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Abstract

We investigate a new quadrature, namely the Gauss-Laguerre-like qua-
drature, close to the Gauss-Laguerre quadrature, those whose weight func-
tion is modified from z —> e7* to z —> (1 + e~ *)7%.

Firstly, we prove an explicit error formula for the Gauss-Laguerre and
the Gauss-Laguerre-like quadratures, which apply to a subclass of holo-
morphic functions with isolated singularities outside of ]0; +oo[.

Then, we explore the asymptotic of the respective error terms on two
simple examples but sufficiently general to be meaningful for the reader.
In order to control explicitly their relative error and to compute the related
integrals, we also give explicit upper bounds of the error in these two

examples.
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1 Introduction

In 1905, Lindelof (see [6], chapter 3) has shown, under precise hypothesis on
functions, called the 1D-Lindeldf hypothesis in [2], the following:

Theorem 1.1. (Lindeldf, 1905)
Let mg > 5 be a real number, m a positive integer such that m >
f: Q — C be an holomorphic function over {2 = {z €eC, Rez=mgy— 5
satisfying:
e the 1D-Lindelof hypothesis ;

. Z f(v) is a convergent series.

v=zm

Then, f e L*([mo — 3;+0[) and

S = s [t

0 eQTrt +1

v=zm 2

In many cases, the first integral can be explicitly computed while the second
can not.

Thus, to numerically compute sums of functions evaluated at positive inte-

+00 dt
gers by Equation , we focus on computing integrals f f@®) 1 To this
e

0
end, we introduce and tabulate a new quadrature close to the Gauss-Laguerre
one. Its weight function moves from ¢t — e~* as in the case of the Gauss-

Laguerre quadrature, to ¢t —

1+et
The integral expressions seems to be similar. But, the main change concerns

the apparition of singularities on the weight function: we have modified an
entire function for a function with infinite simple poles in C... This change has
a significant impact on the error term of the quadrature: automatically, the
error term will contain an infinite number of terms.

In Section [2, we will first review the Gauss-Laguerre quadrature. In partic-
ular, we will focus on the state of the art on its error term e§{*. Then, we define
the Gauss-Laguerre-like quadrature.



In particular, in this Section, we will introduce two main examples that

will be continued later. The first example concerns the meromorphic function
—z

z — 152 integrated numerically by the Gauss-Laguerre quadrature. The
z
1
second one deals with the meromorphic function z — Toe integrated this
e

time by the Gauss-Laguerre-like quadrature.

These examples are quite simple but turn out to be sufficiently general to be
meaningful on other examples of applications of these quadratures when applied
to meromorphic functions: each newly added term is of the form of the error
term of the first example, i.e. easily depending on the quantity

Un(2) :L ﬁ dt (2)

for a complex number z, according to the presence of a new singularity on the
integrand function in comparison with the two main examples.

The main goal of the paper is then to explore in detail the error term of this
new quadrature, in particular, to provide explicit formula and upper bounds for
this error term. For simplicity reasons, we will restrict ourselves to holomorphic
functions with isolated singularities outside of ]0; +00[. Another restriction is the
growth rate of the integrand function: it must not be bigger than a polynomial
on an infinite family of circles centered in 0 whose radius are growing to +co.

To this end, we will first prove the following result on the error of the Gauss-
Laguerre quadrature before extending it to the Gauss-Laguerre-like quadrature.

Theorem 1.2. Let N be a positive integer.
Let also f : C — C be an holomorphic function on C — S(f) such that:

o S(f) is a closed subset of C, called the set of the isolated singular points
of f;
o f has only isolated singularities on C and no singularities in ]0; +o0|;

+00

e the integral f(t) et dt is well-defined.
0

Let us also consider an increasing sequence (Rp)nen 0f positive real numbers

growing to +o0 such that:

e no singular point of f and no zero of L,, are located on the circles C(0, Ry,),
k=0,1, -;

o [ does not grow faster than a polynomial on all the circles C(0, Ry), k = 0,
1 .

PRI

IngeN,3IC>0,VkeN, VzeC, |z| = Ry = |f(2)| < Clz[™ . (3)



If N > ng, the error e§F(f) of the N-point Gauss-Laguerre quadrature is then
given by:

aLip_ [ es (2 — f(z) s) N et
e (f)—f0 E)R ( (tz)NHLN(z)’) t dt . (4)

seS(f

In Section 3, we will first prove Theorem and extends it to the Gauss-
Laguerre-like quadrature (Theorem [3.3). Then, we apply these two theorems to
our two main examples to find out the explicit expressions of the error term.

Let us precise here that the extension to the Gauss-Laguerre-like quadrature
requires a precise study of a family of functions, postponed in Annex [6] to keep
the focus on the main goal of the article.

The error obtained in the first example is essentially a term U, (i7), divided
by an evaluation of a Laguerre polynomial. The second example is more com-
plicated: the quadrature error expresses as the integral of a series. If we could
term-by-term integrate it (which will be proved later, in Section , therefore,
we obtain a series of terms similar to this of the first example.

To understand the asymptotics of an error term we now have to elucidate the
behaviour, when n goes to infinity, of U,,(z) for all complex numbers z, which
is obtained in Section 4] using the Laplace’s method.

With Perron’s formula giving the asymptotics of Laguerre’s polynomials
when n — 400 (see Equation (12F))), we also need to understand the be-
haviour on iR of these polynomials. Therefore, in Section |5} we give explicit
upper bounds of all the terms involved in the error terms of our two main ex-
amples and prove their asymptotics. Therefore, we can predict numerically how
these errors go to 0, and then compute the corresponding integral with a pre-
defined number of exact digits. Moreover, we give Conjectures on sharp upper
bounds concerning the error terms of the two main examples.

2 The Gauss-Laguerre-like quadrature

In this preamble Section, we review here known results on the Gauss-Laguerre
quadrature. We also introduce the Gauss-Laguerre-like quadrature, as well as
the two main example that will be continued during the whole article.

2.1 The Gauss-Laguerre quadrature

The N-points Gauss-Laguerre quadrature is defined for continuous functions
f Rt — C such that t — f(t)e~! € LY(RT) by (see [3], §3.6):

+00

N
f)e ™t dt = 3wk ) + eRE(f) (5)
0 k=1



’ Nodes Weights

0.(1) 87649 41047 89278 40360 0. 20615 17149 57800 99433
0 46269 63289 15080 83188 0. 33105 78549 50884 16599
1. 14105 77748 31226 85688 0. 26579 57776 44214 15260
2. 12928 36450 98380 61633 0. 13629 69342 96377 53998
3 43708 66338 93206 64523 0.(1) 47328 92869 41252 18978
5 07801 86145 49767 91292 0.(1) 11299 90008 03394 53231
7. 07033 85350 48234 13040 0.(2) 18490 70943 52631 08643
9. 43831 43363 91938 78395 0.(3) 20427 19153 08278 46013
12. 21422 33688 66158 73694 0.(4) 14844 58687 39812 98771
15. 44152 73687 81617 07676 0.(6) 68283 19330 87119 95644
19. 18015 68567 53134 85466 0.(7) 18810 24841 07967 32139
23. 51590 56939 91908 53182 0.(9) 28623 50242 97388 16196
28. 07872 97428 82140 36752 0.(11) 21270 79033 22410 29674
34. 58339 87022 86625 81453 0.(14) 62979 67002 51786 77872
41. 94045 26476 88332 63547 0.(17) 50504 73700 03551 28204
51. 70116 03395 43318 36434 0.(21) 41614 62370 37285 51904

Table 1: The 16-points Gauss-Laguerre quadrature.

where e (f) denotes the error of the quadrature, (:ng\,) ke[1;N] are the nodes

of the quadrature, i.e. the zeros of the N-th Laguerre polynomial Ly (x), and

finally wffv are the associated weights defined by:

—x GL
WOl _ 1 O Ly(z)e™ dr — TEN (6)
kN T L (xGL ) 0 r — pGL - 2
e w2 (Laa(gk)

(see [15], Formula (3.4.3) and [1], Formula 25.4.45).

In Table |1} we have tabulated the nodes and the weights of the 16-points
Gauss-Laguerre quadrature, up to 20 significant digits. The numbers in the
parentheses stand for the number of zeros between the decimal points and the
first significant digit.

Ezample 1. Let us consider the function a defined over Rt by a(x) = 152
x
If we denote respectively by Ci and Si the integral cosine and integral sine

defined by

+o0 400 _»
Ci(z) :J Sk P Si(x) :J Sl M (7)

xT T

x x

then, it is not difficult to see that:

L+Oc 1(:__712 der = sin(1)Ci(1) + (g — Si(l)) cos(1)

4

~ 0.621449624235813... (8)



We can use Gauss-Laguerre quadratures to experimentally compute this
value:

Approximation given by the
N | N — points Gauss-Laguerre Error ¢S (a)
Quadrature

1 10 5 0. 121449624235813
2 0. 64705 88235 29412 | —0.(1) 256091992935984
4 10. 63642 69950 05227 | —0.(1) 149773707694137
8 | 0. 62007 49908 74038 0.(2) 137463336177555
16 | 0. 62150 65102 75135 | —0.(4) 568860393211221
32 | 0. 62144 92814 62043 0.(6) 342773770163874
64 | 0. 62144 96240 04992 0.(9) 230821032938805
128 | 0. 62144 96242 35839 | —0.(13) 257593489624824
256 | 0. 62144 96242 35813 0.(19) 418491851920082

Let us mention that, for greater powers of two, we need to use a library for
arbitrary-precision floating-point arithmetic to obtain more precise results.

We remark here that when N is quadrupled, the number of zeros before the
first significative digits essentially doubles. So, we could conjecture that there
exists C' € R such that ln|egL(a)‘ N CVN. More precisely, we can also

—+o0

conjecture that C = —2+/2 (see Conjecture .

2.2 A Gauss-Laguerre-like quadrature.

Let us now define a quadrature associated with the weight function w : Rt — R

1
defined by: w(t) = T et for all t e RT.
e

Therefore, we can successively write:

[F L0 = [T

o 1+eét g 1l+et

N ar
_ Yk, PS5 + eSE (¢ Q)
“ite gL S VRN N 1+et

N
= > wenf(ten) + Ex(f) . 9)
k=1

where:

o the nodes t; y are defined by the Gauss-Laguerre’s nodes: t; y = th’JLV;

GL
Wg N

e

o the weights wy, n are defined by wy v = ——5
1+e "mN

b



’ Nodes Weights

0.(1) 87649 41047 89278 40360 0. 10759 02368 07348 58471
0 46269 63289 15080 83188 0. 20315 48527 96083 18217
1. 141057 77483 12268 56877 0. 20143 96546 44327 58248
2. 12928 36450 98380 61632 0. 12181 08849 32714 38727
3 43708 66338 93206 64524 0.(1) 45854 33411 77478 66314
5 07801 86145 49767 91292 0.(1) 11229 91251 12025 92098
7. 07033 85350 48234 13040 0.(2) 18475 00668 97130 75948
9. 43831 43363 91938 78395 0.(3) 20425 56535 96797 11668
12. 21422 33688 66158 73694 0.(4) 14844 51325 39238 55128
15. 44152 73687 81617 07676 0.(6) 68283 17987 66214 98887
19. 18015 68567 53134 85466 0.(7) 18810 24832 27814 17876
23. 51590 56939 91908 53182 0.(9) 28623 50242 79853 60917
28. 07872 97428 82140 36752 0.(11) 21270 79033 22327 84516
34. 58339 87022 86625 81453 0.(14) 62979 67002 51786 17641
41. 94045 26476 88332 63547 0.(17) 50504 73700 03551 28173
51. 70116 03395 43318 36434 0.(21) 41614 62370 37285 51904

Table 2: The 16-points Gauss-Laguerre-like quadrature.

o the error En(f) is defined by:

t)
E oG (g WY 10
wl) = e (0 — 1 (10)

In Table [2| we have tabulated the nodes and the weights of the 16-points
Gauss-Laguerre-like quadrature, up to 20 significant digits. One more time, the
numbers in the parentheses stand for the number of zeros between the decimal
points and the first significant digit.

