
Poissonian exponential functionals,
q-series, q-integrals, and the moment problem
for log-normal distributions

Jean Bertoin, Philippe Biane, and Marc Yor

Abstract. Moments formulae for the exponential functionals associated with
a Poisson process provide a simple probabilistic access to the so-called q-
calculus, as well as to some recent works about the moment problem for the
log-normal distributions.

1. Introduction and main results

For an arbitrary random variable X > 0 with finite expectation, we denote by X̂
a variable distributed according to the so-called length-biased law of X , viz.

E

(

f(X̂)
)

=
1

E(X)
E (Xf(X)) ,

where f : R+ → R+ stands for a generic Borel function. Several authors, including
Chihara [10], Vardi et al. [25], Pakes and Khattree [20], Pakes [19], ... considered
the situation when there is the identity in distribution

X
(d)
= qX̂ , (1.1)

for some fixed real number q ∈]0, 1[. The main motivation for the aforementioned
works stems from the easy fact that when (1.1) is fulfilled, then

√
qX has the same

entire moments as the log-normal variable exp(Yσ2 ), where Yσ2 denotes a centered
Gaussian variable with variance σ2 = − log q, that is

E ((
√
qX)n) = q−n2/2 (n ∈ Z) . (1.2)

Berg [3] explains how to go from Chihara’s solutions (with countable support)
to solutions with continuous densities. See also Stoyanov [22, 23] for a succinct
discussion, and Christiansen [11, 12] and Gut [16] for other recent contributions
to the indeterminate moment problems.
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The purpose of this note is to investigate an example for which (1.1) holds,
that arises naturally in the study of exponential functionals of Poisson processes.
Specifically, consider a standard Poisson process (Nt, t ≥ 0) and define its expo-
nential functional by

I(q) =

∫

∞

0

dt qNt .

Note that we may also express I(q) in the form

I(q) =

∞
∑

n=0

qnεn , (1.3)

where εn = Tn+1−Tn, n = 0, 1, . . . denote the waiting times between the successive
jump times Tn = inf{t : Nt = n} of (Nt, t ≥ 0). In other words, (εn, n ∈ N) is a
sequence of i.i.d. exponential variables with parameter 1.

Next, define the random variable L(q) (or rather its distribution) in terms of
that of I(q) by

E

(

f(L(q))
)

=
1

E(1/I(q))
E

(

1

I(q)
f(I ′

(q)
/I(q))

)

(1.4)

for every Borel function f : R+ → R+, where I ′
(q)

is an independent copy of
I(q). We claim that X = L(q) satisfies (1.1). This is easily seen from the explicit
calculation of the moments of I(q) as obtained in [6, 8]; details will be given in the
next section. This observation incited us to investigate further the distributions of
I(q) and L(q). In this direction, it is quite natural to use the so-called q-calculus
(see, e.g. [15], [17], ...) which is associated with the basic hypergeometric series
of Euler, Gauss, ... For the convenience of the reader, we have gathered in the
Appendix the classical formulae attached to these series, by simply reproducing a
selection from R. Askey’s foreword to [15], which is exactly tailored to our needs.
To state our main result, we introduce some standard notation from the q-calculus:

(a; q)n =

n−1
∏

j=0

(1− aqj) , (1.5)

(a; q)∞ =

∞
∏

j=0

(1− aqj) ,

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x .

Theorem 1.1. (i) The Laplace transform of I(q) is given by

E

(

exp(λI(q))
)

=
1

(λ; q)∞
(λ < 1) , (1.6)

its Mellin transform by

E

((

I(q)
)s)

=
Γ(1 + s)

Γq(1 + s)(1− q)s
= Γ(1 + s)

(q1+s; q)∞
(q; q)∞

, (1.7)



Poissonian exponential functionals 3

and its density, which we denote as (i(q)(x), x ≥ 0), by

i(q)(x) =

∞
∑

n=0

exp (−x/qn)
(−1)nq(

n
2
)

(q; q)∞(q; q)n
. (1.8)

(ii) The Mellin transform of L(q) is given by

E

((

L(q)
)s)

=
Γ(1 + s)Γ(−s)

(q; q)2
∞

log(1/q)
(q1+s; q)∞(q−s; q)∞ (−1 < Re s < 0) (1.9)

and its density, which we denote as (λq(x), x ≥ 0), by

λq(x) =
1

(q; q)3
∞

log(1/q)

