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1. Introduction

For any sequence (s1, · · · , sr) ∈ (N∗)r, of length r ∈ N∗ such that s1 ≥ 2,
we define the Hurwitz multiple zeta function Hes1,··· ,sr+ over C− (−N), by

Hes1,··· ,sr+ : z 7−→
∑

0<nr<···<n1

1

(n1 + z)s1 · · · (nr + z)sr
. (1)

We also define He∅+ : z 7−→ 1 .
The condition s1 ≥ 2 ensures the convergence of the series and the set

of sequences of positive integers satisfying this condition is denoted by S?:

S? = {s ∈ N?1 ; s1 ≥ 2} , (2)

where N1 = N∗. The set of sequences of elements e ∈ E is denoted by E?.
Let us also recall that a mould is a function defined over a free monoid,

or a subset of a free monoid like S? (See Section 2 for more details). Con-
sequently, Equation (1) defines a mould, denoted by He•+, defined over S?
and called the mould of Hurwitz multiple zeta functions (Hurwitz multizeta
functions for short).

These functions are a generalization of the classical Hurwitz function

ζ(s, z) =
∑
n>0

1

(n+ z)s
, (3)

and, up to the knowlegde of the author, appeared in the literature at the
beginning of the XXIth century. The reader can find them under many
others names, like “mono-center Hurwitz polyzeta” in [25], [42], “Hurwitz
type of Euler-Zagier multiple zeta functions” (or also “Hurwitz-Lerch type
of Euler-Zagier multiple zeta functions”) in [27], [44], [45], and [46].

Today, these functions appear in different mathematical fields like:

1. the theory of special functions (see [24] for the particular case r = 2,
[14] for a functional equation related to that of the classical Hurwitz
function, [34] for the links between Hurwitz multizeta functions and
the Gamma function, [6] for the links with multitangent functions);

2. the multiple Dirichlet series, because they have an easy analytical con-
tinuation in the variables si’s (see [1] when r = 2, [35], [41], [43] for a
wider class of functions);

3. holomorphic dynamics (see [4] and [6] for the links with analytical
invariants);

4. the study of the Riemann Hypothesis (see [44], [45] for the localization
of the zeros of the Hurwitz multiple zeta functions);

5. renormalisation theory (see [27], [29], [40] for their values at negative
integers and [8] for the link with Bernoulli polynomials);
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6. quantum field theory (see [36]).

We also define He∅− : z 7−→ 1 and for any sequence s ∈ N?1 such that
←−
s = (sr, · · · , s1) ∈ S? the negative Hurwitz multizeta function Hes− by:

Hes1,··· ,sr− : z 7−→
∑

nr<···<n1<0

1

(n1 + z)s1 · · · (nr + z)sr
. (4)

1.1. Classical properties of Hurwitz multizeta functions

For any nonempty sequence s ∈ S?, the function Hes1,··· ,sr+ is holomor-
phic over C− (−N∗), with derivative given by

d Hes1,··· ,sr+

dz
= −

r∑
k=1

skHe
s1,··· ,sk−1,sk+1,sk+1,··· ,sr
+ . (5)

Such a function is also an evaluation of a monomial quasi-symmetric
function Ms1,··· ,sr (See [28], or [3] for a more recent presentation). There-
fore, this family spans an algebra Hmzfcv over C, where the product is
the product of QSym, known as the stuffle product (also called augmented
shuffle, contracting shuffle, quasi-shuffle, . . .: see [32], [22], [18], . . .).

More precisely, the stuffle, denoted by , is the product of the basis M
of monomial quasi-symmetric functions. It is recursively defined on words,
and then extended by linearity to non-commutative polynomials or series
over an alphabet Ω, which is assumed to have a commutative semi-group
structure, denoted by +̇ :{

ε u = u ε = u .
au bv = a (u bv) + b (ua v) + (a+̇b)(u v) .

(6)

Consequently, we have:

Hes
1

+He
s2

+ =
∑
s∈S?
〈s1 s2|s〉Hes+ . (7)

A mould which satisfies such a multiplication rules is said to be symmetrel .
So, He•+, as well as He•−, is a symmetrel mould. With another vocabulary,
we can say that He•+ and He•− are group-like elements of the Hopf algebra
whose product is the concatenation product and whose coproduct is the dual
of the stuffle). See Section 2 for an introduction to mould terminology, as
well as [4], [6], [15], [20], [21] or [53].
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1.2. Connection with multizeta values

The family of Hurwitz multizeta functions is (at first sight) a functional
analogue of multizeta values, which are defined by Zes1,··· ,sr = Hes1,··· ,sr+ (0)
(See [12], [55] and [56] for surveys on mulutizeta values), that is, for all
sequences s ∈ S?:

Zes1,··· ,sr =
∑

0<nr<···<n1

1

n1
s1 · · ·nrsr

. (8)

The story of these numbers goes back to 1775, to Euler’s article [26]
which had first introduced these numbers in length 2 ( i.e. r = 2). His main
goal was to obtain an explicit formula for the evaluation at odd integers
of the zeta Riemann function, in order to complete his computation for
even integers. Actually, he had been the first to discover the interest of
these numbers, proving surprising relations such as Ze2,1 = Ze3, or more
generally:

∀p ∈ N∗ ,
p−1∑
k=1

Zep+1−k,k = Zep+1 . (9)

These result have been forgotten during the XIXth century and for most
of the XXth century, but in the late 70’s, these numbers have been rein-
troduced by Jean Ecalle in holomorphic dynamics under the name “moule
zetäıque” (See [19], vol. 1, p. 137). He used them as auxiliary coefficients in
order to construct some geometrical and analytical objects. At first sight, he
had not seen all the algebraic interest of these numbers, even if he probably
knew their integral representation which is attributed to Kontsevich and is
precisely, today, the main point of their algebraic study.

But he has been the first one to show some connection between these
numbers and another theory, namely resurgence theory (See [19] in general;
for others connections with resurgence theory and analytical invariants, see
[4] and [5], as well as Section 4 of this article, see also the introductory
course [54] to resurgence theory). Other connections have then been discov-
ered during the late 80’s (see p. 151 of [6]) and mathematicians have been
definitely convinced of the interest of these numbers which eventually began
to be studied for themselves.

One of the questions about these numbers is the algebraic description
of their algebra over Q (denoted by Mzvcv). For instance, is Mzvcv a
graded algebra? If yes, could we obtain a formula for the dimensions of
homogeneous components? But, it turns out that answering questions like
that require arithmetical properties of multizeta values, difficult questions

1See Remark 4, p. 431 of the first volume of [19], where he refers the reader to Exercice
12e4
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on which only a little is known on this side, in spite of some recent research
[9], [10].

Here, the question is a difficult one because multizeta values can be
multiplied in two different ways, using first the stuffle (which has been pre-
viously defined), but also using another independent product of the stuffle,
a shuffle product on binary words, coming from the Kontsevich’s integral
representation. Of course, the results of the two computations are numeri-
cally the same, but have different expressions. Consequently, Mzvcv is an
algebra with a rich algebraic structure. By making some shortcuts, Jean
Ecalle has shown at the begining of the XXIth century that, formally, this
algebra is a polynomial algebra where the indeterminates are what he has
called “irreducible multizeta values” (see [20] and [23]).

1.3. Results proven in this article

In this article, we prove two new results on Hurwitz multizeta functions
which are consequences of an easy lemma. Hurwitz multiple functions satisfy
a 1-order difference equation:

Lemma 1. For all sequences s = (s1, · · · , sr) ∈ S?, we have:

Hes+(z − 1)−Hes+(z) = Hes1,··· ,sr−1
+ (z) · 1

zsr
. (10)

Section 2 will introduce these notations which will be used later on and
Section 3 will deal with this Lemma.

The first result is part of resurgence theory, and can be stated in an easy
way as

Theorem A. The Hurwitz multizeta function Hes+, with s ∈ S?, is a resur-

gent function. It is the same for the function Hes−, with s such that
←−
s =

(sr, · · · , s1) ∈ S?.

Section 4 is devoted to the proof of this theorem. It begins with a self-
contained introduction to simple resurgent functions, as well as references
of this subject and an easy, but quite useful example on a generic 1- order
difference equation.

The second result has been announced in [7] and concerns the algebraic
structure of Hmzfcv. In general, elucidating the algebraic structure of an
algebra, like Mzvcv or Hmzfcv, is a difficult question since it is often an
equivalent question to the linear independence of elements of this algebra.
For instance, linear relations could come from a second natural product
hidden somewhere inside the algebraic structure itself, which is exactly the
case ofMzvcv. They could also come from another process (see the algebra
of multitangent functions, for instance, see Section 4.4.1 and [6]). Even if we
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can imagine some similarities betweenMzvcv and Hmzfcv, the situation of
Hurwitz multizeta functions is considerably simpler because we can prove the
linear independence of Hurwitz multizeta function over C(z). Consequently,
the stuffle product, coming from the identification of the Hurwitz multizeta
functions with a specialisation of monomial quasi-symmetric functions, is
actually the only product needing to be taken in account in Hmzfcv.

Summarizing this, the result can be stated as

Theorem B. The algebra Hmzfcv is a polynomial algebra, isomorphic to a
subalgebra of the quasi-symmetric functions. Thus, all the algebraic relations
between Hurwitz multizeta functions, with coefficients in C, come from the
expansion of products, using the stuffle product.

Section 5 is devoted to the proof of this theorem. More precisely, we will
prove first that Hurwitz multizeta functions are linearly independent over
the algebra of rational functions, and then deduce the theorem from this
fact.

In the last section, we introduce divergent Hurwitz multizeta functions,
i.e. the functions Hes+, s ∈ N?1 with s1 = 1. Then, we extend the two
previous results to these functions.

Finally, let us notice that there exists a lot of generalization of multizeta
values as well as of Hurwitz multizeta functions (already mentionned in the
previous citations). Let us mention another one, namely the colored Hurwitz
multizeta functions.

For any sequence
(
ε1, · · · , εr
s1, · · · , sr

)
∈ seq (Q/Z× N∗)− {∅}, with the notation

ek = e−2iπεk , for k ∈ [[ 1 ; r ]], these are defined by:

He

(
ε1, · · · , εr
s1, · · · , sr

)
+ (z) =

∑
0<nr<···<n1

e1
n1 · · · ernr

(n1 + z)s1 · · · (nr + z)sr
. (11)

He

(
ε1, · · · , εr
s1, · · · , sr

)
− (z) =

∑
nr<···<n1<0

e1
n1 · · · ernr

(n1 + z)s1 · · · (nr + z)sr
. (12)

The two previous result can easily be extended to these functions, because
the “colors”, i.e. the numerators e1

n1 · · · ernr , are complex numbers.

2. Elements of mould calculus

In this section we introduce briefly the notations of mould calculus.
Many references can be found in many texts of Jean Ecalle. See for in-
stance [20] or [21] ; other presentations of mould calculus are also available,
see for instance [6], [15] or [53].
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2.1. Notion of mould

If Ω is a set, Ω? will denote in the sequel the set of (finite) sequence of
elements of Ω:

Ω? = {∅} ∪
⋃
r∈N∗

{
(ω1; · · · ;ωr) ∈ Ωr

}
.

A mould is a function defined over Ω?, seen as a monoid, or sometimes
over a subset of Ω?, with values in an algebra A. Concretely, this means that
“a mould is a function with a variable number of variables” (Jean Ecalle,
from the preface of [15], for instance). Thus, moulds depend on sequences
w = (w1; · · · ;wr) of any length r, where the wi are elements of Ω.

Sometimes, it may be useful to see a mould as a collection of functions
(f0, f1, f2, · · · ), where, for all nonnegative integers i, fi is a function defined
on Ωi (and consequently, f0 is a constant function) .

In all this article, we will use the mould notations:

1. Sequences will always be written in bold and underlined, with an upper
indexation if necessary. We call length of w and denote l(w) the
number of elements of w and the empty sequence ( i.e. the sequence
of length 0) is denoted by ∅. We will reserve the letter r to indicate
the length of sequences.

2. For a given mould, we will prefer the notation Mωωω, that indicates
the evaluation of the mould M• on the sequence ωωω of seq(Ω), to the
functional notation that would have been M(ωωω) .

3. We shall use the notation M•A(Ω) to refer to the set of all moulds
constructed over the alphabet Ω with values in the algebra A .

2.2. Mould operations

Moulds can be, among other operations, added, multiplied by a scalar
as well as multiplied, composed, and so on. In this article, only the mul-
tiplication needs to be defined: if (A•;B•) ∈ (M•A(Ω))2, then, the mould
multiplication M• = A• ×B• is defined by

Mωωω =
∑

(ωωω1; ωωω2)∈(Ω?)2

ωωω1·ωωω2=ωωω

Aωωω
1
Bωωω

2
=

r∑
i=0

Aω1,··· ,ωiBωi+1,··· ,ωr . (13)

Let us remark that the two deconcatenations ∅ ·ω and ω · ∅ occur in the
definition and refer respectively to the index i = 0 and i = l(ω).

Finally, (M•A(Ω),+, ·,×) is an associative, but noncommutative A-algebra,
with unit, whose invertible elements are easily characterised:

(M•A(Ω))× =
{
M• ∈M•A(Ω) ; M∅ ∈ A×

}
. (14)
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We will denote by (M•)×−1 the multiplicative inverse of a mould M•, when
it exists.

As an example, we have the following

Lemma 2. The multiplicative inverse
(
He•+

)×−1
and

(
He•−

)×−1
of the moulds

He•+ and He•− are given on nonempty sequences s = (s1, · · · , sr) by:

(
Hes1,··· ,sr+

)×−1
(z) =

∑
0<n1≤···≤nr

(−1)r

(n1 + z)s1 · · · (nr + z)sr
, if s ∈ S? (15)

(
Hes1,··· ,sr−

)×−1
(z) =

∑
n1≤···≤nr<0

(−1)r

(n1 + z)s1 · · · (nr + z)sr
, if

←−
s ∈ S? (16)

Proof. This is a direct consequence of the formula antipode for QSym (See
corollary 2.3 of [39], p.973− 974) �

2.3. Stuffle product

Let (Ω, +̇) be an alphabet with an additive semi-group structure. Let us
first recall that the stuffle product (see [32]), denoted by , is recursively
defined by:{

ε u = u ε = u .
au bv = a (u bv) + b (ua v) + (a+̇b)(u v) .