+o0 dt
Example 2. It is not difficult to compute exactly J ﬁ
0 (&
+00 dt +00 (_1)k
= Z(—1)’“J eMdt=) " =In2. (11)
JO 1+ef k>0 0 k>0 k

Consequently, let us test this quadrature to the constant function f = 1:

Approzximation given by the
N | N — points Gauss-Laguerre- Error
-like Quadrature

1 10. 73105 85786 30005 0.(1)  379113980700596
2 | 0. 69010 24700 33026 | —0.(2) 304471052691971
4 10. 69312 37952 35122 | —0.(4) 233853248232775
8 [ 0. 69314 27730 86691 | —0.(5) 440747325425636
16 | 0. 69314 71785 75662 | —0.(8)  198428359047497
3210. 69314 71805 54994 | —0.(11) 495161506186579
64 0. 69314 71805 59946 | —0.(16) 387982796897492




Here again, a library for arbitrary-precision floating-point arithmetic is needed
to obtain more precise results for greater powers of two.

This table suggests that the logarithm of the error In|E,(1)| has a simple
equivalent: there exists C € R, In|E,(1)] . Cy/n. More precisely, we
n—-—+auo0

conjecture that C = —2+/27 (see Conjecture @

2.3 Error formula and convergence properties.

The most well-known formula concerning the error e, (f) of the Gauss-Laguerre
quadrature, but useless in a practical context, is due to Markov (see [3], Equation
3.6.3 or [5], Equation 1.18):
Yne N, A ERE , en(f) = o plang) (12)
) + 5 &n (2’”,)' )
if the function f is C?"(R™).

However, this error formula is mostly unusable... and can not be used to
prove that the remainder e, (f) or E,(f) goes to 0 when n goes to +. On
one hand, it can be inextricable to compute explicitly the (2n)*"-derivative, de-
pending on the function f; on the other hand, this derivative can take arbitrary
large values even if the error is small.

Let us remind the reader that the Gauss-Laguerre quadrature is unfortu-
nately known to have poor convergence properties, even to be unstable when
used to numerically integrate functions over [0; +oo[ by the very bad following

rule:

+00 +00

F(t) dt = f

N
GL
) (Ft)e') et dt ~ Y wike X f(t5) . (13)
k=1

0
Sometimes, this is explained by the difficulty of managing the infinite upper
integration limit, in opposition with the Stieljes result (see [13]) saying that
for all continuous function f : [~1;1] — C the N'"-point Gauss-Legendre
quadrature scheme converge, when N goes to infinity, to the value of the integral
of f over [—1;1].

Actually, this is due to the growth rate of ]? it — f(t)et, or saying it
differently, f can not be well-approximate by polynomials over [0; +oo[. More
precisely, in 1928, Uspensky (see [12]) has shown convergence properties for the
Gauss-Laguerre quadrature:

Theorem 2.1. (Uspensky, 1928)
If the function f satisfies the following property:

d3p>0, 3z >0, 3IC>0, Yo =0, |f(2)]

N

th GL
en e (f) N



Example 3. Let us come back to Example[]] and[3
Of course, Uspensky’s theorem can be applied to the function a, as well as to

the function b:t —> Therefore, we have proven that

1+e '
eSE(a) N 0. (15)
En(1) = e$E(b) o, 0 (16)

This is the first step in the direction of proving that In |e$F (a)| v —24/2N
and In|En(1)| v —CWV'N, but there is still a long way to go.
—+
Uspensky’s theorem is a theoretical theorem which is nowadays a bit frus-
trating for the numerical scientist working with high-power computation tools.

Our main goal is to provide an explicit formula for the error eS7(f) for large
class of functions f, as well as find out a way to describe the rate of convergence

of (eﬁL(f))NeN or (EN(f))NeN to 0.
In this direction, Mastroianni & Monegato’s result (see [7]) is important:

Theorem 2.2. (Mastroianni €& Monegato, 1995)
Let p and q be two non-negative integers such that 0 < p < q. Let us denote
C1[0;0) the subset of CP([0; +oo[) N C4(]0; +oo[) defined by:

Cal0;00) = {feCP([0; +0[) n C(]0; +0[) ;
& 2t ) () € CO[0s+0]), i =1, ,q—p} . (17)
With f e C1[0; 00

~

, we associate the auziliary function ® € CI([0; +o0[) defined

by ®(x) = 297P f(x), so that e§F(f) satisfies:
O(N~=%) Ey_pp 1 (9@, e %) cifg<2p+1,
eSE ()l =4 ON-CDInn) Ex_p 1 (9D e"3) | ifg<2p+2, (18)
O(N-#D) Ex_pp 1 (29,7 %) cifa=2p+3,
where E,(f,w) = inf  ||w(f — Pu)lloo,[0;+00] 9 the error of the best poly-
P,eC,,_1[X]

nomial approximation of f.

Moreover, following the notations introduced in [§], (at the beginning of
Section 3), Mastroianni and Szabados have proved estimation of the quantity
E,(f,€%) for a special class of functions:

Lemma 2.3. (Mastroianni € Szabados, 2007) For all functions [ €
Wi (e™*), there exists C > 0 and a sequence of numbers (an)nen satisfying
a, ~ n such that we have:

n—->-+00

B (f.e7) < Y0 @) yae (19)



Ezample 4. Let us apply Theorem[2.9 to Example[]]

The function a is an element of C1[0; +00) for all integers p and q such that
0 < p <q. In particular, when p = 0 and q = 2p, we have:

x

ez(\;rL(a) O(N~P)- EN-—p1 ((I)(Qp)’ 6_5) ’ (20)

Nt
where ®(z) = 2P f(z).
According to ®P) € W*(e™*) and Lemma we have:

En_p1(®@,e72) = O(N72). (21)

N—s+0
Therefore, we deduce that:

Lemma 2.4. For all non-negative integers p, we have:

eSta@) = O(N7P). (22)

N—+00

Ezample 5. Following the same scheme of proof, as in Ezample[], we prove the
following result:

Lemma 2.5. For all non-negative integers p, we have:

Ex(1) = ONTP). (23)

N—+0

Even if it will not be possible to apply it in our context of holomorphic
functions over C—S(f), where S(f) is the closed subset of C of the singularities
of f, let us remind, for completeness, the Lubinsky’s result (see [10])

Theorem 2.6. (Lubinsky, 1983)
Let f be an entire function defined by its series expansion f(z) = Z cn 2" for

n=0
all z € C.
nlc ®
Let us consider the real number A = lim sup | ——— |.
n—--+00 2
If A <1, we have for sufficiently large n:
€SE(f)| < A7 (24)

3 Error formula of the quadrature, by contour
integration

Without forgetting methods based on Peano error estimates (see [14] for exam-
ple), it is well known that, when applied to holomorphic functions, there exist

10



three main methods to obtain estimations of the remainder of a quadrature (see
B, §4). Among the oldest are the estimates based on contour integration ;
there are also these based on the Hilbert space norm estimates, as well as the
estimates obtained via approximation theory (see [17] for a recent result).

Here, we will be interested in the contour integration method, applied to
meromorphic functions over C.

3.1 Proof of Theorem concerning the error term of
Gauss-Laguerre quadrature

Let us fix a positive integer n. Let also f : C — C be an holomorphic function
on C — S(f) such that:

o S(f) is a closed subset of C called the set of the isolated singular points
of f;

 f has only isolated singularities on C' and no singularities in ]0; +oo[;

+00
« the integral f(t) e7t dt is well-defined.
0

According to the general method described in [3] (see §4.6, p. 303) or in [11]
(see §3.2), let us consider a closed circle C(0, R), centered in 0, with radius R,
enclosing all the zeros x?ﬁ, cee :cSI;L of the n-th Laguerre ploynomial L,,. such
that no pole of f are on C(0, R).

Thus, according to Cauchy’s residue theorem, we have for all positive real

numbers ¢ such that ¢t < R and ¢ # x{’%, k € [1;n]:

1 7(2)
2mi L -1
GL

NS N O
S Lo AT oo T 2k ( EEDIAE) >(25)

|s|l<R

Let us moreover assume that there exists an increasing sequence (R;,)nen of
positive real numbers growing to 400 such that

e 1o singular point of f is located on the circles C(0, Rg), k =0, 1, --;
e 10 zero of L, is located on the circles C(0, Ry), k=0, 1, --+;

e f does not grow faster than a polynomial on all the circles C(0, Ry), k = 0,
1. ones

9

IngeN,IC>0,VkeN,VzeC, |z| = R, = |f(2)| < C|z[™ . (26)

Therefore, we have the following;:

11



Lemma 3.1. If such a sequence (Ry)ken s available for the function f : C —
C, holomorphic on C — S(f), for all n > ng and all t € RY, we have:
1 f(z) dz

i EEy s S U o7
2mi Je(o,ry) (2 — 1) Ln(2) k—>+o0 (27)

_X)n
Proof. The dominant term of the polynomial L, (X) is ( |) . Therefore, there

exist an integer ky > 0 such that for all integers k > k; agd all z € C(0, Ry), we
have:
2" 2|2
n!
Let us now fix ¢ = 0. So, there exists an integer ko > ki such that for all
k = ko, we have for all z € C(0, Ry):

(28)

Ry, >t.
( f()ZL)() < CR?OR . (29)
z—1)L,(z e i
(R =) 2n!
Finally, this gives us:
1 f(z) dz 2Cn! R0+
9 S - (30)
2mi Je(o,ry) (2 =) Ln(2) (R, — t)R},

and proves for all non-negative real numbers ¢ the convergence to 0 when k —
+0o0 of the sequences of integrals since n > ny. O

As a corollary, from Equation , we deduce that Z Res (z — (z—ft()zz(z)’ s)
s€S(f) "

is well-defined if n > ng and t € RT — {xfﬁ 1<k < n}

Now, it is possible to send R — 4+ in Equation and then re-
organising it. This gives the following Equation, valid a priori for all ¢ €

Rt — {xfﬁ i 1<k< n}, but which can be extended to all ¢t € RT using the

continuity of each term:

sy et = 3 k) IO e
& T 0L ¢ —afh
+ Res (z — 1(z) ,s) Ln(t) et (31)
SGS(f) (t—Z)Ln<Z)
L,(t) et . .
Moreover, for all k € [1;n]], t — i defines a continuous and inte-
—x
fon +o0
grable functions over [0; +oo[. From the existence of f(t)e " dt, we deduce

0

12



+o0
that J Z Res | z—> ﬁ, s) - Ly(t) e7" dt is also well-defined.

Therefore, we have:

+00

0

0 t—ka

+ f-m 2 Res (z — f(z)(z)’ 8> Ly(t) et dt . (32)

According to Equations and @, this finally gives us a nice expression of
the error term of the Gauss-Laguerre quadrature for such functions f:

+0o0 .
=, 2, T (o tme) et @

x

e
Therefore, using Rodrigue’s formula L, (x) = —'(x"e*z)(n) and successive
n!
integrations by parts, we have:

L f(2) n gty (™
e (f) = el se;f) Res (z — (tz)Ln(z)’s> St e dt
(n)

_ (1)nrw 3 Res <z»—> f(Z)n(z)S> St eTtdt (34)

n! Jo e5h) (t—2)L

Using Laurent’s expansion, it is easy to see that, if 2 — a(z) is a meromor-
phic function near s € C, then we have for all integers n:

A s (z . t“(z) 5> — (=1)"n! Res (z — &) s) . (35)

dtn —z (t — z)nt1’

Therefore, plugging Equation to Equation concludes the proof of
Theorem [[.2

Remark 1. Let us remark that if the function f is entire and satisfies the hypoth-
esis of Theorem[1.9, then, necessarily, f is a polynomial with degree d satisfying
d < ng. Then, by definition, the N-point Gauss-Laguerre quadrature applied
to f is exact if ng < 2N + 1. This is, of course, stronger than the result of
Theorem[1.9 in this particular case.

