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We give a natural decomposition of the set of standard Young tableaux of a
given shape into intervals with respect to the weak Bruhat order; each class is
completely determined by a partial order on letters which admits a remarkable
planar representation.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Tableaux were introduced by A. Young in his fundamental papers on the
representation of the symmetric groups; a slight modification was soon
used by Richardson and Littlewood to provide a combinatorial definition
of Schur functions. Since then tableaux have become an essential tool in
related fields such as invariant theory or the representation of classical
groups. The papers collected under the title “Invariant Theory and Young
Tableaux” [8] provide an outlook of current research in this field. In the
present paper we restrict our attention to the basic case in which the
tableaux are standard in the sense of A. Young, meaning they are defined
as “fillings” of the Ferrers diagram of a partition J of n with the letters of
the totally ordered set o/ = {1, 2, .., n} in such a way that letters appear in
increasing order along each row and each column and that each letter of
of appears exactly once. The partition J is the shape of the tableau. From
Young’s point of view tableaux are a convenient way of dealing with the
chains of nested partitions of 1, 2, ... which are associated with the sequence
of symmetric groups ¥ %G ---6%,. At the same time tableaux
summarize the systems of cosets linked with the Frobenius subgroups of %,
characterized by the shape J.

A different approach has been initiated by Schensted who discovered a
bijection between permutations and pairs of tableaux of same shape, called
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respectively the P-symbol and the Q-symbol in Schensted [5]. Here per-
mutations and tableaux are seen as words of the free monoid .o/ * generated
by the alphabet /. For instance the tableau ¢ with rows 3, 5 and 1, 2, 4
is identified with the word 35124 and it is associated with the words 31524
(which is the reading of ¢ by columns), 31254, 13254, and 13524, all of
which have the same P-symbol. Knuth discovered a simple congruence =~
on &/* which underlies Schensted’s correspondence in the sense that two
words are congruent if and only if they have the same P-symbol. The
quotient o/*/=~ is the plactic monoid and the (semistandard) tableaux ¢
make up a set of representatives of the classes W, of the plactic congruence
~; our (standard) tableaux correspond to the words in which each letter
of A appears exactly once. A theorem due to C. Greene gives a very useful
characterization of the shape of ¢ in terms of families of increasing
subwords of the words of W,. These considerations bring us back to
Littlewood’s use of tableaux. The plactic algebra Z(/*/=~) turns out to
be the proper set up for dealing with Schur functions and their
g-generalizations, i.c., the Hall-Littlewood polynomials. In fact the plactic
congruence can be defined directly as one of the two extremal congruences
~ on &/* such that the symmetric polynomials make up a commutative
subalgebra of Z(o/*/=).

Returning to the standard case, Schensted’s construction reveals an
interplay between the tableaux corresponding to a permutation w and to
its inverse and it involves in an essential manner the descent set of
W=XXy--X, (x;€.4), ie., the set Des(w) of indices j for which x;>x; .
Both notions are ingredients of the Kazhdan—Lusztig theory [2] which
studies properties of the decomposition of &, into the cells W,. Several
conjectures concerning the Kazhdan-Lusztig polynomials in the case of the
symmetric group require a better understanding of the combinatorial
properties of the plactic congruence =. It remains somewhat of a mystery
why these purely algebraic concepts should have anything to do with
several properties of the tableaux which derive from their interpretation as
a planar disposition of letters. The present paper is an attempt to further
analyze these relationships.

Say that a permutation ¢ acting on .o/ is admissible for a tableau ¢ if w
and ow have the same descent set for every w in the plactic class W, of t.
This implies that o7 is a tableau of same shape as ¢ and we prove that when
o is admissible for ¢, then it is a bijection from W, onto W,,. This defines
a new equivalence relation on the set of tableaux of same shape; we call
plaques its equivalence classes. It is remarkable that all tableaux of shape
J are in the same plaque if and only if J is rectangular (i.e., all part of J
are equal), a case which appears often in the study of tableaux. In this case
we give a formula which links Schensted’s correspondence to the product
in the symmetric group. In the opposite direction every plaque reduces to
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a single tableau if and only if the shape is a hook (i.., J=m1*). Our main
result is that in the set of all permutations provided with the so-called weak
Bruhat order, every plaque is an interval having unique extremal elements.
Our second main claim is a construction which associates to each plaque
a planar configuration describing a partial order on &/ on which the set of
admissible permutations can be read in a direct manner.

In view of the elementary nature of our considerations we have preferred
to give a complete exposition from scratch. Thus our paper includes a
(partly) new presentation of Schensted’s theory.