(17)

where ε is again the empty word.

Example 1. In N?, we have: 12 3 = 123 + 132 + 312 + 15 + 42 .

A visual representation of the stuffle product can be useful. Seeing a
word as a deck of card, the stuffle of two words, a deck of blue cards and
a deck of red cards, becomes the set of all the obtained results by inserting
magically one deck of blue cards in a deck of red cards. By magically, we
mean that some new cards may appear: these new ones are hybrid cards,
that is, one of their sides is blue while the other is red. Such a hybrid card
can only be obtained when two cards of different colors are situated side by
side in a classical shuffle. In the previous example, the hybrid cards are 5,
coming from 2 + 3, and 4, from 3 + 1 .

This product is the product of the monomial basis of QSym. Con-
sequently, it appears in many contexts related to it, such as the multi-
zeta values, the Hurwitz multizeta functions and the multitangent functions
(see [6]).

The multiset she(ααα;βββ), where ααα and βββ are sequences in Ω?, is defined to
be the set of all monomials that appear in the non-commutative polynomial
ααα βββ, counted with their multiplicity.
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2.4. Symmetrelity

When the alphabet Ω is an additive semi-group and A an algebra, we
define a symmetrel mould Me• to be a mould of M•A(Ω) satisfiying for all

(ααα;βββ) ∈
(
Ω?
)2

:
MeαααMeβββ =

∑
γγγ∈Ω?

〈ααα βββ|γγγ〉Meγγγ =
∑

γγγ∈she(ααα,βββ)

Meγγγ .

Me∅ = 1 .

(18)

The symmetrelity imposes a strong rigidity since such properties impose
a lot of relations, called the stuffle relations.

Example 2. If (x; y) ∈ Ω2 and Me• denote a symmetrel mould, then we
have necessarily:

MexMey = Mex,y +Mey,x +Mex+y. (19)

Mex,yMey = Mey,x,y + 2Mex,y,y +Mex+y,y +Mex,2y . (20)

Nevertheless, there are some stability properties about symmetrelity.

Proposition 1. Let us suppose that the target algebra A is commutative.
Then, for any symmetrel moulds Me• and Ne• of M•A(Ω), the product
Pe• = Me• ×Ne• is also a symmetrel mould of M•A(Ω).

Let us notice that this stability property does not hold when the target
algebra A is not commutative.

Proof. From a mould M• ∈M•A(Ω), one can consider the noncommutative
series

m =
∑
ω∈Ω

Mωω ∈ A〈〈Ω〉〉 . (21)

Here, A〈〈Ω〉〉 is the algebra of all noncommutative series constructed over
the alphabet Ω, whose product is the concatenation product. It turns out
that A〈〈Ω〉〉 is also a Hopf algebra whose co-product is the dual of the stuffle
product (see [50], chap. 1 for instance)

From this, it is easy to see that the mould M• is symmetrel if, and only
if, the series m is a group-like element of A〈〈Ω〉〉.

The conclusion now comes from the fact that the group-like elements
of a Hopf algebra form a group. Details can be found, for instance, in [2],
section 2.2. �

The definition of symmetrelity may also apply to a mould defined only
on a subset D of Ω? (in which case, we require D to be stable by the stuffle
product).
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Lemma 3. The mould He•+ and He•− are symmetrel respectively on S? and
←−
S? = {s ∈ N?1 ;

←−
s ∈ S?} .

Proof. This is a direct consequence of Lemma 1 of [6], or of [32]. �

As a concluding remark on these reminders on symmetrelity, we will
always write in bold, italic and underlined the vowel that indicates not only
a symmetry of the considered moulds, but also the nature of the products of
sequences that will appear. Using this, it will become simpler to distinguish
when a mould is symmetrel or not.

2.5. Alternelity

When the alphabet Ω is an additive semi-group and A an algebra, we
define an alternel mould Men• to be a mould of M•A(Ω) satisfying for all
nonempty sequences ααα and βββ constructed over Ω?:∑

γγγ∈she(ααα ;βββ)

Menγγγ = 0 . (22)

In the same way as for symmetrelity, this sum is a shorthand: each
element γγγ ∈ she(ααα ; βββ) have to be counted with its multiplicity.

The alternelity, as well as the symmetrelity, imposes a strong rigidity.

Example 3. If (x; y) ∈ Ω2 and Me• denote an alternel mould, then we
have necessarily:

Mex,y +Mey,x +Mex+y = 0 . (23)

Mey,x,y + 2Mex,y,y +Mex+y,y +Mex,2y = 0 . (24)

The definition of alternelity may also apply to a mould defined only on
a subset D of Ω? (in which case, we require D to be stable by stuffle).

As an example of alternel mould, we have the following

Proposition 2. Let D be a mould derivation, i.e. a derivation for the
mould product.
Then, if a symmetrel mould Me• ∈M•A(Ω) satisfies D(Me•) = Aen•×Me•,
the mould Aen• is naturally alternel .

Proof. Note that, if t is a formal parameter, M•A(Ω) naturarly injects
into M•A[[t]](Ω). Moreover, At = etD is a well-defined operator of A[[t]] for

the Krull topology. Consequently, At(Me•) is well-defined, for any mould
Me• ∈M•A(Ω), and is valued in M•A[[t]](Ω).

Since D is a mould derivation, At = etD is a mould automorphism (for
the mould product). Therefore, applying the automorphism At to both sides

10



of the equalities given by the symmetrelity of Me•, we see that the mould
At(Me•) turns out to be a symmetrel mould.

Consequently, Ae•t = etD(Me•) × (Me•)×−1 is a symmetrel mould, ac-
cording to Property 1.

Thus, for any sequences u and v of Ω?, we have:

d Ae
u
t

dt
·Aevt +Ae

u
t ·

d Ae
v
t

dt
=

∑
w∈she(u,v)

d Ae
w
t

dt
(25)

Since Aen• =
d

dt
(Ae•t )

∣∣∣∣
t=0

and Ae•0 = 1•, we deduce from (25):

∑
w∈she(u,v)

Aenw = Aenu Ae
v
0 +Ae

u
0 Aenv = Aenu 1v + 1u Aenv . (26)

Finally, for any nonempty sequences u and v of Ω?, we obtain∑
w∈she(u,v)

Aenw = 0 , (27)

which proves the alternelity of Aen• . �

2.6. Notations

To conclude this section, let us introduce two notations on sequences.
Let s ∈ N?1.

• If s is a sequence of lenght r, we will use the condensed notation
s1..k = s1 + · · ·+ sk for all k ∈ [[ 1 ; r ]].

• ||s|| denotes the sum of all the elements of s.

3. A fundamental lemma

3.1. The operators τ , ∆+ and ∆−

We know that Hurwitz multizeta functions are a “translation” of multi-
zeta values. Therefore, it is natural to examine how the shift operator acts
on such functions.

For p ∈ Z, let Z≤p = {k ∈ Z ; k ≤ p} . From now, let us consider
operators τ : H

(
C − Z≤−1

)
−→ H

(
C − Z≤−2

)
, ∆+ : H

(
C − Z≤−1

)
−→

H
(
C− Z≤−1

)
and ∆− : H

(
C− Z≤−1

)
−→ H

(
C− Z≤0

)
defined by :

τ(f)(z) = f(z + 1) .
∆+(f)(z) = f(z + 1)− f(z) .
∆−(f)(z) = f(z − 1)− f(z) .

(28)
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3.2. The action of τ on Hurwitz multizeta functions

The next lemma is a fundamental one and will allow us to express the
action of ∆+ and ∆− on a Hurwitz multizeta function.

Lemma 4. Let Js, for s ∈ N?1, be the function defined by:

Js(z) =


1

zs1
, if l(s) = 1 .

0 , otherwise .
(29)

Then:
τ(He•+) = He•+ − τ(He•+ × J•) . (30)

Proof. For all sequences s ∈ N?1 with length r and z ∈ C − Z?≤−1 , we
successively have:

Hes+(z + 1) =
∑

0<nr<···<n1

1

(n1 + z + 1)s1 · · · (nr + z + 1)sr

=
∑

1<nr<···<n1

1

(n1 + z)s1 · · · (nr + z)sr

=

( ∑
0<nr<···<n1

−
∑

1=nr<···<n1

)(
1

(n1 + z)s1 · · · (nr + z)sr

)
= Hes+(z)− 1

(z + 1)sr
Hes

<r

+ (z + 1) .

We can rewrite this last equality with the following compact form:

τ(He•+) = He•+ − τ
(
He•+

)
× τ
(
J•
)
. (31)

Because τ is an automorphism, this concludes the proof. �

3.3. The action of ∆+ on Hurwitz multizeta functions

Because it is a discrete analogue of the classical derivative, it is tra-
ditional to focus on the operator ∆+ = τ − Id. We can remark that it
is a (τ ; Id)-derivative as well as a (Id ; τ)-derivative2. We then have the
following property explaining its action on a Hurwitz multizeta function:

2Let us remind that a (σ, τ)-derivation d defined on an algebra A is a linear map from
A to A such that, forall (a, b) ∈ A2:

d(a · b) = σ(a) · d(b) + d(a) · τ(b) .
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Proposition 3. Let Ks, for s ∈ N?1, be the function defined by:

Ks(z) =


(−1)l(s)

(z + 1)||s||
. , if l(s) 6= 0 .

0 , otherwise .

(32)

Then:
∆+(He•+) = He•+ ×K• . (33)

Proof. The previous lemma gives us: τ(He•+) = He•+ − τ
(
He•+ × J•

)
.

Using it iteratively, we therefore obtain:

τ(He•+) = He•+ −He•+ × τ
(
J•
)

+ τ
(
He•+

)
× τ
(
J•
)2

...

= He•+ ×
(∑
k≥0

(−1)kτ
(
J•
)k)

So:

∆+(Hes+) = He•+ ×
(∑
k≥1

(−1)kτ
(
J•
)k)

. (34)

We can notice that the right factor of this product is actually a locally
finite sum, that is to say only a finite number of terms intervene in its
evaluation on a sequence s. More precisely, if s ∈ N?1 is of length r = l(s) > 0,
we have:(∑

k≥1

(−1)kτ
(
J•
)k)s

= (−1)r
(
τ
(
J•
)r)s

= (−1)rτ
(
Js1
)
· · · τ

(
Jsr
)

=
(−1)r

(z + 1)s1+···+sr = Ks(z) .

(35)
Finally, if s = ∅, this sum equals 0 = Ks , which ends the proof. �

Example 4. We successively have:

τ(He3,2,1
+ ) = He3,2,1

+ −
(
τ
(
He•+

)
× τ
(
J•
))3,2,1

= He3,2,1
+ −

(
He•+ − τ

(
He•+

)
× τ
(
J•
))3,2 · τ(J1

)
= He3,2,1

+ −He3,2
+ · τ

(
J1
)

+He3
+ · τ

(
J2
)
· τ
(
J1
)

Therefore: ∆+(He3,2,1
+ ) = He3,2

+ ·K1 +He3
+ ·K2,1 .

Let us notice that the mould K• could also be expressed by:

K• = −τ(J•)×
(

1 + τ(J•)
)×−1

. (36)
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3.4. The action of ∆− on Hurwitz multizeta functions

The ∆+ derivative is complicated because the result involves several
Hurwitz multizeta functions. We will prefer ∆− to it, and this operator will
become for all this article our discrete analogue of the classical derivative.

Recall that the mould J• has been defined, for s ∈ N?1, by:

Js(z) =


1

zs1
, if l(s) = 1 .

0 , otherwise .
(37)

Proposition 4. We have: ∆−(He•+) = He•+ × J• .

Proof. Lemma 4 gives us: τ(He•+) = He•+ − τ
(
He•+ × J•

)
. Composing

this identity by τ−1, we therefore obtain:

He•+ = τ−1
(
He•+

)
−He•+ × J• , (38)

This gives the result. �

Example 5. Since we have τ(He3,2,1
+ ) = He3,2,1

+ −
(
τ
(
He•+

)
× τ
(
J•
))3,2,1

,
we successively deduce:

τ−1(He3,2,1
+ ) = He3,2,1

+ +
(
He•+ × J•

)3,2,1
= He3,2,1

+ +He3,2
+ · J1

Therefore: ∆−(He3,2,1
+ ) = He3,2

+ · J1 .

4. Resurgence theory and Hurwitz multizeta functions

This section is devoted to the study of the resurgent properties of Hur-
witz multizeta functions. Reminders are available in Sections 4.1 and 4.2.
A first example of the use of this theory is given in Section 4.3. The aim of
this section is to prove Theorem 1 and Theorem 2.

References for the reminders are [19] in general, the book [13], the intro-
duction of [4], the introductory articles [11], [16], [17], [38], [49], [51], [53] as
well as the new introductory course focused on this subject [54].

4.1. A few reminders on the Borel transform and Borel resummation process

4.1.1. Borel transform

The formal Borel transform B is defined by:

B : z−1C
[[
z−1
]]
−→ C[[ζ]]∑

n≥0

cn
zn+1

7−→
∑
n≥0

cn
n!
ζn .

(39)
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Let us first remind the terminology and the traditional notations. A
formal power series ϕ, near infinity, will systematically be denoted with a
tilde (˜), while the notation for its formal Borel transform will have a hat
(̂): ϕ̂ = B(ϕ̃). The variable near infinity will also systematically be denoted
by z while the variable of its formal Borel transform will be ζ. We say we
are working in the “formal model” when we are dealing with formal power
series, i.e. with the z variable; when we are dealing with Borel transforms,
i.e. with the ζ variable, we say we are working in the “convolutive model”
(we will see why in the next proposition).