(

∞
∑

n=−∞

(−1)n qn(n+1)/2

qn + x

)

(1.10)

=
1

x(−qx; q)∞(−1/x; q)∞(q; q)∞ log(1/q)
(1.11)

Remarks. (a) It is interesting to point out that expressions similar to (1.9) and
(1.11) can be found in Pakes [19]; see in particular pages 834-5 there. Specifically,
the Mellin transform M0(t) as given before Theorem 3.3 in [19] can be identified
as E((L(q))−t), i.e. the function M0 coincides with the Mellin transform of 1/L(q).
In this direction, the expression (1.11) for the density of L(q) can be obtained
from equation (3.11) in [19] specified for γ = 0 and Lemma 3.3 there. The identity
between (1.10) and (1.11) can be found as a special case of an identity due to
Bhargava and Adiga [7]; we shall also prove this below for the sake of completeness.

(b) In [9], the authors obtain the density of
∫

∞

0
h(Nt)dt for a large class of

functions h : N → R+, and in particular iq when h(n) = qn.

As we were writing this paper, we became aware of the works of Lachal
[18] who recognized that I(q) plays some role in a probabilistic model of DNA
duplication introduced by Cowan and Chiu [13], while Dumas et al. [14] find the
law of I(q) as an invariant measure related to a Transmission Control Protocol. In
particular, the formula (1.8) was found independently from us by Dumas et al.,
see Proposition 13 and its proof in [14].

Prior to this work and other cited references in the present paper, J. Pit-
man told us about another connection between the q-calculus and probability via
Bernoulli trials; see e.g. Rawlings [21].

The rest of this work is organized as follows. In Section 2, we present a
detailed proof of Theorem 1.1. In Section 3, we present further connections with
the q-calculus based on the self-decomposability of I(q). Finally in the Appendix,
we quote from Askey’s foreword to [15] some key formulas of q-calculus (for an
elementary approach, see Kac and Cheung [17]).
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2. Proof of Theorem 1

We first develop some material on moments of the exponential functionals as-
sociated with a certain family of subordinators. Specifically, let (ξt, t ≥ 0) be a
subordinator starting from 0 and assume that ξ has exponential moments of all
orders. The Laplace transform

E (exp(λξt)) = exp(tΨ(λ)) , (λ ∈ R, t ≥ 0)

is well defined and finite. For notational convenience, we write Φ(λ) = −Ψ(−λ)
for λ ∈ R, so

E (exp(−λξt)) = exp(−tΦ(λ)) , (λ ∈ R, t ≥ 0),

i.e. Φ is the so-called Laplace exponent of ξ. We associate to ξ its exponential
functional

I(ξ) =

∫

∞

0

dt exp(−ξt) ,

and lift from [6] and [8] some results about the moments of I(ξ). First, I(ξ) admits
positive and negative moments of all orders, and there is the formula

E (I(ξ)s) =
s

Φ(s)
E
(

I(ξ)s−1
)

, (s ∈ R, s 6= 0) , (2.1)

which extends to s = 0 as

E(1/I(ξ)) = E(ξ1) = Φ′(0) .

Next, we introduce a variable L(ξ) (or rather its distribution) via the following

E (f(L(ξ))) =
1

Φ′(0)
E

(

1

I(ξ)
f(I(ξ′)/I(ξ))

)

for every Borel function f : R+ → R+, where ξ′ is an independent copy of ξ. It
follows that the Mellin transform of L(ξ) satisfies the functional equation

E (L(ξ)s) =
Ψ(s)

Φ(s)
E
(

L(ξ)s−1
)

, (2.2)

where for s = 0, we agree that Ψ(s)/Φ(s) = 1. We also note that, by the very
construction of L(ξ), we have E(L(ξ)−s) = E(L(ξ)s−1), so that (2.2) may also be
written as

E (L(ξ)s) =
Ψ(s)

Φ(s)
E
(

L(ξ)−s
)

. (2.3)

The present paper is concerned with the Poisson case ξ = (log 1/q)N , on
which we focus from now on. Thus we write I(ξ) = I(q) and L(ξ) = L(q) in the
sequel. We have

Ψ(s) = q−s − 1 , Φ(s) = 1− qs ,

which yields the identity

Ψ(s)/Φ(s) = q−s .
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In particular, we deduce from (2.1) that the entire moments of I(q) can be expressed
using the notation (1.5) as

E

(

(

I(q)
)j
)

=
j!