Consequently, this theorem is useful only for functions which have singulari-
ties and explain why Lubinski’s result on geometric convergence to 0 of the error
can not be applied in our context.

13



Ezample 6. Let us come back to Example[1] defining the meromorphic function
1
a over C by a(z) = T2 for all z € C — {i; —i}.

Let us also fix a positive integer N and consider an increasing Sequence
(Ri)ken growing to +oo such that Ry = 20§% | n oy

The function a has two simple poles, i and —i. Therefore, Theorem
applied to a, with ng = 0, gives us:

Nlo) = Lﬂo <2(t—i);ilLN(i) +2(t+¢)NilLN(—i))tNet dt
- e <LNz—i) L+OO (ttji()z]vil dt) ' (36)

As explicit examples, we have:

1 (T3 4212 — ¢
GL —t
61 (CL) = 5 L 7(1 T t2)2 e dt (37)
1 (T 85 + 6t* — 24¢3 — 212
GL —t
= — dt
ez (a) 17 L 1+ 12)3 € (38)
3 (TP 1Tt — 1266 — 102t° + 12¢* + 17¢3
GL —t
= — dt 39
e (@) 148 J, (1+ %) ¢ (39)

and we effectively have, using successive integration by parts:

GL et 1
= —dt — — . 40
O e (40)
oo -t
GL e 11
= — dt—- — . 41
¢St (a) f e (41)

3.2 The error of the Gauss-Laguerre-like quadrature

1

1+e®
to prove an analogue of Theorem for the Gauss-Laguerre-like quadrature.

From now on, we want to change the weight function x — e~ to z ——

So, we will look for precise estimations of gy : z —

+e
centered in 0. Then, we will easily be able to state a derivation of Theorem
for the Gauss-Laguerre-like quadrature.

— on circles

3.2.1 Estimations on circles centered in 0 of the weight function
If z = Re? € C(R,0), where the radius R satisfies R € RT — (2Z + 1), we have:
? 1

14 2e~ReosOcos(Rsinf) + e~ 2Bcost

1
1+e 2

(42)

() - |

14



The denominator of the right-hand side of Equation is not so simple
to handle as a function of €] — 7; w]. Nevertheless, the following Proposition
gives us a uniform (in the variable R) upper bound of the function go. This
result will be sufficient to prove that the hypothesis are satisfied with ng = 0
for a large range of values of R:

Proposition 3.2. Let § €]0;7].
There ezist a constant C(6) > 0, depending only on 8, such that for all positive
real numbers R satisfying dist(R, (2Z + 1)7) > 0, we have:

1
1+e*

Wz e C(R,0) <0(©) . (43)

More precisely, C(0) could be chosen to be defined by:
1

; .
min (0.93; sind;1 — e 9;4/1 — cos? (2>>

The result would have been easy to prove if an integer n would have been

fixed and R € [(2n — 1)m + §; (2n + 1)w — 4], according to the continuity of

2 > (14+e7%) ! of the compact annulus {z € C; (2n — 1)m + 6 < |2| < (2n + 1)7 — J}.

Nevertheless, the theoretical upper bound found would have been a function of
Consequently, the proof of this Proposition is long, delicate, technical and

non really informative, according to the subtle behaviour of the denominator of

the right-hand side of Equation as a function of the parameter . Therefore,

it is merely postponed to Annex @

C(s) =

(44)

3.2.2 Application to the Gauss-Laguerre-like quadrature

f(z)
1+e?’

Applying Theoreme to the fonction f: Z—> where f : C — C

satisfies the hypothesis of Theorem |1.2] gives us:

Theorem 3.3. Let f : C — C be an holomorphic function on C — S(f) such
that:

o S(f) is a closed subset of C, called the set of the isolated singular points
of f;

o f has only isolated singularities on C and no singularities in ]0; +o0|;

0]

o l+et

o the integral dt is well-defined.

Let us also consider 6 €]0; 7] and an increasing sequence (Ry)neN 0f positive
real numbers growing to +o0 such that:

15



o for all integers n, dist(Ry;(2Z +1)7) >0 .

e 1o pole of f and no zero of L,, are located on the circles C(0, Ry), k =0,

1,
o [ does not grow faster than a polynomial on all the circles C(0, Ry), k = 0,
1. eens

7

IngeN,3C>0,VkeN, VzeC, |z| = R, = |f(2)| < C|z|™ . (45)

If N > ng, the error Ex(f) of the N-point Gauss-Laguerre-like quadrature is
then given by:

Ex(f) = Foos;g Res (z — T3 ! /() 3) " et dt (46)

0 NALL (2) 1+ e~?’

f(z)
1+e 2

Proof. From Equation (10)), we know that the error of a Gauss-Laguerre-like
quadrature is related to the error of a Gauss-Laguerre quadrature by:

B = §* (10— 25 ) (47)

14+et
We will compute this last value using Theorem (1.2]).

where S denotes the set of isolated singularities of the function z —>

Let us also define f= f g0, e

7z) = FE) gl zec- S(f), (48)

Cl4e 2

~

where S(f) = S(f) v (2Z + 1)im.
Firstly, as a product of functions defined over C, holomorphic respectively
over C—S8(f) and C—(2Z +1)im, with isolated singularities, f is an holomorphic

~

functions over C — S(f), with isolated singularities. Moreover, no pole of fN is

()
located on a circle C(Rg,0), k =0, 1, --- and f ’

0 1 + e
well-defined.

dt is assumed to be

Finally, according to Proposition we know that there exists a constant
C(0) > 0 such that for all z € C, we have:

dist(|z], (2Z + 1)mr) = 6 = |go(2)| < C(0) . (49)

According to the assumption on the function f (see Equation ), we are now
able to claim that for all z € C(Ry,0), we have:

71 =1£(2) - 1go(2)| < Clz|" - C(3) . (50)

16



This proves that f satisfies Hypothesis .

Consequently, Theorem can be applied to the function f

+o0 1 e .
EN(f):L Z Res (Z}—)(t—Z)N"'an(Z)l-I—(e)_Z’S).t e tdt. (51)

seS(f)

O

Let us emphasize that when f has only a finite number of poles, the residues
in Equation should be easy to compute explicitly. Using an estimation of
Laguerre polynomials evaluated on ¢X (see Subsection , we can show that
the series and the integral can be permuted.

This is exactly what we can now do, coming back to Example [2}

Ezample 7. Using R,, = 2nm for alln € N and § = w, Theorem applied to
the constant function 1 (with ng = 0) gives us:

En(1) = FOO 3 ! et i,  (52)
o\ In(@k+1)im) (1 — 2k + 1)ir) "+

for all N > 0.

Let us emphasize that even if this is an explicit result of the error of the
quadrature, there is unfortunately, still a long way to go to quantify numerically
this error. ..

This will be done in Section[d, especially in Subsection [5.])

4 Asymptotic of the integral Uy(z) for € C—R™

+00 tN €7t
We shall now study precisely the fundamental integral J

0
C —R*™ and N € N, which naturarly appears in the explicit expression of the

error E,(f) when f has a finite number of poles.
In particular, we want to be able to quantify each term of the summation
En(f). Consequently, the main goal of this section is to prove the following

Wdt,ze

Proposition 4.1. For all z € C — R™, we have:

+00 tn _z
J A G N (53)

0 (t — z)"+1 ¢ n—->s+00 (_nz)%

using the Laplace method (for example, see [4], chapter 8 for an introduction
to this asymptotic method).
To prove this result, let us denote the left-hand side of the equivalent sign

in Equation by Uy, (2):

Un(2) = L %eft dt . (54)

17



We will also denote respectively the principal branch of the logarithm and the
square root by log and /- During this Section, we will consider a fixed complex

number z € C—R™, so that s = /—2z is a well-defined complex number satisfying
Re s > 0.
Finally, let us fix an integer n.

4.1 Modification of the integration path.
The function ¢ — nlog(t) — (n + 1) log(t — z) — ¢ has a saddle node located at

z2—1+4/(1—2)2—4dnz
2

the initial integration path, [0, +oo[, to a path going through v/—nz, i.e. quite
close to the previously indicated saddle node.

, 1.e. near 4/—nz. In this Subsection, we are moving

If g = Arg(v/—nz) and R > |z|, we successively

have: P
X" —x
—————e X dx
L(OvR)Oseseo (X - Z)nJrl 2 —-nz
0o R+l ¢
—Rcos6
< L | Ret® —z\"“e d0 fo > >
0 R
o Rn+1
< J n+1echose do '
0 ‘R— ‘ZH Figure 1: Paths used to
0 modify the path of inte-
< %ed{cosgo . (55)  gration of U, (z).
-
R

From 2 € C — R*, we know that 0y € ]—g; g[, i.e. cosfy > 0. Consequently,
we deduce that:

— 0. (56)

R— 400

Xn
———e X dyx
L(O’R)mseseo (x —2)"+!

According to the residue theorem applied to the path described on Figure[1]
we conclude that:

—nz-00 n .
Un(z) = L mef dt . (57)

It turns out that the integral on the right-hand side of Equation can
also be written as:

+00 tn
J —————e ' dt , with s = v/—2 . (58)

0 (t + S)TH—l
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From now on, for all z € C — R*, we denote s = /—z. Therefore, for all s € C
such that Re s > 0, we define by Z,(s) the integral (58):

+o0 tn .
T, (s) = e stat forallseC, R 0, 59
(s) Jo (t+s)”+1e or all se e s> (59)

so that we have:

Un(2) = T, (5), with s = /—2 . (60)

4.2 A first elementary estimation

When s is a positive real number, we have:

1 +0o0 S\ -7
0 < Zp(s) < *J (1+7> e " dx
s Jo x

if;wexp(—s(ﬁszx)) dz | (61)

for all z = 0. The integral on the right-hand side

N

according to In(1+z) > 1 gc
x

of Inequation can be generalised slightly, in order to find out an explicit
upper bound of Z,,(s):

Lemma 4.2. Let u >0, v =0 and n a positive integer.
Therefore, the integral I, (u,v) defined by

To(u,v) = L+OO exp (—u(m + - Z v)) da (62)

satisfies:
- 1 4/,
eu\/ﬁ<u+\/5\/ﬁﬁ> Lif0<v<n.
~ —u i P
Zn(u,v) < ¢ <3+ n) ,ifve ]\/ﬁ;\/n—‘rﬂ] . (63)
u
2e % .
,ifv>a/n+T.
U

Proof. Let us remark that when v = 0, the integral fn(u, 0) is still a convergent
one for all u > 0.

e For all u > 0, the function v —> Z(u,v) is increasing on [0; +o0[. Conse-
quently, if w > 0 and v € [0;4/n], we have:

Z(u,0) < Z(u,v) < Z(u,+/n) . (64)
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e Let us now emphasize that y — is an increasing function

y—2v+ /Y% —4n
2

on [24/n; +0o[ from y/n — v to +00. So, 0 is in its image when v = /n.
y— 20+ /Y% —4n
)

2
n ~
ie. y—v =u1x+ o and then y = z + 24/n, in the integral I, (u,v), we

With this condition, using first the substitution z =

successively have for all u > 0 and v > /n:

- w(v—24/n) +o0 2
Tn(u,v) = eif e <1 + M) dz
(

2 V)2 22+ 42\/5
u(v—24/n) +o0 4
Seif e“z<1+ 1+\/ﬁ> dz
N G z
+o0 4
< e“(v_2‘/ﬁ)f e v* <1 + \/ﬁ) dz
(Wi-yD)? vz
7% +0o0 d
_ e +{4/ﬁeu(v72\/ﬁ)\f efuziz. (65)
u (Wo—y/E)?

z
Using now the substitution ¢t = \/uz, we finally obtain, if v > y/n:

_un
~ v

24 ) 400
To(uv) < S + ﬂe“(”_2‘/ﬁ) f e dt . (66)
uo WV VA=)
To conclude the proof, we just have to check whether the lower bound of the
Gaussian integral is null or not.
Case 1: 0 <v <4/n

Using the explicit values of Gaussian integral, Equation becomes:

(0 < Bofu i) < e (14 YEAT) (67)

for all u > 0.
Case 2: v > \/n

Yet, an easy integration by parts shows that for all a > 0, we have:

2

+ —a
J e ar< S (68)

o 2a

Therefore, if v > y/n, Equations and gives:

T (u,v) < e_f (1 + fﬁ) . (69)
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Ifve ]\/ﬁ, vn+ 7r], we deduce from Equation that for all u > 0:

~ ~ e Vniw In-yn+mw
I,(u,v) < I(u,v/n+m) < 1+
(u,v) ( ) u ( \/n+7r—\/ﬁ>

VD
e vn+m 2
< <1+(n+7r)) . (70)
e

u

If v > /n + m, we deduce now from Equation that for all u > 0:

un

z (” f%ﬁ

v

e~ NAD )
< 1+
u ( e L

From that result, we can deduce an elementary estimation of U,(z), z €
C — R*. It will be useful in Section [5| to estimate explicitly and simply some
terms in error’s expression of Examples [2] and [6]

We can in particular emphasize that this elementary upper bound gives us an
exponentially decreassing character in the variable s. Nevertheless, it is not an
optimal one, according to Proposition which will be proved in the following
Subsections.

Proposition 4.3. For all z € C— R™ and all positive integer n, let us denote
s = Re (v/—z). Therefore, we have:

o (5

eE
ntm 2
< e<3+n) ,if selvnsvn+ .
™

+\4/Hﬁ> ,if0<s<4/n.

5 Lifs>am+m.
(72)

Proof. Equations and as well as Inequation can be used together

and rewritten as: )
S

“Tn(s,8) . (73)



According to
zeC—R+:Arg(\/—z)e]—z'g[=>s>0, (74)
Lemma [4.2| now concludes the proof. O

4.3 Notations and Laplace’s method implementation

The integrand function inside the integral of Equation has a paek near 4/n
and is nearly null outside of it. Consequently, only a small interval around 1/n
contributes to the whole integral Z,,(s).
11
Let us fix € T3 that our small interval around /n will be [\/n — n?; /n + n?].
Then, let us now decompose Z,(s) into three parts:

Zn(8) = Tu(s) + Kn(s) + La(s) , (75)
where:
Tn(s) = fﬁ_ns T ey (76)
n\8) = o (t+3)n+1e )
\/H"rne tn st
Kn(s) = J‘ o, We s dt, (77)

+0o0 n
t —st
n = Tt . 7
£nl) Lmne (E+s) T )

Let us also define the function f,, by

fn(Q) = nlog(C + v/n) — (n+ 1)log(C + s+ v/n) —s-¢ (79)

for all ¢ € C such that Re ¢ > 0.
Finally, let us denote by ¢, the saddle-node points of f,, (i.e. a point ¢ where
f1(¢) = 0) defined by:

(1+ s2)2 + 4s2n — (1 + 2s4/n + s?)

Cn = 5% : (80)

4.4 Tail pruning.

Using similar substitutions to those used in Lemma the main goal of this
Subsection is to show the following;:

Lemma 4.4. For all s € C such that Re s > 0, we have:

Tn(s) = o(n‘ie_zs\/ﬁ) and L,(s) = o(n_%e_%\/ﬁ) . (81)

n—s+00 n—s+00
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Proof. e Firstly, let us focus on the case of the integral J,(s). Since n goes to
+00, we can assume that n? > Re (s).

We successively have:

< " —téﬁe s
|Tn(s)] Jo (t T §R6 S)n+1 dt
Re s n efﬁﬁe s
< 1— dt
( t + Re s) t+ RNe s
1 vi—n’ n
< . S . 2
%esL exp( Re s (t+t+3‘%es)> dt (82)

The functions ¢ : [24/n — Re (s); +o[—] — Re (s);4/n — Re (s)] and ¥ :
] —Re (s);4/n — Re (s)] — [24/n — Re (s); +o0[ defined by

o(u) = % (u —Re (s) — \/(u + Re (s))2 - 4n) (83)
VO =t (84)

are inverse functions.
Therefore, using the substitution ¢ = ¢(u), we have:

N n

P(v/n—n’)
J —uRe s,/

e ©'(u) du
$(0)

e—u?Res 1—
el \/(u+§Re()) —4n

According to the decreassing caracter of ¢ on | — Re (s);4/n — Re (s)], we

(85

8 n
1 f\/ﬁ Nt Tt e (5 u+ Re (s)
2
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6 n : .
deduce that M > /n—n’+ TR (5) Therefore, we successively have:

n

1 o) - ut Re (s)
7)< g o "
2Re (s) ,[/ﬁnuﬁneimm \/(“ +Re ()" — 4n
exp <—%e (s) - (\/ﬁ— nf + T nanJr e (5)))
< 2Re (s) "
Vs @) —a| "
n—ne-‘rm
3 exp <—§R€ (S)(\/ﬁ—n9+\/ﬁ7n9+§}%e (5))> ‘ n — e (S)
< 2Re (s) Re (s)
< o p O (‘%e @) (Vrn" s e (s))) -

according to Re (s) <n’ <+/n .

Consequently, we finally have:

1 2s\/n n 0 n
nie jn(s)’ < e )2 exp <§Re s(ﬁ—kn NI s))
Re s Re s
5 _ _
ni _ 2(0—1 n20-31)  nf
< (e 5)2 exp | —Re s n*" "1 - T N Too s (87)
n%_e \/ﬁ
1
: _ -1 _2s\/n ; -
which show that 7, (s) e © (n ie ), according to 0 > 1

e Let us now focus on the integral £,(s), using one more time a similar substi-
tution to this used in Lemma [4.2]

We successively have:

+0 n
IL.(s)] < J S ——
ino (EF R 5)mHd

+o0 Re s n 67t§Re s
< 1-— dt
) t+Re(s)) t+RNes

+o0 n
- n‘91+ — Lﬁw exp <§Re () (t + 7%6(8))) dgs)
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Denoting N (n, s,0) = v/n+n’ +Re (s) and using successively the substitutions

t—é(u—?ﬁe (8)+\/((u+§Re (s))2—4n>,v—u—|—s—2\/ﬁandthenw_

v4/8, we have:

+00
ILn(s)] < ﬁf eule () [ 14 uts 5 du .
(1,8, 0) IN(n,5,0)—s+ 5124 \/(UJF% () — 4n

e%e (s)- (?Re (s)—2\/ﬁ)

_ —vRe (s) )
2N (n, s, 0) LVN(”aSv@)WMS,e))Ze ( VU2 + duy/n

e (S)'(éRe (5)_2\/@ f —vRe (s) (1 + %> d
e —_ v
N(n,s,0) (\/W—\/%)Q Vo

N

Re (5)-(Re (5)-2vm) )
- N(n,s,0) <§Rel(5) exp (—?Re (3)(\/W— \/%) ) +

2\4/* +00 2 )
e " dw s
\/%87 Re (s (\/m m)

according to N(n,s,0) = n

e (5)-(Re (s)-2vm) -
N(n5.0) - exp (—?Re (s) («/N(n, $,0) — /W)2>

1 A/ N(n,s,0)
%<>G+“<sm f)

N

1

N

<

%;@ﬁm( (WJ+"+Nmst'Q%+$>'
We finally have:

nEeBVIL, () < o P (me (5)(n” — v+ N(n,s 0)>> ' (vlﬁ " n91‘>

2 — Re (s)(v/n —n)
< : - .
Re (s) P < Re (&) =/ nd + e (5) (90)
This concludes the proof of L,(s) = o (n*% 6*28‘/’7), according to § > ! .
n—->—+00 4

O
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4.5 On the integral I, (s).

The main goal of this Subsection is to show that K, (s) ~

Using the substitution u = t — y/n, we have:

ne n
K, (S) _ e—sﬁ er (U + \/ﬁ) e~ du
o (Ut s+ /)l
+nf
= 5V efr () quy | (91)
_nt

where f,, is defined by Equation .
We will prove the wanted equivalent using two steps, first a uniform central
approximation, and then showing that /I, (s) is essentially a Gauss integral.

Uniform central approximation. In this Paragraph, we will show the fol-
lowing

Lemma 4.5. Let 0 be a positive real number.
There exists a positive constant C(s) and a positive integer Ny such that for all
integers n = Ny, we have:

Fall) =~ FulG) = 30— GRG0 < S (@)

sup
te[—nf;n?]

Proof. e The sequence ({,)nen of saddle nodes is a converging sequence to (, =
1452
2s

. Consequently, there exist two positive integers N7 and Ns such that:

(93)

{n>N1=>|<n<ool<1-
0

n= Ny = |(n| <n

Consequently, if n > max(Ny, Na), t € [-n%;n?] and u € [t, (,], we successively

have:
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Re u ) RN
= Re (kt+ (1 — K)Gn) , for a k€ [0;1] ! L EREE
= kt+ (1 —r)Re ((n — (o) + (1 — K)Re (C0) _neA\\ 7 T
> it — (1= B)ln — ol — (1= 9)]oo] ) ;
> wt— (1 —k)(1+n) '
> —(kn? + (1 - k)(1+n?) RN ///
> —(1-w+n’)=—-(1+n). (94)

Figure 2: Illustration of the used
variables in the proof

3

2
Let us remark that z — 22 — 22 — 1 is an increasing function on [3; +oo[

with a unique zero located in zg ~ 1.46557. From 10 >
for all n = max(10, Ny, Na):

Vn—n?—1>\n—¢n—1

x§, we therefore have

>V/10-V10-1>0. (95)

e Let us now fix an integer n > max(10, N1, No). Then, the function f,, is

C* over C—] — w; —4/n] and we have for all u € C—] — 00; —/n]:
) - 2 2+l
(u+4/mn)2  (u+s+4/n)3
o 3s(u+/n)> +35%(u+/n) + s> 2 (96)
(u+ 4/n)3(u+ s+ 4/n)? (u+s++/n)
So, for all t € [-n?;n’] and u € [t, (], we successively have:
2 3
) < (3 B P 20
[Re u++/n|  [Reu+/n2  [Reu+/n3/) |Re (u)+ Re (s) +/nl3
2

T Re (@) + Re (5) + VP

- 33| 3|s|? N |53 2n
h vn—nf -1 (yn—-n?-1)2 (yn—-n?—-1)3) (Vn—nf—-1)3
2
+ (Vn—nf — 1)’ according to Equation
3| |2 |s|? 2n
3ls |+ -
W—l (V10 — V10 -1)2) (Vn—<{n—-1)*
, according to Equation and Re (s) >0 . (97)
T
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Moreover, there exists two integers N3 and Ny such that:

n>N3 e —n < —

S|w

TLZN4 —

< <
(Vn—=n—12 " nyn

Consequently, for all n > max(10, Ny, No, N3, Ny), t € [— ne;ne] and u €
[t, Cn], we have:

3 3s/? EiN
"(u <(3s+ + +1) . 99
Defining Ny = max(10, N1, N2, N3, N4) and
3s/? El

c(s) = 3|s| + +1, (100)

Jr
V10105 =1 (v/10 — 105 —1)2

we can conclude that if n € N satisfies n > Ny, we have:

e [-nfin], vue [1Gl 1) < 22 (101)
n
e Finally, let us fix an integer n > Ny and a real number ¢ € [—n? n?].