Moreover, let us denote by ◦, · and ∂z the composition, the multiplication
and the derivative with respect to z. Finally, we define l : C −→ C to be the
1-unit translation ( i.e. l(z) = z + 1) and ? to be the convolution of formal
power series defined by:

( +∞∑
n=0

an
n!
ζn
)
?
( +∞∑
n=0

bn
n!
ζn
)

=
+∞∑
n=0

1

(n+ 1)!

( n∑
p=0

apbn−p

)
ζn+1 , (40)

which extends the classical integral definition to formal power series.
Using these notations, we can remind the classical properties of the for-

mal Borel transform (see. [38]):

Proposition 5. Let (ϕ̃ ; ψ̃) ∈
(
z−1C

[[
z−1
]])2

.

Then : 1. B(∂zϕ̃)(ζ) = −ζϕ̂(ζ) .
2. B(ϕ̃ ◦ l)(ζ) = e−ζϕ̂(ζ) and B(ϕ̃ ◦ l−1)(ζ) = e+ζϕ̂(ζ) .

3. B(ϕ̃ · ψ̃)(ζ) =
(
ϕ̂ ? ψ̂

)
(ζ) .

Moreover, it is also easy to characterize the series of z−1C
[[
z−1
]]

whose
image under the Borel transform are analytical germs at the origin. Their
set is denoted by z−1C

[[
z−1
]]

1
and these series called 1-Gevrey formal series.

Definition 1. A formal series near infinity ϕ̃(z) =
∑
n≥0

cn
zn+1

is an element

of z−1C
[[
z−1
]]

1
, i.e. has a Borel transform which is an analytical germ at the

origin, if, and only if, there exist two positive constants (C0, C1) such that:

∀n ∈ N , |cn| ≤ C0C
n
1 n! . (41)

We can conclude these reminders by the following

Proposition 6. B
(
z−1C

[[
z−1
]]

1

)
= C{ζ} .

In other terms, B realizes an isomorphism between z−1C
[[
z−1
]]

1
⊂ z−1C

[[
z−1
]]

and C{ζ}.
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4.1.2. Laplace transform

The Laplace transform Lθ in the direction θ ∈ R is the linear operator
defined by:

Lθ(ϕ)(z) =

∫ eiθ∞

0
ϕ(ζ)e−zζ dζ . (42)

This is well-defined over the set of analytical functions ϕ on an open set of
C containing {ζ ∈ C ; arg ζ = θ} that have at most exponential growth
in the direction θ. This last condition means that there exist two positive
constants C and τ such that for all r > 0:∣∣∣ϕ(reiθ)

∣∣∣ ≤ Ceτr . (43)

Since
1

zn+1
= Lθ

(
ζn

n!

)
(z), for z ∈ C such that <e (zeiθ) > 0, the Borel

transform can be seen as a formal inverse of the Laplace transform, where
formally means here that we formally permute the symbols sum and inte-
gral. This is actually licit for entire functions of exponential type in every
direction.

Dealing with an analytical function ϕ defined over an open set containing
{ζ ∈ C ; arg ζ = θ} which has at most an exponential growth in the direction
θ (with an associated constant τ) allows us to use the theorem about the
holomorphy of a parameter-dependent integral. This proves that Lθ(ϕ) is a
holomorphic function in the half-plane

{
z ∈ C ; <e

(
eiθz

)
> τ

}
.

Figure 1: Image of the analycity domain under the Laplace transform.

4.1.3. Borel summation process

The Borel transform and Laplace transform interact to define what is
now called the Borel summation process:

16



Definition 2. For a given θ ∈ R, we say that ϕ̃ ∈ z−1C
[[
z−1
]]

is Borel-
summable in the direction θ, and we denote ϕ̃ ∈ SB,θ, when the following
conditions are satisfied:

1. ϕ̂ = B(ϕ̃) can be analytically extended on a neighborhood Ω of eiθR+ .

2. there exist two positive constants C and τ such that for all ζ ∈ Ω ,

|ϕ̂(ζ)| ≤ Ceτ |ζ| . (44)

In this case, the corresponding Borel sum, denoted by Sθ(ϕ̃), is defined by:

Sθ(ϕ̃) = Lθ (B(ϕ̃)) . (45)

Thus, such a sum is automatically an analytic function on the half-plane
Pθ(τ) = {z ∈ C ; <e (eiθz) > τ} .

This process is satisfactory, in the following sense:

1. If ϕ̃ ∈ C
{
z−1
}

is well-defined on a neighborhood Ω of infinity, then,
the Borel sums Sθ(ϕ̃) coincide with ϕ̃ on Ω, for all directions θ ∈ R .

2. Sθ : SB,θ −→
⋃
τ>0

H
(
Pθ(τ)

)
is an injective homomorphism which

commutes with the derivation3.

3. If ϕ̃ ∈ SB,θ, then ϕ̃ is the asymptotic expansion, near infinity, of Sθ(ϕ̃) .

To summarize, we have the diagram on Figure 2 .

4.1.4. Sectorial resummation

A formal power series ϕ̃ is said to be uniformly Borel-summable in the
interval of direction ]θ1; θ2[ when the following conditions are satisfied:

1. ϕ̂ can be analytically extended to a neighborhood of Ω = {z ∈ C ; θ1 <
arg z < θ2} .

2. there exist two positive constants C and τ such that for all ζ ∈ Ω ,

|ϕ̂(ζ)| ≤ Ceτ |ζ| . (46)

For such a formal power series, when we apply the Borel summation
process, it is possible to vary the direction of the summation between θ1

and θ2. A natural question is then to understand the links between the
different Borel sums. The residue theorem gives the answer: they are mutual
analytical extensions.

Therefore, we can define a Borel sum, denoted by S[θ1; θ2], on the angular
sector {

z ∈ C ; −θ2 −
π

2
< arg z < −θ1 +

π

2

}
(47)

3H(U) denotes classicaly the space of holomorphic functions on the open subset U of C.
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by glueing the Borel sums obtained when θ varies between θ1 and θ2 (see
Figure 3), because two Borel sums, corresponding to angles satisfying (47)
coincide on the intersection of their definition domains (thanks to contour
integrals of holomorphic functions).

This is true as long as ϕ̂ has no singularities in the sector Ω . Otherwise,
the residue theorem shows that the difference between Lθ−(ϕ̂) and Lθ+

(ϕ̂),
the Borel sums just before and just after a singularity in the direction θ, do
not coincide any more: this is the so-called Stokes phenomenon.

Figure 3: Sectorial resummation.

4.2. Reminders on resurgence theory

As we have just seen, we need to have a precise knowledge of the dif-
ferent singularities of ϕ̂ = B(ϕ̃) to compare the Borel sectorial sums of the
divergent series ϕ̃, which is supposed to be uniformly Borel-summable (in
an interval) .

Since we will only deal with simple resurgent functions in the sequel, we
only remind the definition of this class of functions. For more information,
we refer the reader to Ecalle’s text (the three volumes of [19]) , or to the
introductory article/book [51] and [13].

4.2.1. Simple singularities

We say that a function ϕ̂, defined and holomorphic on an open set D, has
a simple singularity at ω ∈ C adherent to D when ϕ̂ can be expanded near
ω as the sum of a logarithmic singularity, a polar singularity and a regular
part. Thus, there exist C ∈ C and two germs of holomorphic functions
Φ̂ and reg such that, in a neighborhood U of ω, the following equality is
satisfied:

ϕ̂(ζ) =
(ζ−→ ω)

C

2iπ(ζ − ω)
+

1

2iπ
Φ̂(ζ − ω) log(ζ − ω) + reg(ζ − ω) . (48)
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The number C is called the residue of ϕ̂ and Φ̂ is called the variation of
ϕ̂. These objects can be computed from ϕ̂, independently from the choice
of the branch of the logarithm, by:

C = 2iπ lim
ζ−→ω
ζ∈U

(ζ − ω)ϕ̂(ζ) , Φ̂(ζ) = φ̂(ω + ζ)− φ̂
(
ω + ζe−2iπ

)
, (49)

where φ̂
(
ω + ζe−2iπ

)
means the evaluation at the point ω+ζ of the analytic

continuation of φ̂ following the path t 7−→ ω + ζe−2iπt, t ∈ [0; 1].
(48) is usually denoted in a simpler form:

singωϕ̂ = Cδ + Φ̂ ∈ Cδ ⊕ C{ζ} . (50)

Here, the operator singωϕ̂ denotes the asymptotic expansion near the
point ω of ϕ̂, while δ denotes a Dirac. Let us remind that the algebra
(C{ζ}, ?) has no unit. We add a formal one by an extension of the Borel
transform:

B : C[[z−1]]1
∼−→ Cδ ⊕ C{ζ} , (51)

where
δ = B(1) . (52)

4.2.2. Endlessly continuable germs

We say that a holomorphic germ ϕ at the origin is an endlessly con-
tinuable germ when, for any finite broken line L, there exists a finite set
ΩL ⊂ L of singularities such that ϕ has an analytic continuation along all
the possible paths obtained by following L and getting around each point of
ΩL turning left or right.

4.2.3. S-resurgent functions

We define here the notion of simple resurgent function, which is a par-
ticular case of a more general notion (see [11], [13], [16], [19], [51]).

In the convolutive model, S-resurgent functions are defined to be end-
lessly continuable holomorphic germs at the origin, with simple singularities.

In the formal model, S-resurgent functions are formal power series in
z−1C

[[
z−1
]]

such that their Borel transform is an S-resurgent function in the
convolutive model. Let us remark that, necessarily, an S-resurgent function
in the formal model is a 1-Gevrey series.

We will denote by R̃ES
simple

and R̂ES
simple

the set of simple resurgent
functions in the formal and convolutive models.

The important point is the stability of R̃ES
simple

(resp. R̂ES
simple

) under
the ordinary product (resp. convolution product) of formal power series (see
[52]).
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4.2.4. Alien derivations

From now on, we will restrict to a particular case of S-resurgent func-
tions, those dealing with Borel transform singularities located in Ω = 2iπZ∗ .

The alien derivatives are linear operators acting on the resurgent func-
tions that “measure” the singularities near each ω ∈ Ω. Let us emphasize
that they indeed define derivations (for the usual product in the formal
model or for the convolution product in the convolutive model), since they
come from the logarithm of the Stokes automorphism.

To make it explicit in the convolutive model, let us consider
ω = 2imπ ∈ Ω . Given εεε = (ε±1; · · · ; ε±(m−1)) ∈ {+1;−1}|m|−1,
we define the path γ(εεε) constructed by following ]0;ω[ and getting
around the intermediate singularities 2ikπ, ±k ∈ [[ 1 ; |m| − 1 ]] on
half-circles, the k-th being oriented on the left side of the imagi-
nary axis when εk = −1 and oriented on the right side of the same
axis when εk = +1 .

Thus, the alien derivative ∆∆ω acts on ϕ̂ ∈ R̂ES
simple

by

∆∆ω(ϕ̂) =
∑

εεε=(ε±1;··· ;ε±(m−1))∈{+1;−1}|m|−1

p(εεε)! q(εεε)!

m!
singω(contγ(εεε)ϕ̂) .

In this formula, p(εεε) and q(εεε) stand respectively for the number of signs
+ and − in εεε . Moreover, contγ(εεε) is the analytic continuation of ϕ̂ along
the path γ(εεε).

In the formal model, we define the linear operator

∆∆ω : R̃ES
simple

7−→ R̃ES
simple

(53)

by the following commutative diagram:

R̃ES
simple ∆∆ω //

B

��

R̃ES
simple

B

��

R̂ES
simple ∆∆ω // R̂ES

simple

Proposition 7. If f̃ and g̃ are two simple resurgent functions, then h̃(z) =
f(z + g(z)) is also a resurgent function, and we have:

∆∆ωh̃(z) = e−ωg̃(z)
(

∆∆ωf̃
)

(z + g̃(z)) + (∂f̃)(z + g̃(z)) ·∆∆ω g̃(z) . (54)

Proof. See, for instance [19], Vol. 1, Section 2e, or [54], Section 30. �
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4.3. On a generic 1-order difference equation

Examples of the use of Borel-Laplace resummation can be found in the
literature. For example, we refer the reader to the third volume of [19]
(p. 243 to 246) to see a resurgent approach of the function log Γ, to [16] for
the Euler equation ϕ′(z) + ϕ(z) = z−1 or to [17] and [49] for a resurgent
study of the Airy function.

We recall here the use of the Laplace transform for a simple 1-order
difference equation (see [4] and [51]). This equation will be the prototype of
the equations we will deal with in the next section.

Let us fix a holomorphic germ a ∈ z−2C
{
z−1
}

and study the 1-order
difference equation:

ϕ̃(z − 1)− ϕ̃(z) = a(z) . (55)

We will study it first when the unknown ϕ̃ is a formal power series at infinity,
then construct solutions which are holomorphic functions (expressed as a
Laplace transform) which turn out to have explicit expressions depending
on the germ a .

