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Abstract: We return to the subject of local, identity-tangent diffeomor-
phisms f of C and their analytic invariants Aω(f), under the complemen-
tary viewpoints of effective computation and explicit expansions. The latter
rely on two basic ingredients: the so-called multizetas (transcendental num-
bers) and multitangents (transcendental functions), with resurgence mono-
mials and their monics providing the link between the two. We also stress
the difference between the collectors (pre-invariant but of one piece) and the
connectors (invariant but mutually unrelated).

Much attention has been paid to streamlining the nomenclature and no-
tations. On the analysis side, resurgence theory rules the show. On the
algebraic or combinatorial side, mould theory brings order and structure into
the profusion of objects. Along the way, the paper introduces quite a few novel
notions: new alien operators, new forms of resurgence, new symmetry types
for moulds. It also broaches the subject of ‘phantom dynamics’ (dealing with
formal diffeos that nonetheless possess invariants Aω(f)) and culminates in
the comparison of arithmetical and dynamical monics, a distinction that
reflects the dual nature of the Aω(f) as Stokes constants and holomorphic
invariants.
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1 Setting and notations.

1.1 Introduction.

The holomorphic invariants of identity-tangent diffeomorphisms are a long-
established subject. Awareness of their existence is as old as the hills. It goes
back at least 120 years, to Fatou’s geometric treatment [F]. The sharper-
edged resurgent treatment, which yields a wealth of information denied to
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the geometric approach, is not exactly new either: it was laid out in full in
[E1] and [E2], in the late seventies.

What is sorely lacking, however, is a realisation that these invariants can
be accurately described and explicitely calculated. Indeed, the prevailing
(if seldom clearly stated) opinion in the holomorphic dynamics community
appears to be that they cannot. With a view to correcting this misappre-
hension, we posted in 2012 a short paper1 that showed otherwise. Though
it contained little that was strictly new ( in the main, it restated results
already extant in decades-old papers like [E0] or [E2], and referred for the
computational programs to a recent PhD thesis [B] ), such feedback as we
received convinced us that these questions were still dimly understood, and
in need of a more thorough exposition.

So, with something of a sinking heart, we set about re-revisiting the whole
subject. Since we were at it, however, and given that ter repetita non placent,
we felt that we might just as well insert some new material. These extras
include:
(1) a procedure for the ‘uniformisation’ of convolution products and powers
in the Borel plane, leading to optimal bounds;
(2) a new class of alien operators, the medial operators ∆]

ω and ∆]]
ω , which do

not obey the Leibniz rule but make up for it by having a simpler definition
and being easier to evaluate;
(3) the notion of affiliates of a diffeomorphism f , defined via the correspond-
ing substitution operators F and their images γ(F−1) under an analytic γ;
(4) a new class of mouldian symmetry types, of proven usefulness, and the
rather intriguing combinatorics that goes with them;
(5) special classes of multizetas and multitangents well-suited for expressing
the invariants Aω(f) and bringing out their parity properties;
(6) the distinction between the semi-invariant collectors, which carry the mul-
titangents, and the exactly invariant connectors, which carry the multizetas;
(7) the distinction between the full arithmetical constraints on the multizetas
and the weaker dynamical constraints, which are responsible for making the
invariants invariant.
(8) the complications specific to the ramified case (for diffeos f of tangency
order p ≥ 2), which call for new monics related to, yet distinct from, the
rational-indexed multizetas.
(9) the subject of phantom dynamics which deals with groups of formal dif-
feos that nonetheless possess holomorphic invariants and for which many of

1Invariants of identity-tangent diffeomorphisms: explicit formulae and effective com-
putation. The paper with the appended tables can be accessed online on
< http://www.math.u-psud.fr/∼ecalle/fichiersweb/WEB iden tang 0.pdf >.
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the key notions familiar from holomorphic dynamics (sectorial models, con-
nectors, Fourier analysis, etc) still make sense, albeit in a new setting, with
acceleration operators replacing Laplace integration.

1.2 Classical results.

We shall be concerned here with local 2 identity-tangent diffeomorphisms of
C, or diffeos for short, with the fixed-point located at ∞ for technical con-
venience:

f : z 7→ z +
∑
1≤s

fs z
1−s fs ∈ C (1)

Unless f be the identity map, we can always subject it to an analytic (resp.
formal) conjugation f 7→ f1 = h ◦ f ◦ h−1, followed if necessary by an ele-
mentary ramification

(
f1(z1/p)

)p
, so as to give f the following prepared (resp.

normal) form:

fprep : z 7→ z + 1− ρz−1 +
∑

2<s0≤s

f[s] z
1−s (s ∈ 1

p
N∗) (2)

fnorm : z 7→ z + 1− ρz−1 (3)

where s0 may be chosen as large as one wishes.3

The tangency order p and iteration residue ρ are the only formal invari-
ants of identity-tangent diffeos. But our diffeos also possess countably many
(independent) scalar analytic invariants, also known as holomorphic invari-
ants,4 which are best defined as the Fourier coefficients of the so-called con-
nectors.5 The connectors are pairs of germs of 1-periodic analytic mappings
π = (πno,πso) defined on the upper/lower half-planes ±=(z) � 1. There
are p such pairs, corresponding to the p-fold ramification of z in (2). Here,
no and so stand for north and south, i.e. the upper and lower half-planes.

We shall throughout prioritise the standard case p = 1 , ρ = 0, i.e. focus
on diffeos of the form:

f := l ◦ g with l : = z 7→ z + 1 and g : z 7→ z +
∑
3≤s

gs z
1−s (4)

2i.e. analytic germs of –
3After ‘preparation’, the diffeo acquires new coefficients denoted f[s] for distinctiveness.
4analytic invariants means invariant relative to analytic changes of z-coordinate,

whereas holomorphic invariant points to the holomorphic dependence of Aω(f) in f –
in contradistinction to cases like that of diffeos with Liouvillian multipliers λ. Such diffeos
do possess non-trivial analytic invariants, but none with holomorphic dependence on f .

5In the context of identity-tangent diffeos, the connectors are sometimes referred to as
horn maps, but the former notion is more general: in resurgent analysis (see §1.2 infra)
the connectors are the operators that take us from on sectorial model to the next.
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and merely sketch the changes required to cover the general case.
Any standard f possesses two well-defined, mutually inverse so-called

iterators, to wit f ∗± (direct iterator) and ∗f± (reciprocal iterator), defined on
U-shaped domains6 by the limits:

f ∗±(z) = lim
k→±∞

l−k ◦ fk ; ∗f±(z) = lim
k→±∞

f−k ◦ lk (5)

The connectors π±1, with their northern and southern components, are then
defined on ±=(z)� 1 by:

π := f ∗+ ◦ ∗f− ; π−1 := f ∗− ◦ ∗f+ (6)

For reasons that will soon become apparent, we must also consider the in-
finitesimal generators f∗ and π∗ of f and π. These are formal, generically
divergent power resp. Fourier series. Of course, π∗ is not constructed di-
rectly from π, but via its northern and southern components. We thus have
the three pairs:

π := (πno,πso) ; π−1 := (π−1
no ,π

−1
so ) ; π∗ := (π∗no,π∗so) (7)

along with the relations

f(z) = exp
(
f∗(z) ∂z

)
. z

(
f∗ ∂zf

∗ ≡ 1
)

(8)

π±1
no (z) = exp

(
± π∗no(z) ∂z

)
. z (9)

π±1
so (z) = exp

(
± π∗so(z) ∂z

)
. z (10)

In (8) f ∗ and ∗f denote of course the formal iterators, i.e. the power series
solutions of the equations

f ∗ ◦ f = l ◦ f ∗ with f ∗(z) = z + o(1) (11)

f ◦ ∗f = ∗f ◦ l with ∗f(z) = z + o(1) (12)

normalised by the condition of carrying no constant term. Anticipating on
the sequel, here is how the scalar invariants can be read off the Fourier
expansions of the connectors:

πno(z) = z +
∑
ω∈Ω−

A+
ω e
−ω z ; πso(z) = z +

∑
ω∈Ω+

A−ω e
−ω z (13)

π−1
no (z)= z +

∑
ω∈Ω−

A−ω e
−ω z ; π−1

so (z) = z +
∑
ω∈Ω+

A+
ω e
−ω z (14)

π∗no(z) =+2πi
∑
ω∈Ω−

Aω e
−ω z ; π∗so(z) =−2πi

∑
ω∈Ω+

Aω e
−ω z (15)

6f∗+ and ∗f+ are defined on a west-north-south domain, while f∗− and ∗f− are defined
on an east-north-south domain.
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Pay attention to the altered position of ± in 13 and 14; the reasons for this
apparent incoherence shall become clear in due course. The indices ω run
through Ω := 2πiZ∗ or Ω± := ±2πiN∗, and each of the three systems

{A+
ω , ω ∈ Ω} , {A−ω , ω ∈ Ω} , {Aω , ω ∈ Ω} (16)

constitutes a free and complete system of analytic invariants.7

1.3 Affiliates. Generators and mediators.

General affiliates.

To each identity-tangent germ f and each power series γ(t) = t+
∑
γr t

r+1 we
associate the so-called γ-affiliate f♦ along with an infinite-order differential
operator F♦. The correspondence (f, F ) 7→ (f♦, F♦) goes like this:

f 7→ f♦ := F♦ . z ; F 7→ F♦ := γ(F − 1) (17)

For a general γ, the operator F♦ has a non-elementary coproduct :

cop(F♦) := F♦ ⊕ 1 + 1⊕ F♦ +
∑
1≤p,q

γ[p,q] (F♦)p ⊕ (F♦)q (18)

As a consequence, the straightforward germ-to-operator correspondence:

f 7→ F = 1 +
∑
1≤n

(f)n
∂n

n!
(f(z) := f(z)− z) (19)

assumes a more intricate form for the affiliates:

f♦ 7→ F♦ = f♦ ∂ +
∑
2≤r

∑
1≤ni,2≤nr

♦n1,...,nr (f♦)n1
∂n1

n1!
. . . (f♦)nr

∂nr

nr!
(20)

Special affiliates: generators and mediators.

The structure coefficients γ[p,q] and ♦n1,...,nr shall be investigated in §5-1,§5-2
and §5-4, but they assume a particularly simple form for three special types
of affiliates:
(i) the infinitesimal generator (f∗, F∗) with γ(t) = log(1 + t)

(ii) the main mediator (f], F]) with γ(t) = 2 (1+t)−1
(1+t)+1

= t
1+ 1

2
t

7With the minor qualifier that, under a conjugation by a shift h of the form lα(z) :=
z + α, the periodic germs π± also undergo conjugation by the same shift, with obvious
repercussions for their Fourier coefficients.
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(iii) the second mediator (f]], F]]) with γ(t) = (1+t)2−1
(1+t)2+1

=
t+1

2
t2

1+t+ 1
2
t2

The generators we have already mentioned. For them, the co-product and
the germ-to-operator correspondence reduce to

cop(F∗) = F∗ ⊗ 1 + 1⊕ F∗ , f 7→ F∗ = f∗ ∂ (21)

For the mediators, the formulae, while still relatively simple, become more
interesting

cop(F]) = F] ⊗ 1 + 1⊗ F] +
∑
1≤n

(
− 1

4

)n (
F n+1
] ⊗ F n

] + F n
] ⊗ F n+1

]

)
(22)

cop(F]]) = F]] ⊗ 1 + 1⊗ F]] +
∑
1≤n

(
−1
)n (

F n+1
]] ⊗ F n

]] + F n
]] ⊕ F n+1

]]

)
(23)

Relating F and F], F]].

As operators, the mediators F] and F]] admit three distinct types of expan-
sions, each with its own merits and drawbacks:

F] = 2 F−1
F+1

= 2 C] D−1
] = 2D−1

[]] C[]] (24)

F]] = F−F−1

F+F−1 = C]] D−1
]] = D−1

[]]] C[]]] (25)

The operators C],D], C]],D]] are defined as follows:

C] =
∑n odd

1≤n 2−nfn]
∂n

n!
|| C] : ϕ(z) 7→ 1

2

(
ϕ(z+ 1

2
f](z))−ϕ(z− 1

2
f](z))

)
D] = 1+

∑n even
1≤n 2−nfn]

∂n

n!
|| C] : ϕ(z) 7→ 1

2

(
ϕ(z+ 1

2
f](z))+ϕ(z− 1

2
f](z))

)
C]] =

∑n odd
1≤n fn]

∂n

n!
|| C]] : ϕ(z) 7→ 1

2

(
ϕ(z+f]](z))−ϕ(z−f]](z))

)
D]] = 1 +

∑n even
1≤n fn]]

∂n

n!
|| C]] : ϕ(z) 7→ 1

2

(
ϕ(z+f]](z))+ϕ(z−f]](z))

)
The operators C[]],D[]], C[]]],D[]]] are defined in exactly the same way, but
relative to inputs f[]], f[]]] with f](z) ∼ f]](z) ∼ f[]](z) ∼ f[]]](z) ∼ f(z)−z.
As operators acting on formal germs, D−1

] and D−1
]] have to be expanded in

the predictable way, leading to formulae such as:

f] 7→ F] = f] ∂ +

1 ≤ r∑
( n1 odd
n2,..,nr even

)

(−1)r−1 21−
∑
ni fn1

]

∂ n1

n1!
fn2
]

∂ n2

n2!
. . . fnr]

∂ nr

nr!
(26)

f]] 7→ F]] = f]] ∂ +

1 ≤ r∑
( n1 odd
n2,..,nr even

)

(−1)r−1 fn1
]]

∂ n1

n1!
fn2
]]

∂ n2

n2!
. . . fnr]]

∂ nr

nr!
(27)
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Let us focus on the second mediator F]], to avoid the nuisance of the factors

(1/2)n. Its first expansion F]] = F−F−1

F+F−1 is wholly unproblematic, with a
commuting numerator and denominator. It simply reflects the definition of
F]]. The existence of parallel expansions C]]D−1

]] and D−1
[]]] C[]]] follows, to put

it briefly, from the fact that the operators

C]] and C[]]] , D]] and D[]]] , D−1
]] and D−1

[]]] , C]]D
−1
]] and D−1

[]]]C[]]]

verify exactly the same types of co-product as, respectively, the operators

sinh(∂) , , cosh(∂) , , cosh(∂)−1 , tanh(∂)

and from the fact that tanh(∂) has precisely a co-product of type (23). But
since numerators and denominators no longer commute, we should expect
the inputs f]] and f[]]] to differ, in a way that remains to elucidate.

For the moment, let us observe that, of the latter two expansions, F]] =
C]]D−1

]] is the more useful, since it allows us to express the operatorial medi-
ator F]] directly in terms of the germ f]] := F]].z. But the other expansion,
namely F]] = D−1

[]]] C[]]], has its merits too, since it relies on a germ f[]]] which,
as we shall see in a moment, is ‘closer’ than f]] to the original f and, unlike
f]], converges whenever f does. It is also more economical than the first

expansion F]] = F−F−1

F+F−1 , in the sense of concentrating all the odd or even
terms respectively in the numerator and denominator.

Relating f], f]] to f .

Equating the first two expansions of the mediators, we get

(F + 1) C]D]−1 = F − 1 an (F 2 + 1) C]D]−1 = F 2 − 1

Letting these operators act on z, we find the sought-for relations

f](f(z)) + f](z) = f(z)− z (28)

f]](f(z)) + f]](f
−1(z)) = f(z)− f−1(z) (29)

Relating f[]], f[]]] to f .

Inverting the definition-based expansion of the mediators, we get successively

F − 1 = (1− (1/2)F])
−1 F] and F 2 − 1 = 2 (1− F]])−1 F]]

(1− (1/2)F]) (F − 1) = F] and (1− F]]) (F 2 − 1) = 2F]]

(1−D−1
[]] C[]]) (F − 1) = 2D−1

[]] C[]] and (1−D−1
[]]]C[]]]) (F 2 − 1) = 2D−1

[]]]C[]]]
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(D[]] − C[]])F = (D[]] + C[]]) and (D[]]] − C[]]])F
2 = (D[]]] + C[]]])

Finally, letting the operators act on z, we get:

f(z − 1

2
f[]]) = z +

1

2
f[]] (30)

f ◦2(z − f[]]]) = z + f[]]] (31)

This implies, first, that the germs z 7→ z − 1
2
f[]] and z 7→ z − f[]]] are

respectively reciprocal to the germs z 7→ 1
2
(z + f(z)) and z 7→ 1

2
(z + f ◦2(z))

and, second, that f[]] and f[]]] are convergent if and only if f is.

Relating f], f]] and f[]], f[]]].

Post-composing the identies (28)-(29) by the germs z − (1/2)f[]](z) or z −
f[]]](z) and using (30)-(31) to eliminate f , we find:

2 f[]](z) = f](z +
1

2
f[]](z)) + f](z −

1

2
f[]](z)) (32)

2 f[]]](z) = f]](z + f[]]](z)) + f]](z − f[]]](z)) (33)

After some non-commutative manipulations on differential operators and
their generating series, this yields:

f[]] = f] +
∑
1≤s

∑
1≤mi

(
∑

2mi)! 4−
∑
mi

s! (1−s+
∑

2mi)!
f

1−s+2
∑
mi

]

∏
1≤i≤s

f
(2mi)
] (34)

f[]]] = f]] +
∑
1≤s

∑
1≤mi

(
∑

2mi)!

s! (1−s+
∑

2mi)!
f

1−s+2
∑
mi

]]

∏
1≤i≤s

f
(2mi)
]] (35)

1.4 Brief reminder about resurgent functions.

We will have to be content here with a very sketchy presentation. The algebra
of resurgent fonctions admits three different realisations or models:
(i) the formal model, consisting of formal power series ϕ̃(z) in z−1 or of more
general transseries;8

(ii) the convolutive model, consisting of microfunctions9 at ζ = 0, whose

8The tilda stands for ‘formal’, but will be omitted in contexts where everything is
formal.

9i.e. minor-major pairs (ϕ̂(ζ), ϕ̌(ζ)). The majors are defined up to regular germs at
the origin, and the minors are related to them under 2πi ϕ̂(ζ) ≡ ϕ̌(ζ e−πi) − ϕ̌(ζ e+πi)
for ζ ∼ 0. In the present paper, we shall almost entirely dispense with majors, since we
shall mostly be dealing with so-called integrable microfunctions, whose minors carry the
complete information.
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majors ϕ̌(ζ) are defined at the origin only and constraint-free but whose
minors ϕ̂(ζ) have the property of endless continuation10 and exponential
growth;11

(iii) the geometric model(s), consisting of analytic germs ϕθ(z) defined on
sectorial neighbourhoods of ∞ of bisectrix arg(z−1) = θ and aperture at
least π.

The natural algebra product in the z-models (i) and (iii) is of course
multiplication. In the ζ-model (ii) it is convolution, defined first locally12 by

(ϕ̂1 ∗ ϕ̂2)(ζ) :=

∫ ζ

0

ϕ̂1(ζ1) ϕ̂2(ζ − ζ1) dζ1 (ζ ∼ 0) (36)

and then in the large by analytic continuation.
In practice, one starts with elements ϕ̃ of model (i) obtained as formal

solutions of differential or functional equations, and the aim is to resum them,
i.e. to go to model (iii). Generally speaking, this is possible only over the
detour through model (ii), with the formal Borel tranform B

z−σ 7→ ζσ−1

Γ(σ)
; (∂σ)nz−σ 7→ (∂σ)n

ζσ−1

Γ(σ)
; etc (37)

taking us from (i) to (ii), and the polarised Laplace transform Lθ

ϕθ(z) =

∫
arg(ζ)=θ

ϕ̂(ζ) e−ζz dζ (38)

taking us from (ii) to (iii).
The most outstanding feature of the resurgence algebras is the existence

on them of a rich array of so-called alien operators ∆ω and ∆±ω , with indices ω

running through C• := C̃− {0}. These operators act on all three models13,
but are first defined in the convolutive model, where they have the effect
of measuring the singularities of the (often highly ramified) minors ϕ̂ at or
rather over ω. Here is how they act:

(∆̂ωϕ̂)(ζ) :=
∑
ε1,...,εr

εr
2πi

λε1,...,εr−1 ϕ̂
( ε1
ω1

,...,
,...,

εr
ωr

)
(ω + ζ) (39)

(∆̂±ω ϕ̂)(ζ) :=
∑
ε1,...,εr

± εr λ±ε1,...,εr−1
ϕ̂

( ε1
ω1

,...,
,...,

εr
ωr

)
(ω + ζ) (40)

10laterally along any finite and finitely punctured broken lines.
11i.e. at most exponential, along infinite but finitely punctured broken lines, with a

suitable uniformity condition.
12When the minors ϕ̂ are not integrable at the origin, one must modify the definition

and draw in the majors ϕ̌. Convolution is then defined on loop integrals that avoid the
origin.

13with the same symbols doing service in all three, since no confusion is possible.

11



with ωr = ω, with signs εj ∈ {+,−}, with weights λε, λ
+
ε , λ−ε defined by

λε1,...,εr−1 :=
p! q!

r!
with p :=

∑
εi=+

1 , q :=
∑
εi=−

1 (41)

λεε1,...,εr−1
:= 1 if ε1 = · · · = εr−1 = ε (42)

:= 0 otherwise

and with ϕ̂
( ε1
ω1

,...,
,...,

ε1
εr

)
(ω+ ζ) denoting the analytic continuation of ϕ̂ from ζ to

ω + ζ under right (resp. left) circumvention of each intervening singularity
ωj if εj = + (resp. εj = −). We start of course with a point ζ close enough
to 0 on the axis arg(ζ) = arg(ω), and extend the definition in the large

by analytic continuation. The operators ∆̂ω and their pull-backs ∆ω in the
formal model are derivations. This means that in the convolutive or formal
models the Leibniz identities hold:

∆̂ω(ϕ̂1 ∗ ϕ̂2) = ∆̂ω(ϕ̂1) ∗ ϕ̂2 + ϕ̂1 ∗ ∆̂ω(ϕ̂2) (43)

∆ω(ϕ̃1 . ϕ̃2) = ∆ω(ϕ̃1) . ϕ̃2 + ϕ̃1 . ∆ω(ϕ̃2) (44)

When working in any one of the multiplicative models (formal or geometric),
it is often convenient to phase-shift the alien operators, and to set:

∆∆ω := e−ωz∆ω ( [∂z,∆∆ω] ≡ 0 ) (45)

∆∆±ω := e−ωz∆±ω ( [∂z,∆∆
±
ω ] ≡ 0 ) (46)

The gain here is that the new operators commute with ∂z. These phase-
shifted operators are also the natural ingredients of the axial operators DD

θ

and DD±
θ

:

DD
θ

=
∑

arg(ω)=θ

∆∆ω (47)

DD±
θ

= 1 +
∑

arg(ω)=θ

∆∆±ω = exp
(
± 2πiDD

θ

)
(48)

which are the key to the axis-crossing identities :

ϕ
θ−ε = (DD+

θ
ϕ)

θ+ε
; (Φ .DD+

θ
)
θ−ε = (DD+

θ
. Φ )

θ+ε
(49)

ϕ
θ+ε

= (DD−
θ
ϕ)

θ−ε ; (Φ .DD−
θ

)
θ−ε = (DD−

θ
. Φ )

θ+ε
(50)

that connect two sectorial germs ϕθ−ε and ϕθ+ε relative to Laplace integration
right and left of any given singularity-carrying axis θ in the ζ-plane.14

14In (43), (44), ϕ denotes any resurgent function and Φ any resurgent operator (such as
multiplication or postcomposition by a resurgent function etc).
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1.5 Alien derivations as a tool for uniformisation.

Convolution domains.

A Riemann surface R is said to be unobstructed if, for any point ζ on it, the
set Sζ of all singular points seen or half-seen from ζ has a discrete projection
Ṡζ on C.

A ramified analytic germ ϕ̂(ζ) at the origin 0• of C• is said to be end-
lessly continuable if under analytic continuation it extends to an unobstructed
Riemann surface.

Endlessly continuable germs are stable under convolution.
A convolution domain is an unobstructed Riemann surface R for which

the space Hol(R) of all holomorphic functions on R is closed under convo-
lution.

Any unobstructed Riemann surface R can, in a unique way, through the
adjunction of a suitable set of singular points, be turned into a minimally
ramified convolution domain R – the so-called convolution completion, or
stabilisation, of R.

Fine convolution domains.

We shall introduce a notion of fine Riemann surface and fine convolution
domain which is hardly restrictive (all resurgent functions encountered in
practice have Borel transforms that naturally extend to fine surfaces) and
has the merit of greatly facilitating the proofs of all the statements to follow
in this section.15

For any ρ > 0 and θ1 < θ2 in R, let D±ρ,θ1,θ2 denote the sets of all alien
operators ∆ of the form:

D+
ρ,θ1,θ2

:= {∆ = ∆+
ωr . . .∆

+
ω1

;
∑
|ωi| ≤ ρ , θ1 ≤ argωr ≤ · · · ≤ argω1 ≤ θ2}

D−ρ,θ1,θ2 := {∆ = ∆−ωr . . .∆
−
ω1

;
∑
|ωi| ≤ ρ , θ1 ≤ argω1 ≤ · · · ≤ argωr ≤ θ2}

Note that the number r of factors in the decomposition of ∆ is not bounded.
Let us say that an (unobstructed) Riemann surface R is fine if, for any

(ρ, θ1, θ2), the number of operators ∆ in D±ρ,θ1,θ2 such that ∆.Hol(R) 6= ∅ is
finite. This amounts to an extremely weak condition on the distribution of
R’s ramification points.

Any fine Riemann surface R can, in a unique way, through the adjunction
of a suitable set of singular points, be turned into a minimally ramified fine
convolution domain R – the completion, or stabilisation, of R.

15Let us stress that fineness is by no means necessary for the statements in question to
hold. It simply makes life easier and costs nothing.
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Atomic alien operators.

Any ramification point η of a fine convolution domain R is connected with
the origin 0• by a well-defined taut broken line Γη or TT-path, which in
turn can be uniquely represented by a sequence (ω1, . . . , ωr) whose elements
ωi ∈ C• represent the successive intervals of Γη. Inequalities of the form

0 < π(2n− 1) < argωi+1 − argωi < π(2n+ 1)

resp. −π(2n+ 1) < argωi+1 − argωi < −π(2n− 1) < 0

signal that Γη makes n positive (resp. negative) turns round its ith summit.
Between any two aligned16 ωi, ωi+1 we must insert a sign εi ∈ {+,−} to
indicate whether Γη circumvents the ith ‘summit’ to the right or to the left.

To each ramification point η of a fine convolution domain R there also
correspond two ‘ramified shifts’ S+

η , S−η and an alien operator D̂η.
Each S±η is defined locally, near 0•. In projection on C, it amounts to an

ordinary η̇-shift but it takes 0• to the end-point of Γη in such as way as to
map the small intervals issuing from 0• in the direction argω ∓ π onto the
small interval of same length that ends the broken line Γη.

The atomic alien operators D̂η (so-called because they measure the sin-
gularity at the end-point of Γη rather than a superposition of singularities, as
the alien derivations do) are then defined by:

D̂η : Hol(R)→ Hol(Rη)

D̂η ϕ̂(ζ) := ϕ̂(S+
η (ζ))− ϕ̂(S−η (ζ)) (51)

first for ζ near 0•, and then continued in the large, on a fine convolution
domain Rη that may, and often is, more (never less) ramified than R.

There is a natural order ≺ on the ramification set R ram of any fine con-
volution domain R, along with a natural co-product on its atomic operators:

D̂η(ϕ̂1 ∗ ϕ̂2) ≡
∑

η1,η2≺η

Hη1,η2
η

(
R P

η1,η2
η D̂η1ϕ̂1

)
∗
(
R Q

η1,η2
η D̂η2ϕ̂2

)
(52)

(i) with R denoting the one-turn rotation operator round 0•,
(ii) with a sum

∑
η1,η2≺η that is always finite,

(iii) with integers Hη1,η2
η , P η1,η2

η , Qη1,η2
η that reflect the self-intersection pattern

of the broken line Γη.
The structure tensor Hη1,η2

η turns C(R ram) into a commutative algebra
with its own discretised convolution

(h1 ∗ h2)(η) :=
∑

η1,η2≺η

Hη1,η2
η h1(η1)h2(η2)

(
h1, h2 ∈ C(R ram)

)
(53)

16i.e. when argωi = argωi+1
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The convolution algebra C(R ram) may be viewed as the discrete scaffolding
of the convolution algebra Hol(R). In fact, C(R ram) is isomorphic to the
quotient17 Holpolar(R)/Hol subpolar(R).

Uniformisation of convolution products or powers.

Similar formulae (of which there exist several variants) hold for ordinary
points ζ of R.

The following variant involves the standard alien derivations and has the
advantage of uniqueness:

ϕ̂(ζ) ≡
∑
s

Kζ
ζs
ϕ̂(ζs) +

∑
r

∑
ωi

∑
s

(2πi)rKζ
ζs,ω

∆̂ωr . . . ∆̂ω1ϕ̂(ζs,ω) (54)

with a finite number of points ζs (resp. ζs,ω) located over ζ̇ (resp. ζ̇ −
∑
ω̇i)

but lying within the holomorphy star of ϕ̂ (resp. ∆̂ωr . . . ∆̂ω1 ϕ̂), and with
entire (resp. rational) structure coefficients Kζ

ζs
(resp. Kζ

ζs,ω
).

Here is a second variant that relies on the operators ∆̂+
ω and ∆̂−ω of (40).

It is not unique, but can always be adjusted so as to involve only entire
coefficients Hζ

ζs
and Hζ

ζs,ω,ε
.

ϕ̂(ζ) ≡
∑
s

Hζ
ζs
ϕ̂(ζs) +

∑
r

∑
ωi,εi

∑
s

Hζ
ζs,ω,ε

∆̂εr
ωr . . . ∆̂

ε1
ω1
ϕ̂(ζs,ω,ε) (55)

Both variants reduce the evaluation of any convolution product or power,
at any given point ζ of R, on any Riemann sheet, however distant from 0•, to
a finite number of convolution integrals to be calculated on straight intervals
joining 0• to points ζi or ζi,ω, ζi,ω,ε that lie on the main Riemann sheet.

For instance, if we apply (54) to the evaluation of the convolution power
ϕ̂ ∗n(ζ), for any ζ ∈ R, any ϕ̂ ∈ Hol(R), and n→∞, we find that everything
reduces to finitely many terms of the form

∆̂ω ϕ̂
∗n(ζs,ω) =

1≤k≤r∑
ω∈sha(ω1,...,ωk)

n!

k! (n−k)!

(
ϕ̂ ∗(n−k) ∗ ∆̂ω1ϕ̂ ∗ . . . ∆̂ωkϕ̂

)
(ζs,ω) (56)

with s and k bounded, so that in the end the asymptotics is dominated by
trite convolution integrals ϕ̂ ∗(n−k)(ζs,ω) evaluated on simple intervals (0•, ζs,ω]
safely located within the main Riemann sheet (or its boundary).

17A function ϕ̂ in Hol(R) is said to be of polar resp. subpolar type if it behaves like
h(η)

2πi (ζ̇−η̇) + o( 1
(ζ̇−η̇) ) resp. o( 1

(ζ̇−η̇) ) in the ramified vicinity of any given η ∈ Rram . The

space Holpolar (R) is clearly closed under convolution, with Hol subpolar (R) as an ideal.
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This uniformising virtue of alien derivations (by which we mean their
power to reduce complicated operations on ramified, multivalued functions to
simple operations on their, and their alien derivatives’, uniform restrictions
to the holomorphy star) is one of the main justifications (though not the
topmost) of alien calculus.

Remark: Alongside the TT-paths18 that connect any ζ ∈ R to the origin
0•, we must also consider two classes of more convolution-friendly, but also
more complex paths: the wildly contorted SS-paths19 and the even more
intricate ZZ-paths20. The SS-paths are useful for establishing the stability
under convolution of endless continuability, and the ZZ-paths for illustrating
the formulae (52)-(57).

Where these paths fail miserably, though, is in providing decent estimates
for convolution products or powers on far-flung Riemann sheets. For the
convolution powers21, SS-path considerations lead to asymptotically correct
estimates ∣∣ϕ̂∗n(ζ)

∣∣ ≤ c0(ζ)
c1(ζ)n

n!
(c0(ζ), c1(ζ) > 0)

However, for points ζ ∈ R whose TT-path has k summits, the bounds deriv-
able in this way (especially c0) become hopelessly suboptimal as k increases.
Even for values as small as k = 20, c0 can fall off the mark by something like
a factor 1010.

The convolution domains R := C̃− Ω with Ω a lattice.

For any discrete lattice Ω = τ1Z or τ1Z + τ2Z (τi ∈ C∗,=(τ1/τ2) 6= 0), the

surface R := C̃− Ω is an – obviously fine – convolution domain with a par-
ticularly simple structure: its ramified shifts S±η form a group which contains
the one-turn rotation R and is generated by just two elements (whether Ω is
one- or two-dimensional!). There is even an elementary algorithm for finding
all the ≺-antecedents of any ramification point η ∈ R ram , as well as all the
structure coefficients featuring in (52) and (54). This applies in particular

for the surface R := ˜C−2πiZ, which is the natural surface of practically all
the resurgent functions to appear in this investigation.

18“taut broken lines”.
19“self-symmetrical and self-symmetrically shrinkable paths”.
20“self-symmetrical, self-symmetrically shrinkable, and self-replicating paths”.
21of a function ϕ̂(ζ) regular at 0•.
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1.6 Medial operators.

Their definition resembles that of the alien derivations

(∆̂]
ωϕ̂)(ζ) :=

∑
ε1,...,εr

εr
2πi

λ]ε1,...,εr−1
ϕ̂

( ε1
ω1

,...,
,...,

εr
ωr

)
(ω + ζ) (57)

(∆̂]]
ω ϕ̂)(ζ) :=

∑
ε1,...,εr

εr
2πi

λ]]ε1,...,εr−1
ϕ̂

( ε1
ω1

,...,
,...,

εr
ωr

)
(ω + ζ) (58)

with ωr = ω and the usual signs εj ∈ {+,−} but with simpler weights λ]ε,
λ]]ε , still independent of the intervals ωi:

λ]ε1,...,εr−1
= λ

[p,q]
] := 2−p−q = 21−r (59)

λ]]ε1,...,εr−1
= λ

[p,q]
]] := %(p− q) 2−int(

p+q+1
2

) (60)

As usual, p and q denote the numbers of + and − signs in {ε1, . . . , εr−1}. As
for the elementary factor %(p − q) ≡ %(q − p), it assumes only three values,
0, 1,−1, and displays a remarkable 8-periodicity :

%(k + 8) ≡ %(k) , % : [0, 1, 2, 3, 4, 5, 6, 7] 7→ [1, 1, 0,−1,−1,−1, 0, 1] (61)

Like the earlier weights λε in (41) attached to the standard alien deriva-
tions, the new weights λ]ε, λ

]]
ε add up to 1:∑

εi ∈{+,−}

λε1,...,εr−1 =
∑

εi ∈{+,−}

λ]ε1,...,εr−1
=

∑
εi ∈{+,−}

λ]]ε1,...,εr−1
= 1 (∀ r)

The simplest way to express the relations between the new operators and the
classical ones is via the generating series:

DD] =
∑

arg(ω)=0

∆∆]
ω , DD]] =

∑
arg(ω)=0

∆∆]]
ω (62)

The relations read:

DD] =
1

π
tan(πDD) =

1

πi

DD+ − 1

DD+ + 1
=

1

πi

1−DD−

1 +DD−
(63)

DD]] =
1

2π
tan(2πDD) =

1

2πi

DD+ −DD−

DD+ +DD−
(64)

As pointed out at the outset, the new operators are neither derivations nor
automorphisms. They possess co-products sui generis which, once again, are
best expressed in terms of the generating series:

DD] 7→ DD] ⊗ 1 + 1⊗DD]+
∑
1≤n

(
π
)2n
[
(DD])n+1 ⊗ (DD])n+(DD])n ⊗ (DD])n+1

]
DD]] 7→ DD]] ⊗ 1+1⊗DD]]+

∑
1≤n

(
2π
)2n
[
(DD]])n+1 ⊗ (DD]])n+(DD]])n ⊗ (DD]])n+1

]
17



Short proofs.

