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Abstract

Mould calculus is a powerful combinatorial tool which often provides some explicit formulae when there are no
other available computational methods. It has a well-know interpretation/dictionary in term of Hopf algebras. But
this dictionary does not provide any equivalent of formal moulds. Thus, we present here such an interpretation
and give a generic way to prove mould symmetries of formal moulds.

Résumé

Le calcul moulien est un outil combinatoire puissant qui fournit souvent des formules explicites alors que d’autres
moyens de calcul n’aboutissent pas. Il en existe une interprétation/un dictionnaire en termes d’algèbres de Hopf.
Mais ce dictionnaire n’a pas été développé jusqu’aux moules formels. Nous présentons ici une telle interprétation
et donnons alors une méthode générique permettant de prouver les symétries de moules formels.
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Version française abrégée

Dans tout ce qui suit, C désignera une algèbre commutative, Ω sera un ensemble et Ω? sera le monöıde
libre sur Ω (i.e. l’ensemble des séquences ou mots construits sur Ω, voir [14]).

Ecalle définit souvent un moule comme étant “une fonction à un nombre variable de variables” (cf. [8],
[9] par exemple, ou la préface de [6]). Plus précisément, on peut définir un moule comme une fonction
définie sur Ω? et à valeurs dans C. Un moule générique est noté M• alors que son évaluation sur une
séquence ω est notée Mω.

Si � (resp. ) désignent le produit de mélange (resp. mélange contractant) des séquences (cf. [8] par
exemple, ou [2], [3], [11], [13]), Ecalle définit la notion de moule symétral (resp. symétrel ) et alternal
(resp. alternel ) par (cf. [8], [9] et [10], ou encore [2], [3], [6] et [16]) :

∀(ω1 ; ω2) ∈ (Ω?)2 ,
∑

ω apparâıt dans ω1
�ω2

(resp. ω apparâıt dans ω1 ω2)

Mω =

Mω1

Mω2

; symétral (resp. symétrel),

0 ; alternal (resp. alternel).
(1)

Étant donné un moule M•, Ecalle considère souvent le moule des séries génératrices ordinaires de M•

(cf. [9], §8, ou [10], §1.2 par exemple) que nous appellerons ici Mog• et définit par (13). Nous associerons
aussi à M• le moule Meg• construit comme étant les séries génératrices exponentielles de M•.

Jean Ecalle affirme alors le résultat suivant, que nous complétons avec le théorème 2 :

Théorème 1. Soit M• un moule défini sur un alphabet dénombrable.

Alors : (i.) M• est symétral ⇐⇒ Mog• est symétral . (iii.) M• est symétrel ⇐⇒ Mog• est symétril .

(ii.) M• est alternal ⇐⇒ Mog• est alternal . (iv.) M• est alternel ⇐⇒ Mog• est alternil .
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Théorème 2. Soit M• un moule défini sur un alphabet dénombrable.

Alors : (i.) M• est symétral ⇐⇒ Meg• est symétral . (iii.) M• est symétrel ⇐⇒ Meg• est symétrel .

(ii.) M• est alternal ⇐⇒ Meg• est alternal . (iv.) M• est alternel ⇐⇒ Meg• est alternel .

Nous proposons ici une preuve de ces deux résultats basée sur la notion de contraction moule/comoule
formelle et de ses interprétations en termes d’algèbres de Hopf (cf. point (i) à (v) à la fin de la note).
Une telle preuve est une machinerie très puissante pour obtenir instantanément des théorèmes similaires
à ceux-ci.

English version

1. Definition of moulds

In all this note, C is a commutative algebra, O a C-algebra, Ω an alphabet and Ω? the free monoid over
Ω (i.e., the set of sequences or words over Ω, see [14]).

As a concrete definition, Ecalle often defines a mould as “a function with a variable number of variables”
(see [8], [9] or the preface of [6]). They have been first introduced extensively in [7] and are also introduced
in detail in [8], [9] or [2], [3], [6] or [16]. More precisely, the following definitions are equivalent.

Definition 1.1. A mould is a function defined over the set Ω? of (finite) sequences (or words) over Ω
(or sometimes over a subset of Ω?) with values in the algebra C.

Definition 1.2. A mould is a collection of functions (f0, f1, f2, · · · ) where f0 is a constant and for all
integers n, fn is a function of n variables defined on Ωn (or over a subset of Ωn) and valued in C.