4.3.1. Preliminary upper bounds

Since a(z) =
∑
n≥1

an
zn+1

∈ z−2C{z−1}, there exist two positive constants

C0 and C1 such that

|an| ≤ C0C1
n , for all n ∈ N∗ . (56)

Consequently, we have:∣∣â(ζ)
∣∣ ≤ C0

(
eC1|ζ| − 1

)
≤ C0|ζ|eC1|ζ| for all ζ ∈ C . (57)

Moreover, we have the following

Lemma 5. If ζ = reiθ, with θ ∈
]
−π

2
;
π

2

[
∪
]
π

2
;
3π

2

[
, we have:

∣∣∣∣ ζ

eζ − 1

∣∣∣∣ ≤ e|ζ|

| cos θ|
. (58)

Proof. If θ ∈
]
−π

2
;
π

2

[
,

∣∣∣∣ ζ

eζ − 1

∣∣∣∣ ≤ |ζ| · |e−ζ | ·
∣∣∣∣ 1

1− e−ζ

∣∣∣∣
≤ re−r cos θ 1

1− e−r cos θ

≤ 1

cos θ

r cos θ

er cos θ − 1
≤ 1

cos θ

≤ e|ζ|

cos θ
.
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If θ ∈
]
π

2
;
3π

2

[
,

∣∣∣∣ ζ

eζ − 1

∣∣∣∣ ≤ |ζ| ·
∣∣∣∣ 1

1− eζ

∣∣∣∣ ≤ r

1− er cos θ

≤ 1

| cos θ|
e−r cos θ −r cos θ

e−r cos θ − 1
≤ er

| cos θ|

≤ e|ζ|

| cos θ|
.

4.3.2. The resurgent character of the formal solution

Using the Borel transform, if ϕ̃ is a solution of (55), we naturally obtain:

1. eζϕ̂(ζ)− ϕ̂(ζ) = â(ζ) , which implies ϕ̂(ζ) =
â(ζ)

eζ − 1
.

2. ϕ̂ defines a meromorphic function on C of exponential type in all di-
rections θ ∈

]
−π

2 ; π2
[
∪
]
π
2 ; 3π

2

[
, with poles that can only be located in

2iπZ∗, since â is an entire function vanishing at the origin satisfying:

|ϕ̂(ζ)| =
∣∣∣∣ â(ζ)

eζ − 1

∣∣∣∣ ≤ C0

| cos θ|
e(C1+1)|ζ| , for all ζ ∈ C− iR , (59)

according to (57) and Lemma 5.

Thus, Equation (55) has a unique solution in z−1C
[[
z−1
]]

ϕ̃ = B−1

(
â(ζ)

eζ − 1

)
, (60)

which is an S-resurgent function and satisfies:

∆∆ωϕ̂ = â(ω) δ (61)

for all ω ∈ 2iπZ∗ . This explains the term of resurgent functions, since we
can conceptually write (even if ϕ̂(ω) is infinite) ∆∆ωϕ̂ = (eω − 1)ϕ̂(ω) δ, and
thus ϕ̂ “reappears” in the singularity ω .

4.3.3. Sectorial resummations

Moreover, ϕ̃ is Borel-summable in all directions θ ∈
]
−π

2
;
π

2

[
∪
]
π

2
;
3π

2

[
.

The sectorial resummation principle gives us two analytical functions, ϕe and
ϕw, which, by construction, are two resurgent functions in the geometric
model and defined respectively on the east half-plane and west half-plane
by: 

ϕe = Lθ
(
â(ζ)

eζ − 1

)
= Lθ(ϕ̂), θ ∈

]
−π

2
;
π

2

[

ϕw = Lθ
(
â(ζ)

eζ − 1

)
= Lθ(ϕ̂), θ ∈

]
π

2
;
3π

2

[
.

(62)

23



Denoting by d(z;F ) the distance of z ∈ C to the set F and taking into
account the properties of the Laplace transform, there exists τ > 0 such
that these two solutions are analytical on the domains De(τ) and Dw(τ)
(see Figure 4) defined by De(τ) = C−{z ∈ C ; d(z;R−) ≤ τ} and Dw(τ) =
C− {z ∈ C ; d(z;R+) ≤ τ} , according to Equation (59).

Holomorphic domain of Holomorphic domain of
the sectorial resummation ϕw . the sectorial resummation ϕe .

Figure 4: Illustration of the complementary set of De(τ) and Dw(τ).

4.3.4. Characterization of ϕe and ϕw
It is not difficult to see that ϕe|R>τ is a solution of (55) which is defined,

by construction, on R>τ = {x ∈ R ; x > τ} and admits 0 as limit near +∞
(since ϕe is a Laplace transform). Actually, such a solution turns out to be
unique: if ψ is another solution of (55) defined on R>τ ′ with 0 as limit near
+∞, ψ−ϕe becomes a 1-periodic function defined on R>max(τ,τ ′) which also
has 0 as limit near +∞; this necessarily imposes the equality ψ = ϕe in
R>max(τ,τ ′).

Likewise, ϕw |R−<−τ
, where R−<−τ = {x ∈ R ; x < −τ}, is the unique

solution of (55) defined on a set R−<−τ and admiting 0 as limit near −∞.

On the other side, from Equation (56), we deduce that

|a(z)| ≤ C0C1

|z|(|z| − C1)
, if z ∈ C−De(C1) . (63)

Moreover, it is clear, if z ∈ C−De(C1), where C1 is defined by Equation (56),
that we have z + k ∈ C−De(C1) for all k ∈ N∗. In particular, |z + k| > C1.
Therefore,

|a(z + k)| ≤ C0C1

|z + k|(|z + k| − C1)
, if z ∈ C−De(C1) and k ∈ N∗ . (64)
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Moreover, if K is a compact subset of C−De(C1), and if a > 0 is such that
K ⊂ D(0, a), we obtain:

|a(z + k)| ≤ C0C1(√
k(k − 2a) + C2

1 − C1

)2 , (65)

if z ∈ K ⊂⊂ C−De(C1) and k ∈ N∗>2a, according to |z+k| ≥
√
k2 − 2ak + C2

1

for all z ∈ C−De(C1) and k ∈ N∗.
Consequently, z 7→

∑
k>0

a(z + k) is a normally convergent series on every

compact subset of C − De(C1) of holomorphic functions on C − De(C1).
Thus, it defines a holomorphic function over C−De(C1).

Using simillar arguments with C−Dw(C1), we see that z 7→ −
∑
k≤0

a(z + k)

is also a holomorphic function of C−Dw(C1).

Moreover, it is clear that z 7→
∑
k>0

a(z + k) and z 7→ −
∑
k≤0

a(z + k) are

two solutions of (55). The limit of these at +∞ and −∞ respectively is 0.
Consequently, they coincide with ϕe and ϕw on a set which type is R>τ and
R<−τ for a certain constant τ > 0. According to the analytic continuation
principle, we therefore have proven the following

Lemma 6. Let a ∈ z−2C{z−1}.
1. The difference equation ϕ(z − 1)− ϕ(z) = a(z) admits a unique solution
defined on a set R>τ , for a certain constant τ > 0, with 0 as limit near +∞,
given by:

ϕe(z) = L0

(
â(ζ)

eζ − 1

)
=
∑
k>0

a(z + k) . (66)

It turns out that ϕe is holomorphic on C−De(τ).
2. The difference equation ϕ(z − 1)− ϕ(z) = a(z) admits a unique solution
defined on a set R<−τ , for a certain constant τ > 0, with 0 as limit near
−∞, given by:

ϕw(z) = Lπ
(
â(ζ)

eζ − 1

)
= −

∑
k≤0

a(z + k) . (67)

It turns out that ϕw is holomorphic on C−Dw(τ).
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4.3.5. Stokes phenomenon

Since De∩Dw has two connected components, which are {z ∈ C ; =mz >
τ} and {z ∈ C ; =mz < −τ}, we can evaluate the difference ϕe − ϕw in
each of these connected components. Then, the residue theorem gives us for
z such that =mz < −τ :∫

γ
ϕ̂(ζ)e−zζ dζ =

m∑
k=1

2iπRes

(
z 7−→ â(ζ)e−ωz

eζ − 1
; 2ikπ

)

=

m∑
k=1

2iπâ(2ikπ)e−2ikπz ,

(68)

where γ is the path described on Figure 5.

Figure 5: An integration path.

Besides, it is easy to see that the limit of the previous integral on the
path restricted to the arc of circle is 0 as R approaches +∞. The series∑
k>0

2iπâ(2ikπ)e−2ikπz is a convergent one when =mz < −τ . Thus, when

R approaches +∞, we obtain:

∀z ∈ C , =mz < −τ , ϕe(z)− ϕw(z) =
∑

ω∈2iπN∗
2iπâ(ω)e−ωz , (69)

which expresses the Stokes phenomenon in the south part of the complex
plane.

In the same way, but with a symmetric contour relative to the real axis,
we obtain:

∀z ∈ C , =mz > τ , ϕe(z)− ϕw(z) =
∑

ω∈−2iπN∗
2iπâ(ω)e−ωz , (70)

which expresses the Stokes phenomenon in the north part of the complex
plane.

4.3.6. Conclusion of the solution of the generic 1-order difference equation.

The difference equation

ϕ̃(z − 1)− ϕ̃(z) = a(z) ,

where a ∈ z−2C
{
z−1
}

is a holomorphic germ near infinity, has:
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• a unique formal solution ϕ̃ in z−1C
[[
z−1
]]

which turns out to be S-
resurgent.

• a unique solution ϕ̂ in the convolutive model which is also S-resurgent.

• two analytical solutions ϕe and ϕw, defined respectively as the sec-
torial resummations of ϕ̂ in the east and west directions which have
an asymptotic expansion near infinity (in those respective directions)
which is nothing but ϕ̃.

4.4. On the resurgence of Hurwitz multizeta functions

In this section, we will use recursively the resurgent study of the generic
1-order difference equation made in the previous section, in order to gener-
alize it to a resurgent study of the 1-order mould difference equation

∆−(M•) = M• × J• . (71)

Let us notice that any solution of this mould equation, with perhap an-
other condition (such as a given limit near infinity or the absence of constant
term), will turn out to be a symmetrel mould. Consequently, to remind us
of this property, we are going to add systematically the letter e to the name
of the different types of solutions we will consider.

This resurgent study of (71) will lead us to define four moulds, related
to Hurwitz multizeta functions, in the same way that we have found four
solutions of the generic 1-order difference equation:

 H̃e
•

will denote a mould of formal solutions of (71).

 Ĥe
•

will denote the Borel transform of any formal solution H̃e
•

of
(71):

Ĥe
s

= B
(
H̃e

s
)
. (72)

 He•e and He•w, defined respectively, if possible, as the sectorial resum-

mations of Ĥe
•

in the east and west directions.

In order to always have ∆−(M s) ∈ z−2C[[z−1]], we will define these
moulds on the subset S? of N?1 of sequences s of positive integers such that
s1 ≥ 2.

In order to be consistent with the previously introduced notations, let
us mention that all these four notations might have a subscript ‘+’ that we
have omitted throughout all the rest of this section for simplicity. Neverthe-
less, we still use the subscript ‘+’ or ‘-’ to specify which Hurwitz multizeta
function we are currently dealing with.

These notations and restrictions being introduced, we now are going to
prove the following
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Theorem 1. 1. There exists a unique mould H̃e
•
, defined over the subset

S? of N?1, of formal series near infinity which are solutions of the mould
difference equation ∆−(M•) = M•× J• . These functions turn out to
be:

• formal S-resurgent functions.

• Borel-summable formal series in all directions θ ∈
]
−π

2
;
π

2

[
and

θ ∈
]
π

2
;
3π

2

[
.

2. There exist two unique moulds He•e and He•w of analytical functions
defined respectively on the east half complex plane and the west half
complex plane ( i.e. on domains such as those shown on Figure 4),
that admit 0 as a limit near infinity, but in the real axis: they are the
moulds of the sectorial sums of H̃e

•
in the geometric model and turn

out to be moulds valued in the algebra of resurgent functions.

3. The Stokes phenomenon obtained from the sectorial sums can be ex-
pressed by:

He•e × (He•w)×−1 = T e• , (73)

where T e• denotes the mould of multitangent functions.

4.4.1. Reminders on the multitangent functions

The mould T e• denotes the mould of multitangent functions and is de-
fined for all sequences s of positive integers satisfying s1 ≥ 2 and sr ≥ 2 (if
s is of length r) and for all z ∈ C− Z by:

T es1,··· ,sr(z) =
∑

−∞<nr<···<n1<+∞

1

(n1 + z)s1 · · · (nr + z)sr
. (74)

These multitangent functions have been extensively studied in [6] from
a combinatorial, algebraic and analytic point of view. It results from this
study that the multitangent functions are a nice functional generalization of
the multizeta values.

The multitangents satisfy not only the stuffle relations (defined in Sec-
tion 2.4) but also some quite mysterious nontrivial linear relations (see [6])
which are analogue in a certain sense to the other relations satisfied by the
multizeta values (the shuffle relations as well as the double shuffle relations,
to be precise; see [56] for an introduction).

For instance, one has:

4T e3,1,3 − 2T e3,1,1,2 + T e2,1,2,2 = 0 , (75)

which is equivalent to
ζ(2, 1, 1) = 4ζ(3, 1) (76)
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and
ζ(2)ζ(2, 1) = ζ(2, 1, 2) + 6ζ(3, 1, 1) + 3ζ(2, 2, 1) . (77)

Note that (77) is exactly a shuffle relation for the multizeta values and (76)
is a consequence of the three families of relations (the shuffle relations, the
stuffle relations and the double shuffle relations) which are conjectured to
span all the algebraic relations between multizeta values (see [20] and [56]).

There is no doubt that, in comparison to the algebra of multitangent
functions or multizeta values, the Hurwitz multizeta functions span a simple
algebra since they satisfy only algebraic relations coming from the stuffle
relations, which is nevertheless an interesting one because it is isomorphic to
a famous algebra in combinatorics, the algebra of quasisymmetric functions
QSym, as will be seen in Section 5.

Moreover, the mould of multitangent functions has a nice mould factor-
ization in terms of Hurwitz multizeta functions He•+ and He•− which will
enlighten the Stokes phenomena of Hurwitz multizeta functions.

Lemma 7. We have : T e• = He•+ × (1• + J•)×He•− .