The quickest way to prove all the above relations at one go is to start with
the axis arg ζ = 0 punctured over N. Denoting σ and τ the non-commuting
“shifts” that take ζ small (with arg ζ = 0) to ζ + 1 after circumventing the
point at 1 respectively to the right or to the left (and then extending the
action of σ and τ in the large), we find that

DD+ = (1− τ) (1− σ)−1 , DD− = (1− σ) (1− τ)−1 (65)

Next, proceeding backwards, we define ∆∆]
ω,∆∆

]]
ω via (62) in terms of DD],DD]];

then DD],DD]] via (63)-(64) in terms of DD±; then DD± via (65) in terms
of the elementary shits σ, τ . After some rather easy calculations in the
non-commutative variables σ, τ , we find the expressions (59),(60) for the
weights λ]ω, λ

]]
ω , though at first only for the case when all {ω1, ω2, ω3 . . . } =

{1, 2, 3 . . . }. But we clearly have∑
εi0=±

λ]ε1,...,εr−1
= λ]ε1,...,[εi0 ],...,εr−1

,
∑
εi0=±

λ]]ε1,...,εr−1
= λ]]ε1,...,[εi0 ],...,εr−1

(∀i0 < r)

with the notation [εi0 ] signaling the omission of εi0 . It follows that the weights
λ]•, λ

]]
• retain their expression (59),(60) for all sequences {ωi} over N and, in

fact, over R+.

1.7 Resurgence of the iterators and generators.

The iterator f ∗ and ∗f , characterised by the relations (11)-(12), and the
(infinitesimal) generator f∗, characterised by the relation (8), verify the fol-
lowing resurgence equations

∆ω
∗f(z) = +Aω ∂z

∗f(z) (∀ω ∈ Ω) (66)

∆ω f
∗(z) = −Aω e−ω (f∗(z)−z) (∀ω ∈ Ω) (67)

∆ω f∗(z) = −ω Aω f∗(z) e−ω (f∗(z)−z) (68)

with the very same scalar coefficients Aω as in (15). For all values of ω
not in Ω, the alien derivatives are ≡ 0. If we now introduce the differential
operators:

Aω := Aω e
−ωz ∂z (∀ω ∈ Ω) (69)
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the resurgence equations assume the form of the Bridge equation:22

∆∆ω
∗f(z) = +Aω

∗f(z) (70)

∆∆ω f
∗(z) = −(Aω . z) ◦ f ∗(z) (71)

When expressed in terms of the subsitution operators F ∗ and ∗F associated
with ∗f, f ∗, the Bridge equation takes an even more pleasant form[

∆∆ω, F
∗] = −F ∗ Aω (F ∗ ϕ := ϕ ◦ f ∗) (72)[

∆∆ω,
∗F
]

= +Aω
∗F ( ∗F ϕ := ϕ ◦∗f) (73)

Likewise, with the (operatorial) generator F∗ := f∗ ∂ = F ∗.∂.F ∗, we get:

[∆∆ω, F∗] = F ∗ [∂,Aω] ∗F (74)

But whichever variant we may care to consider, the commutation identities[
∆∆ω1 ,Aω2

]
= 0 make it easy to iterate the above resurgence equations. Thus

from (70) we straightaway derive

∆∆ωr . . .∆∆ω1

∗f(z) = Aω1 . . .Aωr
∗f(z) (order reversion!) (75)

As a consequence, the effect on ∗f and f ∗ of the alien operators ∆∆±ω and of
the axial operators DDθ is easy to calculate. It is best written in terms of the
substitution operators ∗F and F ∗ associated with ∗f, f ∗, and results in the
so-called axial Bridge equation:

Aθ = DDθ − ∗F DDθ F ∗ (76)

A+
θ = DD+

θ
∗F DD−θ F ∗ = ∗F DD−θ F ∗ DD+

θ (77)

A−θ = DD−θ
∗F DD+

θ F ∗ = ∗F DD+
θ F ∗ DD−θ (78)

The axial Bridge equation23 involves differential (resp. substitution) opera-
tors Aθ (resp. A±θ ):

Aθ =
∑

arg(ω)=θ

Aω (79)

A±
θ

= 1 +
∑

arg(ω)=θ

A±ω = exp
(
± 2πiAθ

)
(80)

22so-called because it relates ordinary and alien derivatives of one and the same resurgent
function. The Bridge equation has in fact much wider applications, and extends, in one
form or another, to practically all resonant local objects, of which identity-tangent diffeos
are but a special case. An entire book [E3] has been devoted to the subject.

23We say Bridge equation in the singular since (77) and (78) are merely exponential
variants of (76). The commutation of the three automorphisms A±θ , DD±θ , ∗F DD∓θ F ∗ is
itself a consequence of the commutation of the three derivations Aθ, DDθ, ∗F DDθ F ∗.
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that are simply related to the differential (resp. substitution) operators Π∗
(resp. Π±) associated with the connectors of §1.1:

Πno := A+
−π

2
; Πso := A−+π

2
(81)

Π−1
no := A−−π

2
; Π−1

so := A+
+π

2
(82)

Π∗no := +2πiA−π
2

; Π∗so := −2πiA+π
2

(83)

The first identity (81) results from applying the direct axis-crossing formula
(49) with θ = −π

2
and ϕ = ∗f or Φ = ∗F , since ∗f

θ±ε = ∗f±. The second identity
(81) results from applying the inverse axis-crossing formula (50) with θ = +π

2

and ϕ = ∗f or Φ = ∗F , since in that case ∗f
θ±ε = ∗f∓ (inversion!). The identities

(82) and (82) immediately follow.

Direct access to the generators and mediators of π.

Consider now the mediators π], π]] of the connector π, with their north-
ern/southern components and their formal Fourier expansions. They run
parallel to those (see (68)) of the infinitesimal generator π∗:

π],no(z) =+2πi
∑
ω∈Ω−

A]ω e
−ω z ; π],so(z) =−2πi

∑
ω∈Ω+

A]ω e
−ω z (84)

π]],no(z) =+2πi
∑
ω∈Ω−

A]]ω e
−ω z ; π]],so(z) =−2πi

∑
ω∈Ω+

A]]ω e
−ω z (85)

Based on (67) and (57)-(58), we see that we can access the Fourier coefficients
of π∗, π], π]], or indeed those of the general affiliate π♦, directly from one and
the same resurgent function, namely f ∗:

∆∆ω f
∗ = −Aω e−ω f

∗
, ∆∆]

ω f
∗ = −A]ω e−ω f

∗
, ∆∆]]

ω f
∗ = −A]]ω e−ω f

∗
(86)

without bothering about the corresponding affiliates of f , i.e. f∗, f], f]], f♦.
Though it is true, as we shall aver in the next section, that f], f]] etc verify
their own interesting resurgence equations with a mixture of invariant and
non-invariant resurgence constants from which, after some sifting, all the
Fourier coeffients A]ω, A

]]
ω etc can be reconstructed, the fact remains that the

f -affiliates have no particular closeness to the corresponding π-affiliates.

1.8 Resurgence of the mediators.

The relations (28)-(29), which may be viewed as perturbed difference equa-
tions, determine f] and f]] in terms of f . A standard argument shows that

20



f](z) and f]](z) are resurgent in z, with first-order alien derivatives verifying
the homogeneous equation:

(∆∆ω0f]) ◦ f + ∆∆ω0f] = 0 (∀ω0 ∈ πiZ− 2πiZ) (87)

(∆∆ω0f]]) ◦ f ◦2 + ∆∆ω0f]] = 0 (∀ω0 ∈
1

2
πiZ− πiZ) (88)

whose general solution are of the form

∆∆ω0 f] = Aω0
e−ω0 f∗ (∀ω0 ∈ πiZ− 2πiZ) (89)

∆∆ω0 f]] = A
ω0
e−ω0 f∗ (∀ω0 ∈

1

2
πiZ− πiZ) (90)

with resurgent constants Aω0
and A

ω0
unrelated to the invariants Aω(f). In

fact, Aω0
and A

ω0
are not invariant under analytic changes of z-coordinates

and, unlike the invariants Aω(f), they involve coloured multizetas as their
transcendental ingredients, as we shall see in §3.6. But the mediators’ alien
derivatives of second (and higher) order obviously depend only on the iterator
f ∗ and involve no new resurgent constants other than the invariants Aω:

∆∆ω1 ∆∆ω0 f] = ω0Aω0
Aω1 e

−(ω0+ω1) f∗ (∀ω1 ∈ 2πiZ) (91)

∆∆ω1 ∆∆ω0 f]] = ω0Aω0
Aω1 e

−(ω0+ω1) f∗ (∀ω1 ∈ 2πiZ) (92)

Both systems still hold if we replace f](z) := F].z and f]](z) := F]].z by
Φ](z) := F].φ(z) and Φ]](z) := F]].φ(z) for any convergent φ, except that
the first resurgent constants Aω0

and A
ω0

now depend on φ (while the Aω1

depend on f alone). It would thus be possible to recover the invariants of f
from any such Φ] or Φ]], barring the highly exceptional (but not impossible)
case when all initial resurgent constants A

ω0
or A

ω0
vanish.

This state of affairs is fairly typical for the general affiliates: whenever
γ is meromorphic with actual poles, the affiliate f♦(z) := γ(F −1) . z of f
verifies resurgent equations that involve, alongside the invariants Aω of f ,
non-invariant constants like Aω0

and A
ω0

.
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1.9 Invariants, connectors, collectors.

Let us survey in one table some of the main objects introduced so far or yet
to come.

diffeo collectors connectors invariants

g]
3
′
]−→ p]

3
′′
]−→ sp]

3
′′′
]−→ π] = (π]no,π] so)

3
′′′′
]−→ {A]ω}

↑2] ↓4] ↓5] no ↓5] so ↓6]

f = l ◦ g 1
′

−→ p±
1
′′

−→ sp±
1
′′′

−→ π± = (π±no,π
±
so)

1
′′′′

−→ {A±ω }

↓2∗ ↑4∗ ↑5∗ no ↑5∗ so ↑6∗

g∗
3
′
∗−→ p∗

3
′′
∗−→ sp∗

3
′′′
∗−→ π∗ = (π∗no,π∗so)

3
′′′′
∗−→ {Aω}

The middle row carries the objects of direct interest to us, while the upper
and lower rows carry their two main affiliates (the first mediator and the
infinitesimal generator), which are more in the nature of auxiliary constructs.

The first, third and fourth columns carry objects already familiar to us.
The second column, however, carries novel, highly interesting objects, the
collectors, which are very close in a sense to the connectors, yet should be,
for the sake of conceptual cleanness, clearly held apart. The collectors may
assume four distinct forms:
(i) formal series of multitangents, noted p;
(ii) formal series of monotangents, also noted p;
(iii) formal Laurent series of z−1, noted lp
(iv) the singular part, noted sp, of these Laurent series.

One goes from (i) to (ii) by multitangent reduction as in §2.3 ; and from
(ii) to (iv) by the change Tes1 7→ z−s1 .

In any of these incarnations, the collectors are but a step removed from
the invariants. Yet they are not invariant themselves: they depend on the
z-chart in which the diffeo f is taken. Another difference is that whereas the
collectors π± are convergent Fourier series, the collectors p± are condemned
to remain formal power series in the countably many coefficients fn of f .
But this is perfectly all right, since the function of the collectors is precisely
to carry, in conveniently compact form, all the information about the f -
dependence of the connector π and, ultimately, of the invariants Aω.

One last remark is in order here: although we are basically interested
in the objects of the middle row, and more specifically in getting from f to
the invariants {A±ω }, we shall see that the most advantageous route is not
the straight path through the arrows 1, 1′, 1′′, 1′′′′, but any of the roundabout
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paths that start with 2∗ or 2]: these indirect routes are much more economical
in terms of calculations and also more respectful of the underlying symmetries
and parities.

1.10 The reverse problem: canonical synthesis.

It can be shown that any convergent pair π = (πno,πso) is the connector
pair of some standard diffeo f = l ◦ g. This raises the problem of synthesis :
how to reconstitute a germ f with a prescribed set of (admissible) invariants?
And how to select a canonical f among all possible choices? A semi-canonical
synthesis was sketched in [E2] and a fully canonical one was constructed in
[E6]. The latter depends on a single parameter c whose real part must be
chosen large enough.24 The construction produces a canonical fc := ∗fc◦l◦f ∗c
from its iterator f ∗c , which in turn is explicitly given, in operator form, by
the formula

F ∗c := 1 +
∑
r

∑
ωi∈Ω

(−1)r Ueω1,ω2,...,ωr
c (z) Aωr . . .Aω2 Aω1 (93)

with a careful re-arrangement of the terms25 necessary to ensure convergence.
The two ingredients in (93) are the invariants Aω taken in operator form (69),
and some special resurgence monomials Ueωc (z) defined by

Ueωc (z) := e||ω||z+c
2||ω̄||z−1

SPA

∫ ∞
0

e−
∑

(ωi ti+c
2ω̄i t

−1
i )

(tr−tr−1)...(t2−t1)(t1−z)
dt1...dtr (94)

where SPA denotes a suitable average of all the 2r−1 possible integration mul-
tipaths that reflect the 2r−1 manners in which the variables tj may circumvent
each other on their way from 0 to ∞.

2 Multitangents and multizetas.

The multitangents and multizetas, being the transcendental ingredient in the
analytical expression of the invariants of identity-tangent diffeos26, deserve
a short excursus. But we must begin with a brief reminder about moulds,
which are the proper tool for handling multi-indexed objects of whatever
description.

24Synthesis cannot be absolute, i.e. parameter-free.
25known as arborification-coarborification.
26and of much else – they are almost coextensive with the whole field of difference

equations.
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2.1 Mould operations and mould symmetries.

Main mould operations.

Moulds are functions of finite sequences ω = (ω1, ..., ωr) of any length r ≥ 0,
noted as right-upper indices and rendered, as mute variables, by a plain bold
dot •. Moulds can be multiplied and composed :

C• = A• ×B• ⇐⇒ Cω =
∑

ω′ω′′=ω

Aω
′
Bω
′′

(95)

C• = A• ◦B• ⇐⇒ Cω =
∑

ω1...ωs=ω

A|ω
1|,...,|ωs|Bω

s

. . . Bω
s

(ωi 6= ∅)

with all the predictable relations, including

(A• ×B•) ◦ C• = (A• ◦ C•)× (B• ◦ C•)

The units for multiplication or composition are the moulds 1•, Id• respec-
tively defined by:

1∅ := 1 ; 1ω1,...,ωr := 0 if r 6= 0 (96)

Id ω1 := 1 ; Id ω1,...,ωr := 0 if r 6= 1 (97)

There exist scores of other mould operations, unary or binary. They are
far too numerous to be assigned distinct symbols. So we resort to short let-
ter combinations instead – even, retroactively, for mould multiplication and
composition, which for clarity are often noted mu(M•

1 ,M
•
2 ) and ko(M•

1 ,M
•
2 )

instead of M•
1 ×M•

2 and M•
1 ◦M•

2 . The corresponding Lie brackets are noted
lu(M•

1 ,M
•
2 ) and lo(M•

1 ,M
•
2 ).

The multiplicative inverse of a mould M• is usually noted muM •. It
exists if and only if M∅ 6= 0.

The composition inverse of a mould M• is usually noted koM •. It exists
if and only if M∅ = 0 and Mω1 6= 0 ∀ω1.

A mould M• is said to be of constant type if Mω depends only on the
length r := r(ω) of the sequence ω, i.e. if Mω := mr. Such moulds may
conveniently be noted m(Id•) with m(t) :=

∑
mr t

r. Multiplying or com-
posing constant-type moulds M• reduces to multiplying or composing the
underlying power series m(t).
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Main mould symmetries.

Most moulds tend to fall into one or the other of four symmetry classes or
types:

M•symmetral (resp. alternal) ⇔
∑

ω∈sha(ω′,ω′′)

Mω = Mω′Mω′′ (resp. 0 )

M•symmetrel (resp. alternel) ⇔
∑

ω∈she(ω′,ω′′)

Mω = Mω′Mω′′ (resp. 0 )

Here, sha(ω′,ω′′) (resp. she(ω′,ω′′)) denotes the set of all sequences ω de-
ducible from ω′ and ω′′ under plain (resp. contracting27 ) shufflings. The
main symmetry-types get exchanged under pre- or post-composition by spe-
cial constant-type moulds. Thus

symmetral• = exp(Id•) ◦ alternal• , alternel• = alternal ◦ log(1•+Id•)

symmetrel• − 1• = elternel• =
(
exp(Id•)−1•

)
◦ alternal• ◦ log(1•+Id•)

Hairsplitting though it may seem, the distinction between symmetrel and
elternel should be maintained throughout: symmetral or symmetrel moulds
are stable under multiplication, whereas alternal and elternel moulds are
stable under composition. Likewise, alternal and alternel moulds are stable
under the Lie bracket lu.

Pre- resp. post-composition of alternal moulds by c−1 tanh(c Id•) resp.
c−1 arctanh(c Id•) (chiefly for c=1, 1/2, i, i/2) generates new symmetry types,
signalled by one or two “o” vowels in their name. Though second in impor-
tance and frequency of occurrence to the four main symmetry types, these
new exotic types are of more than marginal importance, especially in this
investigation. They will repeatedly occur in connection with the mediators,
the medial alien operators, and the multitangents To•,Too•.

Moulds of symmetral, symmetrel, or c-symmetrol 28 type generate three
multiplicative groups and their multiplicative inverses are given by simple
involution formulae:

muS• = anti.S• ◦ (−Id•) if S• ∈ symmetral (98)

muS• = anti.S• ◦ (− Id•

1•+Id•
) if S• ∈ symmetrel (99)

muS• = anti.S• ◦ (−Id•) if S• ∈ c-symmetrol (100)

with anti Sω1,...,ωr := Sωr,...,ω1 .

27i.e. allowing order-compatible, pairwise contactions (ω′i, ω
′′
j ) 7→ ω′i + ω′′j of elements

from the parent sequences.
28i.e. moulds of type symmetral• ◦

(
c−1 tanh(c Id•)

)
or symmetrel• ◦

(
Id•

1•− 1
2 Id•

)
if c = 1

2 .
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Main moulds relevant to our investigation.

symmetrel symmetral symmetrol
ze• za• zo• scalar -valued (multizetas)

S̃e
•
(z) S̃a

•
(z) S̃o

•
(z) resurgent-valued (resur . monomials)

Te•(z) Ta•(z) To•(z) meromorphic-va. (multitangents)

elternel alternal olternol
Tee•(z) Taa•(z) Too•(z) meromorphic-va. (multitangents)

Tee•ω Taa•ω Too•ω scalar -valued (multizeta sums)

2.2 Multizetas.

In this subsection, all indices si are in N∗ and, to preempt divergence, we
(provisionally) assume s1 6= 1 for multizetas and s1, sr 6= 1 for multitangents.

We first consider three multizeta-valued moulds, ze•, za• and zo• :

zes1,...,sr :=
∑

n1>...>nr>0

n−s11 . . . n−srr (101)

zas1,...,sr :=
∑

n1≥...≥nr>0

n−s11 . . . n−srr

∏ 1

rj!
(102)

zos1,...,sr :=
∑

n1≥...≥nr>0

n−s11 . . . n−srr

∏
21−rj (103)

If the monomial
∏
n−sii in (102) or (103) involves t clusters of r1, ..., rt iden-

tical integers ni (1 ≤ t ≤ r), the multiplicity corrections have to be defined
accordingly, as

∏
1/rj! or

∏
21−rj . Clearly

za• = ze• ◦ (exp(Id•)− 1•) (104)

zo• = ze• ◦
( Id•

1• − 1
2

Id•

)
= za• ◦

(
2 arctanh(

1

2
Id•
)

(105)

The moulds ze• and za• are obviously symmetrel and symmetral, while zo•

falls into a subaltern symmetry type: symmetrol (see §5.1).

Fast computation of the multizetas.

Our two guiding concerns here are: replacing the sluggish rate of convergence
of the series (101), (102), (103) by a geometric rate of convergence and making
manifest the multitzetas’ hidden parity properties.

26



Let trunze•n be the truncated multizetas, defined as in (101) but with
summation over n ≥ n1 > . . . nr > 0, and let remze•n be the remainder
multizetas, defined again as in (101) but with summation over +∞ ≥ n1 >
. . . nr > n. Let trunza•n, trunzo•n and remza•n, remzo•n be similarly defined.
The symmetry types are preserved, so too are the relations (104)-(105), and
we have obvious mould factorisations

ze• = remze•n × trunze•n (106)

za• = remza•n × trunza•n (107)

zo• = remzo•n × trunzo•n (108)

Using the elementary difference equations (in n) verified by remze•n, we find
for that mould a divergent but Borel resummable (and resurgent) asymptotic
expansion asremze•n , in decreasing powers of n, of the form:

asremzes1,...,sr =
e∂

1− e∂
n−sr

e∂

1− e∂
n−sr−1 . . .

e∂

1− e∂
n−s1 (109)

=
1

ns1+···+sr−r

∏
1≤i≤r

1

s1 + · · ·+ si − i
+ o
( 1

ns1+···+sr−r

)
Here ∂ := ∂n and each operator e∂

1−e∂ = − ∂−1−1
2
− 1

12
∂+ . . . in (109) acts on

everything standing to its right. The last two asymptotic series factor into:

asremza•n = asremza•n ×
( 2

1• + eI•n

)
(110)

asremzo•n = asremzo•n ×
( I •n

1• − 1
2

I •n

)
(111)

with elementary right factors involving the moulds I•n and K•n = 2
(
1•+eI

•
n
)−1

Is1,...,srn = 0 if r 6= 1 and Is1n := n−s1 , I∅n := 0 (112)

Ks1,...,sr
n = κr n

−(s1+···+sr) with
2

1 + et
=:
∑

κr t
r (113)

and with non elementary but essentially (up to an elementary power of n)
even left factors of the form

asremzas1,...,srn and asremzos1,...,srn ∈ nr−(s1+···+sr) C[[n−2]] (114)

There is, however, a significant difference between the two factorisations.
Whereas we can see, by post-composing (109) by Id• × (1• − Id•)−1, that
asremzo• is given by a simple induction:

asremzos1,...,sr = H(∂)n−srH(∂)n−sr−1 . . . H(∂)n−s1 (115)
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withH(∂) := e∂

1−e∂ +1
2

= −1
2
cotanh(1

2
∂), no such induction holds for asremza•.

That moulds admits only indirect definitions, like:

asremza• = asremzo• ◦
(

2 tanh(
1

2
Id•)

)
(116)

or

asremzas1,...,sr =
[
SAd1,...,dr .

∏
1≤i≤r

n−sii

]
ni=n

(117)

with

SA• :=
(
SE• × (1• + Id•)

)
◦
(

exp(Id•)− 1•
)

(118)

and with the important symmetrel mould SE•:

SEd1,...,dr :=
∏

1≤i≤r

ed1+···+di

1− ed1+···+di
(119)

The first definition (116) results directly from (105) restriced to the remain-
ders. The second definition calls for some explanations. Here, each di denotes
the operator ∂ni that acts on ni alone. On the right-hand side of (117), we
let the operator SAd act on the product

∏
n−sii and then set ni := n. To

establish (117), we observe that (109) may be written

asremzes1,...,sr =
[
SEd1,...,dr .

∏
1≤i≤r

n−sii

]
ni=n

(120)

and we then use the relation asremza• = asremze• ◦ (exp(Id•)−1•) that
results from restricting (104) to the remainders. The interesting point about
(117) is that it relates the parity property (114) of asremza• to the following
parity property of SE•

neg.SE• =
(
SE• × (1• + Id•)

)
◦
(
− Id•

1• + Id•

)
(121)

and to the formula for its multiplicative inverse muSE•:

muSE• = e|•| anti.neg.SE• (122)

with

|(s1, ..., sr)| =
∑

si , neg .Ss1,...,sr := S−s1,...,−sr , anti .Ss1,...,sr := Ssr,...,s1
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Acceleration of the convergence .

When we calculate ze• according to formula (106) by taking the exact value
of the truncated factor trunze•n and calculating the remainder factor remze•n
from its asymptotic expansion (109) cut off at the least term, we get an excel-
lent approximation, with an error that decreases roughly like exp(−2πn) as
the truncation order n increases. The same applies to za• and zo•: the trun-
cated factors trunza• and trunzo• may have more summands than trunze•,
but this is more than offset by the parity simplifications in the remainder
factors remza• and especially remzo•.

We may note that this methods remains valid, and retains its high effi-
ciency, for general complex values of the weights si, even when the inequalities
<(s1 + . . .+si) > i that guarantee the convergence of (101)-(103) no longer
hold.

Quadratic constraints.

The symmetrelity of ze•, or the strictly equivalent symmetries of za• and
zo•, do not exhaust the set of algebraic constraints on the multizetas: there
exists an another set of constraints, of ‘equal strength’, based on a radically
different, essentially discrete29 encoding: see §6.2.

2.3 Multitangents.

The multizetas enter invariant analysis indirectly, as scalars attached to ele-
mentary periodic meromorphic functions – the so-called multitangents.

Here are the main multitangent-valued moulds with their symmetry types:

Te•
1→ Ta•

2→ To• symmetrel
1→ symmetral

2→ symmetrol
↓3 ↓4 ↓5 ↓3 ↓4 ↓5

Tee•
1→ Taa•

2→ Too• elternel
1→ alternal

2→ olternol

The two upper moulds are defined directly by30

Tes1,...,sr(z) :=
∑

n1>...>nr

(n1 + z)−s1 . . . (nr + z)−sr (123)

Tas1,...,sr(z) :=
∑

n1≥...≥nr

(n1 + z)−s1 . . . (nr + z)−sr
∏ 1

ri!
(124)

Tos1,...,sr(z) :=
∑

n1≥...≥nr

(n1 + z)−s1 . . . (nr + z)−sr
∏

21−ri (125)

29Unlike the si-encoding, which of course extends to the complex field.
30With the same rj in (124) as in (102).
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and the two lower moulds are derived from them through a suitable pre-
composition. Thus:

Te• = see (123) Tee• = Te• − 1• (Te-Tee)

Ta• = Te• ◦
(
eId
•−1•

)
Taa• = log(1•+Id•

)
◦Ta•◦

(
eId
•−1•

)
(Ta-Taa)

To• = Te• ◦
(

Id•

1•− 1
2
Id•

)
Too• =

(
Id•

1•+ 1
2
Id•

)
◦ Te• ◦

(
Id•

1•− 1
2
Id•

)
(To-Too)

In the sequel, we shall also require the inverses of Te•,Ta•,To• for mould
multiplication. In view of (98)-(100), we get

muTes1,...,sr(z) =
∑

n1≤...≤nr

(−1)r (n1 + z)−s1 . . . (nr + z)−sr (126)

muTas1,...,sr(z) =
∑

n1≤..≤nr

(−1)r (n1 + z)−s1 . . . (nr + z)−sr
∏ 1

ri!
(127)

muTos1,...,sr(z) =
∑

n1≤...≤nr

(−1)r (n1 + z)−s1 . . . (nr + z)−sr
∏

n1−ri(128)

with an order reversal in the summation rule, and large inequalities in place
of the strict inequalities in (123)-(125).

Parity aspects.

All six types of multitangents obviously verify

Ts1,...,sr(−z) ≡ (−1)s1+···+sr Tsr,...,s1(z) (∀T ∈ {Te,Ta,To etc}) (129)

In the case of Taa• and Too•, however, due to alternality/olternolity we have
an additional relation

Taasr,...,s1(z) ≡ (−1)r−1 Taas1,...,sr(z) (130)

Toosr,...,s1(z) ≡ (−1)r−1 Toos1,...,sr(z) (131)

Combining (129) and (130)-(131) we get the crucial parity separation prop-
erty, which sets Taa•, Too• apart from Te• ≈ Tee•:

Taas1,...,sr(−z) ≡ (−1)1+
∑
di Taas1,...,sr(z) with di := si − 1 (132)

Toos1,...,sr(−z) ≡ (−1)1+
∑
di Toos1,...,sr(z) with di := si − 1 (133)
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Multitangents in terms of monotangents and multizetas.

Multitangents are entirely determined by their polar parts at the entire points
z = n. By calculating, based on the expansion (123), the Laurent expansion
of Tes(z) at such points, and then retaining only the polar part, we find
that Tes(z) can be expressed as a finite sum of elementary monotangents
Tes1(z) =

∑
n1

(n1 + z)−s1 , also known as Eisenstein series. Here is the
formula:31

Tes1,...,sr(z) =

sup(si)∑
σ=2

tezes1,...,srσ Teσ(z) =
r∑
i=1

si∑
σi=2

tezes1,...,sri,σi
Teσi(z) (134)

with

tezes1,...,sri,σi
=

∑
σk=

∑
sk∑

{ σi≤si
sj≤σj(j 6=i)

}

zeσ1,...,σi−1 zeσr,...,σi+1

i−1∏
j=1

(−1)σj
j 6=i∏

1≤j≤r

(−1)sj(σj − 1)!

(σj − sj)!(sj − 1)!

or more symmetrically

tezes1,...,sri,σi
=

∑
σk=

∑
sk∑

{ σi≤si
sj≤σj(j 6=i)

}

zeσ1,...,σi−1 (−1)si−σi vizeσi+1,...,σr

j 6=i∏
1≤j≤r

(σj − 1)!

(σj − sj)!(sj − 1)!

vizes1,...,sr = (−1)s1+...sr zesr,...,s1 (135)

The leading monotangent Te1(z) = π
tan(πz)

generates all others under differ-
entiation, and admits the following northern and southern expansions:

Te1
no(z) = −πi− 2πi

∑
0<n

e+2πi n z if =(z) > 0 (136)

Te1
so(z) = +πi+ 2πi

∑
0<n

e−2πi n z if =(z) < 0 (137)

Since Tes1(z) = (−1)s1−1

(s1−1)!
∂s1−1
z Te1(z), this yields

Tes1(z) =
∑
ω∈Ω∓

Tes1ω e
−ωz on each half -plane ±=(z) > 0 (138)

with

Tes1ω = sign(=(ω)) 2πi
ωs1−1

(s1 − 1)!
and Ω∓ = 2πiZ∓ (139)

31For a more compact expression, based on generating series, see §6.3.
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All the above amounts to a simple procedure for calculating the Fourier
expansions, north and south, of the four classes of multitangents. The three
classes Tee• ≈ Te• , Taa•, Too• shall be of direct concern to us:

Tee•no(z) =
∑
ω∈Ω−

Tee•ω e−ω z ; Tee•so(z) =
∑
ω∈Ω+

Tee•ω e−ω z (140)

Taa•no(z) =
∑
ω∈Ω−

Taa•ω e−ω z ; Taa•so(z) =
∑
ω∈Ω+

Taa•ω e−ω z (141)

Too•no(z) =
∑
ω∈Ω−

Too•ω e−ω z ; Too•so(z) =
∑
ω∈Ω+

Too•ω e−ω z (142)

Localisation constraints.

When dealing with a product of multitangents Tes, we may perform the
operations of reduction (of mutitangents into sums of monotangents) and
symmetrel linearisation in either order. If we then identify the multizeta
superpositions in front of each monotangent, we get to the so-called reduction
constraints:

Tes
1

(z).Tes
2

(z)
reduction−→ (

∑
τs

1

s1
Tes1(z)).(

∑
τs

2

s2
Tes2(z))

↓linearisation ↓linearisation∑
εs

1,s2

s3
Tes

3

(z)
reduction−→

∑
εs

1,s2

s3
τs

3

s3
Tes3(z) =

∑
τs

1

s1
τs

2

s2
εs1,s2s3

Tes3(z)

Here, the εs
i,sj

sk
are elementary, integer-valued coefficients and the expressions

τs
i

sj
are finite, homogeneous sums of multizetas of total weight ‖si‖−si−1.
If, instead of reduction, we use localisation (replacing each multitangent

by its two-sided Laurent expansion at z = 0), we get the so-called localisation
constraints:

Tes
1

(z).Tes
2

(z)
localisation−→ (

∑
θs

1

n1
zn1).(

∑
θs

2

n2
zn2)

↓linearisation ↓linearisation∑
εs

1,s2

s3
Tes

3

(z)
localisation−→

∑
εs

1,s2

s3
θs

3

n3
zn3 =

∑
θs

1

n1
θs

2

n2
zn1+n2

with expressions θs
i

nj
that are again finite, homogeneous sums of multizetas

of total weight ‖si‖+ nj.
Though more numerous, the localisation constraints are actually equiv-

alent to the reduction constraints, but they extend more smoothly to the
ramified case, i.e. to the case of multitangents and multizetas that carry
fractional indices si. In any case, the localisation constraints are not a con-
sequence of the symmetrelness of Te•.
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The multitangents Taa• and Too• in terms of Tee• ≈ Te•.

Applying to Too• a beautiful formula (see (291)-(292) in §5.4) that holds for
multitangents Te•♦ of any symmetry type and gives their explicit linearisation
into sums of symmetrel multitangents Te•, we find:

Toos1,...,sr(z) =
∑
σ∈Sr

∑
2≤t≤r

(I1,...,It)#σ∑
r1+···+rt=r

(−1)q(σ) 21−r Tesσ,r1 ,...,sσ,rt (z) (143)

with sσ,j :=
∑
k∈Ij

sσ(k) and q(σ) := #{k ; k < r, σ−1(k) > σ−1(k+1)})

The summation is over all permutations σ of r elements and, for each σ, over
all partitions of [1, . . . , r] into intervals Ii of ri elements, whereby we demand
that the partition (I1, . . . , Ir) be ‘orthogonal’ to σ, i.e. such that
(i) on any given Ij the permutation σ assumes no two consecutive values
(ii) σ increases on each interval Ij.
In other words, we should have {k, k + 1} ∈ Ij ⇒ {σ(k + 1) − σ(k) ≥ 2}.
The orthogonality condition proper is (i). The condition (ii) is there simply
to ensure that any given summand Tesσ,r1 ,...,sσ,rt is counted only once. Lastly,
q(σ) measures the incompatibility of the natural order < on [1, . . . , r] with the
σ-induced order {i <σ j} ⇔ {σ(i) < σ(j)}. Indeed, if j is not <σ-maximal
and j+ denotes the <σ-successor of j, we have q(σ) = #{j ; j > j+}.

When applied to Taa•, the general formula (291)-(292) produces a similar
expansion, but with more numerous Te•-summands and, in front of each of
them, rational coefficients whose numerators possess no simple multiplicative
structure.32 They may be calculated, though, by applying the universal
formula (292).

Remark: Taa• better than Te• and Too• better than Taa•.
Actually, a systematic comparison would show that, of all types Te•♦ of mul-
titangents that possess the desirable parity property (132)-(133), Taa• and
especially Too• are the simplest choices, not only where Te•-linearisation is
concerned, but in most other respects.

Taa• and Too• even compare favourably with Te•, which in any case does
not verify the parity property(132)-(133). Taa• and Too• may lack a simple
direct definition like that of Te•, but after reduction to monotangents, it is
Taa• and especially Too•, not Te•, that give rise, by and large, to the simpler
expansions33, as shown by the Tables of §9.

32Although, for r small, they seem to be all equal to 1. This, however, is deceptive.
33especially after the symmetral linearisation of the multizetas occuring as scalar coef-

ficients in these expansions.
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2.4 Resurgence monomials.

There exists an alternative, resurgent approach to multitangent reduction.
In the convergent (i.e. s1, sr 6= 1) and non-ramified (i.e. sj ∈ N∗ rather
than Q∗) case, it hardly improves on the above procedure (see §2.3) but
in the general case, especially when we go over to fractional indices sj, the
resurgent approach becomes the more flexible of the two methods and even,
in a sense, the only practical one. For clarity, though, we first keep our two
simplifying assumptions – no divergence34 and no ramification35 – to sketch
this alternative method.

Multizetaic monomials in the formal model.