Since we want to mix easily index and exponent in notations and want to understand at first sight the
type of object we are currently dealing with, we need some specific notations for moulds. The following
ones turn out to be quite useful conventions:

(i) Sequences are always underlined, with an upper indexation if necessary. We call length of ω and
denote by l(ω) the number of elements of ω. The empty sequence (i.e. the sequence of length 0) is
denoted by ∅. Note that the letter r is generically reserved to indicate the length of sequences.

(ii) A generic mould M is actually denoted by M•.

(iii) For a mould M•, we will prefer the notation Mω to the functional notation that would have been
M(ω): it indicates the evaluation of the mould M• on the sequence ω of Ω?.

Since a mould is a function, the classical operations on functions are extended to moulds (see [8]-[10]):

Proposition 1.3. The set of all moulds defined over Ω and valued in C, endowed with the mould opera-
tions is a noncommutative, associative, unitary C-algebra, where the operations on moulds are defined by:

Addition: S• = M• +N• ⇐⇒ ∀ω ∈ Ω? , Sω = Mω +Nω .

Scalar multiplication: (λM)• = λ ·M• ⇐⇒ ∀ω ∈ Ω? , (λM)ω = λMω .

Mould multiplication: P • = M• ×N• ⇐⇒ ∀ω ∈ Ω? , Pω =
∑

(ω1; ω2)∈(Ω?)2

ω1·ω2=ω

Mω1

Nω2

.
(2)

2. Mould-comould contraction

For analytical reasons, moulds can be contracted with dual objects, called comoulds (see [1], [8] or [16]):
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Definition 2.1. A comould is an homomorphisms defined over Ω? (or over a subset of Ω?), valued in a
C-algebra O.

It turns out that comoulds are actually functions with a variable number of variables and can be seen
as some moulds. Nevertheless, we emphasize the slight differences with moulds using another name:

(i) moulds are valued in a commutative algebra C, while co-moulds are restrictively valued in
a C-algebra O (which is possibly a noncommutative algebra)

(ii) moulds are interpreted as coefficients while co-moulds are interpreted as operators: the target alge-
bra O of a comould is an algebra of a different type than the target algebra C of a mould.

(iii) a mould is any map Ω? 7−→ C while a comould is any homomorphism Ω? 7−→ O.

Definition 2.2. The mould-comould contraction of a mould M• defined over Ω and valued in C, and a
comould B• defined over Ω and valued in O is defined by:∑

•
M•B• :=

∑
ω∈Ω?

MωBω (if the sum is well-defined) (3)

A mould-comould contraction might be understood to be an algebra automorphism or a derivation for
analytical reasons (see [8] or [5], [15]). Consequently, all the definitions from mould calculus come from
such an interpretation, in particular the definitions of mould operations and mould symmetries. As we
do not want to make some analysis here, let us define a new notion, the one of formal mould-comould
contraction, which is an element of a free Lie algebra (see [14]) that can be specialized when necessary to
a mould-comould contraction:

Definition 2.3. Let M• be a mould defined over Ω valued in C.
For each letter ω ∈ Ω, we define a symbol aω, such that the symbols (aω)ω∈Ω do not commute. Let us
extend the symbols aω to words by concatenation: aω = aω1···ωr

:= aω1
· · · aωr

for all ω = ω1 · · ·ωr ∈ Ω?.
Then the formal mould-comould contraction of a mould M•, defined over Ω and valued in C, is the formal
series s(M•) ∈ C〈〈A〉〉, where A = {aω ; ω ∈ Ω}, defined by:

s(M•) =
∑
ω∈Ω?

Mω aω :=
∑
•
M• a• . (4)

Notice first that, in a formal mould-comould contraction, the words over A play the role of the comoulds:
if B• is a comould and ϕ the specialization morphism defined by ϕ(aω) = Bω, for all word ω ∈ Ω?, then

ϕ
(
s(M•)

)
=
∑
•
M• B• is a mould-comould contraction. (5)

Notice then that this definition is the necessary background to understand the mould definitions and
operations. As an example, the mould product is defined to satisfy in C〈〈A〉〉 for all moulds M• and N•:∑

•
(M• ×N•) a• =

(∑
•
M• a•

)(∑
•
N• a•

)
. (6)

