this case (k > 0), putting a; = a,a;41 = b,0 = 6;:
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fix the successive factors ba of w , then change the remaining

(3.5) subword a™+¥b™ into successively a™t¥-1pm+1 gmHk-2pm+2

a™b™t* and take the sum of all the words so obtained.

cey

For instance, for the word studied in 3.2, we have (ba)aa(b(ba)a)aabd = (ba)aa
(b(ba)a)abd + (ba)aa(b(ba)a)bbb + (ba)ab(b(ba)a)bbb.

More generally, we can transform w by changing its subword a™+*b™, k €
Z, into any row a"b?*™*+*7 of the same degree. This operation will preserve the
insertion tableau, as does o; (which is a special case). In particular, we shall need
the projection of a™+*b™ onto a®™+*, k € Z, that we shall denote A (and ); for the
pair of letters a;,a;41):

(3.6) { fix the successive factors ba of w, then change the remaining

a™t p™ into a®™t* to obtain w.

Since o; = 0,0; = 6, \; = ) preserve the insertion tableau, they are also com-
patible with the right and left keys : if w is a frank word congruent to ¢, then w?
and wA are also frank, and w#@ is a sum of frank words; w?$ and wA$ are equal to
w$? or w$. Thus t°K ., tAK, and #'K,, with any ' in the sum t6, are equal to
tK4 or (tK4)?. We shall give a more precise statement in theorem 3.8.

The operators 6; do not satisfy the Coxeter relations 6;6;116; = 6;416:6;41,
contrary to the operators 7;, ; and A;; thus, if 6; - - - 0j and 0} - - - 0y are two reduced
decompositions of the same permutation, the operators 6;---6; and 6, --- 6 will
in general be different and there is no canonical way of defining operators 6, by
products of operators 6;.

Nevertheless, we recover this lost Coxeter relation when acting on dominant
monomials, as we shall see in 3.8.

DEFINITION 3.7. The standard basis U(y, I') associated to the pair u, I (u per-
mutation, I partition) is the sum in the free algebra of all tableaux having right
key K(u,I). The costandard basis B(u, I) is the sum of all contretableaux having
right key K(u, I).

Since by definition all the elements in a plactic class have the same right key, it
is clear that {(u, I) = B(u, I), and more precisely, that B(u, IR = Uy, I).

To any partition I = (11,2I,...) on associates the dominant monomial a! =

(a1r...a2a1)(azr...a2a1)(asy...a2a1) . . ..

THEOREM 3.8. Let a’ be a dominant monomial and 0;0;...0x be any reduced
decomposition of a permutation u. Then

Uy, I) = a’6;6;--- 6.
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Proof. Let p and i be such that £(uo) > €(p), with o = 04, ai = a,ai41 =b. If
w is a frank word such that wK = K(g,I) or K(uo,I), then w Ky = K(g, I).
Let t be a tableau such that tK; = K(u,I), t°Ky # K(y,I) (this implies that
t°Ky = K(po,I) ). Then there exists a frank word w = ¢ such that the right factor
w’$ of w? contains the letter b and not the letter a; thus w contains a and not b;
this implies that tA\ = t. One checks moreover that all the tableaux (not only ¢7)
in the sum 0 have the same right key K(u, I).

Conversely, if t is such that tKy = t°Ky = K(u,I), then (t +t7)§ = 0.
Supposing the theorem true for p, it is also true for po. [

For instance, suppose that we already know 2(426135, 321); we compute
‘B(436125,321) by using the operator § = 62, the contretableaux t such that ¢°
also belong to B(426135,321) give a zero contribution; the others are of the type
t= t/\zi

4 42 642 — 442643 + 443 643
4 41 642 — 4 41 643

3 42 642 — 3 42 643

2 41 642 — 241643 + 341643
3 41 642 — 0

3 32 642 — 0

3 31 642 42 31 642 — 0

All the contretableaux belonging to a costandard basis %B(u, I') having the same
right column (since it is the reordering of the factor of y of length 1I), we have a
faster way to compute the costandard bases, by induction on the number of parts

of I:

LEMMA 3.9. Let p be a positive integer, I = (11,...,rI) be a partition with
r > p, I' the resulting partition after deletion of the part pI, p a permutation , v
the column such that {v} = {1p,...,(pI)p}. Then there exist permutations v,7...
such that
B(p,I) = [B(v, I') +B(n,I') +--]v