We shall set about constructing three elementary resurgent-valued moulds 36

S̃e
•
(z), S̃a

•
(z), S̃o

•
(z), beginning with the formal model. We start with the

symmetrel monomials S̃e
s
(z). They are defined by:

S̃e
•
(z) =

e∂z

(1− e∂z)

(
S̃e
•
(z)× J

•
(z)
)

(144)

with an elementary mould J•(z):

J∅(z) := 0 ; Js1(z) := z−s1 ; Js1,...,sr(z) := 0 (∀ r ≥ 2) (145)

Together with the conditions S̃e
∅
(z) = 1 , S̃e

s1,...,sr
(∞) = 0 (∀r ≥ 1) the

induction (144) uniquely defines each S̃e
s
(z) as a constant-free, formal power

series in z−1. The companions monomials S̃a
•
(z) , S̃o

•
(z) are then defined in

the usual way, by post-composition:

S̃a
•
(z) := S̃e

•
(z) ◦

(
exp(Id• − 1•)

)
(146)

S̃o
•
(z) := S̃e

•
(z) ◦

( Id•

1• − 1
2

Id•
)

(147)

Multizetaic monomials in the convolutive model.

In the convolutive model the induction becomes

Ŝe
s1,...,sr

(ζ) =
e−ζ

(1− e−ζ)

∫ ζ

0

Ŝe
s1,...,sr−1

(ζ−ζr)
ζsr−1
r

Γ(sr)
dζr (148)

34i.e. s1 > 1
35i.e. si ∈ N∗
36they must be distinguished from the similar moulds asremze•n, asremza•n, asremzo•n,

because the emphasis here will be on the convolutive model and the associated monics.
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Multizetaic monomials in the sectorial model.

Lastly, in the sectorial or ‘geometric’ models + and − (east and west), corre-
sponding to Laplace integration along the axes arg(ζ) = 0 and arg(ζ) = π,
we get

Ses1,...,sr+ (z) =
∑

0<nr<...<n1

(n1 + z)−s1 . . . (nr + z)−sr (149)

Ses1,...,sr− (z) =
∑

n1≤..≤nr≤0

(−1)r (n1 + z)−s1 . . . (nr + z)−sr (150)

muSes1,...,sr+ (z) =
∑

0<n1≤...≤nr

(−1)r (n1 + z)−s1 . . . (nr + z)−sr (151)

muSes1,...,sr− (z) =
∑

nr<..<n1≤0

(n1 + z)−s1 . . . (nr + z)−sr (152)

For S• = Sa• or So• and multiplicity corrections χ(ri) = 1/ri! or 21−ri , these
expansions become respectively

Ss1,...,sr+ (z) =
∑

0<nr≤...≤n1

(n1 + z)−s1 . . . (nr + z)−srχ(ri) (153)

Ss1,...,sr− (z) =
∑

n1≤..≤nr≤0

(−1)r (n1 + z)−s1 . . . (nr + z)−srχ(ri) (154)

muSs1,...,sr+ (z) =
∑

0<n1≤...≤nr

(−1)r (n1 + z)−s1 . . . (nr + z)−srχ(ri) (155)

muSs1,...,sr− (z) =
∑

nr≤..≤n1≤0

(n1 + z)−s1 . . . (nr + z)−srχ(ri) (156)

Multizetaic monics.

From the structure of the induction (144), one infers directly (without cal-
culation) that our monomials verify resurgence equations of the form37

∆+
ω Se•(z) = Tee•ω × Se•(z) (∀ω ∈ Ω+ = 2πiZ+) (157)

∆−ω Se•(z) = Tee•ω × Se•(z) (∀ω ∈ Ω− = 2πiZ−) (158)

+2πi∆ω Sa•(z) = Taa•ω × Sa•(z) (∀ω ∈ Ω+ = 2πiZ+) (159)

−2πi∆ω Sa•(z) = Taa•ω × Sa•(z) (∀ω ∈ Ω− = 2πiZ−) (160)

+2πi∆]
ω So•(z) = Too•ω × So•(z) (∀ω ∈ Ω+ = 2πiZ+) (161)

−2πi∆]
ω So•(z) = Too•ω × So•(z) (∀ω ∈ Ω− = 2πiZ−) (162)

37we drop the tilde for simplicity.
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with scalar-valued moulds Tee•ω, Taa•ω , Too•ω, whose symmetry types follow
from their construction.38 These three moulds, for the moment, need not
bear any relation to their namesakes in §2.3, but we shall show that they
actually coincide with them.

Writing down the axis-crossing identity (49) with (106) and θ = +π
2

and
the reverse identity (50) with (107) and θ = −π

2
, and minding the fact that

Se•π
2
±ε = Se•∓ (inversion!) ; Se•−π

2
±ε = Se•± (no inversion!)

we find respectively

Te•so(z)× Se•−,so(z) = Se•+,so(z) with Te•so(z) =
∑
ω∈Ω+

Te•ω e
−ωz (163)

Te•no(z)× Se•−,no(z) = Se•+,no(z) with Te•no(z) =
∑
ω∈Ω−

Te•ω e
−ωz (164)

Thus, whether looking “north” or “south”, we arrive at the elementary
identity

Te•(z) = Se•+(z)×muSe•−(z) (165)

which of course can also be directly derived from the definitions (123) paired
with (153)-(156). But we get an interesting extra – namely, that the moulds
Tee•ω of (157) and (158) coincide with those defined in the preceding sub-
section. If we now interpret the resurgence equations (157)-(162) in the
convolutive model, we get an alternative expression of Tee•ω, Taa•ω, Too•ω as
finite integrals in the ζ-plane, which translate, after some work, into fast-
convergent power series. This will stand us in good stead in the divergent
and above all in the ramified cases. But we must first devote a short aside
to the question of parity.

Parity aspects.

There is something slightly incongrous about the formulae (159)-(162): they
express the monics Taa•ω, Too•ω, which separate parity, in terms of monomials
Sa•(z), So•(z), which do not. To remove this blemish, let us introduce replace
them by parity-separating monomials Sa•(z), So•(z):

S̃a
•
(z) = S̃a

•
(z)× 2 (1• + eJ

•(z))−1 (166)

S̃o
•
(z) = S̃o

•
(z)× (1• − 1

2
J•(z)) (167)

38Taa•ω is alternal, while
∑

Tee•ω e
−ωz (resp.

∑
Too•ω e

−ωz) is elternel (resp. olternol).
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with J s1(z) := z−s1 and J s1,...,sr(z) := 0 if r 6= 1.

In the case of S̃o
•
, we get the bonus of a simple induction

S̃o
•
(z) := H(∂)

(
S̃o
•
(z)× J•(z)

)
with (168)

H(∂) :=
e∂

1− e∂
+

1

2
=

1

2

1 + e∂

1− e∂
= −1

2
cotan(

∂

2
) (169)

Since the right factors in (166)-(167) are convergent, the new monomials ver-
ify the same resurgence equations as the old ones, with the same resurgence
constants:

±2πi∆ω Sa•(z) = Taa•ω × Sa•(z) (∀ω ∈ Ω± = 2πiZ±) (170)

±2πi∆ω So•(z) = Taa•ω × So•(z) (∀ω ∈ Ω± = 2πiZ±) (171)

Remark: Our new monomials may separate parity and generate the re-
quired monics, but they no longer belong to the clear-cut symmetry types
symmetral/symmetrol, a fact that is reflected in the unusual form of their
multiplicative inverses:

muS̃a
•
(z) =

(
cosh(J•(z))

)−2

× anti.S̃a
•
(z) ◦ (−Id•) (172)

muS̃o
•
(z) =

(
1• − 1

4
J•(z)× J•(z)

)
× anti.S̃o

•
(z) ◦ (−Id•) (173)

If we now ask for monomials that separate parity and possess the exact
symmetries and produce the right monics, we can have that, too, by setting:

varS̃e
•
(z) := S̃e

•
(z)×

(
1• + J •(z)

) 1
2

varS̃a
•
(z) := S̃e

•
(z)×

(
2 tanh(

1

2
J•(z))

)
= S̃a

•
(z)×cosh( J•(z))−1

varS̃o
•
(z) := S̃e

•
(z)×

( J•(z)

1• − 1
2
J•(z)

)
= S̃o

•
(z)×

(
1• − 1

2
J•(z)×J•(z)

) 1
2

These variants still verify the resurgence equations (170)-(171). Moreover:

varSes1,...,sr+ (−z) ≡ (−1)s1+···+sr varSesr,...,s1− (−z) and varSe• symmetrel

varSas1,...,sr+ (−z) ≡ (−1)s1+···+sr varSasr,...,s1− (−z) and varSa• symmetral

varSos1,...,sr+ (−z) ≡ (−1)s1+···+sr varSosr,...,s1− (−z) and varSo• symmetrol

Polylogarithmic monomials.

We recall the inductive definition of the paralogarithmic monomials Ṽ•(z)
(symmetral) and monics V • (alternal), whose proper province is the study
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of singular, resurgence-inducing ODEs:

−(∂z + ω1 + · · ·+ ωr) Ṽ ω1,...,ωr(z) = Ṽ ω1,...,ωr−1(z) z−1 (174)

∆ω0 Ṽ ω1,...,ωr(z) =
∑

ω1+···+ωi=ω0

V ω1,...,ωi Ṽ ωi+1,...,ωr(z) (175)

We also require the (apparently) more general monomials V•H(z), defined by
a similar induction:

−(∂z + ‖•‖) Ṽ•H(z) = Ṽ•H(z)×H•(z)
(
Hω(z) ∈ z−1C{z−1}

)
(176)

relative to any alternal mould H•(z) with values in the ring of convergent
power series of z−1 (without constant term). Modulo convergent series of

z−1, the mould Ṽ•H(z) actually reduces to Ṽ•(z), thanks to the formula:

Ṽ•H(z) = (Ṽ•(z) ◦ L•H)× L•H(z) with LωH ∈ C , LωH(z) ∈ z−1C{z−1} (177)

with an alternal, scalar-valued mould L•H and a symmetral, convergent-valued
mould L•H(z). Both L•H and L•H(z) are defined by the joint induction:

LωH =

ω2 6=∅∑
ω1ω2=ω

(L̂ω1

H ∗ Ĥω
2

)(|ω|)−
ω1,ω2 6=∅∑
ω1ω2=ω

Lω
1

H .(1 ∗ L̂ω
2

H )(|ω|) (178)

−(∂z + ‖•‖)L•H(z) = L•H(z)×H•(z)− z−1L•H × L•H(z) (179)

The first relation, (178), expresses the constant LωH in terms of earlier (shorter)
mould components. The second relation,(179), when interpreted in the con-

volutive model, says that (ζ−|ω|)L̂ωH(ζ) is equal to an entire function Êω(ζ)

which, due to (178), vanishes for ζ = |ω|. So L̂ωH(ζ), too, is an entire func-
tion with at most exponential growth, and that makes LωH(z) a convergent

power series of z−1. The resurgence constants V •H associated with Ṽ•H(z) also

reduce to the pologarithmic monics V •, since ṼωH(z), owing to (177), verifies
the following resurgence equations:

∆ω0 Ṽ
ω1,...,ωr
H (z) =

∑
ω1+···+ωi=ω0

V ω1,...,ωi
H Ṽ ωi+1,...,ωr

H (z) with V •H = V • ◦ L•H (180)

Multizetaic monomials in terms of polylogarithmic monomials.

From what precedes and from the decomposition

e−ζ

1− e−ζ
+

1

2
= H(−ζ) =

ω∈2πiZ∑
|ω|≤ρ

1

ζ + ω
+Hρ(−ζ) (∀ρ > 0) (181)
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we can see that, for |ζ|, |ω| < ρ, the monomials Ŝe
s
(ζ), Ŝa

s
(ζ), Ŝo

s
(ζ), and the

monics Teesω,Taasω,Toosω that go with them, can be expressed as finite sums
of three ingredients:
(i) classical monomials V̂ω(ζ) and monics V ω(ζ) indexed by sequences ω that
are ρ-small, i.e. such that |ω1| ≤ ρ, |ω2| ≤ ρ for all factorisation ω = ω1.ω2.

(ii) functions of type L̂ωH(ζ) which, though not entire, are holomorphic on the
disk |ζ| ≤ ρ,
(iii) the companion monics LωH.

Altogether, this results in an effective procedure for calculating the monics
Teesω,Taasω,Toosω, with a guaranteed geometric rate of convergence which,
moreover, can be arbitrarily improved by taking ρ large (albeit at the cost
of increasing the number of summands).

2.5 The non-standard case (ρ 6= 0). Normalisation.

If we now drop the condition that ensured convergence, namely s1, sr 6= 1,
and yet insist on retaining all properties and symmetries of our moulds, we
must do two things to our infinite series: truncate them and correct them.
Concretely, we must set

Te•(z) := limk→∞Te•k(z) := limk→∞ mucoSe•k × doTe•k(z)× coSe•k

Se•±(z) := limk→∞ Se•k,±(z) := limk→∞ mucoSe•k × doSe•k,±(z)

muSe•±(z):= limk→∞muSe•k,±(z):= limk→∞ mudoSe•k,±(z)× coSe•k

Here, the symmetrel dominant factors Te•, doSe•k,±, mudoSe•k,± are defined
as in (123) and (149)-(152) but with sums truncated at ±k instead of ±∞.
Thus

doTes1,...,srk (z) :=
∑

−k≤nr<...<n1≤k

(nr + z)−sr . . . (n1 + z)−s1 (∀si) (182)

As for the symmetrel, z-constant corrective factors coSe•k± and invcoSe•k±,
their definition reduces to

coSes1,...,srk :=
( c + log k )r

r!
if (s1, ..., sr) = (1, ..., 1) (183)

mucoSes1,...,srk :=
(−c− log k)r

r!
if (s1, ..., sr) = (1, ..., 1) (184)

coSes1,...,srk = mucoSes1,...,srk := 0 if (s1, ..., sr) 6= (1, ..., 1) (185)

In the formal model, the resurgent-valued moulds S̃e
•

and muS̃e
•

are still
uniquely defined by the induction (144) together with the condition

S̃e
s
(z) , muS̃e

s
(z) ∈ Q[[z−1]]⊗Q[(c+ log z)]

.
− Q (∀s 6= ∅) (186)
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The normalising condition, in other words, is that S̃e
s
(z) and invS̃e

s
(z), as

formal series in z−1 and polynomials in the bloc (c+log z ), should have no
constant term.

In the sectorial models, the c-normalisation implies:

Se

r times︷ ︸︸ ︷
1, ..., 1
± (0) =

(γ − c)r

r!
; invSe

r times︷ ︸︸ ︷
1, ..., 1
± (0) =

(c− γ)r

r!
(187)

with

γ = lim
k→∞

(1 +
1

2
+ ...+

1

k
− log k) = 0.577215... = Euler constant (188)

For multitangents, we may still formally apply the procedure (134)-(135)
of §2.3 to reduce them into combinations of monotangents and mutizetas,
but this time we are liable to get formally divergent multizetas. The c-
normalisation then amounts to setting ζ(1) = ze1 := γ − c and to adopting
for all divergent multizetas39 the unique symmetrel extension compatible with
that initial choice.40

There are two natural choices for the normalisation constant c :
(i) Either we set c = 0, in which case we eschew γ in the formal model but
at the cost of introducing it in the convolutive and sectorial models. It also
complicates the definition of the multitangents and multizetas, since it forces
us to set ze1 = γ, which however is not entirely unnatural, in view of the
formula

σ Γ(σ) = exp
(
− γ σ +

∑
2≤n

(−1)n
ζ(n)

n
σn
)

(189)

(ii) Or we set c = γ, which forcibly introduces γ into the formal model but
rids us of it everywhere else, including in the definition of multitangents and
multizetas, since it amounts to setting ze1 = 0. This shall be our preferred
choice.

2.6 The ramified case (p > 1) and the localisation con-
straints.

For diffeos f of tangency order p > 1, the prepared form (2) becomes a power
series of z−1/p. This inevitably leads to moulds whose indices si (the weights)
are no longer in N∗ but in p−1N∗ or even, in some instances, in p−1Z∗.

39i.e. for all multizetas with initial index s1 = 1.
40Thus ze1,1 := − 1

2ze2 + 1
2 (γ − c)2 , ze1,2 := −ze2,1 − ze3 + (γ − c) ze2 etc. There exist

simple formulae for calculating the symmetrel extension of all multizetas relative to any
given choice of ze1.
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Most results, starting with the symmetry relations, carry over to that
case, but with three significant changes:
(i) The finite reduction of multitangents into monotangents and multizetas
breaks down,
(ii) The Fourier coefficients Teesω, Taasω, Toosω, which are the direct ingredients
of the invariants Aω(f), cease to be expressible as finite sums of multizetas
(even ramified ones).
(iii) The formulae (134)-(135) still make formal sense but lead to expansions
which are not only infinite but also divergent. When properly re-summed,
they yield the correct expressions, but from the point of view of calculational
expediency, this approach is worthless. Of course, straightforward Fourier
analysis in the upper and lower halves of the z-plane would yield the coeffi-
cients Teesω, Taasω, Toosω, but not in the form of nice convergent series, and
again at great cost.

The resurgence approach of §2.4 and §2-5, on the other hand, survives
ramification without any modification. When pursued to the end, this ap-
proach even leads to some sort of functional equation for multizetas, that is
to say, to something vaguely resembling the classical relation between ζ(s)
and ζ(1−s).

However, the presence of ramifications makes it advisable to rotate our
multitangents and monomials, so that we may handle functions which (as
far as the index symmetries permit) assume real values on the main real

half-axis. Thus, instead of Te•, S̃e
•

etc, we shall consider:

Tehs1,...,sr(z) := (
1

i
)s1+···+sr Tes1,...,sr(

z

i
) (190)

S̃eh
s1,...,sr

(z) := (
1

i
)s1+···+sr S̃e

s1,...,sr
(
z

i
) (191)

No finite reduction to monotangents.

If we consider the equation (157) for r=1 but with s1 in Q+ and interpret it
correctly in the Borel plane, we see that the familiar formula (139) for the
Fourier coefficients of monotangents transposes (taking the π/2-rotation into
account) to the fractional case:

Tehs1(z) =
∑
ω∈2πN

Tehs1ω with Tehs1ω = 2π
ωs1−1

Γ(s1)
(192)
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So the product41 Tehs1Tehs2 ≡ Tehs1,s2 + Tehs2,s1 + Tehs1+s2 has Fourier
coefficients of the form

Tehs1,s2ω + Tehs2,s1ω + Tehs1+s2
ω =

(2π)s1+s2

Γ(s1)Γ(s2)

ω=2πn∑
n1+n2=n

ns1−1
1 ns2−1

2 (193)

and this makes it obvious that Tehs1,s2 and Tehs2,s1 cannot simultaneously
be finite sums of monotangents Tehs.

SingTeh• still determines Teh• but in a completely new way.

For n→ +∞, the right-hand side of (193) can be shown to possess a divergent
but n-resurgent and Borel resummable asymptotic expansion of the form
ns1+s2−1

∑
cs n

−s (s ∈ Q+).
More generally, by adapting the argument leading to (134), one can easily

calculate the ramified Laurent series of any multitangent Tehs:

Tehs(z) = SingTehs(z) + RegTehs(z) =

−|s|≤ν∑
ν∈N

θsν z
ν +

−|s|≤ν∑
ν∈Q−N

θsν z
ν (194)

with its multizetaic coefficients θsν . As in the non-ramified case, Tehs is still
completely determined by its singular part SingTehs. We may even, if we so
wish, derive from the singular part of (194) a formal reduction of Tehs into
monotangents:

Tehs(z) =

−∞<σ≤|s|∑
σ∈Q−N

τsσ Tehσ(z) with τsσ := θs−σ (195)

but the series defined in this way will be, generally speaking, everywhere
divergent, even if we take care to correctly define, as in (202) infra, the
monotangents Tehs1(z) with index s1 ∈ (1,−∞). If we now attempt to
calculate the Fourier coefficient of a general multitangent:

Tehs1,...,sr(z) =:
∑

ω∈2πN∗
Tehs1,...,srω e−ω z (196)

by identifying the Fourier coefficients on both sides of (195) and taking (192)

41since symmetrelity survives ramification.
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into account:

Tehsω =

−∞<σ≤|s|∑
σ∈Q−N

τsσ Tehσω = 2π

−∞<σ≤|s|∑
σ∈Q−N

τsσ
ωσ−1

Γ(σ)

= −2

−|s|<ν<+∞∑
−ν∈Q−N

θsν Γ(1+ν) sin(πν) ω−ν−1 (197)

what we get on the right-hand side is again a divergent expansion, which is
ω-resurgent and Borel resummable. But Borel resummation in the present
instance amounts to calculating the following loop integral:

Tehs1,...,srω =
1

i

∮ −∞+εi

−∞−εi
Tehs1,...,sr(z) eω z dz (198)

=
1

i

∮ −∞+εi

−∞−εi
SingTehs1,...,sr(z) eω z dz (199)

with an integration path connecting −∞ − ε i to −∞ + ε i and having as
its middle part a small half-circle{|z| = ε,<z > 0} centered at the origin
0• and located in the main positive half-plane. This is indeed the proper
procedure for retrieving the Fourier coefficients of Tehs(z) from the singular
part SingTehs(z).

The ramified localisation constraints.

Defining the formal multitangent-to-monotangent reduction as in (195), we
get the reduction constraints:

Tehs
1

(z).Tehs
2

(z)
reduction−→ (

∑
τs

1

s1
Tehs1(z)).(

∑
τs

2

s2
Tehs2(z))

↓linearisation ↓linearisation∑
εs

1,s2

s3
Tehs

3

(z)
reduction−→

∑
εs

1,s2

s3
τs

3

s3
Tehs3(z) =

∑
τs

1

s1
τs

2

s2
εs1,s2s3

Tehs3(z)

with elementary, integer-valued coefficients εs
i,sj

sk
and coefficients τs

i

sj
that are

finite, homogeneous sums of multizetas of total weight ‖si‖−si−1. Although
the multitangent expansions diverge, by equating (in the right-lower corner)
the coefficients in front of each Tehs3(z) we get a system of finite relations
between multizetas.

Using instead the (locally convergent) expansions at z = 0, we get the
localisation constraints, which are only seemingly more general than the re-
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duction constraints:

Tehs
1

(z).Tehs
2

(z)
localisation−→ (

∑
θs

1

ν1
zν1).(

∑
θs

2

ν2
zν2)

↓linearisation ↓linearisation∑
εs

1,s2

s3
Tehs

3

(z)
localisation−→

∑
εs

1,s2

s3
θs

3

ν3
zν3 =

∑
θs

1

ν1
θs

2

ν2
zν1+ν2

Here, the coefficients θs
i

nj
are finite, homogeneous sums of multizetas of total

weight ‖si‖+ nj.
Lastly, for the Fourier coefficients Teh•ω (these monics, we recall, are the

direct ingredients of the holomorphic invariants Aω(f)) we get the following
system of constraints:

Tehs
1

(z).Tehs
2

(z)
Fourier−→ (

∑
Tehs

1

ω1
e−ω1 z).(

∑
Tehs

2

ω1
e−ω2 z)

↓linearisation ↓linearisation∑
εs

1,s2

s3
Tehs

3

(z)
Fourier−→

∑
εs

1,s2

s3
Tehs

3

ω3
e−ω3 z=

∑
εs1,s2s3

Tehs
1

ω1
Tehs

2

ω1
e−(ω1+ω2)z

2.7 Meromorphic s-continuation of Sehs and Tehs etc.

The whole subject of s-continuation, being simply incidental to our investi-
gation, shall receive only a sketchy treatment.

Meromorphic s-continuation of the multizetas zes.

There exist various ways of proving the existence of a meromorphic continu-
ation of zes1,...,sr to the whole of Cr, with a singularity locus confined to the
hyperplanes ∪i,n{s1 + · · · + si ∈ i − n} (n ∈ N). One of them relies on the
convergent expansions

zes1,...,si,...,sr = −
∑
ki≥1

Γ(ki+si)

(ki+1)! Γ(si)
zes1,...,si+ki,...,sr +

1

si−1
zes1,...,si+si+1−1,...,sr

−
∑
ki≥−1

Γ(ki+si)

(ki+1)! Γ(si)
zes1,...,si−1+si+ki,...,sr (200)

valid for 1 < i < r, and with slight modifications for i = 1 or i = r as well.
The expansion (200) in turn results from plugging the identity

n−sii =
∑
ki≥0

Γ(ki+si)

ki! Γ(si)
(1+ni)

−si−ki

into the definition of zes1,...,si,...,sr or rather zes1,...,si−1,...,sr .
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Similar expansions hold for zas and zos, of course, but here the par-
ity properties have the effect of ‘halving’ the number of hyperplanes in the
singularity locus.

The multiresidues at singular points s ∈ Zr are simple combinations of
convergent multizetas with indices s′ ∈ Nr′ . The more negative components
si in s, the smaller the depths r′ of the convergent multizetas contributing
to the multiresidues.

Meromorphic s-continuation of the multitangents Tehs(z).

The s-continuation of multitangents proceeds on the same lines as that of
multizetas. The main difference is the persistence, for multitangents, of
convergent ‘polar’ expansions that rely on convergence-restoring corrections
[. . . ]−sK . For any integer K we set:

[
z ± i n

]−s
K

=
∑

0≤k≤K

(±i)k e∓
1
2
πis Γ(k+s)

k! Γ(s)
n−s−k zk (0 < n, 0 < <z)

[
z
]−s
K

=
∑

0≤k≤K

2 (±i)k cos(
1

2
πis)

Γ(k+s)

k! Γ(s)
ζ(s+k) zk (201)

For s ∈ C− Z−, the monotangents admit ‘polar’ expansions of the form

Tehs(z) =
∑
n∈Z

(
(z + i n)−s −

[
z ± i n

]−s
K

)
(<(s) +K > 2) (202)

There exist exact analogues for the multitangents.

Meromorphic s-continuation of the monomials Sehs(z).

In the convolutive model (hence in the other models as well), the s-continuation
of the monomials Sehs(z) presents no difficulty, and provides an alternative
approach to the s-continuation of the multizetas and multitangents, since
the latter can be derived from the monomials Sehs(z).

The closest thing to a reflection equation for multizetas.

Let us start for orientation with depth one, i.e. with ordinary zetas. Calcu-
lating the Laurent expansion of Tehs(z) at z = 0, and assuming <(s) > 1,
we find:

Tehs(z) := z−s + 2 ζ(s) cos(
π

2
s) + o(1) (203)
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Due to (202), this also extends to all regular values of s, with the only
difference that when <(s) < 0 the term z−s is absorbed by o(1). On the
other hand, starting from the Fourier expansion of Tehs(z) and assuming
<(s) < 0, s 6∈ −N, we find

Tehs(z) := 2π
∑
0<n

(2πn)s−1

Γ(s)
e−2πnz = (2π)s

ζ(1− s)
Γ(s)

+ o(1) (204)

Comparing (203) and (204) for <(s) < 0, we recover the classical reflection
equation for the Riemann zeta function:

2 ζ(s) cos(
π

2
s) = (2π)s

ζ(1−s)
Γ(s)

⇐⇒ ζ(s) = 2s πs−1 sin(
π

2
s) Γ(1−s) ζ(1−s)

To find out if something of that reflection equation survives at depth
r ≥ 2, let us fix a sequence s = (s1, . . . , sr) with <(si) < 0 and all partial
sums s1 + · · ·+ si, si + · · ·+ sr not in Z, and let us exploit the commutative
diagram:

Tehs(z)
reduction−→ singTehs(z)
↘ ↓

regTehs(z)

The leading term of the Laurent expansion of Tehs(z) at z = 0 is:

Tehs(z) =
∑

s′ s′′ = s

e
πi
2

(|s′′|−|s′|) zes
′
vizes

′′
+ o(1) (205)

with vizes1,...,sr := zesr,...,s1 . As for the purely singular part
∑
csz
−s of that

same Laurent exp[ansion, it yields the formal, infinite, monotangential ex-
pansion

∑
csTehs(z) of Tehs(z):

Tehs(z)
formally

=

0≤ni∈N∑
sisi s

i = s

Tehsi−ni(z) Ze s
i , ni , s

i

(206)

The scalars Ze s
i , ni , s

i

are here finite, homogeneous superposition of multize-
tas of total weight ni−|si|−|si| = ni+si−|s|. All monotangents Tehsi−ni(z)
having indices of negative real part, they tend to known constants as z goes
to 0:

Tehs(z)
formally

=

0≤ni∈N∑
sisi s

i = s

(2π)si−ni
ζ(1+ni−si)

Γ(si−ni)
Ze s

i , ni , s
i

+ o(1) (207)
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Finally, formally equating (205) and (207), we get:∑
s′ s′′ = s

e
πi
2

(|s′′|−|s′|) zes
′
vizes

′′ ≈
0≤ni∈N∑

sisi s
i = s

(2π)si−ni
ζ(1+ni−si)

Γ(si−ni)
Ze s

i , ni , s
i

(208)

The finitely many multizetas on the left-hand side all carry indices with
negative real parts, and two of them (zes and vises) are exactly of depth r.
On the right-hand side, all but a finite number of multizetas carry indices
with positive real parts, and all are of depth < r.

This, sadly, is the closest thing we can get, with this approach, to a
reflection identity for multizetas. Note that the expansion on the right-hand
side of (208) is divergent, but Borel resummable when viewed as a series in
negative powers of the ‘variable’ t := 2π.

Ultimately, the obstruction to finding a satisfactory reflection formula is
the non-existence of a multivariate, symmetrel Poisson formula. The fact is
that the Fourier transform of the symmetrel Poisson distribution De•

Dex1,...,xr :=
∑

−∞<n1<···<nr<+∞

δ(x1 − n1) . . . δ(xr − nr) (δ = Dirac) (209)

not only differs from De•, but is not even an atomic distribution.

3 Collectors and connectors in terms of f .

3.1 Operator relations.

We begin with identity-tangent germs f in the standard class (p, ρ) = (1, 0),
i.e. of the form f = l ◦ g, with the unit shift l(z) = z+ 1 and a germ
g(z) = z+g(z) = z+O(z−2) which may be viewed as a perturbation. This
is an invitation to expand everything (collectors, connectors, invariants) in
series with a 1-linear, 2-linear, etc, part in g or, more conveniently, in the
corresponding operator G := G−1.

The iterator f ∗ is characterised by the germ identities f ∗ = l−1 ◦ f ∗ ◦ f ≡
l−1 ◦ f ∗ ◦ l ◦ g which in order-reversing operator notation42 read:

F ∗ = G F ∗:1 with F ∗:1 := LF ∗L−1 (210)

To solve (210) while respecting the symmetry between f, g and f−1, g−1, we
take as our basic ‘infinitesimals’ the following operators

G+
:n := Ln.(G − 1).L−n (ni ∈ Z) (211)

G−:n := Ln.(G−1− 1).L−n (ni ∈ Z) (212)

42To diffeos f, g... we associate the operators F,G... of postcomposition by f, g...
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With the notation of §1.2, this leads straightaway to simple formal expansions
for the iterators

F ∗+ = 1 +
∑
1≤r

∑
0≤nr<...<n1

G+

:nr . . .G
+

:n1
(ni ∈ Z) (213)

F ∗− = 1 +
∑
1≤r

∑
n1<...<nr<0

G−
:nr . . .G

−
:n1

(ni ∈ Z) (214)

∗F+ = 1 +
∑
1≤r

∑
0≤n1<...<nr

G−
:nr . . .G

−
:n1

(ni ∈ Z) (215)

∗F− = 1 +
∑
1≤r

∑
nr<...<n1<0

G+

:nr . . .G
+

:n1
(ni ∈ Z) (216)

These formulae, in turn, combine to produce new expansions which, depend-
ing on how we analyse them (- whether in terms of multitangents or Fourier
series -) shall yield the collectors P or the connectors Π in operator form:

P+ ≈ Π+ := ∗F−.F
∗
+ = 1 +

∑
1≤r

∑
nr<...<n1

G+

:nr . . .G
+

:n1
(ni ∈ Z) (217)

P− ≈ Π− := ∗F+.F
∗
− = 1 +

∑
1≤r

∑
n1<...<nr

G−
:nr . . .G

−
:n1

(ni ∈ Z) (218)

For standard diffeos f , the above expansions for F ∗,∗F (resp. Π±1 ) are eas-
ily shown to converge when they are made to act on test functions that are
defined on suitably extended U-shaped domains (resp. on suitably distant
half-planes |=(z)| � 1). See §7.2. But at this stage we do not have to worry
about convergence: we shall provisionnaly (up to §6 inclusively) regard our
connectors and collectors as generating functions that carry, in conveniently
compact form, the various k-linear contributions43. Each k-linear contribu-
tion unproblematically converges, and for the moment this is all we require.

The real challenge is to extract from these expansions (- first in the stan-
dard, then in the general case -) theoretically appealing, analytically trans-
parent, and computationally manageable expressions for (in that order) the
collectors, connectors, and invariants.

3.2 The direct scheme: from g to p.

To break down the expansions (217)-(218) into sums of multitangents, we re-
quire scalar coefficients Γn± that can be collectively defined by the generating
function: [

G±
: c−1
r
. . .G±

: c−1
1

.z
]
z=0

=:
∑

Γn1,...,nr
± cn1

1 . . . cnrr (219)

43k-linear, that is, in the ‘perturbation’ g or its coefficients gn
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with G±:c−1 =
∑
1≤k

1

k!

(
g±1(z + c−1)− (z + c−1)

)k
∂kz

(220)
The collectors then read:

p+(z) = z +
∑
1≤r

∑
ni

Γn1,...,nr
+ Ten1,...,nr(z) (221)

p−(z) = z +
∑
1≤r

∑
ni

Γnr,...,n1
− Ten1,...,nr(z) (222)

with an order reversal between (219) and (221) that reflects the order reversal
between (217) and (218).

Let us give an alternative, more analytical expansion. We first set

1

n!

(
g(z)− z

)n
=:
∑
2n≤s

g+
n,s z

−s+1 ,
1

n!

(
g−1(z)− z

)n
=:
∑
2n≤s

g−n,s z
−s+1

Next, to account for the action of the derivation operators ∂z implicit in the
definition of the substitution operators G±:n, we require integers δ•• defined
by44 ∑

∑
(ni−li)=1

δ l1,..., lrn1,...,nr
xl11 . . . x

lr
r ≡ xn2

1 (x1+x2)n3 . . . (x1+· · ·+ xr−1)nr (223)

Letting the operators on both sides of (217) resp. (218) act on the test
function z, and collecting all r-linear summands, we find the sought-after
expansions for the collectors p±:

p+(z) = z+
∑
1≤r

ni+li≤si∑
0≤li
1≤ni

(−1)n−1δ l1,..., lrn1,...,nr
Tes1,...,sr(z)

∏
1≤i≤r

(si−1)! g+
ni,si−li+1

(si−li−1)!
(224)

p−(z) = z+
∑
1≤r

ni+li≤si∑
0≤li
1≤ni

(−1)n−1δ l1,..., lrn1,...,nr
Tesr,...,s1(z)

∏
1≤i≤r

(si−1)! g−ni,si−li+1

(si−li−1)!
(225)

with n := n1 + ...nr.

44For r = 1, one should of course take δ01 := 1 and δl1n1
:= 0 if ( l1n1

) 6= ( 0
1 ). The presence

of n1, xr on the left-hand side and their absence on the right-hand side is no oversight. It
simply implies that δ l1,..., lrn1,...,nr

= 0 when n1 6= 1 or lr 6= 0. If one finds (223) confusing, one

should think of it as
∑
δ
l1,l2,..., lr−1, 0
1, n2,...,nr−1,nr

xl11 . . . x
lr−1

r−1 ≡ x
n2
1 (x1+x2)n3 . . . (x1+. . . xr−1)nr .
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3.3 The affiliate-based scheme: from g♦ to p♦.

We shall now express the general affiliate p♦ of p in terms of the corresponding
affiliate g♦ of g – not so much for the sake of p♦, but to prepare for the
specialisations g∗ (generator) and g], g]] (mediators), and to show what is so
special about these three cases.