2. JEU DE TAQUIN

In this section we introduce the vocabulary of the plactic classes and we
prove some basic properties which will be needed in the following sections.
We also give an account of the equivalence between plactic classes and
Knuth classes, although this would not be essential to the comprehension
of the paper.

Consider two points p=(i, j) and p’=(i’,j') on the discrete plane
ZxZ. We write p » p' if p precedes p’ in the natural order, that is to say
if i<i’ and j<j’' and we say then that p’ lies on the nort-east of p (or
equivalently that p lies on the south-west of p’). An interval is a subset $
of Z x Z such that the relation p » p’ » p” entails p’€ .# when p, p" € 4.
Remark that if an interval has a unique minimal element it may be viewed
as the Ferrers diagram of a partition. We also need the similar relation \
which is defined in the same manner, except for the exchange of north and
south. Thus any two points of Z x Z are comparable with respect to either
»~ or N and they are comparable with respect to both if and only if they
lie on the same row or on the same column.

If # is an interval and if & is a set of integers, an inscription s with
content B and domain # is an order preserving bijection from £ to #:

a 7 b=s(a) <s(b).

Two inscriptions which differ only by a translation of their domain will be
said to represent the same skew tableau. If the domain of an inscription is
a Ferrers diagram, then the inscription represents a Young tableau.
Similarly, if the domain of the inscription has a unique maximal element,
then the inscription represents a contretableau. Trivially, reversing the
order ~ as well as the natural order on contents exchanges tableaux and
contretableaux.

We now define a family of operations 7, indexed by the points pe Zx Z
that act injectively on the set of all inscriptions. Since this construction is
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basic to all what follows we describe it with more details than would be
strictly necessary. Let w be an inscription with domain .#. We set wt,=w
unless p satisfies the following three conditions, which characterize what we
call a starting point:

(1) p¢s;
(2) {p}u S is an interval;
(3) p » p’ for at least one p' e .£.

For instance, if # consists of the points marked (J in the figure below, .#
admits exactly three starting points indicated by the symbol e

e O O
O a

e 10O

a
0o o
°

Consider now a starting point p and define its trail as the unique maxi-
mal sequence (p,, ., p;) of ~-consecutive points of # such that, letting
Po=p, the letter x; lying on p, in w is the least of the letters lying on the
points on the north-east of p,_, (i=1,..). By construction, the last point
Ps is a ~-maximal point of .#. Finally we define wt, by moving each letter
x, from p, to p,_, for r=1, .., 5, with the result that the domain of wr, is
the union of {p,} with #\{p,}. In the sequel 7, will be called the jeu de
taquin of starting point p, and the moving of x, will be called a switch.

The proofs of the following three remarks are left to the reader.

Remark 1. 1f wt,#w, then wr, is the unique inscription w’ such that:

(1) its domain contains p and is contained in {p} U .£.

(2) the location of every letter in w’ is on the south-west of its
location in w.

Remark 2. If wt,#w, then the inscription w and the point p are
completely determined by the data of w' =wr, and of the last point p of the
trail (which by construction does not belong to the domain of w’).

We now have at hand two different jeux de taquin, allowing to move
inscriptions towards the south-west or towards the north-east. For the dual
version we will use the letter y instead of .

Remark 3. 1If o/ is an interval of the content # of the inscription w,
then there is a point p’ such that the restriction of wr, to &/ is equal to
w't,, where w' is the “restriction” of w to 4.
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PrOPOSITION 1. If p is a starting point of w and if p’' is a starting
point of wt, with corresponding final points p and p’ and if one has p ~ p’
(respectively p' ~ p), then one has also p ~ p’ (respectively p' ~ p).

Proof. 1If the points (i, j) and (i, j+ 1) (respectively (i, j) and (i+ 1, j))
are on the trail of p, then in case the cell (i—1,j+1) (respectively
(i+1,j—1)) is not empty in wr,, the letter occupying the cell (i, j)
in wr, is greater than that occupying the cell (i—1, j+1) (respectively
(i+1,j—1)). This ensures that the trail of p and that of p’ do not
“properly” cross, whence the result. |

Remark that by the same argument if p and p’ are starting points of w
and if the trails of p and p’ (in w) are disjoint, then wt,7, =wt,1,.

We also need the following remarks whose proofs are left to the reader.

PROPOSITION 2. The starting points of any inscription w are completely
ordered with respect to . Moreover, if p x p’ are starting points of w, then
there is at least one point p" which is a starting point of both wt,t, and

WT,T,, withp \ p”" N p'.

PROPOSITION 3. By using the jeu de taquin, it is possible to translate any
inscription w by one unit, horizontally as well as vertically.