Proof. See [6], p. 55. �

4.4.2. On the case of length 0 and 1

Because we want the moulds H̃e
•
, Ĥe

•
, He•e and He•w to be symmetrel

moulds, we necessarily have to define their values on the empty sequence to
be the unit of the product used for their symmetrelity properties, i.e. the

ordinary product for H̃e
•
, He•e and He•w, but the convolution product for

Ĥe
•
:

H̃e
∅

= He∅e = He∅w = 1 , Ĥe
∅

= δ . (78)

The case of length 1 has already been done in Section 4.3. Let us remind
what we have obtained. The difference equation

∆−H̃e
s
(z) =

1

zs
, s ≥ 2 , (79)

has a unique formal solution in z−2C[[z−1]] which is S-resurgent:

H̃e
s

= B−1(Ĥe
s
) , where Ĥe

s
(ζ) =

1

(s− 1)!

ζs−1

eζ − 1
∈ ζC{ζ} . (80)

It satisfies for all n ∈ Z∗:

∆∆2inπĤe
s

= Res
(
Ĥe

s
, 2inπ

)
δ =

(2inπ)s−1

(s− 1)!
δ = Ĵs(2inπ)δ . (81)
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Moreover, H̃e
s

is Borel-summable in all the directions θ ∈
]
−π

2
;
π

2

[
or

θ ∈
]
π

2
;
3π

2

[
and, according to (66) and (67):

• Equation (79) has a unique solution, denoted by Hese, defined over R+

such that Hese(z) −→
z−→+∞
z∈R+

0:

Hese = L0
(
Ĥe

s
)

= Hes+ . (82)

• Equation (79) has a unique solution, denoted by Hesw, defined over R−
such that Hesw(z) −→

z−→−∞
z∈R−

0:

Hesw = Lπ
(
Ĥe

s
)

= −(Js +Hes−) . (83)

Finally, the Stokes phenomena are given in two different ways. The first
one uses the expression of Hese and Hesw in terms of Hes+ and Hes− and the
trifactorization of multitangent functions. The second one uses the residue
theorem, as seen in Section 4.3.

Hese(z)−Hesw(z) = Hes+(z) + Js(z) +Hes−(z) = T es(z) . (84)

Hese(z)−Hesw(z) = sg(=mz)
(2iπ)s

(s− 1)!

∑
k>0

ks−1e−2ikπz . (85)

Let us remind that all these quantities are well-defined since s ≥ 2.

4.4.3. The case of length 2

Let us now consider the difference equation

∆−(H̃e
s1,s2

) = H̃e
s1 · Js2 , (86)

with s1 ≥ 2 and s2 ≥ 1.
Its formal solution is simple, according to

Lemma 8. There exists a unique formal series near infinity H̃e
s1,s2

, which
is a solution of the difference equation (86):

H̃e
s1,s2

= B−1
(
Ĥe

s1,s2
)
, (87)

where

Ĥe
s1,s2

(ζ) =
1

eζ − 1

(
Ĥe

s1
? Ĵs2

)
(ζ) . (88)
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Proof. Any formal solution H̃e
s1,s2

of (86) has a Borel transform Ĥe
s1,s2

which satisfies:

(eζ − 1)Ĥe
s1,s2

(ζ) =
(
Ĥe

s1
? Ĵs2

)
(ζ) . (89)

Consequently, H̃e
s1,s2

is necessarily defined by (87) and (88), which proves
unicity.

Conversely, defining H̃e
s1,s2

by (87) and (88), and using successively the
second point of Property 5 rewritten as

B−1 (ϕ̂) ◦ l−1 = B−1
(
exp · ϕ̂

)
(90)

and then its third point, we successively have:

∆−

(
H̃e

s1,s2
)

(z) = B−1
(
Ĥe

s1,s2
)
◦ l−1(z)− B−1

(
Ĥe

s1,s2
)

(z)

= B−1
(
exp · Ĥe

s1,s2
)

(z)− B−1
(
Ĥe

s1,s2
)

(z)

= B−1

(
eζ

eζ − 1
·
(
Ĥe

s1
? Ĵs2

))
(z)

−B−1

(
1

eζ − 1
·
(
Ĥe

s1
? Ĵs2

))
(z)

= B−1
(
Ĥe

s1
? Ĵ
)

(z)

= H̃e
s1 · Js2 ,

which proves the existence of a formal solution near infinity of (86) and
concludes the proof of the lemma. �

Note that:

Lemma 9. Ĥe
s1,s2

is a S-resurgent function, as well as H̃e
s1,s2

.

Proof. As recalled in Section 4.2, the important point concerns the stabil-

ity of R̃ES
simple

(resp. R̂ES
simple

) under the ordinary product (resp. convo-
lution product) of formal power series (see [52]).

Since Ĥe
s1

, ζ 7−→ Ĵs2(ζ) and ζ 7−→ 1

eζ − 1
are S-resurgent functions,

Ĥe
s1,s2

is a S-resurgent function in the convolutive model. Consequently,
H̃e

s1,s2
is a S-resurgent function in the formal model. �

We are now able to look at the Borel-summability of H̃e
s1,s2

.

Lemma 10. ζC{ζ}?C{ζ} ⊂ ζ2C{ζ}, where ? denotes the convolution prod-
uct.
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Proof. It is enough to prove, for all non negative integers p and q, that
ζp+1 ? ζq ∈ ζ2C{ζ}, which is straightforward. �

As a consequence of (80), ζ 7−→ Ĥe
s1
? Ĵs2(ζ) is a meromorphic func-

tion over C vanishing at the origin with poles located in 2iπZ. Therefore,
Ĥe

s1,s2
defines a meromorphic function on C with poles which can only be

localised in 2iπZ∗. Let us mention here that this fact will be reobtained
in Section 4.4.6 as a consequence of the computation of the alien deriva-
tives done in Theorem 2. This proves its Borel summability in all directions

θ ∈
]
−π

2
;
π

2

[
∪
]
π

2
;
3π

2

[
if it is of exponential type in all directions. But,

this is a consequence of the exponential type of ζ −→
(
eζ − 1

)−1
and the

fact that if f and g are of exponential type 0, it is also the case for f ? g.

So, we have proved

Lemma 11. H̃e
s1,s2

is a Borel summable formal series in all directions

θ ∈
]
−π

2
;
π

2

[
and θ ∈

]
π

2
;
3π

2

[
and gives rise to two analytical functions

Hes1,s2e and Hes1,s2w which are solutions of (86) and defined by:

Hes1,s2e (z) = L0
(
Ĥe

s1,s2
)

and Hes1,s2w (z) = Lπ
(
Ĥe

s1,s2
)
, (91)

on domains as shown in Figure 4.

Using the characterization of Lemma 6, we see that:

Lemma 12. 1. Hes1,s2e is the unique function defined over a neighbour-
hood of R+ satisfying:

∆−Hes1,s2e = Hes1e · Js2

Hes1,s2e (z) −→
z−→+∞
z∈R+

0 (92)

and is given by

Hes1,s2e (z) =
∑
n2>0

Hes1e (n2 + z)Js2(n2 + z)

=
∑

n1>n2>0

1

(n1 + z)s1(n2 + z)s2
= Hes1,s2+ (z) (93)

2. Hes1,s2w is the unique function defined over a neighbourhood of R− sat-
isfying: 

∆−Hes1,s2w = Hes1w · Js2

Hes1,s2w (z) −→
z−→−∞
z∈R−

0 (94)
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and is given by

Hes1,s2w (z) = −
∑
n2≤0

Hes1w (n2 + z)Js2(n2 + z)

= +
∑

n1≤n2≤0

1

(n1 + z)s1(n2 + z)s2
(95)

4.4.4. On the general case

Because the general case is proven exactly in the same way as in length 2,
we only give here the recursion formulas which are useful and conclude the
proof of parts 1 and 2 of Theorem 1.

Let us suppose that, for a positive integer r, we have constructed H̃e
s1,··· ,sr

,
Ĥe

s1,··· ,sr
, Hes1,··· ,sre and Hes1,··· ,srw for all (s1, · · · , sr) ∈ (N∗)r such that

s1 ≥ 2.
Then, the resurgent study of the difference equation

∆−(H̃e
s1,··· ,sr+1

) = H̃e
s1,··· ,sr · Jsr+1 , (96)

with s1 ≥ 2 and (s2, · · · , sr+1) ∈ (N∗)r, is given by:

Ĥe
s1,··· ,sr+1

(ζ) =
1

eζ − 1

(
Ĥe

s1,··· ,sr
? Ĵsr+1

)
(ζ) . (97)

H̃e
s1,··· ,sr+1

(z) = B−1
(
Ĥe

s1,··· ,sr+1
)

(z) . (98)

Hes1,··· ,sr+1
e (z) = L0

(
Ĥe

s1,··· ,sr+1
)

(z) (99)

Hes1,··· ,sr+1
w (z) = Lπ

(
Ĥe

s1,··· ,sr+1
)

(z) . (100)

These equations define four moulds over S?: H̃e
•
, Ĥe

•
, He•w and He•e.

As we have explained at the begining of Section 4.4.2, we wanted these
moulds to be symmetrel .

Proposition 8. The mould H̃e
•

is a symmetrel mould, for the usual prod-
uct of formal power series.

Proof. We have to prove that, for all sequences (u,v) ∈ (S?)2

H̃e
u
· H̃e

v
=

∑
w∈she(u,v)

H̃e
w
. (101)

Let us show this proposition by an induction process on l(u)+l(v). Equation
(101) is true for u = v = ∅, which allows to begin the induction process,
but also when u = ∅ or v = ∅.

Therefore, let us suppose that Equation (101) is true for all sequences
(u,v) ∈ (S?)2 such that l(u)+ l(v) ≤ N , with N ∈ N∗. From now on, we fix
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two particular sequences (u,v) ∈ (S?)2 such that l(u) + l(v) = N − 1 and
two particular letters a and b (i.e. a, b ∈ N∗). We will show that Equation
(101) is valid for (u · a,v · b).

1. Using the fact that ∆− is a (Id, τ−1)-derivation and the recursive
definition (17) of the stuffle product, we successively have:

∆−(H̃e
u·a
· H̃e

v·b
) = ∆−(H̃e

u·a
) · H̃e

v·b
+ τ−1(H̃e

u·a
) ·∆−(H̃e

v·b
)

= H̃e
u
· Ja · H̃e

v·b
+ H̃e

u
· H̃e

v
· Ja · Jb + H̃e

u·a
· H̃e

v
· Jb

=
∑

w∈she(u,v·b)

H̃e
w
· Ja +

∑
w∈she(u,v)

H̃e
w
· Ja+b

+
∑

w∈she(u·a,v)

H̃e
w
· Jb

=
∑

w∈she(u,v·b)

∆−

(
H̃e

w·a)
+

∑
w∈she(u,v)

∆−

(
H̃e

w·(a+b)
)

+
∑

w∈she(u·a,v)

∆−

(
H̃e

w·b)

=

 ∑
w∈she(u·a,v)·b

+
∑

w∈she(u,v)·(a+b)

+
∑

w∈she(u,v·b)·a

(∆−

(
H̃e

w
))

=
∑

w∈she(u·a,v·b)

∆−

(
H̃e

w
)

Therefore, for all sequences (u,v) ∈ (S?)2 such that l(u) + l(v) = N − 1
and two letters a and b, there exists a correction corru·a,v·b ∈ z−1C[[z−1]],
which is 1-periodic and satisfies:

H̃e
u·a
· H̃e

v·b
=

∑
w∈she(u·a,v·b)

H̃e
w

+ corru·a,v·b . (102)

2. We now extend the definition of the correction corra,b to sequences
(a,b) ∈ (S?)2 such that l(a) + l(b) ≤ N by corra,b = 0, so that

H̃e
a
· H̃e

b
=

∑
c∈she(a,b)

H̃e
c

+ corra,b , (103)
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for all sequences (a,b) ∈ (S?)2 such that l(a)+ l(b) ≤ N +1. Consequently,
for any sequences (a,b, c) ∈ (S?)3 satisfying l(a) + l(b) + l(c) ≤ N + 1, we
have:

H̃e
a
· H̃e

b
· H̃e

c
= H̃e

a
·

 ∑
d∈she(b,c)

H̃e
d

+ corrb,c


=

∑
d∈she(b,c)

∑
e∈she(a,d)

H̃e
d

+ H̃e
a
· corrb,c

=
∑

e∈she(a,b,c)

H̃e
e

+ H̃e
a
· corrb,c

H̃e
a
· H̃e

b
· H̃e

c
=

 ∑
d∈she(a,b)

H̃e
d

+ corra,b

 · H̃ec
=

∑
d∈she(a,b)

∑
e∈she(c,d)

H̃e
e

+ corra,b · H̃e
c

=
∑

e∈she(a,b,c)

H̃e
e

+ corra,b · H̃e
c

Consequently, l(a)+l(b)+l(c) ≤ N+1 =⇒ H̃e
a
·corrb,c = corra,b ·H̃e

c
.

Better, if l(a)+l(b)+l(c) ≤ N+1 and a 6= ∅, we necessarily have l(b)+l(c) ≤
N , so corrb,c = 0, which implies for all sequences a, b, c ∈ S? that:{

l(a) + l(b) + l(c) ≤ N + 1
a 6= ∅ =⇒ corra,b · H̃e

c
= 0 =⇒ corra,b = 0 .

Moreover, it is clear that corra,∅ = corr∅,b = 0 if l(a) = l(b) = N + 1. This
allow us to sum up the values of the correction corra,b:

l(a) + l(b) ≤ N + 1 =⇒ corra,b = 0 . (104)

Finally, we can update Equation (102):

H̃e
u·a
· H̃e

v·b
=

∑
w∈she(u·a,v·b)

H̃e
w
, (105)

which concludes the proof of the proposition, by an induction process. �

We therefore obtain the following
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Corollary 1. 1. The mould Ĥe
•

is a symmetrel mould, for the convolutive
product of formal power series.
2. The moulds He•w and He•e are symmetrel moulds, for the usual product
of holomorphic functions.