The first step is to take our stand on the trivial affiliate - p itself - and to
observe that after re-indexation, (217) may be re-written as

Π+ =
∑
1≤r

∑
ni∈Z

On1,...,nrG+

:n1
. . .G+

:nr (226)

with Π+ := Π+ − 1 , G+ := G+ − 1 , G+

:n := Ln G+ L−n and with
an elementary ‘ordering mould’ O•, clearly of symmetrel type:

On1 := 1 , On1,...,nr := 1 if n1 < · · · < nr resp := 0 otherwise (227)

Let us show that for any γ(t) = t+
∑
γr t

r+1, an expansion exactly analogous
to (226) holds for the corresponding affiliates

Π♦ =
∑
1≤r

∑
ni∈Z

On1,...,nr
♦ G♦:n1 . . . G♦:nr (228)

with

Π♦ := γ(Π) = γ(Π− 1) , G♦ := γ(G) = γ(G− 1) , G♦:n := Ln.G♦.L
−n

and with a suitable variant O•♦ of the ordering mould O• :

O•♦ := γ(Id•) ◦ O• ◦̈ γ−1(Id•)

O•♦ is derived from O• by ordidary pre-composition by γ(Id•) and modified
post-composition by γ−1(Id•). See (229) below. The order in which these two
operations are performed does not matter. The formula for ◦̈-composition is
patterned on the formula (95) for ◦-composition:

C• = A• ◦̈ B• ⇐⇒ Cω =
ωi monoindicial∑
ω1...ωs=ω

A
〈
ω1
〉
,...,
〈
ωs
〉
Bω

1

. . . Bω
s

(229)

except that the sum on the right-hand side of (229) extends only to those
factorisations of ω that involve mono-indicial factor sequences ωi, i.e. factor
sequences consisting each of one index ωi repeated ri times. And

〈
ωi
〉

:= (ωi)
denotes that same factor sequence collapsed to its one index. Thus we get:

C3,3,3,5 = A3,3,3,5B3B3B3B5 +A3,3,5B3,3B3B5 +A3,3,5B3B3,3B5 +A3,5B3,3,3B5
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The last missing items are the multitangents Tee•♦ and the corresponding
structure coefficients. The former are defined by:

Tee•♦ = γ(Id•) ◦ Tee• ◦ δ(Id•) (γ ◦ δ = id) (230)

The latter are given by the generating series:[
G♦, c−1

r
. . . G♦, c−1

1
. z
]
z=0

=:
∑

Γn1,...,nr
♦ cn1

1 . . . cnrr (231)

where G♦, c−1 denotes the translated γ-affiliate of G:

G♦, c−1 :=
∑
1≤r

∑
1≤ni

♦n1,...,nrgn1
♦ (z + c−1)

∂n1

n1!
. . . gnr♦ (z + c−1)

∂nr

nr!
(232)

See §1.3 and §3.2 and recall that ♦1 = 1 and ♦n1,...,nr = 0 if 1 < r and nr = 1.
We are now in a position to expand p♦ in series of multitangents Tee♦:

p♦(z) = z +
∑
1≤r

∑
ni

Γn1,...,nr
♦ Teen1,...,nr

♦ (z) (233)

Short proof: One should compare step by step the derivation of (233) with
that of the expansion (217) for p+. The key point here is that changing from
operators to multitangents changes ◦̈ to ◦. Indeed, in a sum of the form∑

ni∈Z

Cn1,...,nr(z + n1)−σ1 . . . (z + nr)
−σr with C• := A•◦̈B• (234)

any contribution to Cn of the form A
〈
n1
〉
,...,
〈
nt
〉
Bn

1
. . . Bn

t
, with monoindi-

cial factor sequences nk consisting of identical indices nk, will contract to∏
1≤k≤t

∏
ni∈nk

(z + ni)
−si =

∏
1≤k≤t

(z + nk)
−
∑
ni∈n

k si (235)

3.4 Parity separation and affiliate selection.

The relative complexity of g♦ counts for nothing. What matters is
(i) to get Tee•♦ and the corresponding expansions for p as simple as possible,
(ii) to pick parity-respecting affiliates: (g−1)♦ ≡ −g , (p−1)♦ ≡ −p.

We already know three parity-respecting affiliates:

γ0(t) = log(1 + t) (infinitesimal genrator), (236)

γ1(t) = t
1+ 1

2
t
, (first mediator) (237)

γ2(t) = (1+t)2−1
(1+t)2+1

(second mediator) (238)
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and the general parity-respecting affiliate obviously corresponds to functions
of the form γ = hi ◦ γi (0 ≤ i ≤ 2) with hi odd. So the task now is to
select one of those γ so as to optimise Tee•♦ and in particular to make the
formulae for their symmetrel Te•-linearisation as simple as possible. But we
have already suggested in §2.3 and we shall show more conclusiveely in §5.4
that there exist no simpler choices than γ0, γ1, γ2, with γ1 topping the list,
and γ0 coming second. So we shall focus here on these three choices.

3.5 The generator-based scheme: from g∗ to p∗.

Here, the structure coefficients Γn∗ are given by the series:[
g∗(z + c−1

r ) ∂ . . . g∗(z + c−1
1 ) ∂ . z

]
z=0

=:
∑

Γn1,...,nr
∗ cn1

1 . . . cnrr (239)

The corresponding expansion for p∗ reads:

p∗(z) =
∑
1≤r

∑
ni

Γn1,...,nr
∗ Taan1,...,nr(z) (240)

Like with Γ•±, one may prefer more analytical variants. These rely on
integers δ• and δ•1 much simpler than the δ•• of §3.2∑

li≥0 ,
∑
li=r−1

δl1,...,lr xl11 . . . x
lr
r ≡ x1.(x1 + x2) . . . (x1 + · · ·+ xr−1)(241)

∑
li≥0 ,

∑
li=r

δl1,...,lr1 xl11 . . . x
lr
r ≡ x1.(x1 + x2) . . . (x1 + · · ·+ xr) (242)

and of course on the coefficients g∗s of g∗ : g∗(z) =
∑

2≤s g∗s z
1−s.

The corresponding expansion for p∗ and p′∗ read:

p∗(z) =
∑
1≤r

(−1)r−1
∑

0≤li<si

δl1,...,lr Taas1,...,sr(z)
∏

1≤i≤r

(si−1)! g∗si−li+1

(si−li−1)!
(243)

p′∗(z) =
∑
1≤r

(−1)r
∑

0≤li<si

δl1,...,lr1 Taas1,...,sr(z)
∏

1≤i≤r

(si−1)! g∗si−li+1

(si−li−1)!
(244)

The second expansion is formally more appealing in that its multitangents
Taa• have exactly the same total weight

∑
sj as the accompanying coefficient

clusters. We may note that while it would be possible (though rather point-

less) to produce similar expansions for all derivatives p
(n)
∗ , nothing analogous

exists for the indefinite integrals ‘p∗,
“p∗. . . .
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3.6 The mediator-based scheme: from g], g]] to p],p]].

The relevant structure coefficients Γ] are defined in the usual way[
G], c−1

r
. . . G], c−1

1
. z
]
z=0

=:
∑

Γn1,...,nr
] cn1

1 . . . cnrr (245)

using the translates of the mediator in operator form:

G], c−1 := 2
( ∑

1≤n odd

(g](z+c−1))n

2n n!
∂n
)( ∑

0≤n even

(g](z+c−1))n

2n n!
∂n
)−1

(246)

The corresponding expansion for the collector involves Too• and reads:

p](z) =
∑
1≤r

∑
ni

Γn1,...,nr
] Toon1,...,nr(z) (247)

Appearance of coloured multitangents and multizetas.

Although, as pointed out in §1.8, the resurgence properties of the mediators f]
and g] are completely unrelated (both have distinct critical times and distinct
resurgence constants) and have no bearing on the object of interest to us,
namely p], a few complements about the very specific resurgence regimen
of mediators, quite different from that of infinitesimal generators but fairly
typical for the behaviour of general affiliates, may not be superfluous. The
actual resurgence equations were obtained in §1.8. Here, we shall focus on
the nature of their resurgence constants Aω and A

ω
.

The definition of the (first) mediator leads formally to an expansion

F] = 2− 4 (1 + L+GL)−1 (248)

= 2− 4 (1+L)−1 − 4 (1+L)−1
∑
1≤r

(−1)r
(
GL(1+L)−1

)r
(249)

valid in the formal model and, after the proper transpositions, in the convo-
lutive model. In the right sectorial model this becomes:

F],+ = 2− 4
∑
0≤n0

Ln0 − 4

0≤r∑
0≤nr<...<n1<n0

(−1)r+n0 G :nr . . .G :n1
Ln0 (250)

Note that, due to the right-most factor Ln0 , this expansion is only superfi-
cially similar to the expansion (213) of F ∗+. However, applying both sides of
(250) to z and using

L (1 + L)−1 . z =
1

2
z +

1

4
, G :n1

L (1 + L)−1 . z =
1

2
G :n1

. z
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we get for f],+an expansion much closer in outward shape to that of f ∗+(z):

f],+(z) = 1− 2

1≤r∑
0≤nr<...<n1

(−1)r+n1 G :nr . . .G :n1
. z (251)

Mind the change (−1)r+n0 → (−1)r+n1 from (250) to (251), which is correct.
If we now consider the limit Λ](z) := limn→+∞ f],+(z − n), we obtain for
Λ](z) a formal expansion

Λ](z) = −2

1≤r∑
−∞≤nr<...<n1<+∞

(−1)r+n1 G :nr . . .G :n1
. z (252)

which, like the expansion (217) of Π+(z) and for much the same reasons, is
going to converge in the half-planes |=z| > y for y large enough, and whose
Fourier coefficient are going to give the resurgence constants of f]. (See §1.8)).
That said, the main difference with (217) is not so much the presence of a
factor (−1)r in (252), but of the factor (−1)n1 , which will be responsible for
introducing bi-coloured multitangents and bi-coloured multizetas: see (326)
and take εj ∈ 1

2
Z/Z.

The picture for the second mediator f]] would be quite similar, leading
to Λ]](z) := limn→+∞ f]],+(z − n) and a periodic expansion

Λ]](z) = −
1≤r∑

−∞≤nr<...<n1<+∞

(−1)r+n1 GG :nr . . .GG :n1
. z (253)

with GG :n := Ln . (G.G− 1) . L−n In any case, we see that while Λ] and Λ]]

bear some resemblance to Π+, they are completely unrelated to p] and p]].

3.7 From collectors to connectors.

The dichotomy collector/connector.

The various objects p♦ constructed so far in this section have to be simulta-
neously examined under the viewpoint of their f - and z-dependence.

They depend on a germ f = l◦g that moves freely within the formal class
(p, ρ) = (1, 0). As such, they are to begin with nothing more than formal
power series in the coefficients gs of g or, equivalently, the coefficients g♦,s of
its affiliates g♦:

p♦(z) =
∑
1≤r

si<si+1∑
si,ni

∏
1≤i≤r

(g♦,si)
ni T

(n1
s1

,...,
,...,

nr
sr

)

♦ (z) (254)
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As functions of z, however, our objects may be viewed
(i) either as collectors (and noted p♦), i.e. as global meromorphic functions
defined on the whole of C with all their poles on Z and with well defined
expansions as finite sums of multitangents or, after reduction, as sums of
monotangents with multizeta coefficients.
(ii) or as connectors (and noted π♦), i.e. as pairs of 1-periodic functions
defined in the upper or lower half-plane and possessing their own distinct
Fourier expansions there.

So far, the distinction between collectors and connectors may appear
tenuous, but it acquires all its significance when, ceasing to regard the f -
dependence as formal, we focus on individual, convergent germs f = l ◦ g
and try to associate with them global z-functions (impossible) or pairs of
periodic z-germs (possible).

To that end, let us consider the s-truncations truncs .p♦(z) obtained by
retaining in (254) the sole terms of global weight45

∑
nisi ≤ s. Notice that

weight-truncation is intrinsical, in the sense that, in any given z-chart46, it
stays the same whether we choose the natural coefficient system {gs, s ≥ 3}
or any affiliate-based system {g♦,s, s ≥ 3} .

Divergence of the collectors.

When s→ +∞, truncs .p♦(z) does not tend to a global function, irrespective
of the choice of affiliation ♦. Moreover, even after finite reduction to mono-
tangents, truncs .p♦(z) does not converge to an infinite sum (even a formal
one) of monotangents. This may seem surprising, because:
(*) reducing truncs .p♦(z) to a series of montangents

∑
0<σ a

♦
s,σ Teσ(z) is the

same as taking the negative part
∑

0<σ a
♦
s,σ z

−σ of the Laurent expansion at
z = 0 of truncs .p♦(z).
(**) the Borel transform

∑
0<σ a

♦
s,σ ζ

σ−1/(σ−1)! of that negative part, when
evaluated at the points ζ = 2πin, yields precisely the Fourier coefficients of
the truncated connectors truncs .π♦(z) — and these Fourier coefficients, as
we shall see in a moment, do converge when s→∞.

We shall have more to say about this apparent paradox and the reasons
behind it in §7, but for the moment let us observe that the only meaning that
can be attached to the limit lims→∞ truncs .p♦(z) is the formal series (254)
with its individual clusters

∏
i g

ni
♦,si

T (n
s

)(z) kept separate.

45The ‘weight’ in question is that of the coefficient clusters. But the weight of the accom-
panying multitangents (or, after reduction, of the multizeta-monotangent combinations)
differs from the first only by one unit.

46But the weight truncation is of course dependent on the choice of z-chart.
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Convergence of the connectors.

(*) From p to π = (πno,πso):
As s goes to ∞ and for K± large enough, truncs .π(z)−z tends uniformly
to a 1-periodic limit πno(z)−z (resp. πso(z)−z on the upper or ‘northern’
half-plane =z > K+ (resp. on the lower or ‘southern’ half-plane =z < −K− .

(**) From p♦ to π♦ = (π♦,no,π♦,so):
The affiliate π♦(z) of π being of the form γ(Π−1).z, the nth Fourier coef-
ficient of its northern or southern component is a polynomial in the first n
Fourier coefficients of πno or πso. So, as s → ∞, the (convergent) Fourier
series truncs .π♦,no and truncs .π♦,so converge (coefficient-wise)47, to two for-
mal Fourier series π♦,no and π♦,so. These are generally divergent, but usually
(and definitely so in the case of the generators π∗ or mediators π], π]]) resur-
gent and Borel-resummable, with respect to some critical time of the form
z′ := exp(±nπiz). In any case their Fourier coefficients are well-defined, and
this is all that matters to us at the moment.

More on the dichotomy collector/connector.

Despite being very close to the connectors, the collectors differ from them in
two fundamental respects: they are not invariant and they are of one piece.

The non-invariance is fairly obvious when p is taken in its natural multi-
tangent expansion, but even after monotangent reduction (when at all it
exists), p still remains non-invariant. Indeed, even when a formal limit∑

s∈N Tes(z) exists (it sometimes does, though very exceptionally) as the
truncation goes to infinity, the ‘Borel transform’

∑
s∈N ζ

s−1/(s−1)! assumes
invariant values only when restricted to the set 2πZ∗.

As for being of one piece, this is a property not so much of the collectors as
of their constituent multitangents or monotangents, which are meromorphic
over the whole of C, in complete contrast to the connectors, whose northern
and southern components are usually completely unrelated: each one may a
priori be anything.

3.8 The ramified case (p > 1).

Everything carries over to the general case, when f ranges though a general
formal class (p, ρ). But when p > 1, we must take f to a prepared form
f = fnorm ◦g (see (2)) with a ramified perturbation g(z) = z+

∑
gsz

1−s with
fractional indexation: s ∈ p−1N∗.

47recall that s-truncation is independent of ♦.
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The connectors are of course still invariant, but even more ‘disconnected’
than usual: there are now 2 p of them – p northern and p southern ones.
Each of these 2 p periodic germs is unrelated to the others and may a priori
be anything.

As for the collectors, as formal objects they are still of one piece, but
things get more tangled when we regard the truncations trunk s.p♦(z) or the
individual clusters T (n

s
)(z) in the ramified equivalent of (254) as global func-

tions on ( ˜C− 2πiZ)p (the p-ramified covering of C−2πiZ). The thing is that
we can no longer go from one upper-plane determination to the two neigh-
bouring lower-plane determination by simply crossing the real axis between
two consecutive singularities n and n+1: by so doing, one would get a wrong
determination, dependent on n, and not even periodic.

3.9 Reflexive and unitary diffeomorphisms.

In this section, we find it convenient to switch from the s- or weight-indexation
g(z) = z+

∑
gs z

1−s to the d- or degree-indexation g(z) = z+
∑
g1+d z

−d.
In §3.4 we observed that in the expansion (??) of p∗, coefficient clusters∏
g∗1+di of even (resp. odd) total degree

∑
di accompany multitangents Taa•

that are even functions with real Fourier coefficients (resp. odd functions with
purely imaginary Fourier coefficients). As a consequence, there is no simple
condition on the coefficients g∗1+di of g∗ capable of ensuring that p∗ be odd,
whereas three elementary conditions may ensure that it be even, namely:
(i) all coefficients g∗1+di of odd degree di vanish and those of even degree are
real
(ii) all coefficients g∗1+di of even degree di vanish and those of odd degree are
purely imaginary
(iii) all coefficients g∗1+di of even degree di are real and those of odd degree
are purely imaginary

No special significance attaches to case (ii), but the cases (i) and (iii)
present interesting stability properties, with collectors and connectors inher-
iting the nature of f . This is an incentive for singling out the following three
types of diffeos f whose inverses f−1 either coincide with, or are analytically
conjugate to, the image of f under an elementary involution:

reflexive : f̌ = f−1 || weakly reflexive : f̌
an. cj.∼ f−1

unitary : f̄ = f−1 || weakly unitary : f̄
an. cj.∼ f−1

counitary : ˇ̄f = f−1 || weakly counitary : ˇ̄f
an. cj.∼ f−1

Here, f̄ denotes the complex conjugate of f , and f̌ := σ◦f◦σ with σ(z) ≡ −z.
Conjugation by τ , with τ(z) ≡ i z, clearly exchanges unitary and counitary,
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so that weakly unitary is equivalent to weakly counitary. Though unitariness
seems a more natural notion, we shall work here with counitariness, which
is better adapted to the correspondance f 7→ π and enables us to take f in
standard form f = l ◦ g.
P1: f is reflexive iff the power series f∗ resp. f ∗ are even resp. odd, in which
case f∗±(−z) ≡ f∗∓(z) and f ∗±(−z) ≡ −f ∗∓(z). Likewise, f is counitary iff
the power series f∗ resp. f ∗ are of the form f∗re ◦ τ resp. τ−1 ◦ f ∗re ◦ τ with
real f∗re , f ∗re, in which case f̄∗±(−z) ≡ f∗∓(z) and f̄ ∗±(−z) ≡ −f ∗∓(z).

P2: If a standard f is reflexive resp. counitary, then its conjugate l+
1
2 ◦f ◦l− 1

2

is of the standard form f = l ◦ g with reflexive resp. counintary factors l and
g := l−

1
2 ◦ f ◦ l− 1

2 .
P3: If f is (weakly or strictly) reflexive resp. counitary, then its connector π
is (strictly) reflexive resp. counitary. This is geometrically obvious, from the
relations P1 injected into the definition (6), but the remarkable fact is that
the analytical procedure (??) also respects this conservation of reflexivity or
counitariness at every single step. Thus, if we apply it to the decomposition
f = l ◦ g (as in P2) of a reflexive f , we have to do with an even infinitesimal
generator g∗ that carries only coefficients g∗1+d of even degree d, and (??)
automatically produces an even p∗. The diffeo g itself is of mixed parity,
but its coefficients of g∗1+d of odd degree are fully determined by the earlier
coefficients of even degree, and can thus be used in place of the g∗1+d. Either
way, for reflexive diffeos the calculation of the invariants is a much more
pleasant affair than for general diffeos, due to the drastic reduction in the
mass of coefficients and (provided f be real) to the realness of p∗ and π∗.
P4: Conversely, any reflexive resp. counitary π is the invariant of some
reflexive resp. counitary f . This follows from the canonical synthesis (see
§1.4) which, for c real and large enough, automatically produces diffeos fc of
the required type.48

P5: (Reinhard Schäffke). The product or quotient of two reflexive (res.
unitary) diffeomorphisms is obviously conjugate to a reflexive (res. unitary)
diffeomorphisms, but the converse is also true: any weakly reflexive (resp.
unitary) f can, for any consecutive integers nj, be represented as a quotient
of two strictly reflexive (resp. unitary) diffeos fj:

f := f1 ◦f−1
2 with f(z) := z+1+o(1), fj(z) := z+nj +o(1), n1−n2 = 1

48As pointed out to us by Reinhard Schäffke, this can also be deduced from the bifac-
torisation of f in P5 below, provided we admit the existence of a pre-image f for any given
π, which fact again follows from the canonical synthesis, but may also be established more
directly.
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and that too with explicit factors fj:

f weakly reflexive || f weakly counitary

fj := (∗f) ◦ lnj ◦ σ ◦ (f ∗) ◦ σ || fj := (∗f) ◦ lnj ◦ σ ◦ (f̄ ∗) ◦ σ (255)

= fnj ◦ (∗f) ◦ σ ◦ (f ∗) ◦ σ || = fnj ◦ (∗f) ◦ σ ◦ (f̄ ∗) ◦ σ (256)

= fnj ◦ h−1 ◦ σ ◦ h ◦ σ || = fnj ◦ h−1 ◦ σ ◦ h̄ ◦ σ (257)

Indeed, the equivalent definitions (255), (256), (257) make it clear, respec-
tively:
– that f1, f2 are reflexive (resp. counitary);
– that f = f1 ◦ f−1

2 ;
– that f1, f2 are analytic.49

P6: Piecing together all the above, we see that the commutative, non-
associative50 operation mixc:

mixc : (π1,π2) 7→ π := πf1,c◦f2,c = πf2,c◦f1,c (258)

(where fj,c stands for the c-canonical pre-image of πj) respects reflexivity
and counitariness.

4 Scalar invariants in terms of f .

4.1 The invariants Aω as entire functions of f .

Let π±ω and π♦,ω be the Fourier coefficients of the connectors, as defined in
§3.5 by weight-wise truncation of the collectors and passage to the limit:

If +=(z)�1 : π±1(z) = z +
∑
ω∈Ω−

π±ω e
−ωz ; π♦(z) =

∑
ω∈Ω−

π♦,ω e
−ωz (259)

If −=(z)�1 : π±1(z) = z +
∑
ω∈Ω+

π±ω e
−ωz ; π♦(z) =

∑
ω∈Ω+

π♦,ω e
−ωz (260)

The Fourier series for π±(z)−z are convergent, whereas those for π♦(z), π∗, π]
etc are (usually) merely formal. But this makes no difference to the Fourier

49The analytic h in (257) conjugates the weakly reflexive/counitary f with a strictly
reflexive/counitary f0, i.e. h ◦ f = f0 ◦ h. By definition, such a pair h, f0 exists. We
may note in passing that the factorisation f = f1 ◦ f−12 would still hold for complex (in
the reflexive case) or real (in the unitary case) values of nj , but in that case the above
formulae break down (f1, f2 are no longer analytic) and we must take recourse to another,
more involved construction.

50mixc(π1,π2) is doubly germinal: for a given (π1,π2), it is defined for c large enough,
and for a given c , it is defined for (π1,π2) close enough to (id , id).
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coefficients, which are always given by convergent series:

π±ω = z +
∑
1≤r

∑
ni

Γn1,...,nr
± Teen1,...,nr

ω (261)

π∗ω =
∑
1≤r

∑
ni

Γn1,...,nr
∗ Taan1,...,nr

ω (262)

π] ω =
∑
1≤r

∑
ni

Γn1,...,nr
] Toon1,...,nr

ω (263)

with the g-dependendence implicit in the coefficients Γ±,Γ∗,Γ] as defined in
(219), (239), (245), or explicit in the definitions (223), (241).

However, the need to define the alien operators ∆±ω and ∆ω in uniform
manner for all ω clashes with the need to associate within one and the same
pair (πno, πso) resp. (π−1

no , π
−1
so ) northern and southern components originating

from the same collector p or p−1. This clash leads to a regrettable but
unavoidable disharmony in the correspondance between the invariants A±ω
and Aω, as defined from the resurgence equations, and the Fourier coefficients
of the connectors, as derived from the collectors. This correspondance takes
the form:

∀ω ∈ Ω− : A+
ω = π+

ω ; A−ω = π−ω ; +2πiAω = π∗ω

∀ω ∈ Ω+ : A−ω = π+
ω ; A+

ω = π−ω ; −2πiAω = π∗ω

Remark: nature of the convergence.
(i) The convergence in (261) is completely unproblematic – absolute with
respect to the contributions attached to individual clusters

∏
i(gsi)

ni

(ii) We also have absolute, cluster-wise convergence in (262) and (263) pro-
vided we take the precaution of switching from the coefficient systems {g∗,s}
or {g],s} back to the natural system {gs}.
(iii) But we can also dispense with that change if we take the precaution
of collecting in (262) or (263) all terms (in finite number) of total weight
s, and then of summing all s-contributions. But summing separately the
contributions attached to the clusters

∏
i(g∗,si)

ni or
∏

i(g],si)
ni would not do.

4.2 The case ρ(f) 6= 0. Normalisation.

For diffeos of the form f(z) = z + 1 − ρz−1 + O(z−2) with a non-vanishing
‘iterative residue’ ρ, the defining relation (5) for the right and left iterators
must be changed to

f ∗±(z) = lim
k→±∞

fk(z)− k ± ρ (c+ log |k|) (264)
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with the normalisation constant c as in §2.5. In the formal model, this leads
to

f̃ ∗(z) = z + ρ (c+ log z) +O(z−1) (265)

That apart, nothing changes and all the previous results and formulae still
hold, including the explicit expansions (221)-(222) and (261), provided we
set ze1 := γ − c and normalise all multizetas and multitangents accordingly.
As mentioned in §2.6, the recommended choice is c = γ, since it amounts to
setting ze1 := 0.

4.3 The case p 6= 1. Ramification.

Here again, the transition is straightforward. The ‘prepared’ form (2) for the
diffeo now carries fractional exponents s ∈ p−1 N∗. As a consequence, the
multiplicative z-plane and the convolutive ζ-plane are now p-ramified, and
so is the index set Ω, which is embedded in the ζ-plane. We still have one
single collector p resp. p∗, p] etc, ramified yet of one piece, but p distinct
pairs of connectors, π = (πno, πso) resp. π∗ = (π∗no, π∗so) or π] = (π]no, π]so)
etc, separately unramified and mutually unrelated. The invariants π±ω resp.
π∗ω, π]ω are still given by the familiar formulae (261), (??), but with Fourier
coefficients Teesω resp. Taasω, Toosω etc that are best calculated by resurgent
analysis, as in §2.7, and are no longer finite sums of multizetas, even of
ramified ones.

The transition to the most general case, with (ρ, p) any element of (C,N∗),
follows on exactly the same lines, and merely combines the partial adjust-
ments of the present and preceding subsections.

4.4 Growth properties of the invariants.

Growth in ω for a given analytic f :

For a diffeo f in prepared form (2), any majorisation of its coefficients easily
translates into a majorisation of its invariants:

{ |f[s]| ≤ c0 c
s
1 } =⇒ { |A±ω | ≤ C0C

|ω|
1 } (266)

Rough estimates of (C0, C1) in terms of (c0, c1) were given in [E2] and sharper
ones in [B]. These results can be derived from a geometric analysis in the z-
plane or from a resurgent analysis in the ζ-plane. Things change, though,
when we go over to the Gevrey case.
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Growth in ω for a given f of Gevrey class:

Formal diffeos f (in prepared form) of Gevrey class τ are easily shown to
be stable under formal conjugations (also in prepared form) of the same
Gevrey class. For 0 < τ , the Gevrey class is non-analytic, and Gevrey
conjugacy turns out to be strictly stronger than formal conjugacy if and only
if τ < 1. This implies, for 0 < τ < 1 , the existence of Gevrey conjugation
invariants. These, however, can no longer be defined in the z-plane, since f is
purely formal and has no geometric realisation there. In the ζ-plane, though,
the Borel tranforms of the iterators ∗f and f ∗ still exist (again, assuming

τ < 1); still extend to uniform analytic functions on ˜C− 2πiZ; still verify
the familiar resurgence equations (66)-(67); and still unambigously defined
define invariants A±ω and Aω, which are still given by the explicit expansions
(261)-(262). The only difference lies in the faster than exponential growth
of f̂ ∗(ζ) and ∗f̂(ζ) as |ζ| → ∞, and in the faster than exponential growth of
A±ω as |ω| → ∞. More precisly, for 0 < τ < 1, the earlier implication (266)
becomes51:

{ |f[s]| ≤ c0 c
s
1 s

τs } =⇒ { |A±ω | ≤ C0 C
|ω|
1 exp(C2 |ω|

1
1−τ )} (267)

Growth in f for a given ω :

We may now fix ω and ask how A+
ω (f), A−ω (f), Aω(f) behave as functions of f

or, to simplify, as entire functions of any given coefficient f[s] (s ≥ 2) relative
to a prepared form (2). Unlike with the ω-growth, there is little difference
here between A±ω and Aω.
(i) If s > 2, all three entire functions A+

ω (f[s]), A
−
ω (f[s]), Aω(f[s]) have at most

exponential growth in |f[s]|
1
s−1 .

(ii) If s = 2, the corresponding coefficient coincides up to sign with the
iterative residue (i.e. f[2] = −ρ), and the entire functions A+

ω (ρ), A−ω (ρ), Aω(ρ)
have at most exponential growth in |ρ log ρ|. The result appears to be sharp.52

These results are almost “special cases” of the following statement: at any

given point ζ0 on C̃− Ω, the Borel transform of the direct iterator assumes
a value f̂ ∗(ζ0) which, as an entire function of f[s], is exactly of exponential

type in |f[s]|
1
s−1 . This applies even for s = 2. The difference between the

cases s 6= 2 and s = 2 makes itself felt only when we move ζ0 to some
point ω0 located over Ω, to investigate the leading singularity there and infer
from it the value of the invariants. When ρ = 0, the leading singularity in

51For details, see [E2], p 424.
52See the argument in §8 of [BEE].
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question is a simple pole aω0(ζ − ω0)−1, but when ρ 6= 0 it is of the form
aω0(ζ−ω0)ρω0−1/Γ(ρω0) and can be quite violent if ρ has an imaginary part.

We shall take up these growth and convergence issues more systematically
in §7.

4.5 Alternative computational strategies.

Direct Fourier analysis in the multiplicative plane.

The methods amounts to calculating the limit:53

A∓ε(ω)
ω = π±ω = lim

k→±∞

∫ 1+z0

z0

(
l−k ◦ f 2k ◦ l−k(z)− z

)
eω z dz (268)

with ε(ω) := sign(=(ω)). Although the parenthesised part of the integrand
converges to π±(z)− z for |=(z)| large enough, the above scheme, even after
optimisation in the choice of z0, is computationally costly (integral instead
of series) and inefficient (arithmetical convergence) as well as theoretically
opaque (it sheds no light on the internal structure of the invariants as func-
tions of f). But it has the merit of being almost insensitive to the choice of
ω, unlike the next method.

(ii) Asymptotic coefficient analysis in the formal model.

The method starts with the inductive calculation of the first N coefficients of
the direct iterator f ∗(z) from its functional equation (11). One then switches
to the Borel transform f̂ ∗(ζ) and uses the method of coefficient asymptotics54

to derive the form of the two singularities55 closest to the origin (they are
located over ±2πi). When applied to a parameter-free diffeo f with proper
optimising precautions, the method is superbly efficient for computing A±2πi,
even for diffeos f that are ‘large’, i.e. distant from the identity. Thus, with
N taken in the region of 200 or 300, one typically gets A±2πi with 100 exact
digits or more, in less than half an hour of Maple time.

The method works less well, however, for ω0 = 2πin with n > 1. One

must then start with a conformal mapping ζ 7→ ζ ′ = h(ζ) of R = ˜C− 2πiZ
that keeps 0• fixed and takes the points +ωmain

0 and −ωmain
0 closer to the

53If ρ(f) 6= 0, the shift l−k should of course be replaced by l−k+(c+log k)ρ, with c = γ as
recommended choice for the normalisation constant c. See §2.6.

54For a brief exposition of the method, see for ex. the section §2.3 of Power Series with
sum-product Taylor coefficients and their resurgence algebra, J. Ecalle and S. Sharma, Ed.
Scuola Normale Superiore, Pisa, 2011.

55or of the 2 p closest singularities when p(f) 6= 0.
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origin than all other points ±ωmain, with ωmain denoting the ramification
point of R over ω that abuts the main real half-plane. One can then apply
the method of coefficient asymptotics in the ζ ′-plane, with the Taylor series
f̂ ∗(h−1(ζ ′)) in place of the series f̂ ∗(ζ), to calculate A+

ω0
and A−−ω0

.

(iii) Resurgent analysis in the Poincaré plane.

That method also is based on the resurgence equation (67) verified by the
direct iterator f ∗. But instead of interpreting that resurgence equation, as
usual, in the highly ramified ζ-plane, one performs a conformal transform
ζ → ξ derived from the classical modular function λ :

ζ = q(ξ) := − log(1− λ(ξ)) = − log λ(−1

ξ
) = 16

∑
n odd

qn e
2πiξ (269)

qn :=
∑
d|n

1

d
=

1

n

∑
d|n

d (270)

That comformal transform does three things:

(*) it maps the Riemann surface R := ˜C− 2πiZ of the ζ variable uniformly
onto the Poincaré half-plane =(ξ) > 0;

(**) it changes the power series f̂ ∗(ζ) with finite radius of convergence into

a Fourier series f̂ ∗(q(ξ)) that converges on the entire Poincaré half-plane.
(***) it turns the alien operators into finite superpositions of post-composition
operators – more precisely, post-composition by simple homographies h±ω,j or
h±ω,j with entire coefficients:

∆±ω ϕ̂(ξ) := ϕ̂ ◦ h±ω,1(ξ)− ϕ̂ ◦ h±ω,2(ξ) (271)

∆ωϕ̂(ξ) :=
∑

1≤j≤2r

mω,j ϕ̂ ◦ hω,j(ξ) (r := | ω
2πi
|,mω,j ∈ Q) (272)

The method is efficient enough for small values of ω, but as r := | ω
2πi
| in-

creases, the minima

H±(ω) := inf
=(ξ)>0

{=(ξ) , =(h∓ω,1(ξ)) , =(h∓ω,2(ξ))} (273)

H(ω) := inf
=(ξ)>0

{=(ξ) , =(hω,1(ξ)) , . . . , =(hω,2r(ξ))} (274)

rapidly decrease to zero, making it necessary to evaluate our Fourier series
for f̂ ∗(q(ξ)) close to the boundary of their domain of convergence, i.e. the
real axis, which of course is computationally costly.
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(iv) Explicit multizetaic expansions.

This method, to which the present paper is devoted, has the advantage of
explicitness and theoretical transparency, expressing as it does the invariants
in terms of universal transcendental constants (the multizetas) and of the
diffeo’s Taylor coefficients. It has the further advantage of handling large
values of ω almost as efficiently as small ones. But the method’s chief draw-
back would seem to be this: it involves expansions which converge very fast
(faster than geometrically) once they reach ‘cruising speed’, but which often
take a damn long time to reach that speed. This is the case, not so much for
ω large, but for f large, i.e. for diffeos too distant from id .

4.6 Concluding remarks.

(i) The invariants as autark functions.
Local, analytic, resonant vector fields X ranging through a fixed formal con-
jugacy class, possess holomorphic invariants Aω which are autark functions
of X, that is to say, of any given free56 Taylor coefficient of X. Autark func-
tions, very informally, are entire functions whose asymptotic behaviour in
every sector of exponential increase or decrease admits a complete descrip-
tion, with dominant exponential terms accompanied by divergent-resurgent
power series, which in turn verify a closed system of resurgence equations.
Whether the invariants Aω of diffeos are autark, too, seems likely but is yet
unproved. Be that as it may, one would like to fully understand the asymp-
totic behaviour of Aω as f grows, or as any given coefficient or parameter in f
grows, since for very ‘large’ diffeos f the direct computation of the invariants
would in any case be very costly.