We consider in more details the case when w, p’, and p” satisfy the
conditions of Proposition 2 and the additional condition that the trails
corresponding to p and p’ are disjoint except for their last point p =p’.

LEMMA 1. Under the above conditions we have

WT,T, T, =WT,T

pr” Tt

PP '

Proof. Let (i, j) be the coordinates of p=p’ and let P and P’ be the
respective trails of p and p’. We may suppose that (i—1, j) is on P and
(i, j—1) is on P'. If we erase the letter z in w, obtaining the inscription w,
the endpoints of the trails of p and p’ are (i—1, j) and (i, j—1), and 1,
and 1,, commute, by the remark following Proposition 1. By Proposition 1,
the endpoint g of the trail of p” (in wr,7,) is such that (i—1, j)\g and
gN(i, j—1), whence g=(i—1, j—1) and wt,1,7,-=w1,1,7,.. |

THEOREM 1. If w is an inscription and if p  p' are two starting points
of w, then for any starting point p” of wt,t, lying between p and p’ with
respect to the order ~ we have

WT,T,y Ty = W‘CP'TPTP".

Proof. We reason by induction on the cardinality of the domain # of
w. We may suppose that the trails of p and p’ intersect. Suppose that the
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letter z occupies the first intersection (i, j) of the trails of p and p’. We may
suppose that the trail of p contains (i— 1, j)=a and that the trail of p’
contains (i, j— 1)=b. Let _# be the interval consisting of the points which
are (strictly) on the north-east of a or b. Still, by the above remark and
Lemma 1, we may suppose that £ = ¢, so z is the smallest element of the
content of w. If we erase z in wr, or wt,, we obtain the same inscription
w. By induction we have wt, 1,1, =wrt,7,7,, With c=(i—1, j—1). Remark
that wt,7,7. may be obtained by erasing z in wt,7,7., then applying t,. It
follows (by induction) that if wt,7,7,. # wt,7,7., then we may suppose that
all integers of # occupy the same cell in wt 7,7, and wt, 7,7, except for the
largest element of #, say n, with n occupying the cell (k—1,/) in wt, 1,7,
and the cell (k,/—1) in wt,1,7.. Then (by considering the dual jeu de
taquin) n occupies the cell (k, /) in wt, and wt, and the endpoints of the
trails of b and a in wt, and wr, are both equal to (k, /). This contradicts
Proposition 1, since the endpoints of the trails of @ and b in w are also
equal. |

THEOREM 2 [7]. For any inscription w, the set of inscriptions that may
be deduced from w by a succession of jeux de taquin (respectively dual jeux
de taquin) contains one and only one tableau (respectively contretableau).

Proof. By a preliminary translation we may suppose that w is in the
quadrant Nx N. It is then easy to “push” w towards the south-west in
order to obtain an inscription with the unique minimal point (0, 0). As for
the unicity, let us suppose to the contrary that w may be transformed into
two different tableaux ¢ and ¢’ by pushing it towards the “corner” of N x N.
By considering the sets of inscriptions leading from w to ¢ and to t', we
may suppose that these “paths” have no common point except w. We put
t=wt,0 and t'=wr, @', where p and p’ are starting points of w and @
and @' are products of jeux de taquin. Now by the above theorem for some
p" we have wt, 1,1, =wt,1,7,-=w’, unless the distance from w to 7 is less
than 3, in which case there is only one way to push w. It is now easy to
reason by induction on the distance from w to ¢ or #": @ joins wt, to t, so
there must be some path joining w’ to #; in the same manner there must be
some path joining w’ to t’, a contradiction. The rest of the theorem follows
by duality. |

We define the reading of any inscription w as the word obtained by
reading the consecutive rows of w from north to south and from west
to east. Similarly, the column reading of w is obtained by reading the
consecutive columns of w from east to west and from north to south. For
instance, the reading and the column reading of 2 § ; are respectively 2, 4,
1,3, 5and 2, 1, 4, 3, 5. We will need the following properties of readings
extensively; here a<b < c are consecutive letters of the content of the
inscription s, and p is a point in Z x Z.
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LEMMA 2. (1) If ab (or ba) is a subword of the reading w of s, then the
same holds for the reading of sy,.

(2) If bca is a subword of w, then the same holds for the reading
of sy,.

(3) If bac is a subword of w and if s'=sy, ---y,, the following
properties are equivalent:

e bca is a subword of the reading w' of s'.
* bc is a factor of the reading of sy, ---v,, for some [ <k.