Proof. Two congruent frank words w,w’ have the same right column w$ =
w'$ iff |w$| = |w'$|. Thus, to compute the right key of a tableau, we need
only to generate a set of frank words w®,w® ... such that {jJwM$|, [w®$|,
...} = {1I,21,...}. We can require that the shapes of these frank words be
(rI,...,2I,pI,1I), (r1,...,11,pI,2I),... ,((r — 1)I,...,11,pI,vI). The images of
w®, ..., w(" by the transposition (of columns) o,_; will be frank words with right
column of degree pl. Thus the right key of any frank word w = vy - ... - v, is equal
to that of the frank word (vl et v,_1K+) - vy. To describe a standard basis, we
need only to look for frank words of the type w = w' - v, w' being a key of shape I
and v the column: {v,} = {1y, ...,(pI)n}, such that wK4 =K(g,I). 0

This lemma gives a fast induction when we take p = 1 to factorize the column of
maximal length. For example, let p = 32514, I = 4321. Then v = 5321, I' = 321;
(32514,4321) = (32532 v + 331532v + 2 31 532 v) + (332432v +
331432 v + 2 31432 v) decomposes into [B(32514,321) + B(32415,321)] v.
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4 . Postulation. Let A be a vector bundle on any variety M, F(A) — M the
relative flag manifold of complete flags of quotient bundles of A. If A is of rank n,
one has from definition (see [Gr]) n tautological line bundles L,,..., L, on F(A).
The Grothendieck ring K(F(A)) of classes of vector bundles is a quotient of the ring
of polynomials X(M)[A], A being an alphabet of cardinal n, by a certain ideal J ,
the images of ay,... ,a, being respectively the classes of Ly,... ,Ly.

Since all constructions given here are compatible with J, we can replace X (3(A))
by Z[A] and K(M) by the ring of symmetric polynomials Z[A]3(A), The projection
p : F(A) — M induces a morphism p, : K(F(A)) — K(M) which corresponds in
fact to the operator 7, : Z[A] — Z[A]3(A) associated to the maximal permutation of
8(A). We can express 7, as a product of simple operators 3.4, but it can be directly
defined by the following global expression (see [L-S2]):

(4.1) IA]> f — Z [f/H(l—a,-/ag)]"

r€ES(A) i<j

In case that M is a point, the morphism p, associates to any vector bundle B
the Euler-Poincaré characteristics : Y;(—1)* dim3¢(B); in terms of polynomials,
this should be interpreted as Z[A] > f — fw.en, f being any polynomial lifting
the class of B and en being the specialisation a; — 1,... ,a, — 1.

Let J be a partition, I its conjugate, L the line bundle L = L}V @ L3/ ® - - -.
From Demazure’s construction, [D1] [D2] [L—S5] we have that the number a’7,e4
is the postulation (that is to say, the dimension of the cohomology H°; the other
spaces H* being null, the postulation coincide in that case with the Euler-Poincaré
characteristics) of the line bundle L on the Schubert variety of index wu™1.

More generally, considering simultaneously all the powers of L together, we have
the Hilbert series 3 ,(2) = (1 — zal)"'m ¢ relative to L of the Schubert variety
Schub,,,-1 ( L defines an embedding of the flag variety into a projective space if
U>2r>...).

From considerations of dimension, we know that the series ¥, ,(2) is rational
of the type Ni,(2)/(1 — 2)*®+1 Ny ,(z) being a polynomial of degree < £(u).
However (1—za!) ', has in general a denominator of degree greater than £()+1.
Raising up to the free algebra, we shall get a combinatorial interpretation (4.4) of
the Hilbert series and clarify in particular this drop in the degrees.

From 3.8 , given any reduced decomposition o;...0; of u , then al...dl(6; +
k
1)--+(8; + 1) is a sum of words having the same insertion tableau as a ... .../,
thus it is a product of k tableaux of shape I . On the other hand, again according
to 3.8, (au...al)k(ag[...al)k -++(6;4+1)...(8; + 1) is the sum of tableaux T(y, I*), I*
denoting the partition 1I...11 1I...1I-..
N et !

k k
Since the operators §; are compatible with the plactic congruences, comparing

the two sums gives that each tableau t in T(y,I*) is congruent to a frank word
which is a product ¢; - - - t; of tableaux of shape I.
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Conversely, from 2.11, we see that a product (1) ...¢() of tableaux belonging
to J(u,I) is congruent to a tableau t € T(u, I*) iff the following inequalities are
satisfied:

42) tOK, <tPK_; tPK, <t®OK_;...; ;- VK, <t®PK_

Moreover, in such a case, if v; - -- v, is the right key of ¢(¥), then v¥...vF is the
right key of t(1) ... t(¥) because each frank word in the class of t(1) . - . ¢(*) has a right
column which is one the columns vy,... ,v,.