3. Primary symmetries

In practice (see for example [8] or [1], [16], [15]), a comould B• often satisfies some “Leibnitz rules”. The

more commons are defined for all ω ∈ Ω byBω(ϕψ) = Bω(ϕ)ψ+ϕBω(ψ) orBω(ϕψ) =
∑

ω1,ω2∈Ω
ω1⊥ω2=ω

Bω1
(ϕ)Bω2

(ψ),

if (Ω,⊥) is a semi-group. These rules conduct to two coproducts ∆� and ∆ defined for all aω ∈ A by:

∆�(aω) = aω ⊗ 1 + 1⊗ aω ∆ (aω) =
∑

ω1,ω2∈Ω
ω1⊥ω2=ω

aω1 ⊗ aω2 if (Ω,⊥) is a semi-group. (7)
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We extend these coproducts as an algebra homomorphism. Consequently, (C〈〈A〉〉, ·,∆) is a Hopf algebra
when ∆ = ∆� or ∆ . These two coproducts are respectively the dual of the shuffle product and stuffle
product (see [8] for example, or [2], [3], [11], [13]):

∀ω ∈ Ω? , ∆�(aω) =
∑

ω1,ω2∈Ω?

ω appears in ω1
�ω2

aω1 ⊗ aω2 and ∆ (aω) =
∑

ω1,ω2∈Ω?

ω appears in ω1 ω2

aω1 ⊗ aω2 . (8)

There exist some sufficient conditions for a contraction to be an automorphism or a derivation of the
algebra O.

Proposition 3.1. Let us consider a mould M• and a comould B• both defined over Ω? and respectively
valued in C and O.
Let us suppose that the comould B• satisfies one of the following “Leibniz rules”:

Bω(ϕψ) = Bω(ϕ)ψ + ϕBω(ψ) or Bω(ϕψ) =
∑

ω1,ω2∈Ω
ω1⊥ω2=ω

Bω1
(ϕ)Bω2

(ψ)

and let us consider Φ the specialization morphism defined by Φ(ω) = Bω for all ω ∈ Ω?.
The coproduct ∆ = ∆� or ∆ being respectively associated to the Leibnitz rule satisfied by B•, we have:

(i) if s(M•) is a group-like element of (C〈〈A〉〉, ·,∆), then Φ (s(M•)) is an automorphism.

(ii) if s(M•) is a primitive element of (C〈〈A〉〉, ·,∆), then Φ (s(M•)) is a derivation.

Proposition 3.2. A mould M• defined over Ω? and valued in C satisfies:

(i) s(M•) is a group-like element of (C〈〈A〉〉, ·,∆) where ∆ = ∆� (resp. ∆ = ∆ ) if, and only if

∀(ω1 ; ω2) ∈ (Ω?)2 ,
∑

ω appears in ω1
�ω2

(resp. ω appears in ω1 ω2)

Mω = Mω1

Mω2

. (9)

(ii) s(M•) is a primitive element of (C〈〈A〉〉, ·,∆) where ∆ = ∆� (resp. ∆ = ∆ ) if, and only if

M∅ = 0 and for all ω1 , ω2 ∈ Ω? − {∅} ,
∑

ω appears in ω1
�ω2

(resp.ω appears in ω1 ω2)

Mω = 0 . (10)

These two propositions give nice motivations to the following definition/terminology (see [8], [9], [10]
or [2], [3], [6] or [16]). Other similar definitions exist (in particular for a symmetril mould, or an alternil
mould which are in a sense similar to symmetrel and alternel moulds, see [10] or [1], [6], [12]).

Definition 3.3. A mould M• defined over Ω? and valued in C is called:

(i) symmetral (resp. symmetrel ) when:

∀(ω1 ; ω2) ∈ (Ω?)2 ,
∑

ω appears in ω1
�ω2

(resp. ω appears in ω1 ω2)

Mω = Mω1

Mω2

. (11)

(ii) alternal (resp. alternel ) when:
M∅ = 0 .

∀(ω1 ; ω2) ∈ (Ω? − {∅})2 ,
∑

ω appears in ω1
�ω2

(resp. ω appears in ω1 ω2)

Mω = 0 . (12)
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4. Formal moulds

One can restrict Definition 1.2 to formal series to obtain the notion of formal moulds (see [2]), and
then consider ordinary/exponential generating series.

Definition 4.1. A formal mould is a collection of formal series (S0, S1, S2, · · · ) where S0 is constant and
for all integers n, Sn is a formal power series in n indeterminates constructed from the set Ω and valued
in C.