Proof. Part (1) is left to the reader. If bca is a subword of w, then by
(1), beca or bac is a subword of sy,. In the latter case we have necessarily
o b= a 5" 5 witha<d’ <c, a contradiction. We suppose now that bac
is a subword of w. If bca is a subword of the reading w’ of s"=sy,, ---7,,,
then at some point along the path s, sy,,..,s" we have bac— bca and
b b e, b ¢ with a<b’ <c; consequently b'=b and bc is a factor
of the reading of sy, ---7, for some /<k. Inversely, if b and ¢ “meet”
somewhere along the path joining s and s’, then at this point, say ¢, bca is
a subword of the reading of ¢; then by (2), bca is a subword of the reading

ofs’. |

Remark that a dual version of this lemma exists, since the jeu de taquin
is symmetrical with respect to the x- and y-axis.

Considering both the jeu de taquin and its dual version allows us to
define an equivalence relation on inscriptions; this relation extends trivially
to readings: by definition, two permutations w and w’ belong to the same
plactic class if they are the respective readings of inscriptions s and s which
are themselves equivalent. In the sequel this relation will be denoted by the
symbol =. Remark that the reading and the column reading of any inscrip-
tion are equivalent, since it is always possible to transform any inscription
by sliding its consecutive columns in such a way that the new domain
contains at most one point in each row of Z x Z and that accordingly the
new reading coincides with the former column reading. Another classical
relation is defined by the equivalences wbacw’ = wbcaw’ and wacbw’ =
wecabw’ for any permutation wbacw’ or wacbw’ where a<b<c and w, w’
represent factors [4]. Now if w is a permutation, let w7 and wll represent
Schensted’s P- and Q-symbols of w, respectively [5]. The interesting fact
about this equivalence is that we have ww’' <> wIl =w'Il [4].

PROPOSITION 4 [7]. We have wxw' <>w=w'.

Proof. We will use the following lemma:

LEMMA 3. The reading and the column reading of any inscription are
equivalent with respect to =.



8 MOSZKOWSKI AND SCHUTZENBERGER

Proof. Let by, .. b,,b, be the first column of an inscription w. If
b,, a,, .., a, is the row containing b,, the reading of w contains the factor
b,,a,, .., a., by; by using the equivalences defined above, we can switch
the letter b, to the “left” until it lies next to b,. In other words, it is possible
to “pull out” the first column of the reading of any inscription with two
rows. The lemma follows by an easy induction, remarking that it is then
possible to pull out b5, b,, b, in the same way, etc. ||

We can now make the following useful remarks:

(1) Suppose there is a row immediately “below” that containing b,
whose first letter ¢ is smaller than b, ; then it is possible to pull out not only
the first column of w, but the whole sequence b,, ..., b,, ¢ in exactly the
same manner.

(2) A dual operation consists in pulling out (from the right side) the
last row of the column reading of w, and as above, if the last row of w is
¢y, .., C,,, and if the row above that starts with the letter ¢ <c¢,, then it is
possible to pull out the sequence c, ¢y, ..., ¢,, from the column reading of w.

We wish to prove that wr, >~ w. Suppose that p is a starting point of w. If
p does not precede the whole domain of w (with respect to 7), it is easy
to conclude by induction on the number of letters in w, using the above
lemma. In the other case we may suppose that the first column of w is
b,, .., b, and that the last row of w is ¢y, .., ¢,,, with the cell p just below
b, and just on the left of ¢,. If ¢, <b,, then we can pull out the sequence
b,, .., by, ¢, from the reading of w. Remarking that this sequence is exactly
the first column of wr,, we conclude by induction, still using the above
lemma. If b, < ¢,, it suffices to use a dual reasoning. It follows that we have
w=w=>w=w". Now let w=w,,..,w, be a permutation containing
the factor bac with a < b < c. By placing the letter w, in the cell (0, n), the
letter w, in the cell (1, n— 1), ..., the letter w, in the cell (n, 0) we obtain a
inscription whose reading (or column reading) is w (this inscription will be
said to be canonical). By considering the cauonical inscription of w we see
that the relation = applied to any factor of w extends to w. It follows that
the easily checked relation bac=bca implies w=(a, c)w where (a, c)w
denotes the permutation obtained by transposing the letters a and ¢ in w.
In the same way, if w contains the factor ach, then w= (a, c)w. It follows
that w =~ w’ = w=w’, which concludes the proof of the proposition. ||

3. ADMISSIBLE PERMUTATIONS, PLAQUES, PLAQUE ORDER

We remind the reader that the descent set of the permutation w in %, is
the set {i, 1<i<n—1, w(i)>w(i+1)}. If Wis a subset of the symmetric
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group &, we say that a permutation ¢ is admissible for W if and only if w
and ow have the same descent set for every w in W. In what follows we
consider the elements of &%, as (standard) words in the letters of
g={1<2<---<n}=[1n]

DerINITION 1. The plaque order induced by W is the least order <, on
&/ such that for all @, b in &/ one has a<, b if a<b and if ab or ba is a
factor of a least one w in W.