Let us call I-chain of length k a product of tableaux of the same shape I sat-
isfying the inequalities 4.2; the right key of a chain will be the right key of its last
tableau, the left key of a chain being the left key of its first tableau.

The preceding results may be summarized in the following theorem:

THEOREM 4.3. Let I be a partition, p a permutation in S(A) , 0;...0; any
reduced decomposition of u . Then

(1-a)76;---6; = > {T:K(T) <K(I,p)}
r

sum of all I- chains I' of right key K(I, 1) and

(1—a) (@i +1)---(0;+1) = Y {T:K4(T) SK(,u)}
r

sum of all I- chains T of right key less or equal to K(I, p).

For instance, the 21 chains of length 2 for §(3) are all the 27 products # @ of two
tableaux of shape 21 described below, and correspond bijectively to the 27 tableaux
of shape 42. There are 8 tableaux of shape 21, only two being not keys; for them,

2 2 2 3 3 3 3 3
onehas (7, )K- =, and (1 )Ky =1, , ({,)K- =], and (},)Ks=1,.
On the second row, for example, one reads that the chain f 2 13 factorizes the

tableau f f 2 3 its left key being (f 2)K__ and its right key being (f 3)K+ .
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2 2 3 2 3 3 3 3

11 12 11 13 13 12 22 23
2 22 22 23 22 23 23 23 23
11 1111 1112 1111 1113 1113 1112 1122 1123
2 22 22 22 23 23
12 2 1122 @ 1123 1133 @ 1222 1223
3 33 33 33 33 33
11 @ 1 1111 @ 1113 1112 1122 1123
2 23 23
13 2 @ @ @ 1133 @ @ 1233
3 33 33
13 @ 12 @ 2 1133 @ @ 1233
3 33 33
12 @ 2 o 12 @ & 1222 1223
3 33 33
22 @ ) @ @ @ @ 2222 2223
3 %] %] %) %) 7] %) 1) 3243

Reintroducing a parameter z , projecting to Z[A] and using the specialization
en:A—{1,...,1}, we get:

COROLLARY 4.4. Let I be a partition, u a permutation in 8§(R). Then the
postulation (1 — za?)~ 7 en (resp. (1 — za’)™'m,en ) is equal to the generating
function of the number of I-chains T' having right key K(I, 1) (resp. having right
key less or equal to K(I,p) ) , i.e.

(1 ___zaI)—l The = Z Jlengthl’ p €a
r

sum on all I-chains T' having right key K(I,u) .

5. Avatars of standard bases. According to theorem 3.8, if u and o are
such that €(uor) > €(p), then for any partition I, #(u, I)0r = U(pok,I). Thus
the operators 6; allow to connect the standard bases corresponding to different
permutations. Using the same induction p — poyg, it is not too difficult, but we
shall abstain from doing it, to check that standard bases can also be defined in the
following two other manners 5.2 and 5.8.

First, according to [L-M-S], a tableau can be considered as an increasing chain
of permutations (with respect to the Ehresmann order 2.13). One says that a chain

of permutations u < u® < ... < u(" lifts a tableau t = vy -...- v, if ¥y,...,7,
are respective left factors of u(1),...,u(, where, for a word v = ; -+ Zm, the

notation v stands for the reverse word z,, - - - 1.

It is clear that given a tableau, there exists a unique minimal lift of it. Indeed,
putting u(® = identity and having found the minimal chain @ < uM < ... <
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1?1 with respective left factors oy, ... , Up—1, given moreover v, = Z1 * * * T, We
see that the set of permutations u such that g > P~ and 1y = zp,... ,mp =z,
admits a unique minimal element u(?). An induction on p thus gives a lift u(V(t) <
---y(')(t) that we shall call the canonical lift of t. From the construction, for any
other lift ¢ < ... < ¢, one has u® < ¢, ... 4" < ¢ je. the canonical
lift is minimal with respect to the Ehresmann order.