Proof. The first point is straighforward, applying the Borel transform to
the symmetrelity relations of H̃e

•
.

The second point is a direct application of the first point and the classical
formula

Lθ(f) · Lθ(g) = Lθ(f ? g) . (106)

�

4.4.5. The Stokes phenomenon

Now, we have to focus on the Stokes phenomenon. Note that we have not
eluded its study in length 2 because it cannot be expressed as a difference
of the two Borel resummations on the east and west side. Nevertheless, it
will be reinforced.

From the characterization given in Section 4.3.4 of ϕe and ϕw, it follows
that:

Hes1,···sre (z) =
∑

0<nr<···<n1<+∞

1

(n1 + z)s1 · · · (nr + z)sr
. (107)

Hes1,···srw (z) =
∑

−∞<n1≤···≤nr≤0

(−1)r

(n1 + z)s1 · · · (nr + z)sr
. (108)

According to Lemma 2, we consequently obtain:

Lemma 13. He•w =
(

(1• + J•)×He•−
)×−1

.

Proof. In the sum defining He•w, we can distinguish whether the index n1

is equal to 0 or not. This gives successively:

Hes1,···srw (z) =
∑

−∞<n1≤···≤nr<0

(−1)r

(n1 + z)s1 · · · (nr + z)sr

+
∑

−∞<n1≤···≤nr−1≤nr=0

(−1)r

(n1 + z)s1 · · · (nr + z)sr

=
(
Hes1,··· ,sr−

)×−1
(z)− 1

zsr

∑
−∞<n1≤···≤nr−1<0

(−1)r−1

(n1 + z)s1 · · · (nr−1 + z)sr−1

+
1

zsr−1+sr

∑
−∞<n1≤···≤nr−2≤nr−1=nr=0

(−1)r−2

(n1 + z)s1 · · · (nr + z)sr

=
...
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=

=
(
Hes1,··· ,sr−

)×−1
(z)− 1

zsr

(
Hes1,··· ,sr−1
−

)×−1
(z)+

1

zsr−1+sr

(
Hes1,··· ,sr−2
−

)×−1
(z) + · · ·+ (−1)r

zs1+···+sr .

Consequently, we have:

He•w =
(
He•−

)×−1 ×
∑
n≥0

(−J•)×n

=
(
He•−

)×−1 × (1• + J•)×−1

=
(

(1• + J•)×He•−
)×−1

.

(109)

�

Therefore, the Stokes phenomena are expressed multiplicatively by:

He•e × (He•w)×−1 = He•+ × (1• + J•)×He•− = T e• , (110)

which concludes the proof of Theorem 1.

Note that Theorem 1 also has an analogue for the difference equation
using ∆+ satisfied by the Hurwitz multizeta functions. The east Borel re-
summation would have been the inverse of the mould He•+× (1•+J•), while
the west Borel resummation would have been the mould He•−. Thus, the
Stokes phenomenon would have been expressed as the inverse of the mould
of multitangent functions.

4.4.6. On the alien derivations of H̃e
•

Let us come back in this section to the computation of the alien deriva-
tives of H̃e

•
and Ĥe

•
. In an explicit way, this computation is actually

difficult. But, from the mould difference equation ∆−H̃e
•

= H̃e
•
× J•, it is

possible to predict some formulas.

We will see that H̃e
•

turns out to be a resurgent monomial. Such a
function, according to [21], Section 3, is a resurgent function which behaves

nicely under product (which is the case for H̃e
•

because of the symmetrelity),
under the ordinary derivation (which is also the case according to (5)) as well
as under the alien derivatives. Thus, “the resurgent monomials are to the
alien derivatives what the ordinary monomials are to the natural derivative”
(see [21], p. 104).
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Theorem 2. For each ω ∈ C, there exists a scalar-valued alternel mould
Hen•ω defined over S∗ such that:

∆∆ωH̃e
•

= Hen•ω × H̃e
•
. (111)

Moreover, Hen•ω = 0• if ω 6∈ 2iπZ∗ .

Let us remind that such a theorem directly goes back to the origin of the
name of the resurgent function and generalizes the remark made relatively
to Equation (61). Actually, computing an alien derivative of a resurgent
function gives rise to a singular phenomenon: the resurgent function resurges
in the variation of the singularities of its analytic continuation.

Proof. Let us fix ω ∈ C .
We can always define a mould H̃en•ω by ∆∆ωH̃e

•
= H̃en•ω × H̃e

•
where

H̃en•ω is a priori valued in C[[z−1]].
According to Property 7, we have:

∆∆ω (ϕ̃(z − 1)) = eω (∆∆ωϕ̃) (z − 1) , for all ϕ̃ ∈ R̃ES
simple

. (112)

We can now compute in two different ways ∆∆ω

(
∆−H̃e

•)
:

∆∆ω

(
∆−H̃e

•)
(z) = eω ∆∆ω

(
H̃e
•)

(z − 1)−∆∆ω

(
H̃e
•)

(z)

= (eω − 1) H̃en•ω(z − 1)× H̃e
•
(z − 1) + ∆−

(
H̃en•ω × H̃e

•)
(z)

= (eω − 1) H̃en•ω(z − 1)× H̃e
•
(z − 1)

+∆−

(
H̃en•ω

)
(z)× H̃e

•
(z − 1) + H̃en•ω(z)×∆−

(
H̃e
•)

(z) .

∆∆ω

(
∆−H̃e

•)
(z) = ∆∆ω

(
H̃e
•)

(z)× J•(z) + H̃e
•
(z)×∆∆ω (J•) (z)

= H̃en•ω(z)× H̃e
•
(z)× J•(z) + H̃e

•
(z)× B−1

(
∆∆ωĴ

•)(z)
= H̃en•ω(z)×∆−

(
H̃e
•)

(z) + H̃e
•
(z)× B−1(0)(z)

= H̃en•ω(z)×∆−
(
H̃e
•)

(z) .

Consequently, we obtain:

H̃en•ω(z + 1) = eωH̃en•ω(z) . (113)

Using the fact that the Borel transform induces an isomorphism from
C[[z−1]] to Cδ ⊕ C{ζ}, we can denote B(H̃en•ω) by

B(H̃en•ω)(ζ) = Hen•ωδ + Ĥen•ω(ζ) . (114)
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Now, we can interpret (113) in the convolutive model, by taking its Borel
transform:

Hen•ωδ + e−ζĤen•ω(ζ) = eωHen•ωδ + eωĤen•ω(ζ) , (115)

which is equivalent to: {
(eω − 1)Hen•ω = 0• .

(eω − e−ζ)Ĥen•ω = 0• .
(116)

Consequently, we have necessarily Ĥen•ω = 0• for all ω ∈ C, and hence

B(H̃en•ω)(ζ) = Hen•ωδ , i.e. H̃en•ω = Hen•ω ∈ C . (117)

Moreover, from (116), we deduce that Hen•ω = 0• if ω 6∈ 2iπZ .

To conclude the proof, we now have to prove that the mould Hen•ω is
alternel , but this is a consequence of Property 2. �

Equation (111), expressed in the convolutive model, gives for all n ∈ Z∗:

∆∆2inπĤe
∅

= 0 =⇒ Hen∅2inπ = 0 . (118)

∆∆2inπĤe
s

= Ĵ(2inπ) δ =⇒ Hens2inπ = Ĵ(2inπ) . (119)

Nevertheless, there is, a priori, no easy way to compute the numbers
Hens1,··· ,sr2inπ if r ≥ 2 because it appears to be the residue at 2inπ of a com-

plicated combination of terms Ĥe
ωωω

:

∆∆2inπĤe
s1,··· ,sr

(ζ) = Hens1,··· ,sr2inπ δ +

r−1∑
i=1

Hens1,··· ,si2inπ Ĥe
si+1,··· ,sr

(ζ) . (120)

4.5. Application to the asymptotic expansion of Hurwitz multizeta functions

As an application of the resurgent character of Hurwitz multiple zeta
functions, and more precisely of Figure 4.1.3, we shall give the asymptotic
expansion of Hurwitz multizeta functions near infinity.

As a first calculation, we have

Lemma 14. Let k and r be two positive integers and s ≥ 2.

If A(ζ) =
∑

n1,··· ,nr≥0

an1,··· ,nr
ζn1+···+nr+k

(n1 + · · ·+ nr + k)!
and B(ζ) =

ζs−1

(s− 1)!
are

two formal power series at the origin, then:

(A ? B) (ζ)

eζ − 1
=
∑

n1,··· ,nr+1≥0

(
||n||+ k + s− 1

nr+1 − 1

)
an1,··· ,nr

bnr+1

nr+1

ζ ||n||+k+s−1

(||n||+ k + s− 1)!
,
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where ||n|| = n1 + · · ·+ nr+1, bk denotes the k-th Bernoulli number and the
summand is interpreted to be equal to

an1,··· ,nr
ζ ||n||+k+s−1

(||n||+ k + s)!
,

when nr+1 = 0.

Proof. This is a direct computation since:

(A ? B)(ζ) =
∑

n1,··· ,nr≥0

an1,··· ,nr
ζn1+···+nr+k+s

(n1 + · · ·+ nr + k + s)!
. (121)

Therefore, we obtain:

(A ? B)(ζ)

eζ − 1
=

∑
n1,··· ,nr+1≥0

an1,··· ,nr
bnr+1

nr+1!

ζn1+···+nr+1+k+s−1

(n1 + · · ·+ nr + k + s)!
. (122)

�

From

Ĥe
s1

(ζ) =
∑
n1≥0

(
n1 + s1 − 2

s1 − 1

)
bn1

n1

ζn1+s1−2

(n1 + s1 − 2)!
(123)

for all integers s1 ≥ 2, we deduce from Lemma 14 that

Ĥe
s1,s2

(ζ) =
∑

n1,n2≥0

(
n1 + s1 − 2

n1 − 1

)(
n12 + s12 − 3

n2 − 1

)
bn1

n1

bn2

n2

ζn12+s12−3

(n12 + s12 − 3)!

(124)

and more generally

Ĥe
s1,··· ,sr

(ζ) =
∑

n1,··· ,nr≥0

(
r∏

k=1

(
n1···k + s1···k − k − 1

nk − 1

)
bnk
nk

)
ζn1···r+s1···r−r−1

(n1···r + s1···r − r − 1)!
,

(125)
where n1···k denotes n1 + · · ·+ nk and s1···k = s1 + · · · sk .

Now, it is easy to deduce from it

Proposition 9. For any sequence (s1, · · · , sr) ∈ S?, Hes1,··· ,sr+ has an asymp-
totic expansion near infinity given by

H̃e
s1,··· ,sr

(z) =
∑

n1,··· ,nr≥0

(
r∏

k=1

(
n1···k + s1···k − k − 1

nk − 1

)
bnk
nk

)
1

zn1···r+s1···r−r .

(126)
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Let us notice that another proof of this asymptotic expansion could be
obtained from a recursive use of the Euler-Maclaurin formula.

Example 6.

H̃e
2
(z) =

1

z
− 1

2z2
+

1

6z3
+ · · · (127)

H̃e
3
(z) =

1

2z2
− 1

z3
+

1

4z4
+ · · · (128)

H̃e
2,1

(z) =
1

z
− 3

2z2
+

11

9z3
+ · · · (129)

5. On the algebraic structure of Hmzvcv

In this section, we are going to study the algebraic structure of Hmzvcv,
which is the algebra spanned by the convergent Hurwitz multizeta functions.
The first question is the linear independence over C of the Hurwitz multiple
zeta values. This has already been established in [33], p. 381.

As an easy consequence of Example 6, we can show that:

Lemma 15. The functions 1, He2
+, He2,1

+ and He3
+ are C-linearly indepen-

dant.

This method can be applied for any particular case, but will not be so
easy in a general way. So, we will go back to Lemma 4 to use another
method.

5.1. Linear independence of Hurwitz multizeta functions on the rational
fraction fields

Despite the fact we are going to use the C-linear independence in order
to study the algebraic structure of Hmzvcv, we will show more than this:

Theorem 3. The family
(
Hes+

)
s∈S? is C(z)-linearly independent.

Let us notice that this result has not been pointed out in [33], even if
the method is actually similar.

5.1.1. Preliminary examples

As a first example of the method developped in this section, let us con-
sider three rational functions F2, F2,1 and G valued in C such that

F2He2
+ + F2,1He2,1

+ = G . (130)

If F2,1 6= 0, we can assume that F2,1 = 1. Then, applying the operator ∆−
to this relation, we obtain:

F̃2He2
+ = G̃ , (131)
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where 
F̃2(z) = ∆−(F2)(z) +

1

z
= ∆−(F2 +He1

+)(z)

G̃(z) = ∆−(G)(z)− 1

z2
· F2(z − 1)

(132)

and

He1
+(z) =

∑
n>0

(
1

n+ z
− 1

n

)
. (133)

If F̃2 6= 0, Equation (131) would imply that He2
+ is a rational fraction,

and therefore has a finite number of poles. But, each k ∈ N∗ is a pole of
He2

+. Consequently, Equation (131) imposes F̃2 = G̃ = 0 .
Consequently, F2 +He1

+ is a 1-periodic function. Note that the rational
fraction F2 has a finite number of poles, so there exist N ∈ N∗ such that N
and −N are not a pole of F2, but N is a pole of He1

+. Consequently, −N is
a pole of F2 +He1

+. Using the 1-periodicity, we therefore obtain that each
integer is a pole of F2 +He1

+. This is, in particular, the case of the positive
integer N , which show us a contradiction.

Therefore, F2,1 = 0, which also implies, as we have just seen from Equa-
tion (131), that F2 = G = 0.

Thus, we can state the following

Lemma 16. The functions 1, He2
+ and He2,1

+ are C(z)-linearly indepen-
dent.

The following example will explain how an induction process can be used
to prove Theorem 3.