We let 4, be the graph of <, and we denote by ¢%,, the image of 4,
by any permutation ¢ acting on A.

PROPOSITION 5. For any W< ¥, the permutation ¢ is admissible for W
if and only if we have 9, = 6%,,.

Proof. Let 6=s5,s5, ;---5, be a reduced expression, meaning that the
s;s are of the form s,=(k,k+1), 1<k<n-—1, with p minimum. By
reasoning by induction on p, it is easy to see that for i, j in [1, n], if
w(i)<w(j) and ow(i) <ow(j), then for any k (1 <k<p) we have also
Sg---Syw(i)<s,---syw(j), a property that holds for any Coxeter group
[9]. The following two lemmas are direct consequences of this fact.

LEMMA 4. With o as above, ¢ is admissible for W if and only if s,
(respectively s,, .., s,) is admissible for W (respectively s,W,s,s, W, ..,
S,y 5 W)

LeEMMA 5. If G is a graph whose vertices are the letters 1,2, ..., n, then ¢
preserves the orientation of G (meaning that for any edge (i, j) we have
i<j<o(i)<o(j)) if and only if s, (respectively s,, ..,s,) preserves the
orientation of G (respectively s,G, 5,5,G, ..., 5,_;---5,G).

If 6=(i,i+ 1), then w and ow have the same descent set for any w in W
if and only if i<, i+ 1 does not hold, so the result is verified in this case.
By Lemmas 4 and 5 the proposition follows by induction on p. ||

In the same way we have:

PROPOSITION 6. For any W in &,, o is admissible for W if and only if ¢
preserves the orientation of 9y, .

THEOREM 3. If W is a plactic class, then o is admissible for W if and
only if for any w in W we have

(ow)Il =a(wll); (ow) =wll.
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Proof. By induction we may suppose that ¢ = (i, i + 1). In this case the
first formula is trivially verified. For any w in W, the letters i and i+ 1
cannot become adjacent along the bumping process of w, whence the
second formula. If ¢ is not admissible for W, then there exists at least one
element of W containing the factor i, i+ 1 or i+ 1, i. Suppose for instance
that w contains the factor i, i+ 1, with w(j)=i and w(j+1)=i+1. If
the formulas are verified, then we have w ~'IT= (w~'6¢)II, but since w!
contains the factor j, j+1 and w~'s contains the factor j+ 1, j, this
contradicts Lemma 2. [J

Remark that by Theorem 3, if W is a plactic class with ¢ admissible for
W, then oW is a plactic class.

4. PLAQUES AND WEAK BRUHAT ORDER

DerFINITION 2. If W is a plactic class and if ¢ is admissible for W, then
W and oW belong to the same plaque.

We will prove now that the plaques are intervals with respect to the
weak Bruhat order < ;. We remind the reader that this order is defined
tansitively by the relation Ywe %, w<z (i, i+ )wew (i) <w 1(i+1)
(cf. [1]). Let #(w) be the set {(i,j), 1<i<j<n, w(i)<w(j)}; w is
completely determined by #(w), and we have the characterization
ww < F(w)2F(w') (cf [1]), which implies that the set of Young
tableaux of a given shape is an interval with respect to < (identifying
tableaux with their readings). In the sequel this identification is left to the
reader, whenever necessary. We suppose that W is a plactic class of tableau
T and contretableau T°°.

THEOREM 4. With respect to the weak Bruhat order every plaque is an
interval having a unique maximal element and a unique minimal element.

Proof. 1If s=(i,i+ 1) is admissible for the plactic class W, then for
every w in W we have sw<zw or else for every w in W we have w < sw,
so we can write W< gsW or sW<, W.

LEMMA 6. If sSW<gW and tW<gW with s=(i,i+ 1), t=(j, j+1),
i<j, then

e if j>i+1, s and t commute and we have tsW<zsW and
StW < g tW.

o if j=i+1, sts=tst and we have stsW <gtsW <z sW and tstW <,
SIW < gtW.