For example, the canonical lift of the tableau 531 62 4 is 135 246 < 26 3145 <
4 62135. Let us illustrate on this example how to pass from u®=1 to u®, say
for p = 2. The left reordered factors of u(!) are 1,13,135,1235,12345 ; 236 is
the minimum word having subword 26 bigger than 135, 1236 is the minimum word
containing 236 bigger than 1235, and finally, 12346 is the minimum word containing
1235 bigger than 12345. These minimum words are the left reoredered factors of
#? = 263145 which therefore is the minimum permutation bigger than u(! and
beginning by 26.

DEFINITION 5.1. Given a partition I and a permutation p , the L-M-S standard
basis &' (p, I) is the set of tableaux t such that the last permutation of their canonical
lift is equal to p.

When p = identity, the set Y(u, I) reduces to the tableau (1I---1)(2I---1) x
+(rI---1) as well as #(u, I); the induction g — po proves, as claimed in the
beginning of this section, that $(u,I) is the sum of the tableaux belonging to
W(p,I). In other words, one has the following property showing that the L-M-S
standard bases coincide with the one defined in 3.5, up to the change of the alphabet
A with N.

PROPOSITION 5.2. A key K = K(u,I) is the right key of a tableau t iff t has
shape I and p is the last permutation in the canonical lift of t.

For example, the last permutation 462135 in the canonical lift of the tableau
t =531 62 4 gives the key 642 64 4, which is the right key of ¢ as seen in 2.9.

One may favor horizontals rather than verticals. Reading the successive hori-
zontals of a tableau ¢ , one gets a word which is a product of rows (as defined in
sect.2) and which is congruent to ¢; we shall call this word the row-word of t.

5
For example, the row-word of 36 is 5 36 124. Row-words are characterized
124
by their insertion tableau, as seen from property 2.5 :

LEMMA 5.3. A word w is the row-word of a tableau t iff there exists a partition

J=1J>2J >-- > pJ such that [(pJ + ...+ 2J +1)--- (pJ + ... 4+ 10)] --- [(pJ +

1)---(pJ +(p—1)J)][1- - pJ] is an insertion word for w. In that case, J is the
partition conjugate to the shape of t.

4
For example, (5 36 124)@ = 25 , and this tableau is congruent to the word
136
[456] [23] [1].

Apart from the symmetry between rows and columns, which means taking in-
stead of composition words their reverse, the same property as 2.8.2 holds : in the
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class of any tableau t of shape conjugate to a partition J = (1J,...,pJ), for any
permutation H of J, there exists a unique word w congruent to ¢, which admits
[((PH+...+2H+1)---(pH + ... + 1H)]-:-[1---pH] as an insertion word. This
forces w to be a product wy, - - - wy of rows of respective degrees pH,... ,2H,1H.
For standard tableaux, transposition (i.e. exchange of the two axes of coordinates)
commutes this construction with the one given in section 2 The hexagon generated
by the action of the symmetric group on the row-word 5 36 124 is now

§,63 124 e - 56 134 g
e .
5 36 124 156 34 2
~, '/
AN ~
5 136 24 . — 156 3 24

The corresponding insertion words are respectively

/11,56 3 12 ——rme— 6 345 l%\
II \
456 23 1 6 45 123
-
\\ //
56 2341 ——— 56 4 123

Given H € NP, let Ty be the sum of words w such that:

(5.4) w has the insertion word
o= [PH+ ..+ 2H+1)--- (pH + ... + 1H)] -- - [1 - - - pH]

5.5) For the factorization w = w, - - - w; corresponding to ¢ , every w;, 1 <
P 1% g ¥ Ty wj

J £ p, belongs to the monoid generated by A; = {ay,... ,q;}, i.e. w; € A}, w2 €
R3,... ,wp € A}.

Because of the explicit value of ¢, the above factorization is the row-factorization

of w, apart from void factors that we must specify in order to fix the flag conditions
5.5.

For example, Ti302 = (442221434 2221444 1221+341221)4+ (44 1121+
341121)+(241221)+(332221+33 122 1) +(24 1121) +(33 112 1)+ (23 122 1)+
6

(23 112 1) is the sum of words w = wwpw;such that w@ = 634512 (W@ = 34 )
125
and w; € {1}*,w; € {1,2}*,w; € {1,2,3}*.
As we already said, the induction ¢ — po, starting from the case T'; with

J partition (T is the single word ---2271'7), allows to obtain the general case,
summarized in the following proposition:

PROPOSITION 5.6. Let J be a partition, p a permutation, H = J* | I the
partition conjugate to J . Then Ty is congruent to 3°, ., (I, p).