So, as a second example, let us consider this time rational functions F2,
F2,1, F3 and G valued in C such that

F2He2
+ + F3He3

+ + F2,1He2,1
+ = G . (134)

We will apply exactly the same steps as in the previous example, that is:

1. assume that F3 6= 0 .

(a) assume more precisely that F3 = 1 .
(b) apply the operator ∆− to Equation (134) to obtain

F̃2(z)He2
+ + F̃2,1He2,1

+ = G̃(z) . (135)

where 
F̃2(z) = ∆−(F2)(z) +

1

z
· F2,1(z − 1)

F̃2,1(z) = ∆−(F2,1)(z)

G̃(z) = ∆−(G)(z)− 1

z3
− 1

z2
· F2(z − 1)

(136)
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(c) use Lemma 16 to conclude that:
∆−(F2)(z) +

1

z
· F2,1(z − 1) = 0 .

∆−(F2,1)(z) = 0 .

∆−(G)(z)− 1

z3
− 1

z2
· F2(z − 1) = 0 .

(137)

(d) partially solve System (137):{
F2,1 is a constant f2,1 ∈ C .

f2,1 · He1
+ + F2 = 1− periodic function .

(138)

(e) obtain a contradiction in the same way as in the previous exam-
ple, and thus F3 = 0.

2. rewrite Equation (134) as (130), and use Lemma 16 to conclude that

F2 = F2,1 = F3 = G = 0 . (139)

Finally, Lemmas 15 and 16 can be improved to:

Lemma 17. The functions 1, He2
+, He2,1

+ and He3
+ are C(z)-linearly inde-

pendent.

5.1.2. Proof of Theorem 3

Using the algorithm described in the second example of the previous
section, we will prove this theorem by an induction process based on the
degree of Hurwitz multizeta functions. But, before beginning the proof, let
us introduce some notations, order relations and propositions.
1. For all d ∈ N, let S?≤d and S?d be the sets defined by

S?≤d = {s ∈ S? ; d˚s ≤ d} ,

S?d = {s ∈ S? ; d˚s = d} ,
(140)

where the degree of a sequence s is defined to be the difference between the
weight and the length of the sequence s : d˚s = ||s|| − l(s).
2. We can order the sequences of S?d+1 by numbering first the sequences
of length 1, then those of length 2, etc. For the following proof, let us
remark that it will not be necessary to precise the numbering within a given
length. So, we will consider the sets S?d+1 = {sn ; n ∈ N∗} and, for n ∈ N,

S
(d+1)
n = {si ; 1 ≤ i ≤ n} . Of course, the sequences sn depend on d, but

we omit it for simplicity.
3. We will finally consider the following properties:

D(d) : “the family
(
Hes+

)
s∈S?≤d

is C(z)-free.”

P(d, n) : “the family
(
Hes+

)
s∈S?≤d

⋃(
Hes+

)
s∈S(d+1)

n
is C(z)-free.”

(141)
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Proving the theorem amounts to proving that the property D(d) is true
for all d ∈ N. Since S?≤0 = ∅, the property D(0) is obviously true. Conse-
quently, we have to prove the heredity of D(n) .

This will also be done by an induction process, showing that we can
add one by one the sequences of S?d+1 in the statement given by D(n) to
obtain the property D(d+ 1): the heredity of P(d, n) will justify this. Since
P(d, 0) = D(d), the initialisation of the property P(d, n) is obvious.

In other terms, we will prove the property P(d, n) by induction on
(d, n) ∈ N2, where N2 is ordered by the lexicographic order.

Then, the proof of the theorem boils down to showing the following
implication:

∀(d, n) ∈ N2 , P(d, n) =⇒ P(d, n+ 1) ,

which is what we will now do.

Proof. Assume Property P(d, n) for a pair (d, n) ∈ N2 and let us show
that P(d, n+ 1) is, therefore, true .

In order to do this, let us consider the relation:∑
s∈S?≤d∪S

(d+1)
n+1

s6=∅

FsHes+ = F , (142)

where F and Fs , s ∈ S?≤d ∪ S
(d+1)
n+1 , are rational fractions.

We will show that Fsn+1 = 0 by exhibiting a contradiction. Consequently,
the property P(d, n) will imply that all others rational fractions are zero ;
therefore, the property P(d, n + 1) will be proven. So, let us now assume
that Fsn+1 6= 0 .

Up to dividing (142) by Fsn+1 , we can assume without loss of generality
that Fsn+1 = 1 .

Let us set

sn+1 = u · p with

{
p ≥ 1 .
u ∈ S?≤d+2−p .

(143)

Let us remark that it is possible to have u = ∅ when n = 0 . Moreover, we
will use the notation Fs even if the sequences s do not appear a priori in
Relation (142) ; in this case, we will set Fs = 0 .

Step 1 : Application of ∆− on Relation (142) .
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Since ∆− is a (1 ; τ−1)-derivative, if we apply it to Relation (142), we
obtain:

∆−

(
Hes

n+1

+

)
+

∑
s∈S?≤d∪S

(d+1)
n

s 6=∅

(
∆−

(
Fs

)
·Hes++τ−1

(
Fs

)
·∆−

(
Hes+

) )
= ∆−(F ) .

(144)
Using a change of index, we obtain:∑

s∈S?≤d∪S
(d+1)
n

s6=∅

τ−1
(
Fs

)
·∆−

(
Hes+

)
=

∑
s∈S?≤d∪S

(d+1)
n

s 6=∅

τ−1
(
Fs

)
· Hes

<r

+ · Jsr

=
∑

s∈S?≤d∪S
(d+1)
n

∑
k∈N∗

s·k∈S?≤d∪S
(d+1)
n

τ−1
(
Fs·k

)
· Jk · Hes+ .

(145)
So, we have:

∆−(F ) = Jp · Heu+ +
∑

s∈S?≤d∪S
(d+1)
n

s 6=∅

∆−
(
Fs

)
· Hes+

+
∑

s∈S?≤d∪S
(d+1)
n

∑
k∈N∗

s·k∈S?≤d∪S
(d+1)
n

τ−1
(
Fs·k

)
· Jk · Hes+ .

(146)

The Hurwitz multizeta Hes+ that appear in this relation all satisfy s ∈
S?≤d ∪ S

(d+1)
n . Indeed, let us recall that we have numbered the sequences of

the set S?d+1 by the length. Since ∆−

(
Hes

n+1

+

)
= ∆−

(
Heu·p+

)
= Heu+ · Jp ,

we therefore have u ∈ S?≤d ∪ S
(d+1)
n .

We obtain the following system by distinguishing, in the third term of
the last equation, whether the summation sequence s is empty or not, and
then by an application of the induction hypothesis P(d, n):

∀s ∈
(
S?≤d ∪ S

(d+1)
n

)
− {∅} , ∆−(Fs) +

∑
k∈N∗

s·k∈S?≤d∪S
(d+1)
n

τ−1(Fs·k) · Jk + δu,sJ
p = 0 .

∆−(F ) =
d+1∑
k=2

τ−1(Fk)J
k + (1− δn,0)τ−1(Fd+2)Jd+2 .

(147)

Step 2: A lemma which gives some partial solutions to System (147) .
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The contradiction will be highlighted by the following lemma. So, we
will look for a relation as in it, which will be found by a partial solving of
the previous system and will be done in Lemma 19.

Lemma 18. Let F be a rational fraction and f a 1-periodic function.
If, for an n-tuple (λ1, · · · , λn) ∈ Cn , with n ∈ N, the equality

F +

n∑
i=1

λiHei+ = f (148)

is valid, then we necessarily have:

{
λ1 = · · · = λn = 0 .
F and f are constant functions .

Proof. Let us assume that
n∑
i=1

λiHei+ 6= 0 . Then, this function has its

poles located at negative integers.
Besides, there exists N ∈ N such that N and −N are not poles of F . Thus,
−N is a pole of f , which therefore admits all integers as poles, according to
its 1-periodicity. Since N is a pole of f , N must be a pole of either F , or of
n∑
i=1

λiHei+ 6= 0 , which highlights a contradiction.

Then, we have:

1.

n∑
i=1

λiHei+ = 0 , which produces λ1 = · · · = λn = 0 . In fact, when

applying ∆−, we obtain:
n∑
i=1

λiJ
i = 0, which gives λ1 = · · · = λn = 0

according to the partial fraction expansion uniqueness.

2. F = f , which proves that F and f are constant functions.

�

According to this lemma, we will now be able to solve partially System

(147). Let us remind that we have noted sn+1 = u·p, where

{
p ≥ 1 .
u ∈ S?≤d+2−p .

Lemma 19. Let r be a positive integer and p ≥ 2 .
Let us also consider two r-tuples, (n1; · · · ;nr) ∈ Nr and (k1; · · · ; kr) ∈ (N∗)r

such that
r∑
i=1

(ki − 1) ≤ p− 2 .

Then, Fu·k1·1[n1]····kr·1[nr ] =

{
0 , if nr > 0 .

cste , if nr = 0 .
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Proof. Let us denote v = u·k1 ·1[n1] · · ··kr and δ(v) = p− 2−
r∑
i=1

(ki − 1) .

Let us show this lemma by induction on δ(v) (even if δ(v) can only take a
finite number of values).

• If δ(v) = 0, System (147) applied to v · 1[n], n ∈ N, give us:

∀n ∈ N , ∆−

(
Fv·1[n]

)
+ τ−1

(
Fv·1[n+1]

)
J1 = 0 . (149)

In fact:

v · 1[n] · k ∈ S?≤d ∪ Sn ⇐⇒ d˚(v · 1[n] · k) ≤ d
⇐⇒ d˚u− δ(v) + p+ k − 3 ≤ d
⇐⇒ k ≤ δ(v) + 1
⇐⇒ k = 1 (150)

We know that there exists n0 ∈ N such that Fv·1[n0] = 0 , that is to

say that the sequence v · 1[n0] does not appear in (142). Then, (149) gives

∆−

(
Fv·1[n0−1]

)
= 0 . Thus, Fv·1[n0−1] is a 1-periodic function, and therefore

a constant function according to the previous lemma, which will now be de-

noted by fv·1[n0−1] . (149) gives us again4: ∆−

(
Fv·1[n0−2] + fv·1[n0−1]He1

+

)
=

0, so Fv·1[n0−2] + fv·1[n−1]He1
+ is a 1-periodic function. Again, the pre-

vious lemma imposes to Fv·1[n0−2] being a constant function as well as
Fv·1[n0−1] = fv·1[n0−1] being the null function.

We obtain, by repeating the same reasoning:

Fu·k1·1[n1]····kr·1[nr ] =

{
0 , if nr > 0 .

cste , if nr = 0 .
(151)

• Let us assume the lemma proved for all sequence v such that δ(v) ≤ k
and let us show it for sequences such that δ(v) = k + 1 .

System (147) applied this time to v · 1[n], n ∈ N, gives:

∆−

(
Fv·1[n]

)
+ τ−1

(
Fv·1[n+1]

)
J1 +

δ(v)+1∑
l=2

τ−1
(
Fv·1[n]·l

)
J l = 0 . (152)

According to the induction hypothesis, we have that for all l ∈ [[ 2 ; δ(v)+
1 ]] , Fv·1[n]·l is a constant function which will be, as usual, denoted by fv·1[n]·l .

4Let us remark that we have ∆−(He1
+) = J1, but this does not come from Prop-

erty 4 because we have, in it, ruled out the case of divergent Hurwitz multizeta functions.
Nevertheless, this equality is true.
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Consequently, the last equation can be written as:

∀n ∈ N , ∆−

(
Fv·1[n]

)
+ τ−1

(
Fv·1[n+1]

)
J1 +

δ(v)+1∑
l=2

fv·1[n]·lJ
l = 0 . (153)

We will now apply the same reasoning as in the case δ(v) = 0. The only
modification we have to do is the application of the previous lemma to the
relation

Fv·1[n−1] +

δ(v)+1∑
l=1

fv·1[n−1]·lHe
l
+ = 0 (154)

instead of Fv·1[n−1] + Fv·1[n]He1
+ = 0 .

So, we have again proved that:

Fu·k1·1[n1]····kr·1[nr ] =

{
0 , si nr > 0 .

cste , si nr = 0 .
(155)

• The lemma is thus proved for any value of δ(v) . �

Step 3 : Revealing of the contradiction.

Equation (147), applied to u, give us:

∆−(Fu) +

p−1∑
k=1

τ−1(Fu·k)J
k + Jp = 0 . (156)

The previous lemma gives us, in particular, that Fu·1 , · · · , Fu·p−1 are
some rational fractions which are constant functions and now denoted by
fu·1 , · · · , fu·p−1. This can be rewritten:

∆−

(
Fu +

p−1∑
k=1

fu·kHek+ +Hep+

)
= 0 . (157)

Thus, Fu +

p−1∑
k=1

fu·kHek+ +Hep+ defines a 1-periodic function. The coeffi-

cients being not all zero in this relation, this enlights a contradiction of
Lemma 18 .

Thus, Fsn+1 = 0 and (142) can be rewritten:

F =
∑

s∈S?≤d∪Sn

FsHes+ . (158)
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It only remains to use the induction hypothesis P(d, n) to obtain that
all other rational fractions are null. Therefore, we have shown that:

P(d, n) =⇒ P(d, n+ 1) .

This completes the proof of the theorem. �

5.2. Algebraic relations in Hmzvcv
In this section, we give some corollaries of Theorem 3. We will begin

with some reminders on the algebra QSym of quasi-symmetric functions, and
then we will give an explicit isomorphism between this algebra and Hmzfcv.
Thus, we will be able to raise up any relation between convergent Hurwitz
multizeta functions in QSym. Consequently, we will give an answer, for the
algebra of convergent Hurwitz multizeta functions, to each question we ask
and would be able to answer for the algebra of multizeta values.