Proof. Left to the reader. |}
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Now let us suppose that ¢ is admissible for W. By Lemma 4, it is
possible to construct a path from W to ¢ W that stays in the same plaque.
Suppose such a path contains the factor sW’' <z W’ > tW. By the above
lemma it is always possible to “lower” that portion of the path, and by
iterating this process we conclude that there exists a plactic class W” in the
plaque of W with W" <z, W and W"<gzoW. |

We will now study the order <, and particularly its graph ¥%,,. The
study will lead to an alternative proof of Theorem 4. A byproduct will be
an efficient algorithm for the computation of the plaque of a given plactic
class. The following reduction theorem is the first step towards this end.
Remark that since every plactic class contains one and only one tableau,
we may as well adopt the notation 4(T) for %, .

THEOREM 5. For any path C=t, ty,, .., ty,=u joining an inscription t
representing T to an inscription u representing T, the orders <, and X ¢
are identical (identifying C with the set of readings of the inscriptions
contained in C).

Proof. In turns we will need the two lemmas below.

LEMMA 7. With the notations above, we have
iSpitleigcitl (1<ign-1)

Proof. We may suppose that i and i+ 1 are adjacent for neither ¢ nor u.
By symmetry around the axes we may suppose that i, i + 1 is a subword of
the reading of t. Let us erase from ¢ the letters 1, 2, ..., i + 1. There exists an
inscription ¢’ with content {i—1, i, .., n} such that the restriction of ' to
i,i+1,.,nis t and the reading of ' has i,i—1,i+ 1 as a subword. Now
the jeux de taquin used along C provide a path C’ joining ¢’ to u’, with ¢’
representing some tableau 7’ and «’ representing 7. From Lemma 2,
i,i+1 is a factor of some inscription in C’ if and only if ;,i+1,i—1is a
subword of the reading of u’. Remark that i and i+ 1 are adjacent for some
inscription of C if and only if the same holds for C'. It follows that for any
two paths C, and C, joining ¢ to u, we have i X, i+ 1<i <, i+ 1. Now
let s be an inscription in W such that there exists a path C, joining ¢ to s
and let r be an inscription representing 7 which is on the north-east of
both s and « and has no common cell with them. There exists certainly a
path C, joining s to r and a path C, joining u to r and such that the
elements of C, are obtained from u by a sequence of translations of rows and
columns. Remark that we have <., = <,. Now, we have i <, i+ 1<
iIScuci+l<i<ci+1, whence Lemma 7. ||

We use the notation i = .j if i < j does not hold.
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LEMMA 8. Let t, u, C be as above. If i <X j, then there exists an
admissible permutation o for W with a reduced expression 6 =s,---s, such
that for some k (i<k<j—1) we have

o(i)=k, o(j)=k+1, a(ly=1 if l<iorl>j.

Proof. We will reason by induction on j—i. Suppose that i K. j with
j—i>1 If iKci+1, then by Lemma7, i Ky i+1 and s=(i,i+1) is
admissible for W. Since s(j)—s(i)=j—i— 1, the proposition holds true by
induction. We suppose now that i < i+ 1, which implies that i+ 1 K j.
Let ¢’ be a product promised by the lemma for the pair (i+1,j). If
a’'(j) <J, we can conclude by induction, since ¢’'(i) =i. If not then ¢’'(j) =/,
so ¢'(i+1)=j—1. We have j—1 KX, J, so by Lemma 7, j—1 X, j and
the product o= (j—1,j)o’ is admissible for W. We have o(i)=i and
a(j)=j—1, so induction applies in this case also. ||

We can now conclude the proof of Theorem 5: supposing that i X j, let
C,t,u,6=s,---5; and k be as above. Since the product ¢ is admissible for
W, aC is a path joining ot to ou. We have kK KX,k + 1, so by Lemma 7,
k K, wk+1; it follows that i X, j. |

If a and b are letters written on the plane with coordinates x,, y, and
Xy, Vb, We put al b if x, < x, and y,>y,. From now on we identify T with
the inscription representing 7 such that the letter 1 lies on the point (1, 1).
If a,> --->a, is the shape of T, we identify 7 with the inscription
representing 7 such that the letter n lies on the point (a,, p). Let C be a
path joining T to T By Theorem 5, we have <, = =<,. We can write
C=(T,, T,,..,T,) with To=T, T, , =T}y, (0<i<k—-1), T, =T We
denote by I, ;=T,, J, i, ... I, = Ti,, the consecutive “tableaux with a
blank” which allow us to pass from 7; to T;,, through a sequence of
elementary switches. The blank of T’ is by convention the starting point of
T,. We denote by C; the word %, ;, 7, ;, ..., Z,,_.; and by C’ the word
Co, Cy, s Cx_y, TS; C' will be called the detailed path of C. For example,
if T=3,,, then

3. 13- 134
C‘(124’ .24 -2)

C,__3o- e3 . 13e 134 134
124124 .24 -2e - -2)

where the sign e stands for blanks. For sake of simplicity let us relabel the
elements of C': C'=C}, .., C,. We put D,={C1, .., C;} for 1<I<gq. We
have <o =<p,==<w, 50 %, = %(T). We will use the notation ¥, for %,,.
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THEOREM 6. It is possible to draw the graph 4(T) on the plane in such
a way that:

(1) %(T) is planar.