In the preceding example, J = 321, p = 2413. One has 8 permutations in
the interval [1234,2413]. According to the proposition, Ti302 = (321,2413) +
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1(321,1423)+41(321, 2143)+44(321, 2314)+£1(321, 1243)+41(321, 1324)+£4(321, 2134) +
1(321,1234) =

{421422+3214224-421412+321412} + {421411+ 321411} + {421212} + {321322+
321312} + {421211} + {321311} + {321212} + {321211}.

These tableaux are respectively congruent to the words enumerated in the same
order above.

Flags of alphabets or of modules naturally occur in the study of Schubert poly-
nomials [L-S2] or of Schubert subvarieties of a flag manifold.

One can restrict the sum Ty to its component T}, congruent to U(y, I'). Indeed,
one has the following property, which is also proved through the induction p — po:

LEMMA 5.7. Let t be a tableau of shape I conjugate to J, K = K(u,I) its
right key, ( a permutation, H = J¢. Then there exists a word in Ty congruent to
tiff ( > p.

In other terms, for any word w, the set of H such that w is congruent to a word in
T is either void or admits a unique minimum element (i.e. an H = J* such that u
is minimal for the Ehresmann order, J being the partition conjugate to the shape of
wR). One can now define T}, to be the restriction of Ty to such words. For example,
the tableau 4321 321 31 41 3 is congruent to the words 3344 11233 2 11 € T5;s4,
3344 11233 12 1 € Tig54, 13344 1233 2 11 € To145, 13344 1233 121 € Ty245 which
correspond to all the permutations above 3412 ; it is also congruent to the words
334423211113 ,34 12334 21113, 3344 311223 11, 4 13334 1223 11 but these words
do not belong to respectively Ts124, T4152, T2514, T2451 (Which are just below in the
Ehresmann order) because the flag condition 5.5 is violated. Thus ¢ is congruent to
a word in T3,5,. Proposition 5.6 can now be reformulated:

PROPOSITION 5.8. Let J be a partition, p a permutation, H = J#* | I the
partition conjugate to J. Then Ty is congruent M(I, p1).

4

The key of the preceding tableau is 3 4

2344 i€ isequal to K(3412,5421), in

11333
accordance with the fact that (5421)3412 is equal to 2154.

6. Appendix. Let U, = be two sets, =* the free monoid generated by Z. An
action of Z* on U is a function (not everywhere defined; we use the symbol & for
the points of indeterminacy) : U x E* — U U {@} such that u({€') = (u€)¢’' and
=0 = ulf' =B forany u e U,{, ¢ € =.

Let E be finite and totally ordered: = = {¢;,... ,€p41}. Suppose that “Moore-
Coxeter” relations hold, i.e. that for any pair {; = 0,{; = 7 and any u in U, one
has identically:

(61) uf#9 = uff=u
(62) ifli—j|>2, vor =uro

(63) ifli—j|=1, uoro =uror.
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Remark 6.4. 1) Let |i — j| = 1 and uo,ur,uoT # @, then uoro = uror # .
2) Let |i — j| > 2 and uo,ur # @. Then uot = uro # Q.

Proof of 1): ur # @ implies (ur)T = u according to 6.1; the hypothesis becomes
(ur)7,(ur)or, (ur)Tor # @ showing that (ur)oro = (ur)T07 # @ by 6.3. There-
fore, @ # (ur)oToo = (ur)ToTO = UOTO as required.

Proof of 2): As above, we use 6.1 to write us = (ur)70; according to 6.2, (ur)ro =
(ut)oT; since uo # &, uror is different from & as well as its factor uro, and uor
by symmetry. [

Choose any u = ug in U. The three preceding axioms allow to identify the orbit
Q = {uf : uf # B} to a quotient (the u{ need not to be all different) of a subset of
8(p+1), u being sent to the identity element of S(p+1). The following proposition
gives a necessary and sufficient condition for the orbit to be a quotient of the full
symmetric group.

PROPOSITION 6.5. Letn,m > 1,p=n+m andset p = £,,Z; = {&1,... ,€n-1},
E2 = {€n+1y- .- »€p—-1}. Assume that both u=} and uZ3 do not contain @ and that
&1 €51, €EE; S ubibop # D.

Then uZ* does not contain &.