(ii) Formal multizetas: dynamical vs arithmetical variants.
There exist several distinct but most probably equivalent notions of arith-
metical formal multizetas, like the multizeta symbols subject to the two sys-
tems of so-called quadratic multizeta relations, or again to the pentagonal,
hexagonal and digonal relations. But there also exists a demonstrably dis-
tinct and weaker notion of dynamical formal multizetas (and multitangents),
by which we mean any system S of scalar-valued multizeta symbols (resp.
function-valued multitangent symbols) that, when inserted into the expan-
sions (261) (resp. (224)) guarantees, first, the convergence of these expan-
sions, and, second, the invariance of the Aω (resp. π) so produced. This
immediately suggests a programme: to repeat for the dynamical multizetas

56i.e. of each coefficient that may freely vary without causing X to leave its formal
conjugacy class.
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what has been successfully done for their arithmetical counterparts, in par-
ticular to construct explicit, complete and canonical systems of irreducibles.

(iii) Abstract invariants.
Let { SAω, ω ∈ Ω} be the system of ‘abstract’ invariants induced by a system
S of dynamical multizetas as above. Since the system of natural invariants
{Aω, ω ∈ Ω} is complete, there necessarily exist conversion formulae of the
form:

SAω0 =
∑
1≤r

∑
ω1+...ωr=ω0

Hω1,...,ωr
S Aω1 . . . Aωr (275)

that respect the basic ω-gradation and carry interesting ‘universal’ structure
constants H•S . These constants ought to be of particular significance in the
case of the system S0 of ‘rational’ dynamical multizetas which is analogous,
on the dynamical side, to the canonical system of ‘rational’57 multizetas on
the arithmetical side.

5 Complement: twisted symmetries and mul-

titangents.

The aim of this section is twofold:
(i) to review in a systematic and orderly fashion the combinatorial lemmas
relevant to this investigation
(ii) to examine the most general symmetry types and the structure coefficients
attached to them — less for their own sake than for showing how exceptional
and deserving of attention the dozen or so special symmetry types are.

5.1 Twisted alien operators.

Let γ(t) =
∑

0≤r γr t
r+1 and consider the alien operator

DD♦ := γ(DD+ − 1) = γ(e2πiDD − 1)() (276)

The ω-components of DD♦ are of the form:

DD♦ =
∑

arg(ω)=0

∆∆♦
ω =

∑
arg(ω)=0

e−ω.z ∆♦
ω (277)

(∆̂♦
ωϕ̂)(ζ) :=

∑
ε1,...,εr

εr
2πi

λ♦ε1,...,εr−1
ϕ̂

( ε1
ω1

,...,
,...,

ε1
εr

)
(ω + ζ) (278)

57they become rational, of course, only after an homogeneous rescaling that amounts to
setting π := 1.
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Like with the λ-coefficients of the already familiar operators ∆ω,∆
±
ω ,∆

]
ω,∆

]]
ω ,

the coefficients λ♦ε1,...,εr−1
that describe the action of ∆♦

ω depend only on the
crossing pattern, i.e. on the number p, q of plus and minus signs in the
sequence {εi}. But in this case they are given by:

λ♦ε1,...,εr−1
= λ

[p,q]
♦ = (−1)q

∑
0≤k≤p

p!

(p−k)! k!
γq+k (279)

For γ(t) = t
1+t/2

or γ(t) = (1+t)2−1
(1+t)2+1

, we recover the structure coefficients λ
[p,q]
] ,

λ
[p,q]
]] for the alien operators ∆]

ω and ∆]]
ω introduced in §1.6.

λ
[p,q]
] = 2−p−q , λ

[p,q]
]] = %(p− q) 2−int(

p+q+1
2

)

where % is the even function from Z/8Z to Z verifying %(k+ 4) = −%(k) and
%(0) = %(±1) = 1. Since %(2) = −%(2 + 4) = −%(−2) = −%(2), it follows
that %(±2) = 0.
Short proof: After checking that the λ-coefficients of DD♦ inherit from those
of DD+ the crucial property of depending solely on the crossing pattern (p, q),
we are left with the simple task of considering the case of p initial right-
crossings followed by q final left crossings. As in §1.6 we begin with the
situation when all singularities are located over N. Next we define the non-
commuting elementary shifts σ, τ as in §1.6, then use the expansion

DD+−1 = (1− τ)(1− σ)−1 − 1 = (σ − τ)(1− σ)−1 = (σ − τ)(1 +
∑
1≤p

σp)

and in each power (DD+−1)r collect the terms that contribute to (σ−τ)τ qσp.

5.2 Twisted mould symmetries.

Given any two power series without constant term

α(t) =
∑
0≤r

αr t
1+r , β(t) =

∑
0≤r

βr t
1+r (α0 6= 0, β0 6= 0)

we denote by α(Id•), β(Id•), or simply α•, β• the moulds whose length-0
components vanish and whose length-r components are equal to

αω1 ≡ α0 , α
ω1,...,ωr ≡ αr−1 , βω1 ≡ β0 , β

ω1,...,ωr ≡ βr−1

irrespective of the actual values of ωi. We then define coefficients αp,q and
βp,q by setting ∑

αp,q tp1 t
q
2 := α

(
α−1(t1) + α−1(t2)

)
(280)∑

βp,q t
p
1 t
q
2 := β−1

(
β(t1) + β(t2)

)
(281)
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If M• ∈ α• ◦ alternal•, then for any two sequences ω′,ω′′ 6= ∅:

1≤p,1≤q∑
( ω

′1..ω′p=ω′

ω′′1..ω′′q=ω′′ )

αp,q Mω′1 . . .Mω′pMω′′1 . . .Mω′′q ≡
∑

ω∈sha(ω′,ω′′)

Mω (282)

If M• ∈ alternal• ◦ β•, then for any two sequences ω′,ω′′ 6= ∅:

0 ≡
1≤p,1≤q∑

ω∈shap,q(ω′,ω′′)

βp,qM
ω (283)

If M• ∈ α• ◦ alternal• ◦ β•, then for any two sequences ω′,ω′′ 6= ∅:

1≤p,1≤q∑
( ω

′1..ω′p=ω′

ω′′1..ω′′q=ω′′ )

αp,q Mω′1 . . .Mω′pMω′′1 . . .Mω′′q ≡
1≤p,1≤q∑

ω∈shap,q(ω′,ω′′)

βp,q M
ω

(284)
An important sub-case is when α, β are reciprocal, for it corresponds to a

symmetry type α• ◦ alternal• ◦ β• stable under mould-composition and leads
to identical coefficients αp,q = βp,q on both sides of (284).

It is often preferable to take elternel rather than alternal as a standard
of reference. Since

elternel• = (exp(Id•)− 1•) ◦ alternal• ◦ log(1• + Id•) (285)

we see at once that moulds respectively of type

elternel• ◦ δ• , γ• ◦ elternel• , γ• ◦ elternel• ◦ δ•

still verify identities of the form (282), (283), (284), but with new coefficients
γ[p,q], δ[p,q], defined by∑

γ[p,q] tp1 t
q
2 := γ

(
γ−1(t1) + γ−1(t2) + γ−1(t1) γ−1(t2)

)
(286)∑

δ[p,q] t
p
1 t
q
2 := δ−1

(
δ(t1) + δ(t2) + δ(t1) δ(t2)

)
(287)

in place of αp,q, β
p,q. Indeed, in view of (285), (286)-(287) results from (280)-

(281) under the change α(t) = γ(et − 1) , β(t) = log(1 + δ(t))

5.3 Twisted co-products.

As useful as the statements of §5.2 are the dual statements:
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(i) If θ♦ = α(θ∗) with cop(θ∗) = 1⊕ θ∗ + θ∗ ⊕ 1, then

cop(θ♦) = 1⊕ θ♦ + θ♦ ⊕ 1 +
∑
1≤p,q

αp,q (θ♦)p ⊕ (θ♦)q (288)

(ii) If θ♦ = γ(θ) with cop(θ) = 1⊕ θ + θ ⊕ 1 + θ ⊕ θ, then

cop(θ♦) = 1⊕ θ♦ + θ♦ ⊕ 1 +
∑
1≤p,q

γ[p,q] (θ♦)p ⊕ (θ♦)q (289)

5.4 Twisted multitangents.

Let γ(t) =
∑

0≤r γr t
r+1 and δ(t) =

∑
0≤r δr t

r+1 as usual58 and let

Te•γ,δ := γ(Id•) ◦ (Te• − 1•) ◦ δ(Id•) = γ(Id•) ◦ Tee• ◦ δ(Id•) (290)

Linearisation lemma: The twisted multitangents Te•γ,δ(z) can be uniquely
expanded into sums of symmetrel multitangents Te•(z)

Ten1,...,nr
γ,δ (z) =

∑
1≤s≤r

r1+···+rs=r∑
1≤ri

∑
σ∈Sr1,...,rs

Hr1,...,rs
σ Tenσ,1,...,nσ,s(z) (291)

with universal coefficients H r
σ = H r∗

[p,q] defined as follows

Hr1,...,rs(σ)=H
r∗1 ,...,r

∗
s∗

[p,q] =
r−s∗∑
k=0

[ p∑
l=0

γk+q+l
p!

(p−l)! l!

][∇k

k!

(
δr∗1−1...δr∗

s∗−1

)]
(292)

(i) The sum (291) ranges over all ordered sequences (r1, . . . , rs) and all per-
mutations σ in Sr1,...,rs , i.e. all σ that increase on each of the intervals Irk of
the partition

Ir1 t · · · t Irs = [1, . . . , r] ∈ Z (card(Iri) = ri)

(ii) The indices of Te•(z) on the right-hand side of (291) are given by

nσ,i =
∑
j∈Iri

nσ(j) ∀i ∈ [1, s]

(iii) Ir∗1 t · · · t Ir∗s∗ denotes the minimal sub-partition of Ir1 t · · · t Irs such
that σ increases without gaps on each Ir∗k , i.e. such that

σ(j)− σ(i) ≡ j − i ∀i, j ∈ Ir∗k , ∀k ∈ [1, s∗]

58For the moment, we assume neither γ ◦ δ = id nor γ0 6= 0, δ0 6= 0.
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(iv) There exist two full orders < and <σ on the set {Ir∗1 , . . . , Ir∗s∗}:

{Ir∗k < Ir∗l } ⇔ i < j ∀(i, j) ∈ (Ir∗k , Ir∗l ) ⇔ k < l

{Ir∗k <σ Ir∗l } ⇔ σ(i) < σ(j) ∀(i, j) ∈ (Ir∗k , Ir∗l )

For each k ≤ s∗ the immediate <σ-successor of Ir∗k is noted Ir∗
k+

(when it

exists, i.e. when Ir∗
k+

is not <σ-maximal). The integer p (resp. q) so defined

p :=
∑
k<k+

1 , q :=
∑
k>k+

1 (p+ q ≡ s∗ − 1)

measures the compatibility (resp. incompatibility) of < and <σ.

(v) ∇ denotes the derivation on Q[δ0, δ1, δ2 . . . ] characterised by

∇δ0 := 0 , ∇δ1 := (δ0)2 , ∇δ2 := 2 δ0 δ1 , . . . , ∇δr :=
r−1∑
r′=0

δr′ δr−1−r′

It readily follows that

∇r

r!
δr ≡ (δ0)r+1 ,

∇l

l!
δr ≡ 0 iff r < l

Remark 1: When k takes either of its extreme values 0 or r − s∗, the
formula (292) gives for H r∗

[p,q] two γ-dependent parts respectively of the form

(∗) γq + · · ·+ γp+q

(∗∗) γq+r−s∗ + · · ·+ γp+q+r−s∗ = γr−1−p + · · ·+ γr−1

while the δ-dependent parts reduce to

(∗) ∇0

0!

∏
i

δr∗i−1 =
∏
i

δr∗i−1

(∗∗) ∇r−s∗

(r−s∗)!
∏
i

δr∗i−1 =
∏
i

( ∇r∗i−1

(r∗i −1)!
δr∗i−1

)
=
∏
i

(δ0)r
∗
i = (δ0)r

As a consequece of (∗∗), H r∗

[p,q] always contains the term γr−1 (δ0)r among its
summands.

Remark 2: Exchanging two adjacent intervals Ir∗i and Ir∗i+1 with non-

adjacent images59 σ(Ir∗i ) and σ(Ir∗i+1) leaves the pair (p, q) unchanged. On

59This of course is possible only if Ir∗i and Ir∗i+1
do not stem from one and the same Ik.
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the other hand, once (p, q) has been determined in function of σ and the
ordered sequence r∗, the order in r∗ no longer counts for the determination
of H r∗

γ,δ (p, q). For a given depth r, therefore, the maximum number of dis-

tinct values assumed by H r∗

γ,δ (p, q) cannot exceed
∑r

k=1 k p(r, k), with p(r, k)
denoting the number of k-multiple partitions of r.

Example: Let us calculate the coefficients of Ten1,n3+n4,n2+n6+n7 in the ex-
pansion (291) of Ten1,...,n6

γ,δ . Starting from a partition r = (1, 2, 3) with s = 3
we arrive at the refined partition r∗ = (1, 2, 1, 2) with s∗ = 4. Applying (292)
and the rules for handling ∇, we successively find:

H1,2,1,2
[2,1] =

2∑
k=0

(γ1+k + 2 γ2+k + γ3+k)
∇k

k!
(δ0δ1δ0δ1)

= +(γ1 + 2 γ2 + γ3) (δ2
0 δ

2
1)

+(γ2 + 2 γ3 + γ4) (2 δ4
0 δ1)

+(γ3 + 2 γ4 + γ5) (δ6
0)

We would find exactly the same coefficient for Ten1,n3+n4,n2,n6+n7 and for
Ten1,n3+n4,n6+n7,n2 , in agreement with the observation of Remark 2 above.

Special cases. If we now assume that γ ◦ δ = id , we find few noteworthy
simplications, apart from the automatic vanishing of the coefficient Hr

[r−1,0]

that stands in front of the lone ‘monotangent’ Te |n| in the Te•-expansion
(291) of Ten. For real simplications, we must turn to the multitangents
Te•]c = Te•γc,δc with homographic driving series γc(t) = t

1+c t
and δc(t) =

t
1−c t . In that case, a simple calculation shows that in the expansion (291)
of Tenγc,δc the only surviving terms Tenσ,1,...,nσ,s are those whose indices nσ,k
carry no sums ni + ni+1 of consecutive terms. This implies that the only
non-zero coefficients Hr∗

γc,δc
(p, q) correspond to reduced sequences r∗ with all

multiplicities r∗i ≡ 1, so that s = r. Moreover, even these surviving Hr∗

[p,q]

turn out to be extremely simple:

H1,...,1
[p,q] = (1− c)p (−c)q (293)

When c = 1/2, we recover the formula (143) for the Te•-expansion of the
olternol multitangents Too•.

The family

γ(t) :=
1

c

(1 + t)2 c − 1

(1 + t)2 c + 1
, δ(t) :=

(1 + c t

1− c t
) 1

2 c − 1 (294)

does not lead to simple results, except of course in the case c = 1/2, where it
coincides with (293), and in the case c = 1, where all coefficients Hr∗

γc,δc
(p, q)
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turn out to be simple products of Catalan numbers times a negative power
of 2 and an appropriate sign in front. Here is the precise statement:

8-periodicity of Hr∗

[p,q]. For γ, δ of the form

γ(t) :=
t+ 1

2
t2

1 + t+ 1
2
t2

, δ(t) :=
(1 + t

1− t
) 1

2 − 1 (295)

we have

H
r∗1 ,...,r

∗
s

[p,q] = ρ∗(su−se+2 p) 2int(s/2)
∏

1≤i≤s

κ(r∗i ) (296)

= ρ(2 su+p−q) 2int(s/2)
∏

1≤i≤s

κ(r∗i ) (297)

with

su :=
∑
r∗i =1

1 , se :=
∑

r∗i even≥2

1 , so :=
∑

r∗i odd≥3

1 (1+p+q ≡ su+so+se)

int(s) = integer part of s (298)

ρ∗(m) : Z/8Z→ Z , [0, 1, 2, 3, 4, 5, 6, 7] 7→ [−1, 2,−1, 0, 1,−2, 1, 0] (299)

ρ(m) : Z/8Z→ Z , [0, 1, 2, 3, 4, 5, 6, 7] 7→ [0,−1, 2,−1, 0, 1,−2, 1] (300)

κ(1) := 1/2 , κ(2n) :=
1

22n

(2n−2)!

n! (n−1)!
, κ(2n+1) := 0 ∀n > 1 (301)

Due to (301), Hr∗

[p,q] vanishes unless none of the indices r∗i is odd ≥ 3. More-

over, when all r∗i are either 1 or even, after division by elementary factors (-
powers of 2 and Catalan numbers -) we get an expression h:

h(p, q, su, se) := H
r∗1 ,...,r

∗
s

[p,q] 2−int(s/2)
∏
i

(1/κ(r∗i )) (302)

= ρ(2 su + p− q) (303)

= ρ∗(su − se + 2 p) = ρ∗(3 su + se − 2 q − 2) (304)

which turns out, quite unexpectedly, to be 8-periodic in the order-compatibility
coefficients p, q and the multiplicities su, se.

5.5 Affliates : from function to operator.

We have the choice bewtween relating an affiliate F♦ to F itself or to its
infinitesimal generator F∗:

F♦ := γ(F − 1) = α(F∗)
(
F∗ := log(F )

)
(305)
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This implies handling two distinct systems of coefficients:

α(t) = t+
∑
1≤r

αr t
r+1 , γ(t) = t+

∑
1≤r

γr t
r+1 ,

(
γ(t) = α(log(1 + t)

)
(306)

The choice impacts the analytic expression of the correspondence f♦ 7→ F♦:

F♦ 7→ f♦ = F♦ . z (307)

f♦ 7→ F♦ =
∑
1≤r

∑
1≤ni

♦n1,...,nr
(
fn1
♦

∂n1
z

n1!

)
. . .
(
fnr♦

∂nrz
nr!

)
(nr>1 if r>1) (308)

Although F♦ is usually derived from F rather than F∗, the structure coef-
ficients ♦n1,...,nr are simpler to express in terms of the coefficients αn than
in terms of γn: in the former case, the sums involve fewer terms

∏
αmj due

to the homogeneity constraints
∑
ni =

∑
mj. The simplest way to ensure

(307) is to set ♦1 = 1 and to impose that all other coefficients ♦n1,...,nr end-
ing with nr = 1 should vanish. This, however, is not enough to enforce the
uniqueness of the expansion (308), due to the existence, for n large enough,
of universal identities of the form

0 ≡
∑

n1+···+nr=n

cn1,...,nr

(
fn1
♦

∂n1
z

n1!

)
. . .
(
fnr♦

∂nrz
nr!

)
(cn1,...,nr ∈ Z) (309)

The latitude in the choice of the structure coefficients being 2r−2 − par(r)
for r > 1 (par = partition number), it is clear that even imposing a natural
condition60 like

{αn =
1

(n+ 1)!
∀n} =⇒ {♦n1 = 1 ∀n1 , ♦n1,...,nr = 0 ∀r ≥ 2} (310)

is not enough to restore uniqueness. In fact, we know of no simple condi-
tion that does. In any case, here is a natural choice for the first structure
coefficients:

♦1 = 1

♦2 = 2α1

♦3 = −3α2 +6α2
1

♦1,2 = 3α2 −2α2
1

♦4 = 4α3 −20α1 α2 +20α3
1

♦1,3 = −7α3 +20α1 α2 −11α3
1

♦2,2 = 2α3 +2α1 α2 −2α3
1

♦1,1,2 = 3α3 −6α1 α2 +3α3
1

60natural indeed, since this choice of α leads to the fonction f♦(z) = f(z) − z and to

the operator F♦ = F − 1 =
∑

1≤n f
n
♦
∂n
z

n! .
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♦5 = −5α4 +30α1 α3 +15α2
2 −105α2

1 α2 +70α4
1

♦1,4 = 21α4 −366
5
α1 α3 −171

5
α2

2 +789
5
α2

1 α2 −342
5
α4

1

♦2,3 = −28α4 +348
5
α1 α3 +168

5
α2

2 −552
5
α2

1 α2 +196
5
α4

1

♦3,2 = 9α4 −114
5
α1 α3 −99

5
α2

2 +321
5
α2

1 α2 −138
5
α4

1

♦1,1,3 = 0

♦1,2,2 = −α4 +86
5
α1 α3 +51

5
α2

2 −229
5
α2

1 α2 +102
5
α4

1

♦2,1,2 = +4α1 α3 −8α2
1 α2 +4α4

1

♦1,1,1,2 = 4α4 −64
5
α1 α3 −24

5
α2

2 +116
5
α2

1 α2 −48
5
α4

1

Remarkably enough, for index sums |n| ≥ 5, a fair number of structure
coefficients ♦n are always = 0, irrespective of α and despite having a last
index nr 6= 1. Here are the first unconditionally vanishing coefficients:

|n| = 5 : ♦1,1,3

|n| = 6 : ♦2,4 , ♦3,1,2 , ♦1,1,1,3 , ♦1,1,1,1,2

|n| = 7 : ♦2,5 , ♦1,3,3 , ♦1,1,1,4 , ♦1,1,2,3 , ♦1,2,1,3 , ♦2,1,1,3 , ♦2,1,2,2 , ♦1,1,1,1,3 ,

♦1,1,1,2,2 , ♦1,1,2,1,2 , ♦1,2,1,1,2 , ♦2,1,1,1,2 , ♦1,1,1,1,1,2

Here again, the case

α(t) =
1

c
tanh(c t) , γ(t) =

1

c

(1 + t)2 c − 1

(1 + t)2 c + 1
(311)

stands out for simplicity. It makes it possible to choose a system of structure
coefficients which are all ≡ 0 except those of the form:

♦2m1−1,2m2,2m3,...,2mr = (−1)r−1 c−2+2
∑
mi (∀r , ∀mi ≥ 1) (312)

When c = 1
2

we recover the earlier formula (26) for the mediator.

5.6 Main and secondary symmetry types.

Let us stand back and take stock. Alongside the four ubiquitous symmetry
types:

alternal• = basic symmetry type

symmetral• = (exp Id•) ◦ alternal•

alternel• = alternal• ◦ log(1• + Id•)

symmetrel• = (exp Id•) ◦ alternal• ◦ log(1• + Id•)
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we have a number of special symmetry types, of secondary but non-negligible
importance:

olternal• = α(Id•) ◦ alternal•

= γ(Id•) ◦ (symmetral• − 1•)

alternol• = alternal• ◦ β(Id•)

= alternel• ◦ δ(Id•)

olternol• = α(Id•) ◦ alternal• ◦ β(Id•)

= γ(Id•) ◦ (symmetrel• − 1•) ◦ δ(Id•)

symmetrol• = symmetral• ◦ β(Id•)

= symmetrel• ◦ δ(Id•)

Choice 1: The most common choice for the quartet (α, β, γ, δ) is

α(t) := 2 tanh(
1

2
t) , β(t) := 2 arctanh(

1

2
t) (313)

γ(t) :=
t

1 + 1
2
t

, δ(t) :=
t

1− 1
2
t

(314)

The corresponding structure constants are:

λ[p,q] = 2−p−q

γ[p,q] = (−1
4
)inf(p,q) if |p− q| = 1 (resp. 0 otherwise)

♦n1,...,nr = (−1)r−1 21−
∑
ni if r, n1 odd , n2, ..., nr even (resp. 0 otherwise)

H
r∗1 ,...,r

∗
s

[p,q] = (−1)q (1
4
)s−1 if r∗1 = ... = r∗s = 1 (resp. 0 otherwise)

Choice 2: More rarely we take

α(t) := tanh(t) , β(t) := arctanh(t) (315)

γ(t) :=
t+ 1

2
t2

1 + t+ 1
2
t2

, δ(t) :=
(1 + t

1− t
) 1

2 − 1 (316)

This choice leads to marginally less simple structure coefficients:

λ[p,q] = %(p− q) 2−int(
p+q+1

2
)

γ[p,q] = (−1)inf(p,q) if |p− q| = 1 (resp. 0 otherwise)

♦n1,...,nr = (−1)r−1 if r, n1 odd , n2, ..., nr even (resp. 0 otherwise)

H
r∗1 ,...,r

∗
s

[p,q] = ρ(2 su+p−q) 2int(s/2)
∏

1≤i≤s κ(r∗i ) ( resp. 0 if s0 6= 0 )
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with su, so, se, ρ, %, κ as in (299)-(301). In particular:

ρ : Z/8Z→ Z , [0, 1, 2, 3, 4, 5, 6, 7] 7→ [0,−1, 2,−1, 0, 1,−2, 1]

% : Z/8Z→ Z , [0, 1, 2, 3, 4, 5, 6, 7] 7→ [1, 1, 0,−1,−1,−1, 0, 1]

ρ is odd and % even but both change signs under 4-shifts

ρ(k + 4) ≡ −ρ(k) , %(k + 4) ≡ −%(k)

Choice 3: If c 6∈ {±1,±i,±1
2
,± i

2
} the one-parameter family

αc(t) :=
1

c
tanh(c t) , βc(t) :=

1

c
arctanh(c t) (317)

γc(t) :=
1

c

(1 + t)2 c − 1

(1 + t)2 c + 1
, δc(t) :=

(1 + c t

1− c t
) 1

2 c − 1 (318)

makes only γ[p,q] and ♦• simple:

λ[p,q] = no simple multiplicative structure

γ[p,q] = (−c2)inf(p,q) if |p− q| = 1 , (else = 0)

♦n1,...,nr = (−1)r−1 c−1+
∑
ni if r, n1 odd , n2, ..., nr even (else = 0)

H
r∗1 ,...,r

∗
s

[p,q] = no simple multiplicative structure

Choice 4: The homographic quartet:

α c(t) :=
(et − 1)

1 + c (et − 1)
, β

c
(t) :=

t

1− c t
(319)

γ
c
(t) :=

t

1 + c t
, δ c(t) :=

t

1− c t
(320)

predictably leads to simpler structure coefficients:

λ[p,q] = c q (1− c)p

γ[p,q] = 0 if |p− q| ≥ 2

γ[p,p] = (1− 2 c) c p−1 (c− 1)p−1

γ[p,p+1] = γ
[p+1,p]
c = c p (c− 1)p

♦n1,...,nr = no simple multiplicative structure

H
r∗1 ,...,r

∗
s

[p,q] = (−c)q (1− c)p if r∗1 = ... = r∗s = 1 (resp. 0 otherwise)
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General case: Lasty, for arbitrary but mutually reciprocal (γ, δ), the for-
mulae read

λ[p,q] = (−1)q
∑

0≤k≤p
p!

(p−k)! k!
γq+k

γ[p,q] : generated by γ
(
δ(t1)+δ(t2)+δ(t1) δ(t2)

)
=
∑
γ[p,q] tp1 t

q
2

♦n1,...,nr : multiple competing expressions .

H
r∗1 ,...,r

∗
s

[p,q] =
∑r−s∗

k=0

[∑p
l=0γk+q+l

p!
(p−l)! l!

][
∇k
k!

(
δr∗1−1...δr∗

s∗−1

)]
In conclusion, of all secondary symmetry types, the simplest (and most

frequently occuring in practice) is the one at the intersection of the two
one-parameter families: γ = γ 1

2
= γ 1

2

, δ = δ 1
2

= δ 1
2

Remark 1: Consider the N-indexed mould har • defined by the induction

|•| har• = har• × Id• × har• (resp. = 0) if r(•) odd (resp. even)

or more explicitely

harn1 =
1

n1

(321)

harn1,...,nr := 0 ∀r even (in partiular har∅ := 0 ) (322)

harn1,...,nr :=
1

n1 + · · ·+ nr

∑
1<i<r

harn1,...,ni−1harni+1,...,nr (∀r odd ≥ 3)(323)

har • is the simplest example of a i-olternal mould. It occurs naturally in
the study of some special trigonometric flexion algebras.61 Its inverse kohar •

under mould composition is even more elementary:

koharn1,...,n2r ≡ 0 , koharn1,...,n2r+1 ≡ (−1)r nr (324)

kohar • is the simplest instance of a i-alternol mould.

Remark 2: There is an important operator H, also acting on a trigonometric
flexion algebra62, that happens to verify a co-symmetrol co-product.63

Remark 3: There seems to exist no simple notion of bracket (anti-commutative
and rational in its two arguments) for mediators and consequently no proper
equivalent of the Campbell-Hausdorff formula for expressing (F.G)] in terms
of F] and G], other than the obvious expansion that relies on the coefficients
γ[•] defined by the series in the non-commutative variables t1, t2:∑

γ[[p1,q1,...,pr,qr]] tp11 tq12 . . . tpr1 tqr2 := γ
(
γ−1(t1) + γ−1(t2) + γ−1(t1) γ−1(t2)

)
with p1, qr ≥ 0 and all other pi, qi ≥ 1.

61Cf [E7],p 177.
62Cf [E7], (11.42)-(11-43).
63Cf [E7], (11.47).
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6 Complement: arithmetical vs dynamical mon-

ics.

6.1 Distinguishing Stokes constants from holomorphic
invariants.

The scalars Aω(f) may be viewed
(i) as Stokes constants
(ii) as holomorphic invariants.

In their first capacity, they govern the Stokes transitions and are rigidly
determined. So too are the (presumably transcendental) monics — the mul-
tizetas — which enter their expansions. We speak accordingly of rigid or
arithmetical monics.

There is more latitude, however, when we look upon the saclars Aω(f) as
holomorphic invariants and retain only those multizeta properties which are
directly responsible for their invariance. We speak in that case of dynamical
monics.

Both types of monics verify various types of relations, some infinite, some
finite-algebraic. When viewed as subject only to their various systems of alge-
braic relations over Q, our monics (whether rigid-arithmetical or dynamical)
become formal monics. As such, they possess their own system of indepen-
dent generators, the so-called irreducibles. Being subject to laxer constraints,
the dynamical irreducibles should be expected to be, and in fact are, more
‘numerous’ than the rigid-arithmetical irreducibles.64

6.2 Arithmetical multizetas.

The two classical systems of algebraic (quadratic) constraints.

Either system of constraints is best expressed as a specific multiplication rule
relative to a specific encoding.

In the first or α-encoding, the multizetas are given by polylogarithmic
integrals :

waα1,...,αl
∗ := (−1)l0

∫ 1

0

dtl
(αl − tl)

· · ·
∫ t3

0

dt2
(α2 − t2)

∫ t2

0

dt1
(α1 − t1)

(325)

with indices αj that are either 0 or unit roots, and l0 :=
∑

αi=0 1.

64Though of course any complete system of irreducibles, of either sort, has to be count-
ably infinite.
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In the second or ( ε
s
)-encoding, the multizetas are expressed as “harmonic

sums”:
ze∗

( ε1
s1

,...,
,...,

εr
sr

)
:=

∑
n1>···>nr>0

n−s11 . . . n−srr e−n1
1 . . . e−nrr (326)

with sj ∈ N∗ and unit roots ej := exp(2πiεj) of ‘logarithms’ εj ∈ Q/Z.

The stars ∗ means that the integrals or sums are provisionally assumed
to be convergent or semi-convergent : for waα∗ this means that α1 6= 0 and

αl 6= 1, and for ze
( ε
s
)

∗ this means that ( ε1
s1

) 6= (0
1
) i.e. ( e1

s1
) 6= (1

1
).

The corresponding moulds wa•∗ and ze•∗ turn out to be respectively sym-
metral and symmetrel :65

waα
1

∗ waα
2

∗ =
∑

α∈ sha(α1,α2)

waα∗ ∀α1,∀α2 (327)

ze
( ε

1

s1
)

∗ ze
( ε

2

s2
)

∗ =
∑

( ε
s
)∈ she(( ε

1

s1
),( ε

2

s2
))

ze
( ε
s
)

∗ ∀( ε
1

s1
),∀( ε

2

s2
) (328)

These are the so-called quadratic relations, which express multizeta dimorphy.
As for the conversion rule, it reads :66

wa∗
e1,0[s1−1],...,er,0[sr−1]

:= ze∗
( εr
sr

,
,
εr−1:r
sr−1

,...,
,...,

ε1:2
s1

)
(329)

ze∗
( ε1
s1

,
,
ε2
s2

,...,
,...,

εr
sr

)
=: wa∗

e1...er,0[sr−1],...,e1e2,0[s2−1],e1,0[s1−1]

(330)

with 0[k] denoting a subsequence of k zeros.
There happen to be unique extensions wa•∗ → wa• and ze•∗ → ze• that

cover the divergent cases and keep our moulds symmetral or symmetrel while
conforming to the ‘initial conditions’ wa0 = wa1 = 0 and ze( 0

1
) = 0. As we

shall see in a moment, however, the divergent case calls for a slight modifi-
cation of the conversion rules (329)-(330).

Arithmetical multizeta irreducibles.

The Q-ring ZE of formal multizetas, i.e. the Q-ring generated by the sym-
bols waα and ze( ε

s
) subject only to the conversion rule (329)-(330) and the

65As usual, sha(ω′, ω′′) denotes the set of all simple shufflings of the sequences ω′, ω′′,
whereas in she(ω′, ω′′) we allow (any number of) order-compatible contractions ω′i + ω′′j .

66with the usual shorthand for differences : εi:j := εi − εj .
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quadratic relations67 (327)-(328), is known to be a polynomial ring, freely
generated by a countable number of so-called irreducibles.

Generating series.

As borne out by past experience, it is advisable, for most intents and pur-
poses, to switch from the scalar multizetas wa• and ze• to the generating
series Zag• and Zig•:

Zag
(u1
ε1

,...,
,...,

ur
εr

)
:=

∑
1≤sj

wae1,0
[s1−1],...,er,0[sr−1]

us1−1
1 us2−1

1,2 . . . usr−1
1...r (331)

Zig
( ε1
v1

,...,
,...,

εr
vr

)
:=

∑
1≤sj

ze
( ε1
s1

,...,
,...,

εr
sr

)
vs1−1

1 . . . vsr−1
r (332)

The bimould68 Zag• is symmetral, just as wa• was, while the bimould Zig• has
its own symmetry type: symmetril. The symmetrility relations are patterned
on the symmetrelity relations, but with the additive contractions wi + wj
replaced by ‘polar’ contractions ŵi, wj, according to the rules :

S
( ...,
...,

ûi
vi

,
,
uj
vj

,...
,...

)
= S

( ...,
...,

ui+uj
vi

,...
,...

)
P (vi−vj) + S

( ...,
...,

ui+uj
vj

,...
,...

)
P (vj−vi) (333)

Here P (t) := 1/t. In (333) the dots may themselves contain any number of
additional contractions ŵk, wl. Thus:

S
( ...,
...,

ûi
vi

,
,
uj
vj

,...
,...

...,

...,
ûk
vk

,
,
ul
vl

,...
,...

)
= +S

( ...,
...,

ui+uj
vi

,...
,...

...,

...,
uk+ul
vk

,...
,...

)
P (vi−vj)P (vk−vl)

+S
( ...,
...,

ui+uj
vj

,...
,...

...,

...,
uk+ul
vk

,...
,...

)
P (vj−vi)P (vk−vl)

+S
( ...,
...,

ui+uj
vi

,...
,...

...,

...,
uk+ul
vl

,...
,...

)
P (vi−vj)P (vl−vk)

+S
( ...,
...,

ui+uj
vj

,...
,...

...,

...,
uk+ul
vl

,...
,...