1
We remind that f,(t) — fn(¢n) — §(t — Cu)?f2(¢,) can be expressed as an
iterated integral, according to f ({,) = O:

Tn() = fu(Cn) — %(t — Cn)nylLI(Cn)
Cn [ (Cn , (ln
- f (J (| (o) duo) du1> dus
= (Cn—1)3 x
.[01 (Ll [fol fr (t + [t2 + (1 4+ to(1 —t1)) (1 — t2)](Cn — t)) dto]

(1—1t) dt1> (1 —t)? dt(102)

For all real numbers tq, t; and t between 0 and 1, it is clear that we have:
0<to+ (t1+to(l—t1))(1—t2)<1. (103)

Therefore, according to Equations (101) and (102]), we deduce that:

< @Kn — . (104)

fn(t) - fn(cn) - %(t - C"'L)Qf’l{Ll(Cn) 6n
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To conclude, it is enough to remark that:

|t = Cal < It + 10 = Cool + [Gool <n” + 140" <30, (105)
i.e.
Fult) — Fa(G) — gt~ GG < o) (106)
Therefore, the constant C(s) can be defined by:
C(s) = QCT(S) . (107)
O

Tail completion. In this Paragraph, we are shoving the following

1 +nf 1
Lemma 4.6. For all 0 > e M (s) = J- exp (2(x — Cn)2f,’Z(Cn)) dx sat-
_nb

isfies

NG

Mp(s) ~ n

m
n—->-—+00 S

(108)

Proof. e According to Equation 7.4.32 of [I], for all complex numbers a, b and
¢ such that a # 0, we know that:

2 1 /m b2 — ac b
—(az®+2bx+c) f —_ 1
fe dr = 2\/7€xp ( ) er (x\fa—i- \/>) + Cst , ( 09)

where the function erf is defined for all complex numbers z by:

erf(z) = % LZ et adt . (110)

Therefore, we have:

J_RR e~ala=b)" g ;\/Z (erf(\/E(R +8)) + erf(Va(—R + b))) ()

Consequently, we deduce an explicit expression of M,,(s) from Equation (L11]
with R=n?, a = -3 "(¢n) and b = (,. From now on, we will denote R,,, ay,
and b, instead of R, a and b.

e According to Equation 7.1.16 of [I], we know that 1in+1‘ erf(z) =1 . We
larg(2)|<§

will use that result to conclude the proof.

First, we remind that the sequence ({,)nen of saddle nodes is a converging
1+ 2

T Moreover, we also have:
s

sequence to (5 = —

n+1 2s

Co+ v/ +5)2°  (Co+ Vn)E n—sto /n’

n(Cn) = (112)
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. s
1.€. Qp n:>+oo %
N 9—1 _ -~ o 0—3
Thus, v/an, (R, +by) I GV and y/ap,(—Ry +by) T T 1,/s.
From z € C — R*, we know that arg(4/s) € ]—g; %[
Consequently, we have, since 6 > %:

erf(M(R7l+bn))+erf(\/a7n(fRn+bn)> 2, (113)

n—- -+

which finally gives us

| T ™

N

4.6 End of the proof of Proposition 4.1

Let us come back to the integral K, (s). The following lemma will be useful:

Lemma 4.7. Let (Sp)nen and (Cn)nen be two converging sequences of complex
numbers. Let also 0 < 3 be a real number.

Then, there exists a sequence (o, )nen of positive real numbers converging to 0
such that for all t € [-n?;n%)], we have:

Re (—\S/%(t - gn)2> < am— \t;ﬁ%e (sn) (115)
Proof. We have for all t € [-n?;n?]:
Re (—j/%(t _ gn>2) - —\t/;%e (52) + 20 %C") _ e \jﬁ)
2 R nbn R n 1%
B L CH 3 L A
t2 T [Re (snGR)]

77§Re (Sn) —+ 2|§R€ (SnCn)|

< NG N

n?  [Re (snGR)]

Defining o, by ay, = 2|Re (5,6,)| Tn + Jn proves the lemma. O
Let us denote by ?; the function defined by
~ 1
fn(t) = fn(t) - fn(Cn) - §(t - Cn)2fq/zl(<n) (116)
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for all t € [-n? n?], as well as s,, = —? "(¢,). Therefore, we have:

012 (60) =G (o0 _1) exp (—j%u - <n>2> R

+n?
S\/ﬁ_fn(crt,)’c _M — J ( fn(t) — 1) . _78’” t— 2 (118
e n(s) n(8) L € exp \/ﬁ( Cn) (118)
According to Lemmas and we therefore have for all n > Ny:

eSVI=Ia (G, (5) — Mn(s)‘

- 1) —— Jm. (119)

1
From 6 < 3’ we consequently have:

VI G (s) = Mu(s) = o(¥/n), (120)

n—>+4w

i.e. according to the tail completion part of the proof:

Kn(s) ~ e sVmtfalpd, [T (121)
n—>--+w S
Inn s2
From f,((,) ST sy/m + 5+ o(1), we finally deduce that
s2
2
Ko(s) ~ e VA NVT (122)
n—->s+00 TLZ\/E
which implies that
2z
25 /€2 VT
To(s) = Ta(s) + Kn(s) + Lu(s) ~ e IF\/E : (123)

With s = 1/—2z, we therefore have proven Proposition i.e. for all z € C—R™,

we have:

+0o0 n _
Un(z) = f tieft dt =T,(s) ~ diTLe*2v e (124)

o (t—z)nt! n—+0 (—ngz)

IS I TN
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5 Error estimations

It is well-known that Perron’s formula gives the asymptotic behaviour of La-
guerre polynomials when n —> +o0 in the cut complex plane C — R™ (see [15],

Theorem 8.22.3):
es e2m

n—~>+00 2ﬁ (7712)% )
Therefore, according to Proposition we deduce:

Ly(2) (125)

Proposition 5.1. For all z € C — R™, we have:

L roo et omeFe— W2 (126)
L) Jo =2 T amee ™ ‘

Perron’s formula shows that Laguerre’s polynomials are responsible for "half”
of the exponential character of Equation (126)).

Unfortunately, we can not deduce from this an asymptotic result on the real

1 +00 tn e—t
t of —— ——dt.
part o LW)L (t— 2t

In this section, we will first find a lower bound of Laguerre’s polynomials
on iR, losing the asymptotic exponential character of Equation . Then,
in the next subsection, we will develop an explicit upper bound of U, (z) for
z € C—R*. Finally, we will review our two key examples (Examples || and
to find out upper bounds of the quadrature error involved in each example.

5.1 A lower bound of the modulus of Laguerre polynomi-
als on R

The n-th Laguerre polynomials can be explicitly defined by the following sum:

2 (n\ (—X)F
LX) =) . 127
(X) = (k) k! (127)

Therefore, we have the following explicit expression for L, (iX)|*:
Proposition 5.2. Let n be a non-negative integer.

Then: ) y
LX) = ) (’;) (” z d) gd)! . (128)

d=0

Proof. Let us remind that the modified Bessel function Zy is defined for all

complex number z by:
1 /2\2k

k=0
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According to the Hardy-Hille formula (see [15], Theorem 5.1, p. 102), we suc-

cessively have:

2 ILa@X)P Y

1 <2X\F ) 1 X2dyd
ylo

= 1— dl2 2d+1
_ Z Z (n + 2d> x2d yn+d
'2 n
d=0n=0
d=0 n>d
| d
n=0 \d=0 n-

2. neN.

which directly leads to the announced expression of |, (iX)
As a direct consequence, we deduce:
Corollary 5.3. Let n and d be non-negative integers.

Let us denote by [X?]P the d-th coefficient of the polynomial P.
Then:

£ [X2H1]|L, (iX) 2 = 0.
2. [X%4)| L (iX)[2 = % <"> <" - d) >0, if0<d<n.

3. [X2Y|Ln(iX)|? = 0 if d > n.

Corollary 5.4. Let n and d be two non-negative integers such that 0 <

Let us define the constant Cn q by:

(2d)!
NN
Then, for all real numbers t, we have:
[t
Cna

As explicit examples, we therefore have:

Yn=0, |L.(it) > 1.

L (it)| =

1 t
S T T P L G TSI
2 V2
— _ 242
96 4\/6
Wn=0. Lo >
n= ) | n(l )| = W .

33

(130)

d < n.

(131)

(132)

(133)

(134)

. (135)

(136)



As a final remark, let us mention that the sequence ([X?%]|L,(iX)|?)
is log-concave for all integers n:

([X*9)|La (i X)[?)°
(X2 L1 (iX)[? - [X29]| L2 (i X) 2

0<d<n

(d+1)(2d+1) (d+1)* n—d+1 n+d
(2d—1)(d—-1) d? n—d n+d+1

3 2 g2
(2d+1)(dd+1) n°—d°+n+d 51 (137)

2d—1)(d—-1)d*> n?—d*>+n—d

Then, ([X**]|L,(iX)|?)yc4e, is a unimodal sequence (i.e. is first increasing

and then decreasing). So, Corollary can be used with the value d = dy(n)
for which this sequence is maximum.

The following Proposition gives us some characterization to compute eas-

ily and rapidly these values dp(n) for any power of 2. From the increassing

character, this can be done for any non-negative integer n by exploration. For
example, Table [3| gives some values do(2%) for k € [[0;.13].

Proposition 5.5. Let us denote by do(n) for all non-negative integer n, the
mazimum value of the unimodal sequence (b”vd)0<d<n’ with

()0

Let also k be a non-negative integer.
Then,

1. d0(22k+1) _ 2k
2. do(2%F) = |27 In(2)].
3. do(p) < dolq) if p<q

Proof. We have for all non-negative integer n and d such that 0 < d < n:

bnd+1 - n%+n— (d+1)(4d® + 10d? + 9d + 2)

bn.d 2(d+1)3(2d + 1) (139)

Let us denote by P the polynomial P(n,d) = n?+n—(d+1)(4d®+10d? +9d +2).
Therefore, we have:

d<do(n) —1<= P(n,d) >0. (140)

d > dy(n) < P(n,d) <0 . (141)

o Let us now fix n = 22**1 for a non-negative integer k.
If d < 2F — 1, we have 2(d +1)? < n, so that P(n,d) > (d+1)(2d? +5d +4) > 0.
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n 112)14]18]16 32|64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192
do(n) |O|1]|1]2]2 |45 8 11 | 16 | 22 32 45 64

Table 3: Values of dy(n) when n is the first power of 2.

Therefore, we deduce from Equation that do(22F+1) > 2%,

If d > 2%, we have 2d? > n, so that P(n,d) < —(14d> + 17d® + 11d + 2) < 0.
Therefore, we deduce from Equation that do(22%1) < 2% which concludes
the proof of the first point.

e Using Equation (140), we deduce that do(2%%) > [2"In(2)] if, and only if
P(2% e, — 1) = 0, where e, = [2¥In(2)).

But, from P(n,d—1) = n?+n—4d* + 2d®> — d*> +d > (n*> — 4d*) + (n — d?),
2%k —det > 29%(1—-41n(2)*) > 0 and 2%F — €3 > 2%%(1—1n(2)?) > 0, we deduce
that P(22k, er — 1) > 0 for all non-negative integer k.

e We have dy(n+1) = dop(n) if, and only if, for all integer d such that d < do(n),
P(n 4+ 1,d) = 0, which is clear according to P(n + 1,d) = P(n,d) + 2n +
2 and Equation (140). This proves the increasing character of the sequence
(do (n))neN. O

5.2 A computational upper bound of the integral U, (z)

In this Section, we will adapt from Section [4] and sum up all the necessary

Equations to have a computational and explicit upper bound of U, (z) for alls
2e C—R".