Proof. We can suppose n < m by symmetry, and deduce the general case from
the case where all the points # @ in uZ* are different. Thus the orbit 2 is a subset
of the symmetric group and we write its elements as permutations. If n =m =1,
there is nothing to prove. Consider the case where n = 1,m = 2. Then Z; is void,
s = {&},p = &. By hypothesis, u = 123,up = 213, uéz = 312 and uéyp = 312
are all different from @. Thus taking v’ = 213,60 = p,§; = 7 in 6.3, we get that
u't = upfs = 231, u'ro = upbzp = 321 are different from &; this proves the
proposition in this case.

Let again n = 1 and m > 3. As above, p = £; and Z; is void. Using induction
on m, we have that  contains all the permutations such that their rightmost letter
is # 1. In particular, for any ¢,7 > 1, § contains all the permutations such that
their restriction to the third rightmost letters is 1:7,21j, 157 or j1i. Repeating the
same argument with ¢ = §,_2 and 7 = {,_1, we conclude that  contains all the
permutations such that their right factor of length 3 is 751 or jil, concluding the
proof of the proposition for n = 1.

Consider now the general case where n > 2,m > 1. For any k < n, we can find
some £ in Z} such that the first (ie. left) letter of uf is k. Thus by induction on n,
i.e. by considering the restriction of uf to all its letters except the first, we have that
2 contains all the permutations such that their first letter is h < k. Considering
now the first three letters on the left and applying the same argument as for the
case of n = 1, we conclude that  is the full symmetric group. [

The action of “commutation” of columns seen in section 2 satisfy the axioms
6.1, 6.2 and 6.3 . Only 6.3 is not straightforward. Since it involves only triples of
consecutive columns in a word, it needs to be checked only for 3-columns words.
This we do just now.

142



LEMMA 6.6. Let w be a 3-columns word, o and 7 be the two generators of §(3).
Then {wo,wor,woto # @} = {wr,wro # @ & wore = wror}.

Proof. One of the four words w , wo , woT , woTo has its shape decreasing or
increasing. Let it be wo = v; - vy - v3. Recall that a 2-columns word w is a tableau
or a contretableau iff w® # @, i.e. iff w is frank, and that a word is a tableau (resp.
a contretableau) if each factor made of two consecutive columns is such. The two
factors v1v2 and vyv; being frank, wo is a tableau or a contretableau. According
to 2.6.8 , the action of permutation of columns on a tableau or a contretableau
generate the frank words in its class: thus w,wo, wor,wor0 = wroT,wro, wr are
the frank words in the class of wa.

Suppose now that this is w = vy v -v3 which has a decreasing shape ||w| = ijh,
and let ¢ be the insertion tableau of w and o be the first generator of 8§(3). Since
vv0 # &, the word v; - v; is a tableau and this determines ¢t N {1,...,i + j}.
Since vy - vp - v307 # O, the digit ¢ + j + h cannot be in the first column of ¢;
since vy « v - v3070 # O, it cannot be either in the second column of ¢. It must
be in the third, which means that ¢ is equal to [i--- 1][(i + j) - - - (i + 1)] x
[G+j+h)---(i+j+1)] = ijhAM. Thus w is a tableau and we conclude as before.
This reasoning also applies to the case where ||w|| is increasing, since then ||wora||
is decreasing and we can exchange the role of w and woro. []

Pictorially, hypothesis 6.6 is that if the four consecutive words w — wo —
woT — woTo are different from &, then we can “close the hexagon”:

N

w WOTO = WTOT

LY
. ’
S o

WT e WIC

W ————> WO'T

Let us finish with an example of a word whose orbit (under commutation of
columns) is not a quotient of the full symmetric group.

Let w = 31-42-4-51, and o, p, 7 be the three generators of §(4) We get four
double points: w = wo, wp = 31 4 42 51 = wop, wpo = wpop = J-41-42-51,wr =
wro = 31-:42-41-5. Since the words 42 - 41 and 42 - 51 are not frank, all the
neighbours wpt, wrp, woTp,wopr,wpar and wopor are @ and thus the orbit Q
of w is restricted to the enumerated four double points. Indeed, condition 2.8.8
to ensure that w be frank is exactly that 42 - 4 (central factor of w) and 42 - 41
(central factor of wo, wr and wto) should be frank. Since this not the case for the
last word, we already knew from th.2.8 that  could not be a quotient of the full
symmetric group.
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