)
P (vj−vi)P (vl−vk)

A typical symmetrility relation reads:

Sw1,w2 Sw3,w4 = +Sw1,w2,w3,w4 + Sw1,w3,w2,w4 + Sw3,w1,w2,w4 + Sw1,w3,w4,w2

+Sw3,w1,w4,w2 + Sw3,w4,w1,w2 + Sŵ1,w3,w2,w4 + Sŵ1,w3,w4,w2

+Sw1,ŵ2,w3,w4 + Sw3,ŵ1,w4,w2 + Sw1,w3,ŵ2,w4 + Sw1,w3,ŵ2,w4

+Sŵ1,w3,ŵ2,w4

67Though yet unproven, it is generally assumed (and backed by massive numerical ev-
idence) that the two systems of quadratic relations imply all other (known or yet to be
discovered) algebraic relations between multizetas.

68What turns Zag•, Zig• into bimoulds is not so much their two-tier indexation wi = (ui

vi
)

but rather the fact that the ui’s and vi’s interact in a very special way, through so-called
flexions, which allow only the addition of (several consecutive) ui’s and the subtraction of
(two not necessarily consecutive) vi’s with conservation of

∑
uivi.
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Summing up, not only do we have an exact equivalence between the old
and new symmetries:

{wa• symmetral} ⇐⇒ {Zag• symmetral} (334)

{ze• symmetrel} ⇐⇒ {Zig• symmetril} (335)

but the old conversion rule for scalar multizetas 69 becomes:

Zig• = Mini• × swap(Zag)• (336)(
⇐⇒ swap(Zig•) = Zag• × Mana•

)
(337)

Here, swap is the basic involution of the flexion structure:

(swap.S)
(u1
v1

,...,
,...,

ur
vr

)
:= S

(
v′r
u′r

,...,
,...,

v′1
u′1

)
(338)

with u′i := u1 + · · ·+ ui and v′i := vi − vi+1 if i < r resp. v′r := vr.
As for Mana• and Mini• := swap.Mana•, they are elementary bimoulds

whose only non-vanishing components are those carrying only zeros in the
lower (resp. upper) index row:

Mana(u1
0
,...,
,...,

ur
0

) ≡ Mini
( 0
v1

,...,
,...,

0
vr

) ≡ monor (339)

They can be expressed in terms of monozetas:

1 +
∑
r≥2

monor t
r := exp

(∑
s≥2

(−1)s−1ζ(s)
ts

s

)
(340)

Even-odd separation.

The natural environment of Zag• is the group GARI , central to flexion the-
ory. Its complicated product gari is highly non-linear in its second factor.
Nonetheless Zag• admits remarkable factorisations in GARI:

Zag• := gari
(
Zag•

I
,Zag•

II
,Zag•

III

)
= gari

(
Zag

ev
,Zag

odd

)
(341)

Zag•
ev

:= gari
(
Zag

I
,Zag•

II

)
(342)

Zag•
odd

:= Zag•
III

(343)

where the various factors, like Zag• itself, possess a double symmetry: Zag•ev ,
Zag•odd etc are symmetral, while the swappees Zig•ev , Zig•odd etc are symmetril.

69namely the rules (329)-(330) suitably modified to cover the divergent case.
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The ‘even’ and ‘odd’ factors Zag•ev and Zag•odd are characterized by their
behaviour under the involutions neg , pari :

(negS)
(u1
v1

,...,
,...,

ur
vr

)
:= S

(−u1−v1
,...,
,...,
−ur
−vr

)
; (pariS)

(u1
v1

,...,
,...,

ur
vr

)
:= (−1)r S

(u1
v1

,...,
,...,

ur
vr

)
(344)

and under invgari , i.e. the taking of the gari -inverse:

neg.pari.Zag•
ev

= Zag•
ev

(345)

neg.pari.Zag•
odd

= invgari.Zag•
odd

(346)

gari(Zag•
odd
,Zag•

odd
) = gari(neg.pari.invgari.Zag•,Zag•) (347)

Since all elements of GARI have one well-defined square-root,70 the last
identity (347) readily yields Zag•

odd
. Separating the last factor from the first

two is thus an easy matter (assuming the flexion machinery). Separating
Zag•

I
from Zag•

II
is easy too, unless we insist on doing this in a ‘canonical’

way.
Here is the significance of these Zag•-factors in terms of multizeta irre-

ducibles.71 For simplicity, we consider only the case of ordinary or ‘colourless’
multizetas:
(i) The factor Zag•

I
carries only powers of the special irreducibe ζ(2) = π2/6,

of weight 2.
(ii) The factor Zag•

II
carries only irreducibles of even weight s ≥ 4 and even

depth, along with their products.
(iii) The factor Zag•

III
carries only irreducibles of odd weight s ≥ 3 and odd

depth, along with their products.

The even-multizeta / odd-multizeta irreducibles.

The even/odd factorisation (341) of Zag• leads to a canonical decomposi-
tion ZE = ZEev ⊕ ZEodd of the Q-ring of multizetas into a direct sum of
two sub-rings, each with its own irreducibles. These even-irreducibles and
odd-irreducibles will lead in §9 to simpler expansions for the holomorphic
invariants Aω(f). Mark in passing the importance of the hyphenation: a
system of, say, odd-irreducibles is not simply a system of irreducibles with
odd weight and odd depth; it must also consist of elements in ZEodd, i.e. of
elements generated by the scalar coefficients of Zag•odd .

The even-multitangents Te•ev(z).

For any multitangent Tes(z) of monotangential expansion Tes(z)=
∑

zesσ Teσ(z)
we set Tesev(z)=

∑
ev(zesσ) Teσ(z), with ev the natural projection of ZE onto

70Apply expari .12 .logari .
71Recall that the weight s, length (or depth) r , and degree d are related by s = r+d.
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ZEev. Since the multiplication of monotangents involves only rational powers
of π2, i.e. elements of ZEev, the even-multitangents Tesev(z) are stable under
multiplication, and their multiplication stays commutative.

6.3 Dynamical multizetas.

If we review those multizeta properties on which our expansions of the invari-
ants Aω(f) effectively relied, we find three systems of ‘dynamical constraints’:
(i) the symmetrelness constraints: zes

′
zes
′′
=
∑
s∈she(s′,s′′) zes, which are none

other than the second quadratic relations (328).
(ii) the localisation constraints (see §2.3) which take into account the commu-
tation of two operations on multitangents – multiplication and localisation72

– and derive from this fact finite multizetas relations much weaker than the
first quadratic relations.
(iii) the shift constraints (non-algebraic, see §2.7) which, for any i ≤ r, ex-
pand zes1,...,si,...,sr as a convergent series of:
(*) all si-translates zes1,...,si+ki,...,sr of depth r and shift ki ≥ 1
(**) some multizetas of depth < r.

Although the shift constraints (iii) are the ones most directly responsible
for the invariance of the Aω(f), they are not finite. So we shall concentrate
on the algebraic constraints (i)-(ii).

Algebraic dynamical constraints.

We begin by introducing the coloured symmetrel multitangent mould Te•(z)
and the bimould Tig•(z) formed from the generating series of multitangents.
The definitions are transparently patterned on those of ze• and Zig•:

Te
( ε1
s1

,...,
,...,

εr
sr

)
(z) :=

∑
+∞>n1>...>nr>−∞

i=r∏
i=1

(
e−nii (ni+z)−s1

)
(348)

Tig
( ε1
v1

,...,
,...,

εr
vr

)
(z) :=

∑
si≥1

Te
( ε1
s1

,...,
,...,

εr
sr

)
(z) vs1−1

1 . . . vsr−1
r (349)

Clearly {Tig• symmetril} ⇔ {Te• symmetrel} ⇒ {ze• symmetrel}.
To see now how the localisation constraints compare with the first quadratic

relations (327), we must express the multitangents in terms of multizetas, in
two distinct ways that reflect (at the level of the generating series Tig•(z)
and Zig•) the two paths in the corresponding commutative diagram of §2.3.

72i.e. taking the Laurent expansion of a multitangent at z = 0.
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We find:

Tigw(z) =
∑

w=w+w−

Zigw
+

(z) viZigw
−
(z)−

∑
w=w+w0w−

Zigw
+

(z) Piw0(z) viZigw
−
(z)

Tigw(z) = Rigw −
∑

w=w+w0w−

Zigw
+c Qiidw0e(z) viZigbw

−
(350)

The ingredient Pi ,Qii ,Rig• in the above formulae are defined as follows:

Pi
( ε1
v1

)
:=

1

v1

, Qii
( ε1
v1

)
:=
∑
n1∈Z

e−2πin1ε1

n1+v1

∀ε1 (351)

Pi
( ε1
v1

...

...
εr
vr

)
:= 0 , Qii

( ε1
v1

...

...
εr
vr

)
:= 0 ∀r 6= 1 (352)

Rigw1,...,wr := 0 for r = 0 or r odd (353)

Rigw1,...,wr :=
(πi)r

r!
δ(ε1) . . . δ(εr) for r even > 0 (354)

with δ denoting as usual the discrete dirac73 and viZig• := neg .pari .anti .Zig•.
Lastly, the bimoulds Pi•(z), Qii•(z), Zig•(z), viZig•(z) are derived from Pi•,
Qii•, Zig•, viZig• by changing vi into vi − z (∀i).

Dynamical multizeta irreducibles.

Finding a system of irreducibles relative to the sole symmetrelness contraints
on multizetas (‘second quadratic relations’) is very easy.74 So let us examine
instead the full (algebraic) dynamical constraints (i.e symmetrelness plus
‘localisation’) and show that we can derive from them a simple algorithm for
expressing every (colourless) multizeta of odd degree and depth ≥ 2 as a finite
sum, with rational coefficients, of multizetas of even degree.75 By equating
our uninflected and inflected expressions of Tigw(z) and then setting z = 0,
we get the remarkable identity:∑

w=w+w−

Zigw
+

viZigw
−−

∑
w=w+w0w−

Zigw
+

Piw0 viZigw
−

=

Rigw −
∑

w=w+w0w−

Zigw
+c Qiidw0e viZigbw

−
(∀w) (355)

73δ(0) := 1 and δ(t) := 0 for t 6= 0.
74For the uncoloured multizetas, it amounts to constructing a basis (the Lyndon basis

will do, or any other) on the Lie algebra freely generated by the symbols es with s ∈ N∗.
75Recall that the degree d := s− r of a multizeta is defined as its total weight s minus

its length (or depth) r.
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with factor sequences w± that can be ∅, and with the usual flexion conven-
tions.76 As a consequence, (355) is of the form:

Zigw1,...,wr + (−1)r Zig−wr,...,−w1 = “shorter terms” (356)

But Zig• is symmetril and therefore mantir-invariant77, which again yields
an identity of the form:

Zig−w1,...,−wr + (−1)r Zig−wr,...,−w1 = “shorter terms” (357)

If we now take ‘colourless’ indices wi, i.e. indices wi := ( 0
vi

), then subtract

(356) from (357), and calculate therein the coefficient of
∏
vsi−1
i , we find:

(1− (−1)d) ze
( 0
s1

,...,
,...,

0
sr

)
= “shorter terms” (d := −r +

∑
si) (358)

with quite explicit ‘shorter terms’.
The dynamical constraints on multizetas thus provide us with a very

effective algorithm for the reduction (to simpler multizetas) of all uncoloured
multizetas ζ(s1, . . . , sr) of depth r ≥ 2 and odd degree d :=

∑
i(si − 1). We

may note that, at depth r = 1, the monozetas of odd degree are precisely
the ζ(s) of even weight s. These are of course commensurate with ζ(2)s/2,
but this is a consequence of the rigid-arithmetical constraints, not of the
dynamical ones!

6.4 The ramified case (tangency order p > 1).

Another striking difference between the (algebraic) dynamical constraints
and the (algebraic) arithmetical ones makes itself felt when we go over to the
ramified situation, for diffeos f of tangency order p ≥ 2 and multizetas with
indices si ∈ p−1N∗.

The dynamical constraints on the multizetas78 carry over almost un-
changed: the symmetrelness of ze• survives, of course, and so do the finite
localisation constraints (although the finite reduction of multitangents into
monotangents breaks down), as shown in §2.3.

On the other hand, it is not only the symmetralness of wa• — the first
leg of the arithmetical constraints — that cannot survive ramification: the

76One goes from w0 to dw0e by changing the upper index ε0 to | ε+| + ε0 + |ε−|, and
from w+ (resp. w−) to w+c (resp. bw−) by changing the lower indices vi to vi − v0.

77mantir is a non-linear involution on bimoulds, whose definition is given in [E7] pp
67-69. But all we need to know here is that mantir .S• = −pari .anti .S• + shorter terms.

78Recall, though, that in the ramified case the monics Tes
ω take the place of the mul-

tizetas as direct transcendental ingredient of the invariants Aω(f), and these Tes
ω are no

longer finite superpositions of multizetas.
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very definition of the mould wa• and the conversion rules (329)-(330) cease to
make sense, since these rules would equate the entire lengths of 0-sequences
in α with the fractional weights si in s.

7 Complement: convergence issues and phan-

tom dynamics.

7.1 The scalar invariants.

Although convergence issues are by no means central to this investigation
— the analytical expressions of the invariants Aω(f) in terms of f is —
there seems to be a lot of muddled thinking about these questions, with
some authors insisting on seeing difficulties where there are none. So a short
section entirely devoted to the subject may not be superfluous, even if it
entails some repetitions and leads us, now and then, to state the obvious.

Scalar invariant attached to convergent diffeos f .

There are two ways of establishing the existence of the scalar invariants as
entire functions of f (i.e. of {fn}) when f ranges through a formal class Gp,ρ

of identity-tangent diffeomorphisms. Briefly restated in the terminology of
this paper, they are:
(i) The quite old and very elementary geometric approach. It constructs the
iterators f ∗± and ∗f± in the z-plane; derives from them the connectors π±;
then subjects the 1-periodic germs π±(z)− z to Fourier analysis; and arrives
directly at the invariants A±ω (f).
(ii) The more informative resurgent approach, less ancient but already four

decades old. It focuses on the formal iterator f̃ ∗(z); forms its Borel trans-

form f̂ ∗(ζ); readily finds its resurgence locus 2πiZ; then, based solely on the
functional equation f ∗ ◦f = 1+f ∗, it immediately infers the form of the
resurgence equations. Lastly, depending on which alien operators it applies
to f̂ ∗(ζ), it directly reaches all systems of invariants, whether {A±ω (f)} or
{Aω(f)} or {A]ω(f)} etc, plus a wealth of information about them.

Having once establish the existence of the invariants Aω(f) as entire func-
tions of f , the only task left is to find their Taylor expansion in the countably
many coefficients fn – or rather gn if f = l ◦ g:

Aω(f) =
∑
r

∑
ni,si

H
(n1
s1

,...,
,...,

nr
sr

)

ω

∏
i

(gsi)
ni (359)
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Series like (261) do just that, since their mode of derivation exactly mimics
the parallel constructions of the invariants according to the geometric and
resurgent methods. And the shape of the expansion (359) once found, its
convergence is guaranteed beforehand by the mere fact of Aω(f) being an en-
tire function of f . We do not have to bother about majorising the coefficients

H
(n
s

)
ω to prove the convergence of (359). It is exactly the other way round: it

is by directly establishing bounds on the growth of Aω(f) as a function of f
or {gn} (as in the next subsection) that we can most easily derive bounds on
the coefficients H(n

s
).

f-growth of the scalar invariants.

This is yet another context where the d-indexation (degree-based) is prefer-
able to the s-indexation (weight-based), for reasons spelled out in Remark 3
at the end of this paragraph. So let us consider a diffeo f = l ◦ g in the
standard class (p, ρ) = (1, 0), with g(z) := g(z) − z =

∑
2≤d g1+d z

−d. The

iterator f̃ ∗, or rather its essential part f̃(z) := f̃(z)−z, is given in the formal
model by

f̃
∗
(z) =

∑
1≤r

[ e∂

1− e∂
.
∑
1≤kr

(g(z))kr
∂kr

kr!

]
. . .
[ e∂

1− e∂
.
∑
1≤kr

(g(z))k1
∂k1

k1!

]
. z (360)

= g(z) +
∑
2≤r

[ e∂

1− e∂
.
∑
1≤kr

(g(z))kr
∂kr

kr!

]
. . .
[ e∂

1− e∂
.
∑
1≤kr

(g(z))k2
∂k2

k2!

]
. g(z)

In the convolution model, this translates to an everywhere79 convergent series

f̂ ∗(ζ) = ĝ(z) +
∑
1≤n

Ŵ n ĝ(z) (361)

with the mixed (multiplication-convolution) operators K̂ acting thus:

(Ŵ ϕ̂)(ζ) :=
e−ζ

1− e−ζ
.
∑
1≤k

[
(ĝ) ∗k(ζ)

]
∗ζ
[(−ζ)k

k!
ϕ̂(ζ)

]
(362)

A product of two consecutive operators Ŵ involves a series of middle terms
of the form

Ŵ .Ŵ =
(
. . .
)
.
(∑

1≤k

(−ζ)k

k!

e−ζ

1− e−ζ
)
.
(
. . .
)

(363)

79i.e. at all points ζ not located over the singularity locus 2πiZ.
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with bounds∣∣∣(−ζ)k

k!

e−ζ

1− e−ζ
∣∣∣ ≤ cε

|ζ|k−1

(k − 1)!
(1+|ζ|) (∀ζ ∈ Kε , c

±
ε > 0) (364)

uniformly valid on the Kε

Kε := {ζ ∈ C, dist(ζ, 2πiZ∗) ≥ ε} . (365)

Kε := {ζ ∈ R, dist(ζ,Rram − 0•) ≥ ε} with R = ˜C− 2πiZ (366)

Note that Kε (resp. Kε) contains a neighbourhood of the origin 0 (resp 0•).
Using the expansion (362)-(363), the bounds (364), and the estimates

|
(
ĝ
)∗ k

(ζ)| < γ0 exp(γ1|ζ|) |ζ|2k−1/(2k−1)! (367)

tedious but elementary calculations80 lead to optimal81 estimates of type:

|f̂(ζ)| < c0,d(ζ) exp
(
cd(ζ) |g1+d|

1
d

)
(2 ≤ d) (368)

< c0,D(ζ) exp
(∑
d∈D

cd,D(ζ) |g1+d|
1
d

)
(D finite ⊂ {2, 3, . . . })(369)

< c0,∞(ζ) exp
(
c∞(ζ) sup

d
|g1+d|

1
d

)
(370)

for any ζ on the convolution domain R := ˜C−2πiZ. The main point to
observe is that all the terms Ŵ n ĝ(ζ) in (361) can be calculated inductively
as convolution integrals of the form

e−ζ

1− e−ζ

∫ ζ

0•

(ĝ)∗ k(ζ − ζ1) ϕ̂n,k(ζ1) dζ1 (371)

with a first convolution factor (ĝ)∗ k(ζ−ζ1) that is uniform on C with the
bounds (367) and a second factor that is uniform on R and easily bounded
(by induction) on any Kε. To continue the induction, it is enough to calculate
the integral on a ζ1-path confined within the largest Kε that contains ζ,
without worrying about ζ−ζ1.

80Even if one were to retain only the part of the operators Ŵ that correspond to k =
1, the (much simpler) calculations would already show that the estimates (368)-(370)
cannot be improved upon. Taking all k-parts into account does not alter the shape of the
estimates, due to the bounds (367).

81optimal as long as we consider the absolute values |g1+d|1/d. But one might improve
on (368) by finding the indicatrix of exponential growth in |g1+d|1/d.
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To derive from the estimates (368)-(370) analogous estimates for the in-

variantsA+
ω , we write the resurgence equations ∆±ω f̂

∗
(z) = −A±ω exp(−ω f̂

∗
(z)).

In the Borel plane this becomes82

f̂
∗
(ζ ′±)− f̂

∗
(ζ ′′±) = A+

ω . f̂
∗

ω
(ζ) with f̃

∗

ω
(z) = e−ωf̃(z) − 1 ∼ −ω gs0 .z1−s0 (372)

with ζ close to 0• on the main Riemann sheet and ζ ′±, ζ
′′
± both over ζ̇+ω but

on two consecutive Riemann sheets. Since f̂
∗

ω
(ζ) ∼ −ω gs0 ζs0−2/(s0−2)! for ζ

close to 0•, there exists for each value of the variable coefficient g1+d at least

one point ζ = ζ(g1+d) on the circle |ζ| = 1 where |f̂
∗

ω
(ζ)| = |ω gs0/(s0−1)!|.

Considering the identity (372) for this particular ζ and its images ζ ′± and ζ ′′±
and using (368), we get (373) for A+

ω , as well as (374) and (375) by a similar
argument. The analogous estimates for Aω,A]ω,A]]ω etc follow in view of the
bipolynomial correspondance between any two systems of invariants.

|A±ω |, |Aω|, |A]ω|, |A]]ω | etc < c0,d(ω) exp
(
cd(ω) |g1+d|

1
d

)
(∀ω, d ≥ 2)(373)

< c0,D(ω) exp
(∑
d∈D

cd,D(ω) |g1+d|
1
d

)
(D finite)(374)

< c0,∞(ω) exp
(
c∞(ω) sup

d
|g1+d|

1
d

)
(375)

Remark 1: the case of the iteration residue ρ. If we now let f = l ◦ g
range through all classes (1, ρ) by taking g(z) = −ρz−1 + O(z−1), and ask
about the asymptotics in ρ, we would get the wrong result by simply setting
g2 = −ρ in the estimate (373). The correct estimate is rather:

|A±ω |, |Aω|, |A]ω|, |A]]ω | etc < c0,1(ω) exp
(
c1(ω) |ρ log |ρ||

)
(∀ω) (376)

The reason is not the change from (367) to the weaker estimates:

|ĝ∗ k(ζ)| < γ0 exp(γ1|ζ|) |ζ|k−1/(k−1)! (377)

The real reason is that we now have f̂
∗
(z) = ρ log z + f̂

∗
(z) and

f̃
∗

ω
(z) = z−ω ρ exp(−ωf̃

∗
(z)) = z−ω ρ f̃

∗

ω
(z) (378)

so that (372) presently becomes83

f̂
∗
(ζ ′)− f̂

∗
(ζ ′′) = A+

ω .
ζωρ−1

Γ(ωρ)
∗ζ f̂

∗

ω
(ζ) (379)

82since the first term “1” in exp(−ω f̂
∗
(z)) = 1 + . . . contributes nothing to the minors.

83At least when −ωρ 6∈ N. When −ωρ ∈ N, the positive z-powers in z−ω ρ f̃
∗

ω
(z) should

be neglected, as contributing nothing to the minors in the Borel plane.
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Remark 2: ‘uniformisation’. Due to the ‘uniformisation’ formula (376),

we see that for any ζ ∈ R (but not above the imaginary axis), f̂
∗
(ζ) reduces

to a finite sum

f̂
∗
(ζ) = a0 f̂

∗
(ζ̇) +

∑
ω∈2πiZ∗

aω f̂
∗

ω
(ζ̇ − ω) (380)

(i) with f̂
∗

ω
as in (378)

(ii) with coefficients a0, aω polynomial in the Aω
(iii) with ζ̇ the projection of ζ ∈ R onto the main Riemann sheet.

Remark 3: weight-based vs degree-based indexation.
While the s-indexation f(z) = z+

∑
fs z

1−s is well-adapted to germ compo-
sition, the d-indexation

∑
f{d} z−d is better suited to germ conjugation and,

consequently, to studying the asymptotics of Aω(f). Indeed, take a diffeo f
in the standard class and fix 2 ≤ d ≤ d′. There clearly exists a unique diffeo
h of the form h(z) := z +

∑
d−1≤n≤d′−1 h{n} z

−n that conjugates f to varf so
as to remove the coefficient f{d} while keeping all other coefficients between
d and d′ unchanged:

f(z) := z+1+
∑
2≤d

f{n} z
−n → varf(z) := (h◦f◦h−1)(z) = z+1+

∑
2≤d

varf{n} z
−n

On top of the defining condition (i), the h-conjugation verifies (ii)-(iii):
(i) varf{d} = 0 if n ≤ d′, and varf{n} = f{n} with n 6= d.
(ii) if d′ < n, varf{n} is a polynomial in f{2}, f{3}, . . . , f{n} involving only ‘sub-
homogeneous’ monomials of form

∏
i(f{ni})

mi with n1m1 + · · ·+ nrmr ≤ n
(iii) if d|n and d′ < n, the monomial (f{d})

n/d is effectively present, with a
nonzero rational coefficient, in the expression of varf{n}.

Since Aω(f) = Aω(varf), we see that the additional properties (ii)-(iii) are
perfectly coherent with the asymptotic estimates (368)-(373).

ω-growth of the scalar invariants.

Fixing f = l ◦ g and ε0 < π, using the relations (361), and calculating the
successive integrals in (362) on ζ1-paths contained in Kε0 , one easily arrives
at exponential estimates

|A±ω | < γ±0 exp(γ±1 |ω|) (∀ω ∈ 2πZ∗ , γ±0 , γ±1 > 0) (381)

with constants γ±0 , γ
±
1 that depend only on the growth of ĝ(ζ) in the vertical

stripes |<(ζ)| < ε. This, however, does not apply to the other systems of
invariants, like Aω, A

]
ω, A

]]
ω etc, which, being the coefficients of generically

divergent but resummable Fourier series (see below), generically possess ex-
ponential growth in |ω|. log |ω| rather than |ω|.
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7.2 The connectors.

For f = l ◦ g fixed and convergent, only the connectors π±(z) with Fourier
coefficients A±ω have guaranteed convergence is some bi-domain |=(z)| > y.
But as shown in §1.7, §1.8, most other connectors π♦(z) are merely resurgent
and Borel resummable, each with a definite critical time z0 := exp(∓2πiz),
where n0 is the index of the first non-vanishing invariant. This is definitely
the case with the connectors π∗(z), π](z), π]](z).

7.3 The collectors.

As already pointed out, collectors can be classified unter two viewpoints:
(i) type : there is p(z) itself and its various affiliates p♦(z) — generators,
mediators etc,
(ii) nature : we can consider their natural multitangent expansions; or their
reduced monotangent expansions; or their local Laurent expansions at z = 0.

Now, as long as the collectors are viewed as generating series in the co-
efficients gn, as in (376), the question of their convergence does not arise —
the coefficients of each bloc is always convergent, and this is all that mat-
ters from the perspective of this paper. But we may also ask, gratuitously
so to speak: given a fixed convergent germ f , which impersonations of the
collectors do converge, and in what sense?

From what we already know about the connectors, the question makes
sense only for p(z) itself, not for its affiliates. And p(z), as we shall see,
convergences only in its natural multitangent presentation.84

Convergence of the multitangential collectors p(z).

The convergence of the connectors π as scalar germs can be established in
any number of ways (e.g. from the estimates (381) ) and it implies the
convergence of the associated substitution operators Π. However, in order to
ease the transition to the collectors p and P, we need to look more closely
at these operators Π and their constituent parts.

Setting Π := Π+, G := G+, G:n := Ln . G . L−n and consider the (for
the moment, formal) operator Π as given by (217) and let us replace its
bifactorisation Π = ∗F− . F

∗
+ by the trifactorisation

Π = ΠL,n .ΠM,n .ΠR,n . (n large) (382)

84Natural means that we take the Te•-expansions as they naturally result from the series
(221) in §3 and resort, at most, to symmetrel linearisation.
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with L, M, R standing for left, middle, right and with the truncated expan-
sions

ΠR,n := 1 +
∑
1≤r

∑
n≤nr<...<n1

G+

:nr . . .G
+

:n1
= Ln . F ∗+ . L

−n (383)

ΠM,n := 1 +
∑
1≤2n

∑
−n≤nr<...<n1<n

G+

:nr . . .G
+

:n1
= G:(−n) . . . G:(n−1) (384)

ΠL,n := 1 +
∑
1≤r

∑
nr<...<n1<−n

G+

:nr . . .G
+

:n1
= L−n . ∗F− . L

n (385)

For any two open sets D1,D2 of C, bounded or not, connected or not, but
with D2 ⊂ D1, and any operator H, we set

‖H‖D1,D2 := sup
‖ϕ‖D1

≤1

‖H ϕ‖D2 and ‖H‖D := ‖H‖D,D∗ (386)

where D∗ denotes the set of all points in D whose distance from the boundary
of D is more than 1.

For any ε we can find n ∈ N and y ∈ R+ large enough to ensure

‖ΠR,n − 1‖DR ≤ ε ∀DR ⊂ {z,<z ≥ −6} (387)

‖ΠM,n − 1‖DM ≤ ε ∀DM ⊂ {z, |=z| ≥ y} (388)

‖ΠL,n − 1‖DL ≤ ε ∀DL ⊂ {z,<z ≤ +6} (389)

and therefore

‖Π− 1‖D ≤ 4 ε ∀D ⊂ {z, |<z| ≤ 3, |=z| ≥ y + 3} (390)

Moreover, one can show that the statement would still hold (for a slightly
larger choice of n, y) if, instead of considering the norm ‖Π−1‖D, we were to
consider the larger norms:

‖Π−1‖SD =
∑
‖H(n

s
)‖D

∏∣∣gsi∣∣ni with Π−1 =
∑

H(n
s

)
∏

(gsi)
ni

relative to any natural expansion S of Π−1 as a series of monomials
∏

(gsi)
ni .

But expanding Π in this way is tantamount to viewing it as the collector P
with its natural multitangent expansion (relative to the system Te•). Of
course, the multitangential P and p converge separately on the two half-
planes |=(z)| > y, and in that sense, qua convergent objects, already cease
to be of one piece.
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Divergence of the monotangential collectors p(z).

By multiplying the Laurent expansions of Tes1(z) and Tes2(z) at z = 0
and then retaining only the z-negative powers in the product, we get the
multiplication rule for (integer-indexed) monotangents:

Tes1(z) Tes1(z) = Tes1+s2(z) +
∑

2≤s3<max(s1,s2)

tes1,s2s3
Tes3(z) (s1, s2 ∈ N∗) (391)

with

tes1,s2s3
=

[
1 + (−1)s1+s2−s3

]
ζ(s1 + s2 − s3)×[(−1)s1−s3+ (s1 + s2 − s3)!

(s1 − s3)!(s2 − 1)!
+

(−1)s2−s3+ (s1 + s2 − s3)!

(s2 − s3)!(s1 − 1)!

]
(392)

and (−1)s+ := (−1)s if s > 0 resp. (−1)s+ := 0 if s ≤ 0. Now, if the
monotangential expansions for p+ and p− always existed, since p+ ◦ p− = id ,
going from the one to the other would involve mutiplying many infinite sums
of the form( ∑

s1 even

as1 Tes1(z)
)( ∑

s2 even

bs2 Tes2(z)
)
7→
( ∑
s3 even

cs3 Tes3(z)
)

(393)

with series
∑
as1 z

−s1 and
∑
bs2 z

−s2 whose convergence radii might be small,
since the convergence radius of the underlying series g(z) may be anything.
But the coefficient cs3 on the right-hand side of (376) are given by

cs3 =
∑

s3=s1+s2

as1 bs2 +
∑

s3<max(s1,s2)

as1 bs2 tes1,s2s3
(394)

with a second sum that diverges if, for instance, all as1 and bs2 are positive

with lim |as1|
1
s1 = a > 0, lim |bss|

1
s2 = b > 0 and 2 a b > 1. In that case, the

coefficients cs3 are not even defined.
So it would be more accurate to say that the monotangential collectors,

rather than diverging, generally do not even exist : they cannot be defined,
not even as formal series. What exists but fails to converge as s → +∞ is
the weight-truncated, montangential collectors85 truncs0 p

±(z) (see §3.7).

7.4 Groups of invariant-carrying formal diffeos.

One of the many advantages of the resurgent approach to the study of holo-
morphic invariants is that it extends effortlessly to many subgroups Gχ of

85They exist unproblematically as finite sums, whether in multi- or montangential form.
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the group G of all formal identity-tangent diffeos. Typically, these groups
Gχ are defined by a growth condition on the coefficients fs of their elements
that is
(i) stable under composition and reciprocation86

(ii) stringent enough to ensure that formal conjugacy (in G) does not imply
actual conjugacy (in Gχ).

This implies the existence on these groups Gχ of non-formal invariants,
and immediately raises the question of their description/calculation.

If we put aside a few pathological instances87, all such groups Gχ con-

sist of elements f̃ whose Borel transforms f̃(ζ) extend to well-defined entire

functions (albeit with supra-exponential growth), with iterators f̃ ∗, ∗f̃ that
verify the familiar resurgence equations and produce complete systems of
holomorphic invariants Aω(f̃), exactly as on the analytic group G0.

Before taking a closer look at some examples of ‘invariant-carrying’ groups
Gχ, let us state a few useful lemmas.

Given a system {an, n ∈ C} with a geometric or slightly faster-than-

geometric rate of growth, and a number ω0 ∈ C∗, we set bm :=
∑

n
|ω0m|n
n!

an.

Using the rough estimates log+ |bm| ∼ supn log+ | |ω0m|n
n!

an|, we easily infer the
growth rate of log |bm| from that of log |am| in these four important cases:{

log+ |an| = O(n)
}

=⇒
{

log+ |bm| = O(m)
}

(395){
log+ |an| = O(n logk n)} =⇒ { log+ |bm| = O(m logk−1m)

}
(396){

log+ |an| = O
(
n

log n

logk n

)}
=⇒

{
log+ |bm| = O

(
m exp(

logm

logkm
)
)}

(397)

{
lim sup

log+ |an|
n log n

≤ τ < 1
}

=⇒
{

lim sup
log+ |bm|
m1/(1−τ)

≤ 1
}

(398)

Here, log+ x := log x if 1 < x (resp. := 0 if 0 ≤ x ≤ 1). As we can see, the
actual value of ω0 is immaterial.

Moreover, if we set

b(w) = w +
∑

bm e−mω0w (399)

c(z) = z +
∑

cmz
1−m = exp

(
− ω0 b(

1

ω0

log(
1

z
)
)

(400)

the Taylor coefficients cm are, in all four instances (395)-(398), subject to
exactly the same growth constraints as the Fourier coefficients bm.

86i.e. the taking of the composition inverse.
87corresponding to wildly irregular (‘oscillating’ in some sense) growth conditions χ.
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Lastly, it is an easy matter to check that each of the growth conditions
listed in (395)-(398) is stable under composition and reciprocation, and thus
defines a group Gχ.

The analytic subgroup G0 .

There is no need to return to the group G0 and its invariants, except to
emphasise a remarkable feature: any germ f 6= id in G0 has 2p connectors
which, after a rescaling of type (400), produce 2p new germs f(i1) still in
G0. Each one of these f(i1) produces 2pi1 new germs f(i1,i2), each of which
in turn produces 2pi1,i2 germs f(i1,i2,i3), and so on indefinitely88, without ever
leaving the group G0. This infinite self-replication property of G0 is more
than a curiosity: it has practical implications.89 It also raises the question: is
self-replication an exclusive feature of G0, or does it extend to other invariant-
carrying groups Gχ? It does, as we shall see, provided the growth condition
χ is extremely close to geometric growth (which ensures analyticity).

The near-analytic, self-replicating subgroup G0+ .

The implication (396) being optimal, on the group G[k] consisting of all f
(let us drop the clumsy tilda) whose coefficients verify

lim
n→+∞

log+ |fn|
n logk n

= 0 (401)

the mapping90 f 7→ resc.π is from G[k] to G[k−1] ⊂ G[k]. So it is only the
limit or intersection

G0+ := lim
k

G[k] =
⋂
k

G[k] (402)

that possess the property of self-replication. To realise how close G0+ is to
G0, we may note that verifying (401) for any k is a far more severe condition
than verifying the Denjoy quasi-analyticity conditions. Expressed in terms
of Taylor coefficients, these read:

|gn|
1
n ≤ O(log1 n log2 n . . . logk−1 n) (403)

88for the process to stop, at a certain stage all f(i1,...,ir) would have to be id , which of
course almost never happens.

89e.g. in fractal analysis (see [S]) and in resummation theory: it played a part in the
original proof of Dulac’s conjecture about the non-accumulation of limit-cycles, prior to
the introduction of well-behaved convolution averages (see [E4]).