Let us emphasize that, during the proof of Lemma [£.4] we have proven that,

if n? > Re (s) (see Equations and (89)):

L%@”g2%;$2“p(4%“”(V%_”a+v%—nﬁ+%4@>)’(M”
ato < g gyese (e 0 (Vi + o) (G o)

(143)
This can also be rewritten, or weakened, into the simpler upper bounds:

n (nf — Re (s))?
190601 < sz oo (e (5)- (23— e () + D))
(144)
2 nf*t: 4+ sy/n
|L,(s)] < Re () - exp (?Re (s) - (2\/ﬁ+ n? — \/ﬁ-i—nﬁ—f—s)) ) (145)
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Moreover, using elementary techniques, we can obtain an upper bound of
| (s)]. Of course, this upper bound will not behave as the equivalent obtained
in Equation (122)), but the term exp(—2%e (s) - 4/n) will nevertheless naturally
appear.

11
Lemma 5.6. For all s € C such that Re (s) > 0, 6 € ]4; 3[ and n = 2, we

have:
2nae§Re (s) - cn (?Re (s),@) ) 091 Re (S)
I (s)] < i =m0 e (5) exp <—§Re (s)(2\/ﬁ—2n +n72 —2)) ,
(146)
h g - ’ : oa
where ¢y (s,0) = NG + S + 230 1)2 e 1) .
Proof. e First of all, let us remind that /C,,(s) is defined as
()"
Knls) = e V7 s g 147
(s) = e Lne (u++/n+ s)ntl c v (147)

so that we have: |KC,,(s)] < Kp(Re (s)).

e From now on, let us assume that s € R%. For all u e [—ne; n‘g], we successively
have:

(ut V)"

(u++/n+ s)"*le

—SsSu

s e
= (1+
< u—l—\/ﬁ) u++/n+s

- ns n ns? e 5
< exp | — )
P u+n  2uw+4n)?) u+/n+s
2
according to In(l+2) > x — % forallz >0

- ns n ns? esn’ (148)
< exp | — .

P AT nn? " 2(n—n9)2 ) ut vt s

Moreover, we have:

° 2
= e o 6 20— 1 S
<_\/ﬁ+n9+2(\/ﬁ_n0)2+5”)—(—8\/54—2571 — sn 2+2)

1
8n39— 3 32 82

= + =5-cn(s,0) . 149
N A o012 enls:6) (149)
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Consequently, we have:

J”" RV p——

_no (U4 y/n+ s)ntl

9 0 2
< In <1 + \/5—7:194—5) - exp <s\/ﬁ +2snf — sn27z 4 % + 5 cn(s, 0)>
< 2n’ X sv/n + 2sn? — sn2073 4 i + 5 cn(s,0) (150)
~ —F— 45 "€ - - o : n b )
Vn—nl+s P 2
which concludes the proof of the Lemma. O

Let us finally summarize the situation in order to have a computational
+00 n
t
upper bound of the integral i, (2) = —e
pp gral Uy, (2) L s

11
Corollary 5.7. Let z € C— R" and n be a positive integer and 0 € ]4; 3[
Therefore, the integral U, (2) satisfies

U (2)] < exp ( —2Re (s) (Vi — ne)) - Ma(s,6) (151)

ifn? = Re (s), where:

s = A/—z. (152)
n- ejn(5>0) 2n0 . ekn(5>0) 2

1 (s,0)
2Re (s)? * vn—n?+ Re (s) " Re (s)e - (193)

M, (s,0) =

} _ (ne — Re (5))2 ]
Jn(s,0) = Re (s) - <§Re (s) — Tt Re (3] 2n” | . (154)
20-1 , Re (s)
kn(s,0) = Re (s)- (—n e ST e (e (s),e)) . (155)
0+%
_ a0, T2+ Re (s)Vn
In(s,8) = Re(s) ( 3n” + it Re ()] (156)
nse—% S S
n(s,0) = T ; : 157
w0 \/ﬁ+n0+n5_971+2(n§_971)2 (157)
Remark 2. Let us emphasize that j,(s,0) ., % kn(s,0) . —00,
and l,(s,0) — —o0, so that M,(s,0) = O(1).
n<«——-+0o n«— 400

Proof. The proof is straightforward, using Equations and , as well as
the upper bounds given by Equations ((144) - (146). O
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Let us emphasize that Proposition and Corollary pursue the same
goal: having a upper bound of U, (z) for z € C — Rt and n € N*. Proposition
is not a sharp upper bound, while Corollary is, but it has an advantage
on Corollary [5.7t the upper bound is a decreassing function of s = Re (1/—2).
We will use this fact in Proposition of Subsection [5.4

5.3 Back to the Example

We have proven in Example[6] i.e. the continuation of Example[T} a simple and
explicit error formula:

- (g [ 85 4) - () o

1
where the function « is defined by a(z) = (e for all z € C — {i; —i}.
z
According to Proposition we conjecture that:

Conjecture 1. 1. e§F(a) ~ Ame—2V2N
N—+0

2. e§F(a)| < 4me=2VEN for all non-negative integers N.

If there is still a long way to go to reach it, we have created a path in its
direction in Section M] and Subsections [5.1] and 5.2

The error e§F(a) containing a unique term Uy (2), we therefore prefer use
Corollary 5.7 to Proposition [£.3] This gives directly the following upper bound:

Un (i)
Ly (—i)
1
|Ln (=)

We can now compute the N-th Laguerre polynomial explicitly, using its explicit
definition given by Equation (127)), or using Corollary to obtain a weaker
(but easier and more rapid to compute) upper bound of the error:

§a) < ]

e VEVN-NY) M (V=1L 0) (159)

€55 (a)] < exe™VEVN NI M (V=L 0) (160)

where

) (2d0(N)> !

)

Table 4| shows the exact values of e%L(a), its explicit upper bound given by
7 11
Equation (160) for § = op 88 well as its minimal value for 6 € ]4; 3[ for all

N e {2k;]0; 13]}.

(161)
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Value of the explicit Minimal value of the
N | Exact value of e§F(a) | upper bound of |e$F(a)|, | explicit upper bound of
_ T GL _ (1.1
forefﬂ leS (a)|,f0r9}4,3[
1 0. 121450
2 —0.(1) 256092 815066. 124892 14201. 822991
4 —0.(1) 149774 13. 215660 3. 889484
8 0.(2) 137463 0. 377890 0. 197386
16 | —0.(4) 568860 0.(1) 159339 0.(1) 105591
32 0.(6) 342774 0.(3) 257229 0.(3) 193731
64 | 0.(9) 230821 0.(6) 807091 0.(6) 645529
128 | —0.(13) 257593 0.(9) 199900 0.(9) 159066
256 | 0.(19) 418492 0.(14) 118497 0.(15) 867921
512 0.(27) 194960 0.(22) 358943 0.(22) 216674
1024 | 0.(38) 302784 0.(33) 592136 0.(33) 245275
2048 0.(54) 155439 0.(48) 252906 0.(49) 521822
4096 | —0.(77) 123392 0.(70) 357770 0.(71) 223753
8192 | —0.(110) 211831 0.(101) 318619 0.(103) 333039

Table 4: Explicit upper bounds of the error e$* (a)

Consequently, we see here that:

1. Equations (159) and (160]) give explicit upper bounds of the error, so that

+oo ot

we can now compute the integral f T dt by the Gauss-Laguerre

quadrature to find out a predefined numbers of exact digits ;

2. the error ex(a) nearly converges to 0 as rapidly as e~ 2V2N7,

3. the upper bound in Equation (160 is quite sharp, only a few digits are
lost compared to the exact values of the error e§{F(a).

5.4 Back to the Example

Let us now focus on our second main example, i.e. Example 2] which is pursued
in Example[7} the example of application of the Gauss-Laguerre-like quadrature
to the constant function 1.

5.4.1 A new expression of Ex (1)

We have proven in Example (7| an explicit error formula given by Equation :

~+00 2 tN e—t
Fvl1) = (L (go L ((2k + 1)im) (¢ — (2k + 1)m)N“) dt) - 16
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We are now able to prove the permutation of the symbols }} and { in Equation
using term-by-term integration.

Let us denote by f;, the function defined over R™ by

1 tN et

Iu(t) = Ly ((2k +1)im) (¢ — (2% + 1)im) "

(163)

According to Equation (134]), we have for all non-negative integers k and all
non-negative real numbers t:

V2e ! V2
|f/€(t)‘ < N(Qk'f’ 1)2ﬂ-2 < N(Qk'f’ 1)27T2

. (164)

Therefore, the Weierstrass’ M test shows that the series Z fx is normally con-

k
vergent on R™ and its sum is a continuous function on R*.

Moreover, we have:

+o0
\/5) J e_tdt—N( V2 (165)

+oo
Y] dt < ————5— =—
L () N(2k + 1)272 J, 2%k + 1)272
so that ZJ | fx(t)] dt is a convergent series.

Consequently, it is possible to permute the symbol Y’ and § in Equation ,
which gives the following:

Proposition 5.8. For all positive integer N, we have:

Ex(1) = Y e ( 2 J m et dt>(166)
N P 2k +1)im) Jo (¢ — 2k + 1)im) V!
((2k + 1)im) )
= Vg (T 167
I;O ( (2k + l)m) (167)

5.4.2 Upper bounds of Ey(1)

According to Propositions [5.1]and we conjecture the following upper bound
of the error:

Conjecture 2. 1. En(1) N Re (2 m> .

2. |[En(1)| < 4me=2V2NT™ for all non-negative integers N.

In this direction, we can prove the following explicit upper bound of Fx(1):
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and

N 1
Proposition 5.9. Let N = 2 be an integer, and let us denote fly = { — 2J
T
) (QdO(N))!
cN = = . (168)
CN,do(N) ( N > (N + do(N))
do(IV) do(N)

For all K > 0, we have:

Z@‘Ee

k=K

N

dt

. 9 b J+oc N e—t' _
N((Qk + 1)“7) 0 (t — (2k + I)Zﬂ')

2ic 2, 1 :
(@ 1o <(+ Wﬁ) (14 75 o (y/¥n (D)

mdo(N) (2K + 1)m) ™

Proof. To prove the Proposition, let us use the elementary upper bound of
Proposition instead of this given by Corollary according to its decre-
assing caracter in s = Re (y/—2). Consequently, the remainder of the series
defining En(1) will be estimated using an upper bound on the Uy part, the
convergence of the remainder being guaranteed using Corollary
Consequently, we cut En(1) in three parts, relatively to the integer fliy =

2]

fin .
(1) - Z/{N((2k + 1)Z7T)
EV(1) = ];O w2k 1in) (170)
2) UN((QfZN + 3)Z7T)
Ex' (1) Ly (flx + 3)in) (171)
(3) _ Z/[N((Qk + 1)i7T)
EY Q1) = ;@%H w2k 1in) (172)

Let us also assume that N > 2, so that do(N) > 0. We will prove the Proposition
only when K = 0, the extension to the other values being left to the reader.

41

v (L. _ NAON 2 '
+(2N)dO(N) ( <7T + 2N> exp( \/N+7T> + Wdo(N)e ; ZfK< le .