(2) The vertices of 4(T) are drawn on N x N.

(3) If i<j are consecutive with respect to <, then the edge(i, j) is
either vertical or horizontal and ij or (respectively) ji is a subword of some
element of W.

4) i 72jon%T)if and only if i <y J.

(5) Ifiljon %(T), then ij is a subword of any element of W.

Proof. Parts (3) and (5) are equivalent to (3’) and (5'):

*(3') If i<j are consecutive with respect to <X, then the edge (i, j)
is either horizontal or vertical and ij or (respectively) ji is a subline or
(respectively) a subcolumn of some element of C'=D,.

*(5') Ifiljon %(T), then i]j for any element of C'=D,.

The following proof by induction yields an algorithm in ¢ steps to
construct 4(T).

We suppose that (1), (2), (3'), (4), (5'), are verified when replacing 4(7T’)
by 4 and W and D, by D, (1<I<q—1). If <p,,, # <p,, then the blank
of C; has an immediate left neighbour (say j) and an immediate bottom
neighbour (say i). Suppose first that j>i. The /th switch moves j on top
of i, and we have i Xp,jan i <p,,, J,

jeo e
. - .

-
Ci->Ciiy

(x) Let <, ; be the order defined by the single relation i <, ; j. The
order <,,,, is the transitive closure of the union <, U =<, ;. It follows
that i and j are consecutive with respect to <, .

(B) If for some x we have j| x|i on %, then by (5') j| x|i for any
element of D,; in particular j| x | i on C;, a contradiction.

(y) If ¢ has a vertical edge (x, j) with x <}, then by (3’), x and j are
consecutive with respect to <5, and there is an element C; of D, for which
Jjx is a subcolumn. For r < v </, either C, contains the subcolumn jx or j | x
since if not we would have for some w,r<w</—1,

je e
-

xy x y

C.—Chii

607/102/1-2
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and x <p, y <p,j, a contradiction. Keeping track of the respective
locations of i, j, x along D,, we conclude that we have necessarily x < p, i,
and finally x ~ i on % (by 4).

(6) Let us consider in % the rectangle with horizontal and vertical
sides and ji as a diagonal:

Jj o0 n
o ¢ --¢ 0O

o < - O
¢ O -.-0 i

By (B), the region marked < on the above figure is empty and by (y) the
left side of the rectangle is empty, except for j and possibly for the cell ¢.
In a similar way it is easy to check that the other sides are also empty,
except for i and possibly for the cell .

Now let us erase the edges of %, and define the set X, as the set of ver-
tices x of ¢, such that (j ~ x) or (i # x and i# x) or i| x. By translating
X, to the right until j lies above i, we obtain a set of points Y, which by
(6) and (4) has the following property: x <p,,, y if and only if x » y on
Y,. We state that if we create an edge between each pair of points in Y,
lying on the same row or on the same column, we obtain the graph of
< p,,, and that this graph verifies all the required properties. This can be
checked by reasoning by cases. In case we have z # j on % with z on the
north-west of the cell {, then the last edge of every path joining z to j on
%, is horizontal, so moving j does not create any difficulty. The other cases
are easy. Finally, if j<i a similar construction applies, and the case /=1
is trivial, which concludes the proof. |}

The mechanism of the proof allows us to derive a fast algorithm for
constructing %(T') (see Fig. 1 for an example of computation). Remark that
it follows from the theorem that <, is a lattice order, and that (i,i+ 1)
is admissible for W if and only if i and i+ 1 are not comparable with
respect to .~ on (7).

We give now an alternative proof of Theorem 4 which yields an
algorithm for the computation of plaques. We denote by %(#) the graph
obtained from %(T) by erasing the labels 1, 2, ..., n on its vertices. This
notation is valid because by Proposition 6 the set 2* = {%(R), Re 2} is
the set of those labellings L of %(P) sucht that we have (i » j on
L=i<j).

We call column graph (respectively row graph) of 4(2) and we denote by
%, (respectively %) the labelling in 2* such that if i | j on ¥, (respectively
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30

21—25
1é—2 213—3 4
152} 21

[
1cl>—-1 T—zT—zsl»
8—11—19—26—35
| [
5—7—14—17—18—20—28—33

I 1 1

!
1—2—3—4—6—9—13—31—32

T 30—3 4——3T
33
24— 25—27—29—31—32
|1 |
27—26—28
22
I
21
|
19—20
16—17—18
15
|
10———12—14
| |
8 11
l l
5—7—9 13
|
1—2—3—4—6

FiG. 1. The graph (7).