90resc.π is the connector π rescaled so as to become an element of G.
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for some given k. That merely implies

log+ |fn| ≤ n
(

log2 n+ · · ·+ logk n+ o(logk n)
)

(404)

which is much weaker than (401), let alone (402). This is not to say, of
course, that G0+ consists only of quasi-analytic germs, since a smooth func-
tion f must verify a Denjoy condition on a whole interval to qualify as quasi-
analytic.91

The maximal subgroup G0++ .

Consider the Gevrey subgroups of G defined by the growth conditions

G[[τ ]] := {f ; lim sup
n→+∞

log+ |fn|
n log n

≤ τ} (405)

For all elements f in G[[τ ]] of tangency order p = 1 to have everywhere con-
vergent Borel transforms, τ has to be < 1, in which case these f possess
invariants whose growth pattern is bounded by the bm-estimates of (398).
Elements f of tangency order p > 1, however, must first be brought to a
prepared form (f(z1/p)p, which belongs to G[[pτ ]], or rather to the ramified
equivalent of G[[pτ ]]. So the largest group whose elements all possess holo-
morphic invariants is the intersection G0++ of all these Gevrey goups:

G0++ := {f ; lim
n→+∞

log+ |fn|
n log n

= 0} (406)

Elements of G0++ have connectors which are usually not in G0++ . since their
coefficients are subject only to the very weak growth constraints

log+ log+ |cr| = o(r log r) (407)

This results from the optimal implication (397) or rather from its – still valid
– extension to the case where logk is replaced on both sides by any regular92

germ L with ultra-slow growth.

91Growth conditions at one point never suffice to ensure the existence of a quasi-analytic
‘continuation’ on a neighbourhood of that point. In fact, when the coefficients are all > 0
and with faster than geometric growth, the ‘continuation’ never exists.

92“Regular” in the sense of verifying the universal asymptotics of slow-growing germs.
See e.g. [E4],[E5]. For instance, we may take L to be any transfinite exponential of log ,
again in the sense of [E4],[E5].
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7.5 A glimpse of phantom holomorphic dynamics.

Let us for definiteness consider the “near-analytic” group G0+ . It has much
more in common with its analytic prototype G0 than the existence of non-
trivial (i.e. non-formal) conjugacy classes characterisable by holomorphic
invariants Aω(f). The notion of polarised sectorial model too has its equiva-
lent, but with acceleration operators taking the place of Laplace integration.
Indeed, for any slow acceleration z → z† with

z†
z
→ +∞ but

log z†
log z

→ 1 e.g . z = F(z†) :=
z†

log z†
(408)

the acceleration integrals ζ → ζ†

f̂ ∗†,±(ζ†) =

∫ (1±ε) i∞

0

CF(ζ†, ζ) f̂ ∗(ζ) (409)

∗f̂†,±(ζ†) =

∫ (1±ε) i∞

0

CF(ζ†, ζ) ∗f̂(ζ) (410)

turns the non-polarised iterators f̂ ∗, ∗f̂ into polarised iterators f̂ ∗†,±, ∗f̂†,± de-
fined and regular in sectors S†,± of the ζ†-plane. Moreover, on the intersection
S†,+∩S†,−, which contains a southern half-plane {= ζ† < −y}, these polarised
iterators can be subjected to the operation ◦̂ (which transposes the ordinary
composition ◦ to the Borel planes93) to produce an object π̂†,so(ζ†) that will
be the exact counterpart of a connector’s southern component πso(z) for an
ordinary analytic germs f in G0.

One may even perform Fourier analysis on π̂†,so(ζ†) and π̂†,no(ζ†) in the
ζ†-plane94 to calculate the invariants Aω(f). This procedure (inefficient but
perfectly workable) would essentially differ from the (efficient) resurgent anal-
ysis in the ζ-plane. It would exactly mirror the (moderately efficient – see
§4.5) Fourier analysis performed on ordinary connectors πso(z), πno(z) in the
multiplicative z-plane.

For any f in G0+ , the mapping ϕ̂ 7→ ϕ̂ ◦̂ f̂ is an algebra isomorphism
(relative to the convolution product), just as the substitution operators are
(relative to ordinary multiplication). Another aspect of “phantom holomor-
phic dynamics” (in non-polarised and polarised Borel planes) is the notion
of invariant subspaces or fuzzy orbits, which in a sense fill the role of orbits
in the (here non-existent) multiplicative plane. But the subject is still in its
infancy, and we had better stop here.

93 (ϕ̂ ◦̂ f̂)(ζ) := ϕ̂(ζ) +
∑

1≤k
1
k! (f̂)∗k(ζ) ∗ζ

(
(−ζ)k ϕ̂(ζ)

)
with f(z) = f(z)− z.

94There is no contraction here: the exponentials e±ωz have no image in the ζ-plane, but
they have one in the ζ†-plane, since e±ωz = e±ωF(z†) is strictly sub-exponential in z†.
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8 Conclusion.

8.1 Some historical background.

(i) Identity-tangent diffeos in holomorphic dynamics.
The iteration of one-dimensional analytic mappings – whether local or global;
identity-tangent or not – has a long history going back a century or more.
Fatou, for one, knew about the analytic classes of identity-tangent diffeos and
had formed a clear, geometry-based idea of their invariants. The subject then
when into something of a hibernation until the advent of high-power compu-
tation, which brought about an explosive revival of holomorphic dynamics,
one- and many-dimensional. For the specific subject of analytic invariants,
however, the main impetus for renewal came from an unexpected quarter:
resurgent analysis.

(ii) Identity-tangent diffeos and resurgent analysis.
The fact is that identity-tangent diffeos possess generically divergent but
always resurgent iterators and fractional iterates, with an interesting, non-
linear pattern of resurgence or self-reproduction at the singular points in the
Borel plane, and it was in the process of sorting out these phenomena that
resurgence theory was born, and later applied to general local objects and
much else. In a sense, this involved a retreat from dynamics proper, since it
meant focusing on the Borel plane, where the key dynamic notions of trajec-
tory, fixed point etc admit no simple interpretation. For the invariants Aω,
however, the shift in focus brought a definite advantage, since in the Borel
plane these invariants are automatically localised and isolated (they appear
as coefficients of the leading singularities over the point ω) whereas in the
multiplicative plane they are diffuse and intertwined (they make themselves
felt only collectively and indirectly, via Stokes phenomena and the like, and
the only way to isolate them is by Fourier analysis of type (268), which is but
a half-hearted way of doing what Borel analysis does neatly and efficiently).
This applies not just to identity-tangent diffeos, but to a huge range of local
objects and equations. It also works in both directions: in that of “analysis”,
i.e. calculating and investigating the invariants of a given object; and in that
of “synthesis”, i.e. prescribing an admissible system of ‘invariants’ and then
constructing an object of which they are the actual invariants. And it has
to be said that in both directions resurgence theory performs rather better
than geometry. It leads in particular to a privileged or “canonical” synthesis,
a notion which eludes geometry.
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8.2 Multitangents and multizetas.

(iii) Identity-tangent diffeos and the resuscitation of multizetas.
Multizetas (of depth 2, to be precise) were first considered by Euler as an
isolated curiosity, and later fell into a protracted oblivion for want of appli-
cations. They resurfaced only in the late 1970s and early 1980s in [E0],[E1],
[E2], precisely in the context of holomorphic dynamics and identity-tangent
diffeos, as the transcendental ingredient in the make-up of their invariants.
Ten years later, the multizetas started cropping up in half a dozen, largely
unconnected contexts: braid groups and knot theory; Feynman diagrams;
Galois theory; mixed Tate motives; arithmetical dimorphy; ARI/GARI and
the flexion structure, etc. At the moment, all these strands are in the process
of merging or at least cross-fertilising, and constitute a vibrant, active field
of research.

(iv) Identity-tangent diffeos and the actual computation of their
invariants.
The sections of [E2] devoted to the invariants of identity-tangent diffeos were
written with no computational applications in mind, and no attempt was
made to optimise the calculational procedures. On the contrary, the PhD
thesis [B], which revisits the subject 30 years on, lays its main emphasis
on these neglected aspects and provides effective Maple programmes for the
computations of the invariants; it also offers copious asides on the algebraic
aspects of multitangents, which largely, but not exactly, mirror those of mul-
tizetas.

8.3 Remark about the general composition equation.

The equations verified by the iterators and iteration roots of identity-tangent
diffeos are extremely special cases of the general composition equation:

f ◦mr ◦ gr ◦ . . . f ◦m2 ◦ g2 ◦ f ◦m1 ◦ g1 = id (411)

with f unknown, mi ∈ Z and gi(z) = z+ τi +O(z−1). The general solution95

of (411) is also generally divergent but always resurgent and resummable.96

The subject is investigated in §11,§12 of a preprint accessible on the author’s
homepage.97

The critical set Ω (containing the indices ω of all active alien deriva-
tions ∆ω) is often huge: it usually consists of all finite combinations −λj0 +

95it is unique under the genericity assumption
∑
mi 6= 0.

96the critical time too is unique under the same genericity assumption
∑
mi 6= 0.

97The Natural Growth Scale.
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∑
njλi (nj > 0) spanned by the (countably many) roots of some exponential

polynomial constructed from the data mi and τi. We may adjust these data
mi, τi so as to ensure Ω = 2πiZ, for example by considering composition
equations of the form

f ◦ gr ◦ . . . f ◦ g2 ◦ f ◦ g1 = id (412)

with g1(z) = z+1+O(z−2), gi(z) = z+O(z−2) (i ≥ 2). But even then the
complete formal solution remains extremely complex, and still depends non-
linearly on a countable infinity of parameters uj:

f̃(z, u)= f̃(z) +
∑

un eω z f̃n(z)
(
un=

∏
u
nj
j

)
(413)

The bridge equation reads ∆∆ωf̃(z, u) = Aωf̃(z, u) with operators Aω that
are hardly less complex:

Aω =
∑

<n , j>−j=k

u
njr
j1

. . . u
njr
j1

Ajω,n ∂uj
(
ω̇ = 2πi k, k ∈ Z−rZ

)
(414)

However, a drastic simplification occurs in the case r = 2:

Aω = 2πiAω
∑
k∈Z∗

(j+k)uj+k ∂uj
(
ω̇ = 2πi k, k ∈ Z−2Z

)
(415)

Instead of depending on a huge set of unrelated resurgence constants Ajω,n,
with ω ∈ 2πiZ∗ but an index n running through all finite parts of Z, the oper-
ators Aω now depend on an incomparably smaller set of resurgence constants
Aω, with ω ∈ 2πiZ∗.

The reason is of course that in the case r = 2, the composition equation
reduces to an iteration equation - to the taking of a ‘square root’:

f ◦ g2 ◦ f ◦ g1 = id ⇐⇒ (f ◦ g2) ◦ (f ◦ g2) = g−1
1 ◦ g2 (416)

This huge complexity gap between the case r ≥ 3 and r = 2 is reminiscent
of the equally dramatic simplification that takes place with first order singular
ODE’s of ‘Euler type’ :

∂zY = Y +
∑

−1≤n≤n0

bn(z)Y 1+n
(
bn(z) ∈ z−1C{z−1}

)
(417)

In the general case (2 ≤ n0 ≤ ∞), we get a resurgent formal solution f̃(z, u)
in C[[z−1, u zτ ez]], a critical set Ω = {−1} ∪ N∗, and an infinite series of
independent invariants An = Aω u

n+1∂u with indices n ∈ {−1, 1, 2, 3 . . . },
whereas in the case n0 = 1, the equation (417) becomes an ODE of Riccati
type; the critical set Ω reduces to {−1, 1}; and we are left with just two
independent invariants A−1,A1.
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9 Tables.

9.1 Multitangents: symmetrel, alternal, olternol.

We express Taa• and Too• in terms of Te• ≈ Tee• according to the lineari-
sation lemma of §5.4, using throughout the shorthand ni,j,... for ni+nj+. . . .

Table 1 : Comparing Te• ∼ Tee•, Taa•, Too•.

Taan1 = Toon1 = Ten1 , Taan1,n2 = Toon1,n2 =
1

2
Ten1,n2 − 1

2
Ten2,n1

6 Taan1,n2,n3 = 2Ten1,n2,n3−Ten1,n3,n2−Ten2,n1,n3−Ten2,n3,n1−Ten3,n1,n2 +2 Ten3,n2,n1

−Ten1+n3,n2+
1

2
Ten1,n2,3+

1

2
Ten1,2,n3+

1

2
Ten3,n1,2+

1

2
Ten2,3,n1−Ten2,n1,3

4 Toon1,n2,n3 = Ten1,n2,n3−Ten1,n3,n2−Ten2,n1,n3−Ten2,n3,n1−Ten3,n1,n2 +Ten3,n2,n1

−Ten1,3,n2 − Ten2,n1,3

12 Taan1,n2,n3,n4 =

3 Ten1,n2,n3,n4−Ten1,n2,n4,n3−Ten1,n3,n2,n4−Ten1,n3,n4,n2−Ten1,n4,n2,n3 +Ten1,n4,n3,n2

−Ten2,n1,n3,n4 +Ten2,n1,n4,n3−Ten2,n3,n1,n4−Ten2,n3,n4,n1 +Ten2,n4,n1,n3 +Ten2,n4,n3,n1

−Ten3,n1,n2,n4−Ten3,n1,n4,n2 +Ten3,n2,n1,n4 +Ten3,n2,n4,n1−Ten3,n4,n1,n2 +Ten3,n4,n2,n1

−Ten4,n1,n2,n3 +Ten4,n1,n3,n2 +Ten4,n2,n1,n3 +Ten4,n2,n3,n1 +Ten4,n3,n1,n2−3 Ten4,n3,n2,n1

+Ten1,n2,n3,4 − Ten1,n3,n2,4 − Ten2,n3,n1,4 + Ten2,n4,n1,3 − Ten3,n1,n2,4 + Ten3,n2,n1,4

+Ten4,n2,n1,3 − Ten4,n3,n1,2 + Ten1,n2,3,n4 − Ten1,n2,4,n3 − Ten2,n1,3,n4 + Ten2,n1,4,n3

−Ten3,n1,4,n2 + Ten3,n2,4,n1 + Ten4,n1,3,n2 − Ten4,n2,3,n1 + Ten1,2,n3,n4 − Ten1,3,n2,n4

−Ten1,3,n4,n2 + Ten2,4,n1,n3 + Ten2,4,n3,n1 − Ten1,4,n2,n3 + Ten1,4,n3,n2 − Ten3,4,n2,n1

+
1

2
Ten1,2,n3,4 − Ten1,3,n2,4 + Ten2,4,n1,3 − 1

2
Ten3,4,n1,2

8 Toon1,n2,n3,n4 =

+Ten1,n2,n3,n4−Ten1,n2,n4,n3−Ten1,n3,n2,n4−Ten1,n3,n4,n2−Ten1,n4,n2,n3 +Ten1,n4,n3,n2

−Ten2,n1,n3,n4 +Ten2,n1,n4,n3−Ten2,n3,n1,n4−Ten2,n3,n4,n1 +Ten2,n4,n1,n3 +Ten2,n4,n3,n1

−Ten3,n1,n2,n4−Ten3,n1,n4,n2 +Ten3,n2,n1,n4 +Ten3,n2,n4,n1−Ten3,n4,n1,n2 +Ten3,n4,n2,n1

−Ten4,n1,n2,n3 +Ten4,n1,n3,n2 +Ten4,n2,n1,n3 +Ten4,n2,n3,n1 +Ten4,n3,n1,n2−Ten4,n3,n2,n1

−Ten1,3,n2,n4 − Ten1,3,n4,n2 − Ten2,n1,3,n4 + Ten4,n1,3,n2 + Ten2,n4,n1,3 + Ten4,n2,n1,3

+Ten2,4,n1,n3 + Ten2,4,n3,n1 − Ten1,n2,4,n3 + Ten3,n2,4,n1 − Ten1,n3,n2,4 − Ten3,n1,n2,4

−Ten1,4,n2,n3 + Ten1,4,n3,n2 + Ten2,n1,4,n3 − Ten3,n1,4,n2 − Ten2,n3,n1,4 + Ten3,n2,n1,4

+Ten2,4,n1,3 − Ten1,3,n2,4
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Taan1,...,n5 = 540 Te•-summands , Toon1,...,n5 = 308 Te•-summands
Taan1,...,n6 = 3 688 Te•-summands , Toon1,...,n6 = 2 612 Te•-summands
Taan1,...,n7 = 47 292 Te•-summands , Toon1,...,n7 = 25 988 Te•-summands

9.2 Parity properties of alternal and olternol multitan-
gents.

We begin by comparing the number of summands in the monotangent re-
ductions red1 (Te•) and red1 (Taa•) (resp. red2 (Te•) and red2 (Taa•)) of Te•

and Taa• before (resp. after) symmetrel linearisation of the resulting mul-
tizetas. N.B. A further reduction red3 (Te•) and red3 (Taa•), corresponding
to a complete decomposition of the multizeta into arithmetical irreducibles,
would yield even fewer summands.
The triplets [N1, N2,N3] of Table 2 are defined as follows. N1 is the number
of summands after reduction into a sum of monotangents Teni and symmetrel
multizeta coefficients ze•. N2 andN3 represent the number of summands left
after taking multizeta dimorphy into account and expressing everything in
terms of multizeta irreducibles – either plain irreducibles from Zig• or even-
odd irreducibles from Zig•ev ,Zig•odd . See §6.2, §6.3. Note that N2 is about the
same as N1, but that N3 is much smaller.98

Table 2.

(n1, . . . , nr) || #(Te•) | #(Taa•) | #(Too•)

(2, 7, 4) || 47, 45,17 | 28, 26,8 | 15, 15,5

(5, 2, 2, 4) || 40, 39,21 | 37, 37,13 | 30, 30,11

(5, 3, 3, 4, 2) || 210, 209,69 | 294, 289,38 | 212, 207,32

(3, 1, 2, 3, 4, 2) || 455, 455,33 | 491, 488,30 | 382, 382,26

(2, 1, 2, 1, 2, 2, 3) || 220, 203,15 | 659, 578,15 | 631, 567,12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 2 bis : Here are the even-irreducibles and odd-irreducibles to appear

98Of course, unlike N1, which has absolute significance, N2 and N3 depend on the
particular system of irreducibles chosen for the reduction. There exist privileged systems,
but we cannot go into that here. But whatever system we choose, the average values N3

will always be much smaller than that N2.
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in the sequel, with their expression in terms of ordinaryy irreducibles.

ζev
6,2 = ζ6,2 − 3 ζ5 ζ3

ζev
8,2 = ζ8,2 − 4 ζ7 ζ3 − 2 ζ2

5

ζev
10,2 = ζ10,2 − 5 ζ3 ζ9 − 5 ζ7 ζ5

ζodd
8,1,2 = ζ8,1,2 + ζ6,2 ζ3 − 3 ζ5 ζ

2
3 −

27

2
ζ9 ζ2 −

13

10
ζ7 ζ

2
2 −

44

105
ζ3

2 ζ5 +
72

175
ζ3 ζ

4
2

ζodd
9,3,1 = ζ9,3,1 + 82 ζ11 ζ2 +

193

10
ζ9 ζ

2
2 +

8

55
ζ3 ζ

5
2 +

226

35
ζ7 ζ

3
2 +

288

175
ζ5 ζ

4
2

ζodd
10,2,1 = ζ10,2,1 − 28 ζ11 ζ2 −

41

5
ζ9 ζ

2
2 −

36

25
ζ5 ζ

4
2 −

124

35
ζ7 ζ

3
2 −

208

385
ζ3 ζ

5
2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The following twelve examples of multitangent reduction (of type red2)

are meant to cover all situations. They illustrate the phenomenon of parity
separation in Taa• and Too•, and its absence in Te• ≈ Tee•. The last
examples involve irreducibles of depth 2 and 3.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 3 : Te2,7,3(z) has no definite parity in z.

Te2,7,3(z) =
∑

2≤m≤7

teze2,7,3
m Tem(z)

teze2,7,3
1 = 10 ze5,6 + 10 ze6,5 + 35 ze8,3 + 56 ze3,8 − 10 ze11 − 21 ze4,7

−27 ze7,4 − 28 ze9,2 = 0

teze2,7,3
2 = 35 ze3,7 + 36 ze7,3 + 48 ze5,5 − 6 ze10 − 21 ze8,2 − 28 ze2,8

−45 ze4,6 − 45 ze6,4 =
7

2
ζev

8,2 + 56 ζ7 ζ3 + 35 ζ2
5 −

2296

275
ζ5

2

teze2,7,3
3 = 15 ze3,6 + 15 ze6,3 − 6 ze9 − 6 ze4,5 − 6 ze5,4 − 14 ze2,7 − 15 ze7,2

=
35

2
ζ9 +

104

35
ζ3 ζ

3
2 − 21 ζ7 ζ2 − 4 ζ5 ζ

2
2

teze2,7,3
4 = 16 ze3,5 + 16 ze5,3 − 3 ze8 − 10 ze2,6 − 10 ze6,2 − 18 ze4,4

= 16 ζ5 ζ3 −
652

175
ζ4

2

teze2,7,3
5 = 3 ze3,4 + 3 ze4,3 − 3 ze7 − 6 ze2,5 − 6 ze5,2 =

6

5
ζ3 ζ

2
2 − 6 ζ5 ζ2

teze2,7,3
6 = 4 ze3,3 − ze6 − 3 ze2,4 − 3 ze4,2 = 2 ζ2

3 −
6

5
ζ3

2

teze2,7,3
7 = −ze5 − ze2,3 − ze3,2 = −ζ3 ζ2
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Table 4 : Taa2,7,3(z) is even in z since 2+7+3-3 is odd.

Taa2,7,3(z) =
∑

2≤m even≤10

taaze2,7,3
m Tem(z)

taaze2,7,3
2 = 35 ze3,7 + 36 ze7,3 + 48 ze5,5 +

373

6
ze10 − 28

3
ze2,8 − 7

3
ze8,2

−15 ze4,6 − 15 ze6,4 = 35 ζ2
5 + 56 ζ7 ζ3 +

7

2
ζev

8,2 −
392

275
ζ5

2

taaze2,7,3
4 = 16 ze3,5 + 16 ze5,3 +

29

3
ze8 − 10

3
ze2,6 − 6 ze4,4 − 10

3
ze6,2

= 16 ζ5 ζ3 −
652

525
ζ4

2

taaze2,7,3
6 = 4 ze3,3 +

1

6
ze6 − ze2,4 − ze4,2 = 2 ζ2

3 −
62

105
ζ3

2

taaze2,7,3
8 = 0

taaze2,7,3
10 =

1

6
ze2 =

1

6
ζ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 5 : Too2,7,3(z) is even in z since 2+7+3-3 is odd.

Too2,7,3(z) =
∑

2≤m even≤6

tooze2,7,3
m Tem(z)

tooze2,7,3
2 = 7 ze8,2 + 35 ze3,7 + 36 ze7,3 + 48 ze5,5 + 105 ze10

= 35 ζ2
5 + 56 ζ7 ζ3 + 7/2 ζev

8,2 +
152

55
ζ5

2

tooze2,7,3
4 = 16 ze3,5 + 16 ze5,3 +

39

2
ze8 = +16 ζ5 ζ3] +

12

25
ζ4

2

tooze2,7,3
6 = 2 ze6 + 4 ze3,3 = 2 ζ2

3
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Table 6 : Te2,7,4(z) has no definite parity in z.

Te2,7,4(z) =
∑

2≤m≤7

teze2,7,4
m Tem(z)

teze2,7,4
1 = 30 ze12 + 84 ze4,8 + 84 ze10,2 + 100 ze6,6 + 112 ze8,4 − 104 ze7,5

−112 ze5,7 − 112 ze9,3 − 168 ze3,9 = 0

teze2,7,4
3 = 14 ze10 + 28 ze2,8 + 35 ze8,2 + 35 ze4,6 + 35 ze6,4 − 32 ze5,5

−40 ze7,3 − 42 ze3,7 =
992

175
ζ5

2 − 8 ζ2
5 − 28 ζ7 ζ3

teze2,7,4
4 = 8 ze9 + 8 ze4,5 + 8 ze5,4 + 20 ze7,2 + 21 ze2,7 − 20 ze3,6 − 20 ze6,3

= 14 ζ7 ζ2 +
8

5
ζ5 ζ

2
2 +

35

2
ζ9 −

176

35
ζ3 ζ

3
2

teze2,7,4
5 = 5 ze8 + 6 ze4,4 + 10 ze2,6 + 10 ze6,2 − 8 ze3,5 − 8 ze5,3

=
484

175
ζ4

2 − 8 ζ5 ζ3

teze2,7,4
6 = 2 ze7 + 4 ze2,5 + 4 ze5,2 − 2 ze3,4 − 2 ze4,3 = 4 ζ5 ζ2 −

4

5
ζ3 ζ

2
2

teze2,7,4
7 = ze6 + ze2,4 + ze4,2 =

2

5
ζ3

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 7 : Taa2,7,4(z) is odd in z since 2+7+4-3 is even.

Taa2,7,4(z) =
∑

2≤m odd≤11

taaze2,7,4
m Tem(z)

taaze2,7,4
1 = 28 ze4,8 + 36 ze12 + 56 ze8,4 + 84 ze10,2 +

100

3
ze6,6 − 104 ze7,5

−112 ze5,7 − 112 ze9,3 − 168 ze3,9 = 0

taaze2,7,4
3 = 11 ze10 +

28

3
ze2,8 +

35

3
ze4,6 +

35

3
ze6,4 +

49

3
ze8,2 − 32 ze5,5

−40 ze7,3 − 42 ze3,7 =
24352

5775
ζ5

2 − 8 ζ2
5 − 28 ζ7 ζ3

taaze2,7,4
5 = 2 ze4,4 +

10

3
ze2,6 +

10

3
ze6,2 +

17

3
ze8 − 8 ze3,5 − 8 ze5,3

=
1156

525
ζ4

2 − 8 ζ5 ζ3

taaze2,7,4
7 =

1

3
ze2,4 +

1

3
ze4,2 +

17

6
ze6 =

74

105
ζ3

2

taaze2,7,4
9 =

2

3
ze4 =

4

15
ζ2

2

taaze2,7,4
11 =

1

6
ze2 =

1

6
ζ2
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Table 8 : Too2,7,4(z) is odd in z since 2+7+4-3 is even.

Too2,7,4(z) =
∑

3≤m odd≤5

tooze2,7,4
m Tem(z)

tooze2,7,4
1 = 39 ze12 + 28 ze8,4 + 84 ze10,2 − 104 ze7,5 − 112 ze5,7 − 112 ze9,3

−168 ze3,9 = 0

tooze2,7,4
3 = 7 ze8,2 − 23

2
ze10 − 32 ze5,5 − 40 ze7,3 − 42 ze3,7

=
96

55
ζ5

2 − 8 ζ2
5 − 28 ζ7 ζ3

tooze2,7,4
5 = −8 ze3,5 − 8 ze5,3 − 9

2
ze8 =

12

25
ζ4

2 − 8 ζ5 ζ3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 9 : Te5,3,3,4(z) has no definite parity in z.

Te5,3,3,4(z) =
∑

2≤m≤5

teze5,3,3,4
m Tem(z)

teze5,3,3,4
1 = 6 ze10,4+ 12 ze5,9+ 15 ze7,7+ 12 ze5,5,4+ 15 ze7,4,3+ 15 ze4,7,3

+30 ze6,5,3 +30 ze5,6,3 +30 ze5,4,5 +30 ze4,5,5 +30 ze7,3,4 +60 ze4,6,4

+60 ze5,3,6 + 45 ze4,4,6 + 90 ze6,4,4 − 15 ze6,8 − 6 ze4,10 = 0

teze5,3,3,4
2 = 2 ze4,9 + 10 ze4,6,3 + 12 ze4,5,4 + 15 ze4,4,5 + 15 ze4,3,6 + 30 ze5,3,5

+30 ze5,5,3 + 35 ze7,3,3 + 36 ze5,4,4 + 40 ze6,3,4 + 45 ze6,4,3 − 3 ze5,8

−5 ze6,7 − 6 ze9,4 =
240

7
ζ7 ζ

3
2 − 72 ζ9 ζ

2
2 − 175 ζev

6,2 ζ5 − 775 ζ2
5 ζ3

−600 ζ7 ζ
2
3 − 200 ζodd

9,3,1 − 700 ζodd
10,2,1 −

71900

3
ζ13 −

3198

35
ζ5 ζ

4
2

teze5,3,3,4
3 = ze5,7 + 5 ze6,3,3 + 5 ze4,3,5 + 6 ze4,5,3 + 9 ze5,4,3 + 10 ze5,3,4

+9 ze4,4,4 − ze4,8 = 14 ζev
6,2 ζ

2
2 + 14 ζ5 ζ3 ζ

2
2 + 15 ζev

10,2 + 45 ζ9 ζ3

+55 ζ7 ζ5 +
10576684

875875
ζ6

2 − 50 ζ2
5 ζ2

teze5,3,3,4
4 = 3 ze4,3,4 + 3 ze4,4,3 + 5 ze5,3,3 =

35

2
ζ5 ζ

2
3 +

35

4
ζodd

8,1,2 +
72

5
ζ7 ζ

2
2

+
29893

96
ζ11 − 45 ζ9 ζ2 −

80

7
ζ5 ζ

3
2

teze5,3,3,4
5 = ze4,3,3 = 10 ζ5 ζ3 ζ2 + 7 ζ7 ζ3 +

12932

1925
ζ5

2 +
7

2
ζev

8,2 + 10 ζev
6,2 ζ2 −

45

2
ζ2

5
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Table 10 : Taa5,3,3,4(z) is even in z since 5+3+3+4-4 is odd.

Taa5,3,3,4(z) =
∑

2≤m even≤8

taaze5,3,3,4
m Tem(z)

taaze5,3,3,4
2 = 5 ze4,3,6 + 22 ze5,8 + 30 ze5,5,3 + 30 ze5,3,5 + 35 ze7,3,3 +

25

3
ze6,4,3

+
40

3
ze6,3,4 +

184

3
ze9,4 +

295

3
ze6,7 +

260

3
ze7,6 +

323

3
ze4,9

+
291

2
ze13 − 16 ze5,4,4 − 24 ze4,5,4 − 5 ze4,4,5 − 40 ze8,5 − 35

3
ze10,3

−80

3
ze4,6,3 = −175 ζev

6,2 ζ5 − 200 ζodd
9,3,1 − 700 ζodd

10,2,1 − 600 ζ7 ζ
2
3

−775 ζ2
5 ζ3 −

3102

35
ζ5 ζ

4
2 −

71614

3
ζ13

taaze5,3,3,4
4 = ze4,3,4 + 35 ze4,7 +

41

2
ze7,4 +

55

6
ze5,6 +

155

6
ze11 − 29

3
ze8,3

+5 ze5,3,3 − ze4,4,3 =
35

4
ζodd

8,1,2 +
35

2
ζ5 ζ

2
3 +

8967

32
ζ11 −

124

21
ζ5 ζ

3
2

taaze5,3,3,4
6 =

8

3
ze5,4 +

25

6
ze4,5 +

13

6
ze9 − 5

2
ze6,3 =

14

3
ζ5 ζ

2
2 −

21

2
ζ9

taaze5,3,3,4
8 = −1

6
ze4,3 − 1

12
ze7 =

5

3
ζ2 ζ5 −

35

12
ζ7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table 11 : Too5,3,3,4(z) is even in z since 5+3+3+4-4 is odd.

Too5,3,3,4(z) =
∑

2≤m even≤6

tooze5,3,3,4
m Tem(z)

tooze5,3,3,4
2 = 5 ze10,3 + 30 ze5,3,5 + 30 ze5,5,3 + 35 ze7,3,3 + 60 ze8,5 + 138 ze4,9

+147 ze9,4 + 170 ze6,7 +
123

2
ze5,8 +

385

2
ze7,6 +

861

2
ze13

−42 ze5,4,4 − 42 ze4,5,4 − 15 ze4,4,5 − 10 ze6,4,3 − 45 ze4,6,3

= −775 ζ3 ζ
2
5 − 200 ζodd

9,3,1 − 700 ζodd
10,2,1 − 175 ζev

6,2 ζ5 −
306

5
ζ5 ζ

4
2

−600 ζ7 ζ
2
3 −

285455

12
ζ13

tooze5,3,3,4
4 = ze8,3 + 25 ze6,5 + 51 ze4,7 +

55

2
ze5,6 +

105

2
ze7,4 +

315

4
ze11

+5 ze5,3,3 − 3 ze4,4,3 =
35

4
ζodd

8,1,2 +
29629

96
ζ11 +

35

2
ζ5 ζ

2
3

tooze5,3,3,4
6 =

15

2
ze5,4 +

15

2
ze4,5 +

15

2
ze9 = 3 ζ5 ζ

2
2
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Table 12 : Te5,2,3,4(z) has no definite parity in z.

Te5,2,3,4(z) =
∑

2≤m≤5

teze5,2,3,4
m Tem(z)

teze5,2,3,4
1 = ze5,8 + 2 ze4,9 + 3 ze10,3 + 5 ze11,2 + 15 ze7,6 − 10 ze6,7 − 5 ze4,6,3

−15 ze4,4,5 − 35 ze8,3,2 − 35 ze8,2,3 − 42 ze5,4,4 − 18 ze4,5,4

−30 ze7,2,4 − 40 ze5,3,5 − 45 ze7,4,2 − 50 ze6,3,4 − 50 ze5,6,2

−50 ze6,2,5 − 60 ze6,4,3 − 70 ze7,3,3 − 70 ze6,5,2 − 76 ze5,5,3 = 0

teze5,2,3,4
2 = 2 ze5,7 + 10 ze6,2,4 + 10 ze5,2,5 + 15 ze7,2,3 − ze4,8 − ze10,2 − 5 ze6,6

−3 ze9,3 − 5 ze4,3,5 − 8 ze5,3,4 − 9 ze4,4,4 − 10 ze6,3,3 − 15 ze4,5,3

−15 ze4,6,2 − 16 ze5,5,2 − 20 ze7,3,2 − 24 ze5,4,3 − 35 ze6,4,2

= 16 ζev
6,2 ζ

2
2 + 35 ζ7 ζ5 + 100 ζ2

5 ζ2 + 105 ζ9 ζ3 − 35 ζev
10,2 − 16 ζ2

3 ζ
3
2

−12462448

525525
ζ6

2

teze5,2,3,4
3 = ze5,6 + ze9,2 − 2 ze5,2,4 − 3 ze4,3,4 − 5 ze6,2,3 − 5 ze4,5,2 − 6 ze4,4,3

−10 ze6,3,2 − 10 ze5,3,3 − 11 ze5,4,2 = 8 ζ5 ζ
3
2 + 60 ζev

6,2 ζ3

+
4136

175
ζ3 ζ

4
2 − 30 ζ5 ζ

2
3 − 40 ζodd

8,1,2 −
112

5
ζ7 ζ

2
2 −

3040

3
ζ11

teze5,2,3,4
4 = ze5,2,3 − 2 ze4,3,3 − 3 ze4,4,2 − 4 ze5,3,2 = 10 ζev

6,2 ζ2 +
21

2
ζ7 ζ3

+
105

4
ζ2

5 − 4 ζ2
3 ζ

2
2 −

63

4
ζev

8,2 −
1696

275
ζ5

2

teze5,2,3,4
5 = −Ze4,3,2 = 7 ζ5 ζ

2
2 +

53

36
ζ9 +

64

105
ζ3 ζ

3
2 − 14 ζ7 ζ2 −

2

3
ζ3

3
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Table 13 : Taa5,2,3,4(z) is odd in z since 5+2+3+4-4 is even.