L3 ) (169)
eN Nv2N _N o
(2N)do(N)<<W+2N>6Xp(_\/N+rr>+7rdo(N)e ) K = fly+1.
9 -N
— CifK > fln 41



The E](\})(l) part. The first case of Proposition gives us:

BO() < ’%V 1 . .exp(— Nﬂ(’ft%))( L +<‘/N\/E>
=0 L 2k + 1)ir) ((k+ 1))’ (k1) o
s (4 . * Wﬁ) 2dco](VN) g (_ o Ezk(;)%)s) (173)
" k=0 ((kJr%)w) e

according to Corollary [5.4 used with d = do(N) .
Therefore, we successively have, according to do(N) > 0:

EQ() < <§/Z+\“/N\/E> exp(‘@+ fm o~V

<z>do(N)+% 1 (ﬂ-t)do(N)Jr%
2

o <</Z+<‘/N\/E> exo (—y/%) ew(-y¥) 1

<7r>do(N)+% * (Tr)do(N)Jr% N7

2 2

ij;;\if; <</Z+ Wﬁ) <1 + \/]1\777) exp (ﬁ) . (174)

The E](\?)(l) part. The second case of Proposition gives us:

_/ 8y 4. N
EQ1) < exp (Ul + 8) = ) 3+ 2%

(fiv+3)m ‘LN (st + 3)m)(

. (175)

Corollary used with d = do(NV), gives now:

2exp (—+/(fly + 3) 7
EY(1) < en (3+2N> (VU 22 )
T o(N)+1
((2sz+3)7r)
,Nm>

- 2N eXp( VN+ir
< o TN

(176)

N 1
according to (2fly + 3)m = 27 < — 2) +m =2N.
™
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The E](\‘;’)(l) part. The third case of Proposition and Corollary used
with d = do(N) > 0 gives:

1 1
EP1) < 227V . i
k=fln+2 ‘LN<(2]€ + l)iﬂ)‘ (k + 5) T
< lm N
™M s (k1)
- che’N 1 1
2 cye” 1
< = . 177
T do(N) EN)B (77
O
5.4.3 Numerical computations
+o0 dt
Now, we can estimate the error Ex (1) and then compute the integral To o
0 (&

up to d digits, where the integer d is defined in advance: using Proposition
with K = 0, we just have to find out the lowest value of N which gives the
required precision, according to the inequation |Ex(1)] < 10~¢ and then per-
form the N-points Gauss-Laguerre-like quadrature associated with the constant
function 1.

Once this is done, we obtain Table [5| which shows the difference of values
between the exact value of |[En(1)| and the estimation given by Proposition
It also gives the calculation time of the quadrature of degree N.

Consequently, we see in Table [5| that:

1. the dominant part of an equivalent of the error En(1) seems to be in
e~eVN,

2. the upper bound of |E;n(1)| given by Proposition is not really sharp,
but is in the same order of magnitude as the exact value of |Ex(1)].

3. the calculation time of the quadrature of degree 2N seems to be two time
longer than the calculation time of the quadrature of degree N, which is
quite predictable according to the double numbers of nodes and weights
for the first quadrature in comparison to the second one.

Another program to estimate the error Ex (1) more precisely could be used,
since each term of the summation is relatively small in comparison to the previ-
ous term. Consequently, Ex (1) can be very well estimated by computing a few
of its first terms.
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Upper bound Calculation

N |of |[En(1)] from | Exact value time of the
Prop. nd of |[En(1)] quadrature of

Eq. (132). degree N
2 [0.(1) 66667 |0.(2) 30447 | 0. 738 ms
4 [0.2) 75577 |0.4) 23385 1. 332 ms
8 10.(3) 30836 | 0.(5) 44075 2. 659 ms
16 |0.(4) 17694 | 0.(8) 19843 | 5. 213 ms
32 [0.(7) 26138 | 0.(11) 49516 | 10. 257 ms
64 |0.(10) 20262 | 0.(16) 38798 | 17. 487 ms
128 | 0.(15) 12205 | 0.(23) 26126 32. 623 ms
256 |0.(22) 18595 | 0.(34) 38050 55. 362 ms
512 1 0.(32) 16620 | 0.(48) 60513 | 110. 334 ms
1024 | 0.(46) 30823 | 0.(68) 25357 | 223. 837 ms
2048 | 0.(66) 18811 | 0.(97) 27463 | 489. 749 ms
4096 | 0.(94) 16064 | 0.(138) 51246 | 916. 177 ms
8192 | 0.(134) 14522 | 0.(196) 20657 | 1853. 715 ms

Table 5: Explicit upper bounds of the error En (1)

+00

Then, the integral J Tt is computed up to d digits by determining two
integers, N and K: N 0Jaaumes the order of the Gauss-Laguerre-like quadrature
we will have to perform to estimate the integral, while K names the number of
terms we will use to estimate En(1).

On the first hand, according to Proposition the integer K is chosen in
such a way that the (K + 1)th-remainder of the series Ex (1) be small relatively
to the order of magnitude of the first term of the sum. On the other hand, N
will be the first positive integer we find out satisfying |En(1)] < 1074,

Now, we have to compute the first K terms of the sum En(1). This is done
by computing the terms Z/IN((Qk + 1)i7r) using a Gauss-Laguerre quadrature,
similar to this used in Example

Even if the upper bound of the remainder of |En(1)| given in Equation
is not so precise, this program reduces the order of the Gauss-Laguerre-
like quadrature to perform, to reach the required precision. This has a drastic
effect on the computation time.

5.4.4 A quasi equivalent of |En(1)]
Using Proposition we are now able to prove the following

Proposition 5.10. We have:

Ey(1) =, Re (gﬁg) +o (e—wm) . (178)
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This is a significative advance in the direction of the first point of Conjec-
ture 21

Proof. According to Proposition we know that the Kth-remainder of En (1),
denoted here by Ry, i satisfies:

RNkl N o o), (179)
when K > [N — ;J Therefore, we have:
™
Rvrl = e V). (180)

From Proposition [5.1] we also easily see that for all integers k, we have:

Un ((2k + 1)ir)

2vV2Nm
VaNT ~ 2 (~2\/2N dot 2k+1f1>,
¢ L ((2k + 1)im) | N—vpeo O F ™ edot(V )
(181)
so that we have for all positive integers k:
Un((2k + 1)i Yo
N(( )Zﬂ—) _ o (6_2 2N7T) . (182)
Ly ((2k 4 1)im) | N—+x
Consequently, we have proven that |Ry 1] N We=2V2N™) which con-
—>+00
cludes the proof of the Proposition. O

6 Annex A: proof of Proposition

In this Annex, we will prove the delicate Proposition where great caution
will be given to the possible values of R.

If R € R, let us denote by fr and gr the 2m-periodic and even functions
defined for all 6 € [0; 27] by:

gr(0) = 142 750 cog(Rsinf) + e 2Rcosd (183)
= (cos(Rsin®) + e_RC039)2 + sin?(Rsinf) .

fr(0) = +/gr(0) . (184)

We shall study gg on [0;7] to find out a uniform (in the variable R) lower
bound, valid for all R € R} — U [(2n + )7 — 65 (2n + D)7 + 6] .

neN

In this direction, let us fix once and for all § €]0;7[, n € N* and R €
]@2n — )7 +6;(2n + 1)7 — 6[NRY.
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General behaviour of the functions fr. Figure [3|shows a few graphs of
functions fr for a few values of R € {1;5;2m;9.3;10;50}. We can see here that
fr seems to have an approximative flat section, centered in 0, larger and larger
with increasing values of R. It also seems to reach its maximum in 7 as an
extremely intense peak with huge values of R.

7r
In reality, the "flat section” is not so simple... On [O; f], the flat section

turns out to be an oscillatory part, with very small amplitudes, but increasing
in amplitudes with € (see Fig. to Fig. . However, the easy part is on

[g; w]: fr is an increasing function on this interval (see Fig. to Fig. .

Let us emphasize that the graphs of Figures [3| and 4] have been obtained
using the Python programming language (see [16]) as well as the MATPLOTLIB
library (see [9]). The quantity le”n + w on top of the y-axis means that the
scale has to be multiplied by 107", and then, we have to add u to the graphed
quantity (for example, le — 13 + 1 in Fig. means 1 + 10713). Therefore,
according to Figure [4] we see that f30(f) ~ 1 for all § € [0;1.45] up to two
digits.

The increasing part of fr on [g, 7r]. On this subinterval, it is sufficient to

prove the following:

Lemma 6.1. The function gr, as well as the function fr, are increasing func-
0

ti [—; ]

fons on | 53w

Proof. The fonction gr is C* on [0;27] and for all 8, we have:

gr(0) = 2Rsinfe % cos(Rsinf) — 2R cos fe 7 sin(R sin §)
+2R sin fe 2 cosb (185)

Let us define C = Rcosf# and S = Rsin6, so that C < 0 and S > 0. Therefore,
gr(0) can be expressed as:
gr(0) = 2Se7(cos(S) +e ) —2Ce “sinS

sin S

= 28¢°¢ <(1 + cos(9)) = C - (1 + ) +(e9—1+ C)> (186)

Each quantity inside the parenthesis of the right-hand side of Equation ((186) is
actually a positive one. So, ¢%;(6) is positive and gg is an increasing function in

[%; w], as well as the function fg. O

In contrast with Lemma[6.1] let us emphasize that the increasing part of fr
can begin before g (see for example Fig. .

Now, we can easily derive a uniform bound on the sub-interval [g, 7r].

46



35
30
25
20
15
3 2 1 0 1 3
theta
(a) Function f;
500
00
300
200
100
0
3 2 a 0 1 2 3
theta
(c¢) Function far
20000
15000
10000
5000
0
3 2 a b 1 p 3
theta

(e) Function fio

Figure 3: Graphs of function fr for R € {1;5;27;9.2;10;50}.
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Corollary 6.2. Let Re RT™ — (2Z + 1) and § € |0;7].
Let us also consider the integer n such that:

Cn—1)r+d<R<(2n+ L7 —¢. (187)
Therefore, if z € C(R,0) is such that Re (z) < 0, then, we have:
1 1
<
’14—6_2 < — (6) . (188)
2sin | =
2
. . 1] -7 ™
Proof. We remind that, if z = Re', 0 € | —m; 5 | Y [a;w], we have:
‘ 1 S S S 1
1+e? NTOR ™\ +/2(1 +cosR)
(3)
1 1
(189)

Vet cos(m—0) 5. (g) ’

according to the 2mw-periodicity of gg, its parity and its increasing caracter on
s
—; 7. ]
[5:7]

Subdivision of the interval [0; I]. To have a more precise idea of the

behaviour of fr on [O; g], we will split I = [O; g] in sub-intervals such that

6 —> cos (Rsin(#)) has a constant sign on each sub-interval.

eIf Re [0; g], we just have to define Iy = [0; %] =1

o If R> g, we first define the positive integer ky,q.(R) by

1\ « R 1
= : — ] =< = | — — = .
Emaz(R) max{k eN; (k + 2) 7 1} +1 Lr 2J +1 (190)

Now, we can split [0; g]

I = [O;arcsin (%)] . (191)

I, = [arcsin ((kj — %) ;) ; arcsin <(k + ;);)] , ke[l kmaz(R) — 1] .
(192)
Iy, = [arcsm ((kmax(R) - %) ;) ; ;T] . (193)
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A lower bound of fr in easy subintervals I;,. With these definitions,
6 — cos (Rsin(f)) is positive on each sub-interval I; with even indices k, and
negative with odd indices k. Consequently, half part of the oscillatory part is
easy:

Lemma 6.3. Let ne N and Re |(2n — 1)m; (2n + 1)[ n RY.

Then, fr(0) =1 for all 6 U I

keN
0<2k<kmaz (R)

Proof. With the previous notations, it is sufficient to remark that the function

cos(Rsin) is positive on Iy for all integers k such that 0 < 2k < kpnaz- O
Let us now focus when 6 € Iy, I3, ---, i.e. when the function cos(Rsin) is
negative.