(q; q)j
, j = 1, 2, . . . (2.4)

On the other hand, specifying (2.2) and (2.3) in this setting, we deduce by inversion
of the Mellin transform the remarkable identities in distribution

qL̂(q) (d)
= L(q) (d)

=
1

qL(q)
. (2.5)

In particular (1.1) holds for X = L(q).
We now turn our attention to the proof of Theorem 1.1, and in this direction,

the following result, which is closely related to our paper [5] (see also [4]), provides
the key to some calculations.

Lemma 2.1. Let (Gqn ;n = 1, 2, . . . ) be independent, geometrically distributed vari-
ables with respective parameters qn, i.e.

P (Ga = k) = (1 − a)ak , k = 0, 1, . . . ,

and set

R(q) (d)
= q

∑
∞

n=1
Gqn . (2.6)

Then there is the identity in distribution

ε
(d)
= I(q)R(q) , (2.7)

where on the left-hand side, ε denotes a standard exponential law, and on the
right-hand side, the variables R(q) and I(q) are supposed independent.

Remark. The identity (2.7) is closely connected to the construction of q-beta and
q-gamma variables, which is done in [19], building upon e.g. Askey’s papers [1, 2].

Proof. The Mellin transform of qGa is given by

E
(

qsGa
)

= (1− a)

∞
∑

k=0

qskak =
(1− a)

(1− aqs)
, s ≥ 0,

and hence that of R(q) by

E

(

(R(q))s
)

=

∞
∏

n=1

(1− qn)

(1− qs+n)
=

(q; q)∞
(qs+1; q)∞

. (2.8)

In particular, taking s = j integer, we find that the j-th moment of R(q) equals
(q; q)j , and we deduce from (2.4) that I(q)R(q) has the same entire moments as ε.
This proves our claim as the exponential law is determined by its entire moments.
�

We are now able to establish Theorem 1.1.
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Proof. The identity (1.6) for the Laplace transform of I(q) derives immediately
from the expression (1.3). The formula (1.7) for the Mellin transform of I(q) follows
immediately from the fact that the Mellin transform of the standard exponential
distribution is E(εs) = Γ(s + 1), the identity (2.8) for the Mellin transform of
R(q), and the factorization (2.7) of Lemma 2.1. The formula (1.9) for the Mellin
transform of L(q) is then deduced from (1.7) and its definition (1.4) in terms of
I(q).

We then turn our attention to the densities. First, we may rewrite Euler’s
formula (4.5) of the Appendix for x = q1+s as

(q1+s; q)∞ =

∞
∑

n=0

(−1)nq(
n
2
)qn(1+s)

(q; q)n
.

Plugging the identity

Γ(1 + s)qn(s+1) =

∫

∞

0

dxxs exp(−x/qn) ,

this establishes (1.8) by inverting the Mellin transform (1.7).

In order to compute the density λq of L(q), we rewrite the Mellin transform
(1.9) using the triple product identity (4.7). More precisely we get

E

((

L(q)
)s)

=
Γ(1 + s)Γ(−s)

(q; q)3
∞

log(1/q)

(

∞
∑

n=−∞

(−1)nqn(n+1)/2qns

)

, (−1 < Re s < 0) .

The identity

Γ(1 + s)Γ(−s) =

∫

∞

0

dv
vs

1 + v
,

now yields

E

((

L(q)
)s)

=
1

(q; q)3
∞

log(1/q)

(

∞
∑

n=−∞

(−1)nqn(n+1)/2

∫

∞

0

dv
(vq)ns

(1 + v)

)

=
1

(q; q)3
∞

log(1/q)

∫

∞

0

dxxs

(

∞
∑

n=−∞

(−1)n qn(n+1)/2

qn + x

)

.

This establishes the formula (1.10).
We finally turn our attention to the identity between (1.10) and (1.11), which

amounts to check that

1

x(−qx; q)∞(−1/x; q)∞
=

1

(q; q)2
∞

(

∞
∑

m=−∞

(−1)m qm(m+1)/2

qm + x

)

. (2.9)

Note some similarity between this identity (2.9) and the triple product formula
(4.7).