5.2.1. Reminders on QSym

Let us consider an infinite commutative alphabet X = {x1, x2, x3, · · · }.
Thus, we can consider (commutative) formal power series, valued in a ring
R, with indeterminates x1, x2, · · · . In particular, we are interested in series
such that the coefficient of the monomial xs11 · · ·xsrr is equal to the coefficient
of the monomial xs1n1

· · ·xsrnr for any strictly increasing sequence 0 < n1 <
n2 < · · · < nr of positive integers indexing the variables (and for any positive
integer sequence of exponents s1, · · · , sr).

Such a series is called a quasi-symmetric function(see [28], or [3], [30],
[31] and [39] for a more recent presentation).

From the definition, it is clear that the set of quasi-symmetric functions
is an R-vector space denoted QSymR(X), or more simply QSymR, as well
as QSym if there is no possible ambiguity.

This vector space has a natural basis, the so-called monomial basis. Let
us notice that QSym has other interesting bases (see [3], for the fundamen-
tal basis, but also [47] for a new basis related to multizetas values) . A
composition I of length r being given, we denote by

MI(X) =
∑

0<n1<···<nr

xi1n1
· · ·xirnr , (159)

the monomial basis. These series are quasi-symmetric functions. Moreover,
according to the definition, it turns out that they clearly span QSym. On
the other hand, if we order the indeterminates by

x1 > x2 > x3 > · · · , (160)

and extend this order to words to be the lexicographic order, then the leading
term of MI(X) is xi11 · · ·xirr . Thus, the MI ’s are also linearly independent
and consequently are a basis of QSym.
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Since the monomials MI are iterated sums, the MI ’s multiply themselves
using the stuffle product (see [32], for instance). Therefore, the product of
two quasi-symmetric functions is a quasi-symmetric function, and QSym is
actually an R-algebra.

Let us conclude these reminders by noticing that we have given the
classical definition of quasi-symmetric function: the sequence of positive
integers indexing the variables is a strictly increasing sequence. Nevertheless,
the multizetas’ convention, which is the most used today, and consequently
the Hurwitz multizetas’ convention, is the opposite one: the sequence of
positive integers indexing the variables is a strictly decreasing sequence.

If the both conventions were identically the same, the Hurwitz multizeta
functions should be seen as a particular evaluation of the monomials via the

specialisation xn 7−→
1

n+ z
, according to the condition that the result is

a convergent series. In order to use jointly both of these conventions, we
can consider the alphabet X = {x−1;x−2;x−3; · · · } and the specialisation

x−n 7−→
1

n+ z
. However, to make links between QSym and multizeta

values, we only need to have an infinite totally ordered alphabet.

5.2.2. Corollaries to Theorem 3

A totally ordered and infinite alphabet A = {a1, a2, · · · } being given, a
word ω = w1w2 · · ·wl over A is said to be a Lyndon word if it is strictly
smaller than any of its non-empty proper right factors for the lexicographic
order:

ω < wiwi+1 · · ·wl for all i ∈ [[ 2 ; l ]] . (161)

To have more information about Lyndon words, we refer the reader to
[37] for historical references as well as to [50].

The definition of Lyndon words allows us to deduce from Theorem 3 a
ring basis of Hmzfcv:

Corollary 2. Let us denote by QSymcv the subalgebra of QSym spanned
by the monomials MI with a composition I = (i1, · · · , ir) such that i1 ≥ 2 .
Then:

Hmzfcv ' QSymcv ' Q
[
Lyn(N∗)− {1}

]
, (162)

where Lyn(y1; y2; · · · ) denotes the set of Lyndon words over the alphabet
Y = {y1; y2; · · · } .

Proof. 1. Let us define h : QSymcv −→ Hmzfcv on the monomial basis
by h(Ms1,··· ,sr) = Hes1,··· ,sr+ .
h is a algebra morphism, since the monomial basis of QSym and the Hurwitz
multizeta functions are multiplied by the same rule, the stuffle product.
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Moreover, h is a surjective map, by construction. Finally, h is injective,
according to Theorem 3. Consequently, h is an algebra isomorphism.

2. A stuffle contains all the terms of the ordinary shuffle together with
contractions obtained by adding two consecutive parts coming from different
terms. So, by a triangular change of variable, the quasi-shuffle product
defines an algebraic structure, which is actually isomorphic to an ordinary
shuffle algebra over the same set (see [32]).

According to the Radford theorem (see [48]), a shuffle algebra over the
alphabet A is a polynomial algebra in the Lyndon words over A as genera-
tors. Thus, a stuffle algebra over the alphabet A is also a polynomial algebra
spanned by an algebraically independent familly indexed by Lyndon words
over A (see [32]). Consequently, if we define a subalgebra of a stuffle algebra,
we just have to exclude some relevant Lyndon words:

QSymcv ' Q
〈
Lyn(y1; y2; · · · )− {y1}

〉
(163)

�

Since it is well-known that QSym is a graded algebra, QSymcv is also a
graded algebra whose nth homogeneous component is of dimension 2n−2 (and
respectively 1 and 0 if n = 0 and n = 1). Consequently, the isomorphism
introduced in Corollary 2 first implies:

Corollary 3. Let us denote the algebra of convergent Hurwitz multizeta
functions of weight n by Hmzfcv,n, that is the subalgebra of Hmzfcv spanned
by the Hurwitz multizetas Hes1,··· ,sr+ such that s1 + · · ·+ sr = n and s1 ≥ 2 .
Then:

1. Hmzfcv is graded by the weight: Hmzfcv =
⊕
n∈N
Hmzfcv,n .

∀(p, q) ∈ N2 , Hmzfcv,p · Hmzfcv,q ⊂ Hmzfcv,p+q .
(164)

2.

{
dim Hmzfcv,0 = 1 , dim Hmzfcv,1 = 0.

dim Hmzfcv,n = 2n−2 for all n ≥ 2.

Finally, the isomorphism h allows us to completely describe the alge-
braic relations between convergent Hurwitz multizeta functions since these
relations can be lifted to the formal level:

Corollary 4. Each algebraic relation in Hmzfcv comes from the expansion
of the stuffle products.
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Proof. Let us consider the algebra A = Q〈Ω〉, where

Ω =
⋃
n∈N
{yI ; I composition of n} , (165)

with the concatenation product. Let us recall that the stuffle product is
recursively defined by (17) for any alphabet which has a semi-group struc-
ture. Thus, this definition is a valid one for the alphabet N1 and give us, by
bilinearity, a stuffle over A:

yI yJ =
∑
K∈N?1

〈I J |K〉yK (166)

Here, it is natural to use the same symbol to indicate the stuffle over A
and over the compositions since it is morally the same product.

Let I be the ideal of A spanned by the elements yI ·yJ−yI yJ , where I
and J are two compositions and · denote the concatenation product. Thus,
A/I is an algebra, which is naturally graded since I is an homogeneous ideal
and A is graded by the weight (with dyI = n, if I is a composition of n).

The homogeneous component of weight n of A/I is of dimension 2n−1,
since each element of A/I is generated by the yI , I being a composition of
n, these elements are linearly independent (according to the definition of A)
and are 2n−1.

Finally, let us consider the linear map ϕ : A/Y −→ QSym defined by
ϕ(yI) = MI . It is an algebra morphism:

ϕ(yI · yJ) = ϕ(yI yJ) = ϕ
( ∑
K∈N?1

〈I J |K〉yK
)

=
∑
K∈N?1

〈I J |K〉MK = MIMJ = ϕ(yI)ϕ(yJ) .

(167)

Moreover, ϕ, restricted to the homogeneous component of weight n of A/I,
is valued in QSymn, is surjective by definition and injective according to the
dimensions. Consequently, ϕ is an isomorphism between A/Y and QSym.

If we have an algebraic relation between convergent Hurwitz multizeta
functions, like

n∑
i=1

λi

(
Hes

i
1

+

)αi1 · · ·(Hesini+

)αini
= 0 (168)

where, for all i ∈ [[ 1 ; n ]], λi ∈ C, ni ∈ N∗ and sij ∈ S?, we can lift it to the
formal level, from Hmzfcv to QSymcv, and then to A/I:

n∑
i=1

λi

(
ysi1

)αi1 · · ·(ysini)αini = 0 in A/I . (169)
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Consequently:

n∑
i=1

λi

(
ysi1

)αi1 · · ·(ysini)αini ∈ I . (170)

Therefore, all the algebraic relations between convergent Hurwitz multi-
zeta functions, like (168), is directly a consequence of the stuffle relations.
�

6. Extension to the divergent Hurwitz multizeta functions

First of all, let us remind the following Lemma from [6] which gives us
an algebraic way to extend the definition of a symmetrel mould:

Lemma 20. Let Se• be a symmetrel mould over the alphabet Ω = N∗, with
values in a commuative algebra A, well-defined for sequences in S? = {s ∈
N?1 ; s1 ≥ 2}

1. For all θ ∈ A , there exists a unique symmetrel extension of Se• to
N?1, denoted by Se•θ , such that Se1

θ = θ .

2. For all γ ∈ A , let N e•γ be the symmetrel mould defined on sequences

of N?1 by: N esγ =

{ γr

r!
, if s = 1[r] .

0 , otherwise.

Then, for all (θ1 ; θ2) ∈ A2 , we have:

Se•θ1 = N e•θ1−θ2 × Se
•
θ2 . (171)

6.1. Algebraic structure of Hmzf
According to Lemma 20, to extend the definition of the Hurwitz multi-

zeta functions to the divergent case, i.e. when s1 = 1, we just need to choose
which function will be He1

+. Let us notice that, for any choice, the algebra
Hmzv spanned by all the Hurwitz multizeta functions (the convergent and
divergent ones) is then described by

Hmzf = Hmzfcv
[
He1

+

]
. (172)

Thus, Theorem 3 can be extended to all Hurwitz multizeta functions:

Theorem 4. The family
(
Hes+

)
s∈N?1

is C(z)-linearly independent.

Its corollary can also be extended easily to obtain:

Corollary 5. Hmzf ' QSym ' Q
[
Lyn(N∗)

]
, where Lyn(y1; y2; · · · ) de-

notes the set of Lyndon words over the alphabet Y = {y1; y2; · · · } .
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Corollary 6. Let us denote the algebra of Hurwitz multizeta functions of
weight n by Hmzfn .
Then:

1. Hmzf is graded by the weight: Hmzf =
⊕
n∈N
Hmzfn .

2.

{
dim Hmzf0 = 1 ,

dim Hmzfn = 2n−1 for all n ≥ 1.

Corollary 7. Each algebraic relation in Hmzv comes from the expansion
of the stuffle products.

6.2. About a possible resurgent character of divergent Hurwitz multizeta
functions

Since the properties of convergent Hurwitz multizeta are to be extended,
we want to define the divergent Hurwitz multizeta He1

+ in order that it
satisfies:

1. He1
+ is defined from a Borel-Laplace summation of a certain f̃ ∈

− ln z + C[[z−1]] satisfying the difference equation

∆−f̃(z) =
1

z
. (173)

2. He1
+ is asymptotically equal, near infinity, to − ln z +

∑
n>0

bn
nzn

, where

bn is the nth Bernoulli number.

If there exists such a function He1
+, this one is unique. Indeed, the first

point gives us that ∆−f̃
′(z) =

−1

z2
with f̃ ′ ∈ C[[z−1]]. Thus, we necessarily

have f̃ fixed, up to a constant since f̃ ′ = −H̃e
2
. Then, the second point

prove the unicity of the constant. Moreover, provided such a function exists,
this last differential property can be generalized to all divergent Hurwitz
multizeta functions such that Equation (5) is valid for any divergent Hurwitz
multizeta functions.

On the other hand, it is clear that (173) has a unique solution f̃(z) =
− ln z + g̃(z) ∈ − ln z + C[[z−1]] caracterized by:

∆−g̃(z) =
1

z
+ ln

(
1− 1

z

)
∈ z−2C[[z−1]] . (174)

Then, the resurgent treatment of the generic 1-order difference equation can
be used to produce a simple resurgent function defined in the geometric
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model for all z ∈ C, <e z > 0, by

ge(z) =
∑
n>0

[
1

n+ z
+ ln

(
1− 1

n+ z

)]
= ln z + γ +

∑
n>0

(
1

n+ z
− 1

n

)
= ln z − 1

z
− Γ′(z)

Γ(z)
, (175)

where γ ' 0.5772156649 denotes the Euler - Mascheroni constant and Γ the
Gamma function which satisfies the well-known identity:

Γ(z + 1) = zΓ(z) (176)

Consequently, the function f defined over <e z > 0 by

f(z) = −1

z
− Γ′(z)

Γ(z)
= γ +

∑
n>0

(
1

n+ z
− 1

n

)
(177)

satisfies as required (173) and thus the first point.

Finally, it is well-known that the derivative of the logarithm of the Γ
function has an asymptotic expansion near infinity given by

Γ′(z)

Γ(z)
� ln z − 1

2z
−
∑
n>0

b2n
2nz2n

. (178)

which shows that f also satisfies the second point. Thus, we shall choose

He1
+(z) = γ +

∑
n>0

(
1

n+ z
− 1

n

)
(179)

which allows us to extend multizeta values to the divergent case by setting
Ze1 = γ, which is exactly the choice one would have, according to [55]. But
for simplicity, we prefer to choose Ze1 = 0 and use, if necessary, the “change
of constant formula” (171). Therefore, we set:

He1
+(z) =

∑
n>0

(
1

n+ z
− 1

n

)
(180)

Let us notice that this regularization is actually set out in [55] for the
divergent multizeta values from a different point of view, namely this of
special functions. It is nice to see that the resurgent point of view agrees
with this one.

From the previous resurgent treatment of (173), we now know that He1
+

is equal to a simple resurgent function minus the principal branch of the
complex logarithm. Therefore, Theorem 1 is extended as:
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Theorem 5. Any Hurwitz multizeta function is a polynomial in − ln with
coefficients in the algebra of simple resurgent functions whose singularities
are over 2πiZ∗ .
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