Lemma 6.4. Let ne N and Re€ |(2n — 1)m; (2n + 1)7[ n R%.
Then, for all non-negative integers k such that 2k + 1 < kpae(R) and all

0 € Is;41, we have:
fr(0) =0.93 . (194)

Proof. Let us fix n € N, R € |(2n — 1)m; (2n + 1)[ n R%, an integer k satisfying
2k+1 < kmam(R) and 6 € IQk+1.

Therefore, cos (Rsin(6)) < 0 and cos(d) > 0, so that:

fR(e) = m =1— e—RcosG
3\ 7
1 6—Rcos<arcsm<(2k+§) E>>

3\2
— R2—<2k+*) 2
= 1l—e¢ 2

J ;)
—A|R?2— | kmax (R **) w2
S 1. ( (M-3) = (195)

We can now remark that we can assume that n € N*. Otherwise, we would have
n = 0 and R €]0;7[. So that k4. € {0;1}. Consequently, there would be no
non-negative integer k such that 2k + 1 < kpqz-

WV

We therefore have, according to n € N*:

1
. ifRe](Zn—l)w; (2n—2>7r[, kmaz = 2n — 2 and

2 2 2
1
R? — (kmw - 2) 2 > 3% <4n - ;) > 3~ . (196)
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1 1
eif Re [(271—2) ;s <2n+2>ﬂ'[, kmaz = 2n — 1 and

1 2
R? — (kmm - 2) 72 > (4n — 2)w? = 217 . (197)

1
eif Re [(277, + 2) m(2n+ D)m [, kmaz = 2n and

1\2
R? — (kmam - 2) 72 > dnn® > 4n? (198)
2 2
1 3
Consequently, we have R? — (k:mam — 2) 2> %7 i.e.:
FO)=1—eF >003. (199)

O

The remaining subintervals of [O; g] to study. If R€](2n — 1)m; (2n +

1)7[, the remaining subintervals I;.’s of I where we do not already have studied
a lower bound of gg are :

1
Ir,_1 if Re ](Qn— 1) (2n— 2)77[ and n € N*.
. 1
Iopi1 if Re [(Qn—l— 5)77; (2n + 1)77[ and n € N.

Some preliminaries lemma To cover these last two cases, let us state with-
out proof the following two easy lemmas:

Lemma 6.5. Let a €] —1;0][.
Then, the function z — e~ * (coshx + &) is a decreasing function on [0; — In |a|]

from 1+ « to 5(1 —a?), and then is an increasing function on [—In|al; +oof

1
approaching 3 near +ao.

1 —cosx

Lemma 6.6. The function x — x — arccos ( 5

) s an increasing func-

tion on R.

We will also need the following
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Lemma 6.7. For all non-negative integers n, the function

1—cosx,\>
z— 12 — (mr + arccos (;OS:C)) (200)

1
is an increasing function on [Tlﬂ'; (n + 2> W].

Proof. e Let n be an integer. Let us also denote sg(x) the sign of the real
number z. "
One can easily show that A : x — arccos (Sin2 (7)) is an increasing func-

a6

The opposite of the derivative of A, defined by @ : z —— sg (cos (g)) _—er
1 + sin? ( g)

also turns out to be increasing on |(4n —1)m; (4n+ 1)7[ and on |(4n+ 1)m; (4n +
x

tion on [(2n — 1)7; 2n7] and decreassing on [2n7; (2n + 1)7].

3)x[, according to the increasing caracter of z — Wi on R.
+z

1
e Let us now denote by f, the function defined on [mr; (n + 2>] by:

fo(z) = 2 — (mr + arccos (sin2 (g)))Q =2 — (nm+ A(m))2 . (201)

1
This function is C' on [mr; <n + 2)] for all nonnegative integers n, and we

have, if x ¢ g + Z:

fl(x) = 2x+2(nm+ A(z))Q(x) . (202)
= 2(nm+ A(z)) (nﬂ':cA(a:) + Q(m)) . (203)

1
On [2n7r; (2n + 2) w[, A is a decreasing function while @) is an increasing
one. Therefore, according to Equation (203)), we have on this interval:

2nm

fin(x) = 2(2nm + A(z)) <n7r+A(2n7r)

+ Q(2n7r)>

2nm 8n2m2

= 2(2n7 + A(z)) = =0, (204)

nT+ — nmw+ -
1
for all z € [Qnﬂ'; <2n + 2) 77[.

2 2
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3
On [(Qn + 1)m; (Zn + 2) 7T|:, A and @ are increasing function. Therefore,

according to Equation (202)), we have on this interval:

fonii(z) = 2z+ 2((2n + w4+ A((2n + 1)7r)) : ( lim )+Q(t)
t—((2n+1)7w

= 22n+ )7 —V22n+ )7 =0 . (205)

2

o /s s 1
Consequently, for all non-negative integers n, f,, is positiveon |nm; [ n + = | 7|,
so that f, is finally increasing on this interval. O

Therefore, we have:

Corollary 6.8. Let d € ]O; g[

1. IfneN* Re [(Qn — 1) + 0; <2n — ;) 7T[ and 0 € I, 1, we then have:
. _s o
fr(@) 2min [ 1 —e7%;4/1 — cos? (§> . (206)

2. IfneN, Re ] <2n + ;) m;(2n 4+ 1w — 5] and 0 € Is, 11, we then have:
fr(0) = sino . (207)

1
Proof. 1. Let us consider first n € N and R € ] <2n + 2) m(2n + 1)m — 6].

1
Forall € I, 11 = [arcsin ((Qn + 5) ]7;) ; g], we therefore have:
2n7r+g<Rsin9<R<(2n+1)7r, (208)
which directly implies that
cos R < cos(Rsinf) <0 . (209)

Consequently, we successively have:

gr(9)

2e~ 7% (cosh(R cos ) + cos(Rsin))
2e~ <09 (cosh(R cos ) + cos(R))

1 — cos® R, according to Lemma [6.5} since Rcosf > 0 and

—1<cosR<O0.

VoWV
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Therefore, fr(f) > sin R = sind for all § € I, 1.

1
. Then, let us consider n € N* and R e [(Zn —1)m+6; (2n - 2) w[.

The method, here, is to use the simple idea developed in the previous
part of the proof. Nevertheless, we will have to split in three part the

3
sub-interval I, 1 = [arcsin <(2n — 5) ]7;) ; ;T]

On the interval J = [arcsin ((271 — 1)%) ; %]’ cos(Rsin) is an increasing

function from —1 to cos R < 0. Let 0y € J < I5,,_1 be the unique solution

1
on J of the equation cos (R sin(@)) = %OSR — sin® <§>
(1 . o R
6o = arcsin (R ((2n — 1) + arccos ( sin® 2))) , (210)

which is a well defined quantity, according to Lemma

e For f e [arcsin (<2n - 3);) ;arcsin (<2n — 1) ]7;)], we have:
vV R? R2 sin2 0

Rcos >
> \/RQ )22
> \/(2n+17r+5) —(2n+1)272 =4 . (211)
Therefore, we have:
fr(0) =1/(1— e Reos0)? > 1 — 0 (212)

e For 0 € [arcsin ((Qn — 1) %) ;90], we have:

Rcos > Rcosfy =1/ R?— R?sin’ 6,
R\ 2
R2 — ((2n — 1)m + arccos (Sin2 (2)>)

)

= \/((2” - Dm + 5)2 - ((2n — 1) + arccos (sin2 (nm — g + g

according to Lemma
- \/((2n— D7 +0)° — ((Zn— )+ ‘;)2 \/(Qn— 1)6m + %
> Vor = V62 =

94
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Therefore, we have:

fr(0) =1/ (1 — e~ Reos0)® — ] _ o= Reosl 5 9 _ =5 (214)

e As in the first part of the proof, for all 6 € [90; g], we have:
.o (R .
—sin® | o < cos (Rsinf) <cosR <0 . (215)

Consequently, we successively have:

gr(0) = 2e*Rcose(cosh(R cos 6) + cos(Rsin 6))
R
> Qe_RCOSG(cosh(R cos f) — sin® (2> )
R Rcosf >0
> 1—sin? (= , according to Lemma [6.5} since .o (R
2 —1 < —sin Bl <0

)
> 1—cos*(=] .
cos <2>
é T
Therefore, we have: fr(6) =4 [1 — cos? 3 for all 6 € [90; 5]

Finally, unifying all the results on the three sub-intervals of I5,_1, we have
proven that

fr(#) = min (1 —e % 4/1 = cost (g)) forall 0 e Iy, . (216)

O

The inequalities proven in Corollary [6.8] are more and more sharper when R
approaches m modulo 2w. We refer to Figure [5] to see how these inequalities are
accurate for values of R = 37 — ¢ (first array) and R = 37 + 0 (second array)
and conclude that Inequality is more precise than Inequality .

The oscillatory part of fr. Nevertheless, Inequality (206]) will be sufficient
to derive a uniform (in the parameter R) upper bound of the function fz on

™
the sub-interval [0; 5], i.e. on its oscillatory part.

Corollary 6.9. Let Re RT — (2Z + 1), and § € |0; 7].
Let us also consider the integer n such that:

Cn—1)r+d<R<(2n+1Lm—¢. (217)
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R 7.9 8.5 9 9.3 9.42
0 1.5248 | 0.9248 | 0.4248 | 0.1248 0.0048

[inf] fr 0.9992 | 0.8069 | 0.4126 | 0.1246 | 0.00477796
0;%

sin(9) 0.9989 | 0.7985 | 0.4121 | 0.1245 | 0.00477794
relative error | 0.03 % | 1.04 % | 0.12 % | 0.08 % 0.0004 %

R 10.9 10.3 9.8 9.5 9.43

1) 1.4752 0.8752 0.3752 | 0.07522 | 0.005222039
[inf] fr 0.9709 0.7611 0.3662 | 0.07520 | 0.005222033
0;%

/ 0
min (1 —e 94 /1 — cost 2) 0.7713 0.5718 0.2615 0.0532 0.0037

relative error 20.55 % | 24.88 % | 28.59 % | 29.26 % 28.85 %

Figure 5: Examples of tests of inequalities obtained in the cases 1 and 2 of

Corollary
Therefore, if z € C(R,0) is such that Re (z) = 0, then, we have:
’ LI ! . (218)
1+e* ) ) s . 5
min [ 0.93;sind;1 —e%;4/1 — cos (§>

Proof. e Let us assume that § €]0; 7].

1
IF@2n—1)r+d<R<|(2n— 3 )™ [0; g] is subdivided using the intervals

Iy, I, - -, Is,,_1. From Lemmas and as well as the first part of Corollary
we have for all 6 € [0; g]

Fr(8) = min (0.93; 1—e%:4/1—cos? (g)) . (219)

1 1
If now <2n — 2) T< R < (2n+ 3 , [0; g] is subdivided using the

intervals Iy, I, ---, Iap—1, Iop. From Lemmas and we have for all

0e [O; 5]
fr(0) = 0.93 . (220)

1
Finally, if <2n + 2) T<R<(2n+ 17—, [0; g] is subdivided using the
intervals Iy, I1, - -+, Izp4+1. From Lemmas [6.3] and as well as the first part
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of Corollary we have for all 0 € [0; g]

fr(0) = min (0.93;sin(d)) . (221)

e As a conclusion, grouping the results of Equations (219) to (221]) gives us
for all 6 €]0; 7] and all 6 € [0; g]

Fr(0) = min [ 0.93;sin8;1 — e=%;4/1 — cos (g) . (222)

As a conclusion of the proof, if z = Re?, Re z > 0, we have 6§ € ]—g; g[

Therefore, we have:

’ N
I+e= IfrRO)] | fr(6))]
< ! (223)
min [ 0.93;siné;1 —e=9:4/1 — cos? (é)
b b b 2
O

Conclusion of the proof of Proposition To conclude the proof of
Proposition we need now to put together Corollary and All we have
to do is now to remark that, for x € [0;7]:

2sin (g) > sinz . (224)
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