As a first step, we shall identify the residues on each side of the equality, for
the pole xk := −q−k with k ≥ 0 (the calculations for k < 0 are similar); then we
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shall indicate how to modify this finding to complete the proof. So we first write
the denominator on the left-hand side of (2.9) as

x(−qx; q)∞(−1/x; q)∞ = A(x)(1 + xqk)B(x)C(x)

with

A(x) = x(1 + qx)(1 + q2x) · · · (1 + qk−1x)

B(x) = (1 + xqk+1)(1 + xqk+2) · · ·
C(x) = (1 + 1/x)(1 + q/x)(1 + q2/x) · · ·

Thus, the residue in xk is equal to q−k (A(xk)B(xk)C(xk))
−1. We obtain

B(xk) = (1− q)(1 − q2) · · · = (q; q)∞ ,

C(xk) = (1− qk)(1− qk+1) · · · = (qk; q)∞ .

Finally,

A(xk) = −
(

1

qk

)(

1− q

qk

)(

1− q2

qk

)

· · ·
(

1− qk−1

qk

)

=
(−1)k

qk2
(q − qk)(q2 − qk) · · · (qk−1 − qk)

=
(−1)k

qk2
q(1− qk−1)q2(1− qk−2) · · · qk−1(1 − q)

= (−1)kq−(k2+k)/2(1− qk−1)(1− qk−2) · · · (1− q) .

Putting the pieces together, we get that the sought residue at xk is

(−1)kqk(k−1)/2

(q; q)2
∞

.

But this is precisely the residue for xk = −q−k as found on the right-hand side of
(2.9) when taking m = −k.

To finish the proof, it suffices to write the fractional expansion for

1

x(−qx; q)n(−1/x; q)n
=

xn−1

(1 + qx) · · · (1 + qnx)(x + 1) · · · (x + qn−1)

with the identification of the residues at the poles of this fraction (this is exactly
the computation we have done, except that the infinite products are now replaced
by finite ones), and to let n tend to ∞. This completes the proof of Theorem 1.1.
�
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3. On the self-decomposability of I(q)

Thanks to expression (1.3), the self-decomposability of the exponential law prop-
agates to the law of I(q) (see formula (3.1) below), which allows to make more
connections with the q-calculus (the basic formulae of which are recalled in the
Appendix).

Proposition 3.1. (i) For every c ∈]0, 1[, there is the decomposition

I(q)
(d)
= cI(q) + I(q)c , (3.1)

where on the right-hand side, I
(q)
c is independent of I(q), and satisfies

E

(

exp
(

λI(q)c

))

=
(cλ; q)∞
(λ; q)∞

, λ < 1 , (3.2)

E

((

I(q)c

)n)

=
(c; q)n
(q; q)n

n! , n ∈ N , (3.3)

E

((

I(q)c

)s)

= Γ(1 + s)
(q1+s; q)∞ (c; q)∞
(cqs; q)∞(q; q)∞

, s ≥ 0 . (3.4)

(ii) Furthermore, for c < q, the variable I
(q)
c is the exponential functional

I
(

ξ(q)c

)

=

∫

∞

0

dt exp
(

−ξ(q)c (t)
)

associated with ξ
(q)
c , a compound Poisson process whose Lévy measure is the prob-

ability

ν(q)c (dx) =

∞
∑

m=1

(c/q)m−1 (1− c/q) δm log(1/q)(dx) .

Proof. (i) The expression for the Laplace transform (3.2) immediately derives from
the self-decomposability (3.1) of I(q) and the formula (1.6). Then (3.3) is obtained
from (3.2), using the series development of exp(λx) and the q-binomial theorem,
as expressed in formula (4.6) in the Appendix.

We shall now identify the Mellin transform of I
(q)
c thanks to the following

integral result due to Ramanujan; cf. formula (11) in Askey [2]: for every x such
that c < qx, we have

∫

∞

0

(−ct; q)∞
(−t; q)∞

tx−1dt =
π

sin(πx)

(c; q)∞(q1−x; q)∞
(cq−x; q)∞(q; q)∞

. (3.5)

Let us replace on the left-hand side the ratio (−ct; q)∞/(−t; q)∞ using (3.2); we
obtain

∫

∞

0

E

(

exp
(

−tI(q)c

))

tx−1dt = Γ(x)E

(

(

I(q)c

)

−x
)

.