%), then i<j (respectively j<i); 4 and % are uniquely determined by
these conditions because the inversions of their reading permutations
are completely defined, so these permutations are themselves uniquely
determined. Let g,, g+, g, be the readings of %,%(T),%. Since
JF(g)sF(gr) = F(g,), we have g, <z gr<zg,. Let g, and o, be the
permutations such that g, =0, g, and g, =0, g; 6, and o, are admissible
for W and we have 0,T<zT<0,T, by induction. Now suppose that
we Y, is such that 6, T<zw<z0,T. By Lemma 5, w is a tableau of same
shape as T, and by Lemma 4, w is in 2, which concludes the proof. |
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As claimed, this proof provides an algorithm for computing the plaque
of a given Young tableau. For example, if

9—10
9 |
6—38
6 8 |
T= then 4(T) = 5—7
25 10 |
2—3-4
13 4 7 |
1
?—10 9—-10
l
4—38 7—8
| |
gl= 6—'7 ) g2= 5——6 ,
| l
2-3-5 2-3-4
| |
1 1
and o, = (4, 5)(5, 6), 6,=(6,7), so
9 9
4 8 7 8
o, T= and 0,T= ,
2 6 10 2 510
13 5 7 1 3 4 6

and the plaque of T is the interval {(9,4,8,2,6,10,1,3,5,7), (9,7,8,2,
5,10, 1, 3, 4, 6)}. Figure 2 contains the plaques corresponding to the shape
3,3, 1.

If P is a Young tableau then PII =7 depends on the shape of P only. In
particular IIT=IIT, so I is an involution [6]; I is in fact the only Young
tableau of same shape as P which is an involution, and it can be obtained
by an easy algorithm.

PROPOSITION 7. Let P, Q, and I be Young tableaux of same shape, with
I as above. Then if P or Q is in the plaque of I, we have

(P-I-Q"YWI=P and (P-I-Q~YH)1I=0Q.
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F1G. 2. The plaques of shape 3, 3, 1.

Proof. Suppose for instance that P is in the plaque of 7, and let o be
the permutation such that 7= P. We have Q" 'IT=1, Q'l1=Q [6], and
Theorem 3 allows us to conclude. [J

In the case the shape of P is rectangular the proposition has a startling
corollary:

THEOREM 7. If P and Q are rectangular tableaux of same shape, then

(P-1.0"YWI=P and (P-I-Q~HI=0Q.

Proof. 1t suffices to remark that P= P, so by Theorem 5, P, I, and Q
are necessarily in the same plaque. |

Remark that in the rectangular case, I has a particularly simple form,
since it is the top element of the set of tableaux of that shape, or hyper-
standard tableau. For example, if P=2 3 $and Q=] 5 ¢, then I=1 3 §
and P-1-Q '=(256134)(456123)(451263) = (251364).
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PROPOSITION 8. The set of all tableaux of a given shape form a plaque if
and only if that shape is rectangular.

Proof. It remains to verify that the tableaux of a non-rectangular shape
decompose into more than one plaque. The domain corresponding to such
a shape contains necesseraly two cells a—1, b and a,b—1 with a,b a
starting point for the (dual) jeu de taquin. It is then easy to construct a
tableau of that same shape containing two consecutive letters i and i+ 1 in
those two cells. Now for that particular tableau the transposition (i, i+ 1)
is not admissible. [

Another extremal situation is met when the shape is a hook (see the
Introduction), in which case every tableau makes up a plaque of its own.

PROPOSITION 9. For a given shape, every plaque is reduced to one
element if and only if the shape is a hook.

Proof. If the shape of a tableau is a hook, then no transposition
(i, i+ 1) may be admissible, by an easy induction. Inversely, given a shape
that is not a hook, there exists a tableau of that particular shape containing
the subword 342, and by Lemma 2(2) and Theorem 5, if a tableau
contains the subword bca, then ab is admissible (with the notations of
Lemma 3). |

EXAMPLES. (1) The graph %(T). Figure 1 contains an example of the
graph 4(T).

(2) Plaques and permutohedron. The graph of the weak Bruhat order
is sometimes called permutohedron. Figure 2 represents the subinterval of
the permutohedron of % consisting of the Young tableaux of shape 3, 3,
1. Within every plaque £ the graph %(2) is represented.
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