Definition 4.2. If Ω = {ω0;ω1; · · · } is a countable set and M• is a mould defined over Ω? and valued in
C, then we define the formal moulds Mog• and Meg• by:

MogX1,··· ,Xr =
∑

p1,··· ,pr∈N
Mωp1 ,··· ,ωprXp1

1 · · ·Xpr
r MegX1,··· ,Xr =

∑
s1,··· ,sr∈N

Mωp1 ,··· ,ωpr
Xp1

1

p1!
· · · X

pr
r

pr! (13)

Therefore, a formal mould is in particular a mould. But the main difference is the following. If M• is a
mould defined, for example, over the set Ω = {a, b}, then there is a priori no link between Ma,b and M b,a.
On the other hand, if M• is a formal mould defined over the set Ω = {X;Y } then MX,Y and MY,X are
related by the substitution of the indeterminates and MX+Y is also defined using the substitution of the
sum of the indeterminates X + Y in the formal series S1 associated with M•. This remark turns out to
be a fundamental one and directly leads to the proofs of Theorem 5.1 and Theorem 6.1.

Moreover, seen as a mould, a formal mould could have some symmetries. Since a formal mould is a
special type of mould, we emphasize its particularity by using the following terminology:

Type mould formal mould

Name of the symmetries primary symmetries secondary symmetries

5. Main results

One of the results often used by Ecalle (see [9], [10]) is the following:

Theorem 5.1. Let M• be a mould defined over a countable alphabet valued in a commutative algebra.

Then: (i.) M• is symmetral ⇐⇒ Mog• is symmetral . (iii.) M• is symmetrel ⇐⇒ Mog• is symmetril .

(ii.) M• is alternal ⇐⇒ Mog• is alternal . (iv.) M• is alternel ⇐⇒ Mog• is alternil .

Our main result is an interpretation in terms of Hopf algebras of the secondary symmetries, similar to
the interpretation of the primary symmetries given in Proposition 3.2. This leads to a complete proof of
Ecalle’s previous statement, as well as a general method to prove similar results. The proof contains five
steps:

(i) If X = {X1, X2, · · · } is an infinite set of indeterminates, we consider a new set of indeterminates Y:

Y = NX =

{∑
x∈X

λxx ; (λx)x∈X ∈ NX has finitely nonzero terms

}
.

(ii) For each element y ∈ Y, we define a new symbol Ay such that the symbols (Ay)y∈Y do not
commute. Let us extends them to words by concatenation: Ay = Ay1···yr

:= Ay1
· · ·Ayr

for all

y = y1 · · · yr ∈ Y?. and consider the new alphabet A = {Ay ; y ∈ Y}.
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(iii) We define a secondary formal mould/comould contraction, i.e. with a formal mould FM• valued in
a commutative algebra C, we associate the series S(FM•) ∈ C[[X]]〈〈A〉〉 defined by:

S(FM•) =
∑
y∈Y?

FMy Ay :=
∑
•
FM• A• .

Notice that, for all y ∈ Y?, FMy is well-defined using some substitution of indeterminates.

(iv) We define two coproducts ∆� and ∆ for all A ∈ A? by:

∆�(A) =
∑

B,C∈A?

A appears in B�C

B ⊗ C ∆ (A) =
∑

B,C∈A?

A appears in B C

B ⊗ C .

(v) Now, we just have to adapt the proof of Proposition 3.2.

6. Conclusion

Let M• be a mould, with some primary symmetry. Looking specifically at sequences of small length, it
is easy to understand which secondary symmetry is satistied by a formal mould (like Mog• or Meg•) asso-
ciated with M•. Using a new set of indeterminates, and using them as the substitution of indeterminates
on formal moulds (seen as formal series), we are able to give a proof of the previous statement.

This is done by following the five points of the previous proof. It turns out that these points are actually
a nice machinery to obtain quasi-instantly theorems similar to Theorem 5.1, like (see [4]):

Theorem 6.1. Let M• be a mould defined over a countable alphabet valued in a commutative algebra C.

Then: (i.) M• is symmetral ⇐⇒ Meg• is symmetral . (iii.) M• is symmetrel ⇐⇒ Meg• is symmetrel .

(ii.) M• is alternal ⇐⇒ Meg• is alternal . (iv.) M• is alternel ⇐⇒ Meg• is alternel .
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