Taa5,2,3,4(z) =
∑

3≤m odd≤9

taaze5,2,3,4
m Tem(z)

taaze5,2,3,4
1 = 5 ze4,4,5 + 10 ze4,3,6 + 18 ze5,4,4 + 22 ze4,5,4 + 30 ze7,2,4 + 15 ze7,4,2

+20 ze2,5,6 + 30 ze2,7,4 + 30 ze4,7,2 + 40 ze5,2,6 +
70

3
ze2,8,3

+
100

3
ze2,6,5 +

145

3
ze4,6,3 +

8

3
ze10,3 +

80

3
ze7,6 +

176

3
ze4,9

+
238

3
ze9,4 − 10 ze5,6,2 − 5

3
ze11,2 − 5

3
ze2,11 − 11

6
ze13 − 20

3
ze6,4,3

−20

3
ze6,3,4 − 40 ze5,3,5 − 70 ze7,3,3 − 76 ze5,5,3 − 35

3
ze8,3,2

−35

3
ze8,2,3 − 50

3
ze6,5,2 − 50

3
ze6,2,5 − 70

3
ze6,7 − 115

3
ze8,5

−200

3
ze5,8 = 0

taaze5,2,3,4
3 = Ze4,3,4 + 2 ze4,4,3 + 4 ze2,5,4 +

43

3
ze8,3 +

1

3
ze4,5,2 +

10

3
ze2,6,3

+
22

3
ze5,2,4 +

7

6
ze7,4 − 26 ze2,9 − 10 ze5,3,3 − 5

3
ze5,4,2 − 5

3
ze6,2,3

−10

3
ze6,3,2 − 10

3
ze2,3,6 − 28

3
ze9,2 − 37

3
ze4,7 − 44

3
ze5,6

−65

6
ze6,5 − 169

6
ze11

= 60 ζev
6,2 ζ3 +

15112

525
ζ3 ζ

4
2 −

16

3
ζ5 ζ

3
2 − 40 ζodd

8,1,2 − 30 ζ5 ζ
2
3 − 1105 ζ11

taaze5,2,3,4
5 = 5 ze6,3 − 6 ze4,5 − 12 ze2,7 − 1

3
ze4,3,2 − 2

3
ze2,3,4 − 13

3
ze7,2

−14

3
ze5,4 − 32

3
ze9 =

152

35
ζ3 ζ

3
2 −

1

3
ζ5 ζ

2
2 −

2

3
ζ3

3 −
1447

36
ζ9

taaze5,2,3,4
7 =

5

6
ze4,3 − 10

3
ze2,5 − 11

6
ze7 − 7

6
ze5,2 =

26

15
ζ3 ζ

2
2 −

5

6
ζ5 ζ2 −

49

6
ζ7

taaze5,2,3,4
9 = −1

6
ze5 − 1

3
ze2,3 =

2

3
ζ3 ζ2 −

5

3
ζ5
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Table 14 : Too5,2,3,4(z) is odd in z since 5+2+3+4-4 is even.

Too5,2,3,4(z) =
∑

2≤m odd≤9

tooze5,2,3,4
m Tem(z)

tooze5,2,3,4
1 = 10 ze6,5,2 + 10 ze5,6,2 + 15 ze4,4,5 + 15 ze4,3,6 + 15 ze6,3,4 + 20 ze6,4,3

+30 ze2,5,6 + 35 ze2,8,3 + 42 ze4,5,4 + 45 ze4,7,2 + 45 ze7,4,2 + 45 ze2,7,4

+48 ze5,4,4 + 50 ze2,6,5 + 60 ze7,2,4 + 60 ze5,2,6 + 75 ze4,6,3 + 30 ze8,5

+40 ze6,7 + 87 ze4,9 + 95 ze7,6 + 126 ze9,4 +
47

2
ze10,3 − 5

2
ze5,8

−5 ze11,2 − 5

2
ze2,11 − 17

2
ze13 − 40 ze5,3,5 − 70 ze7,3,3 − 76 ze5,5,3 = 0

tooze5,2,3,4
3 = 3 ze7,4 + 18 ze8,3 + 3 ze4,3,4 + 3 ze5,4,2 + 3 ze4,5,2 + 5 ze2,6,3 + 6 ze2,5,4

+6 ze4,4,3 + 12 ze5,2,4 − 5 ze2,3,6 − 10 ze5,3,3 − 5 ze5,6 − 15 ze4,7

−25 ze9,2 − 39 ze2,9 − 175

4
ze11

= 60 ζev
6,2 ζ3 +

712

25
ζ3 ζ

4
2 − 30 ζ5 ζ

2
3 − 40 ζodd

8,1,2 −
104

7
ζ5 ζ

3
2 −

12985

12
ζ11

tooze5,2,3,4
5 =

15

2
ze6,3 − ze2,3,4 − 5 ze5,4 − 18 ze2,7 − 10 ze7,2 − 15

2
ze4,5 − 65

4
ze9

= 484/105 ζ3 ζ
3
2 − 8 ζ5 ζ

2
2 −

2

3
ζ3

3 −
268

9
ζ9

tooze5,2,3,4
7 =

3

2
ze4,3 − 2 ze5,2 − 5 ze2,5 − 11

4
ze7 = −5 ζ5 ζ2 −

21

4
ζ7 +

12

5
ζ3 ζ

2
2

tooze5,2,3,4
9 = −1

4
ze5 − 1

2
ze2,3 = ζ3 ζ2 −

5

2
ζ5

9.3 The invariants as entire functions of f : the general
case.

We write down, up to weight 10 inclusively, the expansion of the collectors
p,p∗,p] in terms of the g, g∗, g]. We assume p(f) = 1 but impose no restric-
tion on ρ(f) ≡ −g2. In these and all further examples, we order the terms
according to their total weight and, within a given total weight, we start with
the lowest monotangents.
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Table 15: p= id+
∑

Ps up to weight 10 with f= l◦g , g(z)=z+
∑

2≤s gs z
1−s.

P2 = Te1 g2 , P3 = Te2 g3 , P4 = Te3 g4 , P5 = Te4 g5 ,

P6 = Te2
[
3 ζ3 g

3
2 + 6 ζ3 g4 g2 − 6 ζ3 g

2
3

]
+ Te3

[
2 ζ2 g4 g2 − 2 ζ2 g

2
3

]
+ Te5 g6,

P7 = Te3
[
6 ζ3 g

2
2 g3 + 6 ζ3 g5 g2 − 6 ζ3 g4 g3

]
+ Te4

[
3 ζ2 g5 g2 − 3 ζ2 g4 g3

]
+ Te6 g7,

P8 = Te2
[
10 ζ5 g

4
2 + 10 ζ5 g6 g2 + 30 ζ5 g

2
4 − 40 ζ5 g5 g3 + 50 ζ5 g4 g

2
2 − 50 ζ5 g2 g

2
3

[
+Te3

[4
5
ζ2

2 g6 g2 +
12

5
ζ2

2 g
2
4 +

16

5
ζ2

2 g4 g
2
2 −

2

5
ζ2

2 g
4
2 −

16

5
ζ2

2 g2 g
2
3 −

16

5
ζ2

2 g5 g3

]
+Te4

[
ζ3 g2 g

2
3 + 3 ζ3 g

2
4 + 7 ζ3 g6 g2 + 8 ζ3 g4 g

2
2 − 10 ζ3 g5 g3

]
+Te5

[
4 ζ2 g6 g2 − 4 ζ2 g5 g3

]
+ Te7 g8,

P9 = Te2
[16

7
ζ3

2 g5 g
2
2 +

32

7
ζ3

2 g
3
3 −

48

7
ζ3

2 g4 g3 g2 + 18 ζ2
3 g5 g

2
2 + 36 ζ2

3 g
3
3 − 54 ζ2

3 g4, g3 g2

]
+Te3

[
10 ζ5 g2 g7 + 20 ζ5 g

3
2 g3 + 20 ζ5 g5 g4 + 35 ζ5 g5 g

2
2 − 5 ζ5 g4 g3 g2

−30 ζ5 g
3
3 − 30 ζ5 g6 g3 + 12 ζ3 ζ2 g5 g

2
2 + 24 ζ3 ζ2 g

3
3 − 36 ζ3 ζ2 g4 g2 g3

]
+Te4

[6
5
ζ2

2 g2 g7 +
12

5
ζ2

2 g5 g4 +
21

5
ζ2

2 g
3
3 +

69

10
ζ2

2 g5 g
2
2

−6

5
ζ2

2 g3 g
3
2 −

18

5
ζ2

2 g6 g3 −
111

10
ζ2

2 g4 g3 g2

]
+ Te5

[
2 ζ3 g4 g3 g2 + 4 ζ3 g5 g4

+8 ζ3 g7 g2 + 10 ζ3 g5 g
2
2 − 12 ζ3 g6 g3

]
+ Te6

[
5 ζ(2) g2 g7 − 5 ζ(2) g6 g3

]
+ Te8 g9,

P10 = Te2
[
14 ζ7 g2 g8 +

77

2
ζ7 g

5
2 + 147 ζ7 g6 g

2
2 + 210 ζ7 g6 g4 + 322 ζ7 g4 g

3
2

+441 ζ7 g
2
4 g2 − 84 ζ7 g3 g7 − 140 ζ7 g

2
5 − 322 ζ7 g

2
3 g

2
2 − 588 ζ7 g5 g3 g2

]
+Te3

[
9 ζ2

3 g
5
2 + 21 ζ2

3 g6 g
2
2 + 33 ζ2

3 g4 g
3
2 + 36 ζ2

3 g4 g
2
3 − 9 ζ2

3 g
2
4 g2 − 33 ζ2

3 g
2
3 g

2
2

−48 ζ2
3 g5 g3 g2 +

16

35
ζ3

2 g8 g2 +
32

7
ζ3

2 g4 g
2
3 +

48

7
ζ3

2 g6 g4 +
32

105
ζ3

2 g4 g
3
2

+
248

35
ζ3

2 g
2
4 g2 +

568

105
ζ3

2 g6 g
2
2 −

32

7
ζ3

2 g
2
5 −

32

105
ζ3

2 g
2
3 g

2
2 −

244

105
ζ3

2 g
5
2

−256

15
ζ3

2 g5 g3 g2 −
96

35
ζ3

2 g3 g7

]
+ Te4

[
ζ5 g

5
2 +

1

2
ζ5 g

2
3 g

2
2 + 11 ζ5 g8 g2

+45 ζ5 g6 g4 +
59

2
ζ5 g4 g

3
2 +

81

2
ζ5 g6 g

2
2 +

123

2
ζ5 g

2
4 g2 − 20 ζ5 g

2
5 − 36 ζ5 g7 g3

−45 ζ5 g4 g
2
3 − 57 ζ5 g5 g3 g2 + 15 ζ3 ζ2 g4 g

3
2 + 21 ζ3 ζ2 g6 g

2
2 + 36 ζ3 ζ2 g4 g

2
3

−9 ζ3 ζ2 g
2
4 g2 − 15 ζ3 ζ2 g

2
3 g

2
2 − 48 ζ3 ζ2 g5 g3 g2

]
+ Te5

[8
5
ζ2

2 g8 g2 +
24

5
ζ2

2 g6 g4

+
42

5
ζ2

2 g4 g
2
3 +

58

5
ζ2

2 g6 g
2
2 −

6

5
ζ2

2 g4 g
3
2 −

6

5
ζ2

2 g
2
3 g

2
2 −

6

5
ζ2

2 g
2
4 g2 −

8

5
ζ2

2 g
2
5

−24

5
ζ2

2 g7 g3 −
94

5
ζ2

2 g5 g3 g2

]
+ Te6

[
ζ3 g

2
4 g2 + 2 ζ3 g5 g3 g2 + 5 ζ3 g6 g4

+9 ζ3 g8 g2 + 12 ζ3 g6 g
2
2 − 14 ζ3 g7 g3

]
+ Te7

[
6 ζ2 g8 g2 − 6 ζ2 g7 g3

]
+ Te9 g10
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Table 16: p∗=
∑

P∗s up to weight 10 with f= l ◦ g , g∗(z)=
∑

2≤s g∗s z
1−s.

P∗2 = Te1g∗2 , P∗3 = Te2 g∗3 , P∗4 = Te3 g∗4 , P∗5 = Te4 g∗5 ,

P∗6 = Te2
[
6 ζ3 g∗2 g∗4 − 6 ζ3 g2

∗3
]

+ Te5
[
g∗6
]

P∗7 = Te3
[
6 ζ3 g∗2 g∗5 − 6 ζ3 g∗3 g∗4

]
+ Te6

[
g∗7
]

P∗8 = Te2
[
30 ζ5 g2

∗4 −
5

2
ζ5 g4

∗2 + 10 ζ5 g∗2 g∗6 − 40 ζ5 g∗3 g∗5
]

Te3
[4
3
ζ2

2 g∗2 g2
∗3 −

4

3
ζ2

2 g2
∗2 g∗4

]
+ Te4

[
3 ζ3 g2

∗4 +
1

4
ζ3 g4

∗2 − 10 ζ3 g∗3 g∗5

+7 ζ3 g∗2 g∗6
]

+ Te5
[
− 2

3
ζ2 g∗2 g2

∗3 +
2

3
ζ2 g2

∗2 g∗4
]

+ Te7
[
g∗8
]

P∗9 = Te2
[
36 ζ(3)2 g3

∗3 −
32

5
ζ3

2 g3
∗3 + 18 ζ2

3 g∗5 g2
∗2 +

48

5
ζ3

2 g∗2 g∗3 g∗4

−54 ζ2
3 g∗2 g∗3 g∗4 −

16

5
ζ3

2 g∗5 g2
∗2
]

+ Te3
[
20 ζ5 g∗4 g∗5 + 10 ζ5 g∗2 g∗7

−30 ζ5 g∗3 g∗6 − 5 ζ5 g3
∗2 g∗3

]
+ Te4

[
− 1

5
ζ2

2 g3
∗3 −

21

10
ζ2

2 g2
∗2 g∗5

+
23

10
ζ2

2 g∗2 g∗3 g∗4
]

+ Te5
[
8 ζ3 g∗2 g∗7 − 12 ζ3 g∗3 g∗6 + 4 ζ3 g∗4 g∗5

+ζ3 g3
∗2 g∗3

]
+ Te6

[3
2
ζ2 g2

∗2 g∗5 −
1

3
ζ2 g3

∗3 −
7

6
ζ2 g∗2 g∗3 g∗4

]
+ Te8

[
g∗9
]

P∗10 = Te2
[
210 ζ7 g∗4 g∗6 − 140 ζ7 g2

∗5 − 84 ζ7 g∗3 g∗7 + 14 ζ7 g∗2 g∗8
]

−133

3
ζ7 g3

∗2 g∗4 +
133

3
ζ7 g2

∗2 g2
∗3
]

+ Te3
[
36 ζ2

3 g2
∗3 g∗4 − 9 ζ2

3 g∗2 g2
∗4

+21 ζ2
3 g2
∗2 g∗6 +

3

4
ζ2

3 g5
∗2 −

32

5
ζ3

2 g2
∗3 g∗4 −

64

15
ζ3

2 g2
∗2 g∗6

+
32

3
ζ3

2 g∗2 g∗3 g∗5 − 48 ζ2
3 g∗2 g∗3 g∗5

]
+ Te4

[
45 ζ5 g∗4 g∗6 − 20 ζ5 g2

∗5

−36 ζ5 g∗3 g∗7 + 11 ζ5 g∗2 g∗8 −
10

3
ζ5 g3

∗2 g∗4 −
25

6
ζ5 g2

∗2 g2
∗3
]

+Te5
[10

3
ζ2

2 g∗2 g∗3 g∗5 −
2

5
ζ2

2 g2
∗3 g∗4 −

44

15
ζ2

2 g2
∗2 g∗6

]
+ Te6

[
9 ζ3 g∗2 g∗8

−14 ζ3 g∗3 g∗7 + 5 ζ3 g∗4 g∗6 +
1

2
ζ(3) g2

∗2 g2
∗3 + 2 ζ3 g3

∗2 g∗4
]

+Te7
[8
3
ζ2 g2

∗2 g∗6 −
5

3
ζ2 g∗2 g∗3 g∗5 − ζ2 g2

∗3 g∗4
]

+ Te9
[
g∗10

]
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Table 17: p]=
∑

P]s up to weight 10 with f= l ◦ g , g](z)=
∑

2≤s g]s z
1−s.

P]2 = Te1 g]2 , P]3 = Te2 g]3 , P]4 = Te3 g]4 , P]5 = Te4 g]5 ,

P]6 = Te2
[
Te5 g]6 + 6 ζ3 g]4 g]2 − 6 ζ3 g

2
]3

]
+ Te3 ζ2 g

3
]2

P]7 = Te3
[
6 ζ3 g]5 g]2 − 6 ζ3 g]4 g]3

]
+ Te4 ζ2

3

2
g]3 g

2
]2 + Te6 g]7

P]8 = Te2
[
10 ζ5 g]6 g]2 + 30 ζ5 g

2
]4 − 40 ζ5 g]5 g]3

]
+ Te3

[8
5
ζ2

2 g
2
]3 g]2 −

8

5
ζ2

2 g]4 g
2
]2

]
+Te4

[
3 ζ3 g

2
]4 + 2 ζ3 g

4
]2 − 10 ζ3 g]5 g]3 + 7 ζ3 g]6 g]2

]
+Te5

[
5 ζ2 g]4 g

2
]2 − 2 ζ2 g

2
]3 g]2

]
+ Te7 g]8

P]9 = Te2
[
18 ζ2

3 g]5 g
2
]2 + 36 ζ2

3 g
3
]3 − 54 ζ2

3 g]4 g]3 g]2 +
624

35
ζ3

2 g]4 g]3 g]2

−208

35
ζ3

2 g]5 g
2
]2 −

416

35
ζ3

2 g
3
]3

]
+ Te3

[
10 ζ5 g]7 g]2 + 20 ζ5 g]5 g]4 − 30 ζ5 g]6 g]3

]
+Te4

[87

10
ζ2

2 g]4 g]3 g]2 −
9

2
ζ2

2 g]5 g
2
]2 −

21

5
ζ2

2 g
3
]3

]
+Te5

[
8 ζ3 g]3 g

3
]2 + 8 ζ3 g]7 g]2 + 4 ζ3 g]5 g]4 − 12 ζ3 g]6 g]3

]
+Te6

[17

2
ζ2 g]5 g

2
]2 −

1

2
ζ2 g]4 g]3 g]2 − 3 ζ2 g

3
]3

]
+ Te8 g]9

P]10 = Te2
[
14 ζ7 g]8 g]2 + 35 ζ7 g

3
]2 g]4 + 210 ζ7 g]6 g]4 − 84 ζ7 g]7 g]3

−35 ζ7 g
2
]3 g

2
]2 − 140 ζ7 g

2
]5

]
+ Te3

[224

15
ζ3

2 g]5 g]3 g]2 +
128

35
ζ3

2 g
2
]4 g]2

−704

105
ζ3

2 g]6 g
2
]2 −

416

35
ζ3

2 g]4 g
2
]3 −

176

105
ζ3

2 g
5
]2 + 6 ζ2

3 g
5
]2 + 21 ζ2

3 g]6 g
2
]2

+36 ζ2
3 g]4 g

2
]3 − 9 ζ2

3 g
2
]4 g]2 − 48 ζ2

3 g]5 g]3 g]2
]

+ Te4
[
11 ζ5 g]8 g]2 + 29 ζ5 g]4 g

3
]2

+45 ζ5 g]6 g]4 − 36 ζ5 g]7 g][3]− 29 ζ5 g
2
]3 g

2
]2 − 20 ζ5 g

2
]5 + 9 ζ2 ζ3 g]4 g

3
]2

−9 ζ2 ζ3 g
2
]3 g

2
]2

]
+ Te5

[9
4
ζ2

2 g
5
]2 +

42

5
ζ2

2 g]5 g]3 g]2 +
33

5
ζ2

2 g
2
]4 g]2 −

33

5
ζ2

2 g]6 g
2
]2

−42

5
ζ2

2 g]4 g
2
]3

]
+ Te6

[
+ 5 ζ3 g]6 g]4 + 7 ζ3 g

2
]3 g

2
]2 + 9 ζ3 g]8 g]2 + 13 ζ3 g]4 g

3
]2

−14 ζ3 g]7 g]3
]

+ Te7
[
13 ζ2 g]6 g

2
]2 +

9

2
ζ2 g

2
]4 g]2 −

1

2
ζ2 g

5
]2 − 9 ζ2 g]4 g

2
]3

−ζ2 g]5 g]3 g]2
]

+ Te9 g]10

9.4 The invariants as entire functions of f : the reflex-
ive case.

As in Table 16, we write down the expansion of the collector p∗ in terms
of the g∗, but this time for a reflexive f . Recall that a standard f is re-
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flexive iff f(−f(−z)) ≡ z, in which case its conjugate l1/2 ◦ f ◦ f−1/2 is of
the form l ◦ g with g also reflexive. See §3.9. Reflexivity automatically im-
plies ρ(f) ≡ −g∗2 ≡ 0. There being fewer coefficients g∗s, we reach weight 13.

Example 18: p∗ up to weight 13 for f = l◦g with g∗(z) =
∑

1≤d g∗1+2dz
−2d.

P∗3 = Te2 g∗3 , P∗5 = Te4 g∗5 , P∗6 = Te2
[
− 6 ζ3 g

2
∗3
]
, P∗7 = Te6 g∗7 ,

P∗8 = Te2
[
− 40 ζ5 g∗5 g∗3

]
+ Te4

[
− 10 ζ3 g∗5 g∗3

]
,

P∗9 = Te2
[
36 ζ2

3 g
3
∗3 −

32

5
ζ3

2 g
3
∗3
]

+ Te4
[
− 1

5
ζ2

2 g
3
∗3
]

+ Te6
[
− 1

3
ζ2 g

3
∗3
]

+Te8
[
g∗9
]
,

P∗10 = Te2
[
− 84 ζ7 g∗7 g∗3 − 140 ζ7 g

2
∗5
]

+ Te4
[
− 36 ζ5 g∗7 g∗3 − 20 ζ5 g

2
∗5
]

+Te6
[
− 14 ζ3 g∗7 g∗3

]
P∗11 = Te2

[
560 ζ5 ζ3 g∗5 g

2
∗3 −

15648

175
ζ4

2 g∗5 g
2
∗3 − 80 ζev

6,2 g∗5 g
2
∗3
]

+Te4
[
80 ζ2

3 g∗5 g
2
∗3 −

272

21
ζ3

2 g∗5 g
2
∗3
]

+ Te6
[
− 34

15
ζ2

2 g∗5 g
2
∗3
]

+Te8
[
− 5

3
ζ2 g∗5 g

2
∗3
]

+ Te10 g∗11

]
,

P∗12 = Te2
[576

5
ζ3 ζ

3
2 g

4
∗3 − 216 ζ3

3 g
4
∗3 − 144 ζ9 g∗9 g∗3 − 210 ζ9 g

4
∗3 − 1008 ζ9 g∗7 g∗5

]
+Te4

[18

5
ζ3 ζ

2
2 g

4
∗3 + 14 ζ7 g

4
∗3 − 210 ζ7 g∗7 g∗5 − 78 ζ7 g∗3 g∗9

]
+Te6

[
6 ζ3 ζ2 g

4
∗3 −

10

3
ζ5 g

4
∗3 − 28 ζ5 g∗7 g∗5 − 44 ζ5 g∗9 g∗3

]
+Te8

[
− 18 ζ3 g∗9 g∗3

]
,

P∗13 = Te2
[
720 ζ2

5 g∗7 g
2
∗3 + 1200 ζ2

5 g
2
∗5 g∗3 + 1344 ζ7 ζ3 g∗7 g

2
∗3

+2240 ζ7 ζ3 g
2
∗5 g∗3 − 168 ζev

8,2 g∗7 g
2
∗3 − 280 ζev

8,2 g
2
∗5 g∗3 −

125056

385
ζ5

2 g
2
∗5 g∗3

−375168

1925
ζ5

2 g∗7 g
2
∗3
]

+ Te4
[
100 ζev

6,2 g
2
∗5 g∗3 + 500 ζ5 ζ3 g

2
∗5 g∗3

+540 ζ5 ζ3 g∗7 g
2
∗3 +

6544

525
ζ4

2 g
2
∗5 g∗3 −

23824

175
ζ4

2 g∗7 g
2
∗3 − 180 ζev

6,2 g∗7 g
2
∗3
]

+Te6
[
140 ζ2

3 g∗7 g
2
∗3 +

88

21
ζ3

2 g
2
∗5 g∗3 −

3064

105
ζ3

2 g∗7 g
2
∗3
]

+ Te8
[ 8

15
ζ2

2 g
2
∗5 g∗3

−39

5
ζ2

2 g∗7 g
2
∗3
]

+ Te10
[
− 4 ζ2 g∗7 g

2
∗3 −

2

3
ζ2 g

2
∗5 g∗3

]
+ Te12 g∗13
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9.5 The invariants as entire functions of f : one-parameter
cases.

Table 19: p∗ up to weight 12 for f = l ◦ g with g(z) = z + g2 z
−1.

P2 = g2 Te2 , P4 = 0 , P6 = g3
2 Te2

[
3 ζ3

]
,

P8 = g4
2

(
Te2

[
10 ζ5

]
+ Te3

[
− 2

5
ζ2

2

])
,

P10 = g5
2

(
Te2

[77

2
ζ7

]
+ Te3

[
9 ζ2

3 −
244

105
ζ3

2

]
+ Te4 ζ5

)
,

P12 = g6
2

(
Te2

[
151ζ9

]
+ Te3

[
3 ζev

6,2 + 63 ζ3 ζ5 −
878

105
ζ4

2

]
+Te4

[
10 ζ7 + 3 ζ2 ζ5 −

18

5
ζ2

2 ζ3

]
+ Te5

[
− 8

35
ζ3

2

])
,

P14 = g7
2

(
Te2

[16

7
ζ3

2 ζ5 + 18 ζ2
3 ζ5 + 9 ζodd

8,1,2 +
19343

24
ζ11

]
+Te3

[
15 ζev

8,2 + 6 ζev
6,2 ζ2 + 261 ζ7 ζ3 −

5972

231
ζ5

2 +
235

2
ζ2

5 + 6 ζ5 ζ3 ζ2

]
+Te4

[
+ 27 ζ3

3 +
5027

72
ζ9 + 30 ζ7 ζ2 −

51

10
ζ2

2 ζ5 −
732

35
ζ3 ζ

3
2

]
+Te5

[
11 ζ3 ζ5 − ζev

6,2 −
508

175
ζ4

2

]
+ Te6

[
ζ7

])
Table 20: p∗ up to weight 12 for f = l ◦ g with g(z) = z

[
1 + 2 g∗2 z

−2
] 1

2
.

P∗2 = g∗2 Te1 , P∗4 = 0 , P∗6 = 0 ,

P∗8 = g4
∗2

(
Te2

[
− 5

2
ζ5

]
+ Te4

[1
4
ζ3

])
P∗10 = g5

∗2 Te3
[3
4
∗ ζ2

3

]
P∗12 = g6

∗2

(
Te2

[3
2
ζ3

3 +
47

6
ζ[9]− 4

5
ζ3 ζ

3
2

]
+ Te4

[
− 21

40
ζ3 ζ

2
2 −

63

64
ζ7

]
+Te6

[3
8
ζ3 ζ2 +

1

16
ζ5

]
+ Te8

[
− 1

16
ζ3

])
P∗14 = g7

∗2

(
Te3

[105

16
ζ2

5 − ζ2
3 ζ

2
2 −

189

32
ζ7 ζ3

]
+Te5

[1
2
ζ2

3 ζ2 − 2 ζ5 ζ3

]
+ Te7

[1
8
ζ2

3

])
Table 21: p∗ up to weight 15 for f = l ◦ g with g(z) = z

[
1 + 3 g∗3 z

−3
] 1

3
.
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P∗3 = g∗3 Te

P∗6 = g2
∗3

(
Te2

[
− 6 ζ3

])
P∗9 = g3

∗3

(
Te2

[
36 ζ2

3 −
32

5
ζ3

2

]
+ Te4

[
− 1

5
ζ2

2

]
+ Te6

[
− 1

3
ζ2

])
P∗12 = g4

∗3

(
Te2

[576

5
ζ3 ζ

3
2 − 216 ζ3

3 − 210 ζ9

]
+Te4

[18

5
ζ3 ζ

2
2 + 14 ζ7

]
+ Te6

[
6 ζ3 ζ2 −

10

3
ζ5

])
P∗15 = g5

∗3

(
Te2

[
1296 ζ4

3 + 3780 ζ9 ζ3 − 140 ζ7 ζ5 −
23054144

125125
ζ6

2 −
6912

5
ζ2

3 ζ
3
2

−420 ζev
10,2

]
+ Te4

[1332224

28875
ζ5

2 −
216

5
ζ2

3 ζ
2
2 + 60 ζ2

5 − 238 ζ7 ζ3 + 49 ζev
8,2

]
+Te6

[1007

1575
ζ4

2 − 72 ζ2
3 ζ2 +

190

3
ζ5 ζ3 −

50

3
ζev

6,2

]
+ Te8

[193

75
ζ3

2

]
+Te10

[16

15
ζ2

2

]
+ Te12

[ 7

45
ζ2

])
10 Synopsis.

10.1 Diffeos, collectors, connectors, invariants.

Given a general local identity-tangent mapping f of C,∞ 7→ C,∞, whether of
tangency order 1 (i.e. f(z)−z ∼ Cst) or of order p > 1 (i.e. f(z) − z ∼
Cst z1−p), what can be said of its analytic invariants? What are the most
natural, complete systems {Aω, ω ∈ Ω} of invariants? What methods are
there for computing these Aω, singly or collectively? How do these methods
compare as to efficiency? Above all, on the more theoretical side: which
are the most explicit and/or economical formulae for expanding the Aω into
convergent series of f -dependent inputs (such as the Taylor coefficients of f)
and f -independent, universal constants?

Practically all natural, complete systems {Aω, ω ∈ Ω} of invariants con-
sist of the Fourier coefficients of the so-called connectors π(z) – i.e. trigono-
metric Fourier series which connect the various sectorial normalisations of f
with their immediate neighbours. Although these invariant connectors are
totally independent and mutually unrelated, they all derive from a more
basic object, the collector p(z), which is unique and “of one piece”, but
unfortunately not invariant. The collector, with its natural expansions into
series of multitangents or monotangents, is a natural intermediary between
f and the invariant-carrying connectors.
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10.2 Affiliates, generators, mediators.

The analytic invariants Aω(f) are also holomorphic in f as long as f ranges
through a fixed formal conjugacy class G(p,ρ) of G, where p ∈ N∗ is the
tangency order and ρ ∈ C the iteration residue. Thus, for elements of the
prototypal class G(1,0), which may be written as f = l ◦ g with l(z) = z + 1
and g(z) = z + O(z−2), the invariants Aω(f) as well as the connector π(z)
and collector p(z) that carry them, must be entire functions of g, hence of
each of g’s coefficients gn.

Now, given any analytic function γ(t) :=
∑

0≤r γrt
r, we can associate with

f, g, π, p the so-called affiliates f♦, g♦, π♦, p♦ defined via the corresponding
substitution operators F,G,Π,P.99

Three types of affiliates are of special relevance:

(i) the infinitesimal generators f∗, g∗, π∗, p∗, with γ(t) = log(1 + t).

(ii) the first or main mediators f], g], π], p], with γ(t) = t
1+ 1

2
t
.

(iii) the second mediators f]], g]], π]], p]], with γ(t) = (1+t)2−1
(1+t)2+1

.

Each of the three series f∗, f], f]] is resurgent and verifies resurgence equations
ruled by (and yielding) the invariants Aω(f). Here, f∗ is by far the best
choice.

The three series g∗, g], g]] are resurgent, too, but with resurgence coef-
ficients Aω(g) totally unrelated to the Aω(f). The usefulness of g∗, g], g]],
however, lies elsewhere – namely in their providing a bridge, first to the col-
lectors p∗, p], p]] and then to the connectors π∗, π], π]]. Here, the best choice
is not g∗, but g], with g]] the second best choice.

As for the three connectors π∗, π], π]], each is as good as the other, since
their Fourier coefficients stand in bi-polynomial correspondence with one
another.

10.3 Main alien operators.

To each type of affiliate f♦ there naturally corresponds a specific system of
alien operators {∆♦

ω , ω ∈ C•}.
The alien counterpart of the infinitesimal generators f∗ is the system

{∆ω , ω ∈ C•} of (standard) alien derivations .
The alien counterparts of the mediators f] and f]] are the systems of so-

called medial alien operators100 {∆]
ω , ω ∈ C•} and {∆]]

ω , ω ∈ C•}. Although
these medial operators are not exact derivations (they possess more complex

99Thus f♦(z) := F♦.z with F♦ := γ(F − 1).
100These medial operators bear no relation to the so-called median convolution average.
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co-products), they are in a sense more basic than the alien derivations ∆ω,
and simpler too, at least in many respects, such as numerical computations.
They occur naturally in several unrelated contexts and deserve to have their
own niche within alien calculus.

10.4 Main moulds.

To each type of affiliate f♦ there also correspond specific mouldian symmetry
types which extend the familiar four-type landscape of alternal/symmetral
and alternel/symmetrel. In the present instance, they also bring order and
structure into the plethora of auxiliary moulds required for expanding the
invariants Aω(f). Here are the main moulds:101

(i) The scalar multizetas ze•, za•, zo•. They are the mainstay of this investi-
gation, being the transcendental ingredient of the Aω(f).
(ii) The multitangents Tee•(z),Taa•(z),Too•(z). They are meromorphic,
1-periodic functions of z. It is through their Fourier coefficients that the
multizetas smuggle their way into invariant analysis.

(iii) The multizetaic resurgence monomials S̃e
•
(z), S̃a

•
(z), S̃o

•
(z), which are

related – in several ways – to both the scalar multizetas and the multitan-
gents.

These very basic moulds give rise to interesting combinatorial develop-
ments, such as the conversion formulae from Taa• and Too• to Tee•. We
may note that, here again, the multitangents Too•, i.e. precisely the ones
associated with an ‘exotic’ symmetry type, turn out to be the most useful.

10.5 Main results.

Half the results presented in this paper deal with somewhat tangential issues
– the mould machinery, the alien operators, the attendant combinatorics, etc.
Regarding the core concern of the investigation – the expansion-description
of the holomorphic invariants – we may point to the following:

We derive explicit and optimal102 expansions for the collectors and con-
nectors of f = l ◦ g in their three main variants: first directly from g to
π, p, next from g∗ to π∗, p∗, lastly from g] to π], p]. We even examine the
general, affiliate-based scheme, from g♦ to π♦, p♦, the better to bring out the
‘specialness’ of the three main schemes.

101The vowels ‘e’ and ‘a’ connote, as usual, alternelity/symmetrelity or alternal-
ity/symmetrality, whereas the vowel ‘o’ points to less common symmetry types, related to
the mediators.
102optimal in the sense of incapable of further simplification.
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We also detain ourselves over the ramified case (p > 1) and the far-going
changes it brings: the finite reduction of multitangents to monotangents
breaks down; the procedure for recovering the multitangents from their sin-
gular parts completely changes; the Fourier coefficients of the multitangents
are no longer expressible as finite sums of multizetas, not even Q-indexed
ones.

We describe the growth properties of each invariant Aω(f) as an entire
function of exponential type in the Taylor coefficients of f .

We review various natural groups of formal germs, strictly larger than
the group G0 of analytic germs, yet close enough to G0 to possess non-
trivial analytic classes and holomorphic invariants Aω(f). We characterize
G0++ , the largest of all such groups; and G0+ , the largest of all self-replicating
groups, whose elements produce connectors which, after rescaling, still belong
to the group, and in turn produce their own connectors, ad infinitum. These
developments may be taken as an introduction to the subject of phantom
holomorphic dynamics.

We also stress the distinction between the arithmetical and dynamical
monics. They are the same objects, but viewed differently:
(i) the former as ingredients of the Stokes constants, in which capacity they
are rigidly determined.
(ii) the latter as ingredients of the holomorphic invariants, the sole demand
on them being that of making the invariants invariant.

We show how the systems of (finite or infinite) relations that constrain the
monics change depending on which perspective we adopt. Most noticeably,
the finite, algebraic constraints on the dynamical monics turn out to be
significantly weaker than those on their arithmetical counterpart.
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[E0] J.Ecalle, Théorie des invariants holomorphes. Thèse d’Etat, Orsay-
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