Since π/ sin(πx) = Γ(x)Γ(1 − x), this yields (3.4) by choosing s = −x.
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(ii) One readily checks that the Laplace exponent Φ of the subordinator ξ
(q)
c

is given by

Φ(n) =
1− qn

1− cqn−1
(n = 1, 2, . . . ) .

The identity in distribution I
(q)
c

(d)
= I

(

ξ
(q)
c

)

follows by moment identification

from (3.3) and the general formula

E ((I(ξ))
n
) =

n!

Φ(1) · · ·Φ(n) ,

which stems from (2.1). �

This allows us, as a first application, to identify the law of R
(q)
c , an indepen-

dent variable from I
(q)
c , which satisfies

ε
(d)
= I(q)c R(q)

c ; (3.6)

see [5]. Indeed, from (3.4) and the fact that E(εs) = Γ(1 + s), we obtain

E

((

R(q)
c

)s)

=
(q; q)∞(cqs; q)∞
(q1+s; q)∞(c; q)∞

. (3.7)

It is interesting to note that in the above computation, we derived the Mellin

transform of I
(q)
c thanks to Ramanujan’s identity (3.5), whereas for c = 0, we used

the representation of R(q) to obtain the Mellin transform of I(q).

Next, using (2.8), we rewrite (3.7) as

E

((

R(q)
)s)

= E

((

R(q)
c

)s) (c; q)∞
(cqs; q)∞

; (3.8)

which in turn, in the notation of Lemma 2.1, leads us to the identity

q
∑

∞

n=0
Gqn

(d)
= R(q)

c q
∑

∞

n=0
Gcqn . (3.9)

Finally, we have obtained

Corollary 3.2. The factorization (3.6) holds with

R(q)
c

(d)
= q

∑
∞

n=0
Xc,qn ,

with Xa,b defined via, either:

(i) Xa,b = δa,b(1 + Gb) where δa,b is a Bernoulli variable with P(δa,b = 0) =
1− P(δa,b = 1) = (1 − b)/(1− ab), and Gb is independent from δa,b;

(ii) Gb
(d)
= Gab +Xa,b, where Xa,b and Gab are independent.
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4. Appendix: Some basic q-formulae

(Extract from R. Askey’s foreword to [15])

“ Basic hypergeometric series are series
∑

n cn, with cn+1/cn a rational func-
tion of qn for a fixed parameter q, which is usually taken to satisfy |q| < 1, but at
other times is a power of a prime. In this Foreword, |q| < 1 will be assumed.

Euler summed three basic hypergeometric series. The one which had the
largest impact was

∞
∑

n=−∞

(−1)nq(3n
2
−n)/2 = (q; q)∞ , (4.1)

where

(a; q)∞ =

∞
∏

n=0

(1− aqn) . (4.2)

If

(a; q)n = (a; q)∞/(aqn; q)∞ , (4.3)

then Euler showed that

1

(x; q)∞
=

∞
∑

n=0

xn

(q; q)n
, |x| < 1 , (4.4)

and

(x; q)∞ =
∞
∑

n=0

(−1)nq(
n
2
)xn

(q; q)n
. (4.5)

Eventually, all of these were contained in the q-binomial theorem

(ax; q)∞
(x; q)∞

=

∞
∑

n=0

(a; q)n
(q; q)n

xn , |x| < 1 . (4.6)

While (4.4) is clearly the special case (of (4.6)) a = 0, and (4.5) follows easily on
replacing x by xa−1 and letting a → ∞, it is not so clear how to obtain (4.1) from
(4.6). The easiest way was discovered by Cauchy and many others. Take a = q−2N ,
shift n by N , rescale and let N → ∞. The result is called the triple product, and
can be written as:

(x; q)∞(qx−1; q)∞(q; q)∞ =

∞
∑

n=−∞

(−1)nq(
n
2
)xn . (4.7)

Then, q → q3 and x = q gives Euler’s formula (4.1).”

Askey then goes on describing the contributions of Gauss, Jacobi, Eisen-
stein, and finally Heine’s introduction of a basic hypergeometric extension of

2F1(a, b, c; z), which we hope to deal with in a future paper...
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