About Links Between Multizeta Values and Multitangent Functions.

Workshop Periods and Motives, A New Perspective on Renormalization.

> Olivier Bouillot, Paris XI University.

ICMAT , Madrid, July 4th, 2012 .

1 A few words on moulds.

2 Introduction to Multitangent Functions.

3 Multitangent Functions Renormalization.

<u>Concrete definition :</u> A mould is a function with a varying number of variables.

Mathematical definition : A mould is a function defined on a monoid.

Typical example : The Multizetas Values !

	Functional notations	Mould notations
Evaluation	f(x)	M⁵
Name	f	M•

Why do we need some "new" notations ?

For analytical reasons, moulds might be contracted with dual objects, called co-moulds :

$$\sum_{\underline{\boldsymbol{\omega}}\in\Omega^{\star}}M^{\underline{\boldsymbol{\omega}}}B_{\underline{\boldsymbol{\omega}}}.$$

Important remark :

All mould's definitions come from such an interpretation !

In particular, this is the case for $\begin{cases} the mould algebra's structure. \\ the mould's symmetries. \end{cases}$

Let M^{\bullet} and N^{\bullet} defined on an alphabet Ω (valued in an algebra) and λ a scalar.

Addition:

$$S^{\bullet} = M^{\bullet} + N^{\bullet} \iff \forall \underline{\omega} \in \Omega^{\star} , \ S^{\underline{\omega}} = M^{\underline{\omega}} + N^{\underline{\omega}}$$

Scalar multiplication:

$$(\lambda M)^{\bullet} = \lambda \cdot M^{\bullet} \iff \forall \underline{\omega} \in \Omega^{\star} , \ (\lambda M)^{\underline{\omega}} = \lambda M^{\underline{\omega}} .$$

Mould multiplication:

$$P^{\bullet} = M^{\bullet} \times N^{\bullet} \iff \forall \underline{\omega} \in \Omega^{\star} , \ P^{\underline{\omega}} = \sum_{\substack{(\underline{\omega}^{1} : \underline{\omega}^{2}) \in (\Omega^{\star})^{2} \\ \underline{\omega} = \underline{\omega}^{1} : \underline{\omega}^{2}}} M^{\underline{\omega}^{1}} N^{\underline{\omega}^{2}} .$$

Example : $P^{\omega_1,\omega_2,\omega_3} = M^{\omega_1,\omega_2,\omega_3} N^{\emptyset} + M^{\omega_1,\omega_2} N^{\omega_3} + M^{\omega_1} N^{\omega_2,\omega_3} + M^{\emptyset} N^{\omega_1,\omega_2,\omega_3} .$

With these three operations, the set of moulds is an unitary associative (non commutative) algebra.

Symmetrality \longleftrightarrow shuffle product :

If
$$\Omega = \{x_i ; i \in I\}$$
:

$$\begin{cases}
\varepsilon \sqcup \omega = \omega \sqcup \varepsilon = \omega \\
(x_i \omega^1) \sqcup (x_j \omega^2) = x_i (\omega^1 \sqcup (x_j \omega^2)) + x_j ((x_i \omega^1) \sqcup \omega^2) .
\end{cases}$$

Let $sh\underline{a}(\underline{\omega}^1; \underline{\omega}^2) = \{ words appear in \omega^1 \sqcup \omega^2 (with multiplicity) \}$. A mould Ma^{\bullet} is symmetr<u>al</u> when :

$$\forall (\underline{\boldsymbol{\omega}}^1 ; \underline{\boldsymbol{\omega}}^2) \in (\Omega^\star)^2 \ , \ Ma^{\underline{\boldsymbol{\omega}}^1} Ma^{\underline{\boldsymbol{\omega}}^2} = \sum_{\underline{\boldsymbol{\omega}} \in sh\underline{a}(\underline{\boldsymbol{\omega}}^1 ; \underline{\boldsymbol{\omega}}^2)} Ma^{\underline{\boldsymbol{\omega}}} \ .$$

 $\underline{\mathsf{Example}:} \quad \mathcal{W}\mathsf{a}^{\omega_1,\cdots,\omega_r} = (-1)^{\sharp(\underline{\boldsymbol{\omega}})} \int_{0 < t_r < \cdots < t_1 < 1} \frac{dt_1 \cdots dt_r}{(\omega_1 - t_1) \cdots (\omega_r - t_r)} \;,$

where
$$\left\{ \begin{array}{l} \Omega = \{0\,;1\}\\ \#(\underline{\boldsymbol{\omega}}) = \#\{i\,;\omega_i = 0\} \\ \omega_1 = 0 \text{ and } \omega_r = 1 \end{array} \right.$$
, is symmetral.

Symmetrelity \longleftrightarrow quasi-shuffle product (ou stuffle product) :

If
$$\Omega = \{y_i ; i \in \mathbb{N}\}$$
:

$$\begin{cases} \varepsilon \star \omega = \omega \star \varepsilon = \omega \\ (y_i\omega_1) \star (y_j\omega_2) = y_i(\omega_1 \star (y_j\omega_2)) + y_j((y_i\omega_1) \star \omega_2) + y_{i+j}(\omega_1 \star \omega_2) . \end{cases}$$

Let $sh\underline{e}(\underline{\omega}^1; \underline{\omega}^2) = \{ words appear in \omega^1 \star \omega^2 \text{ (with multiplicity)} \}$. A mould Me^{\bullet} is symmetr<u>el</u> when :

$$\forall (\underline{\boldsymbol{\omega}}^{1}; \, \underline{\boldsymbol{\omega}}^{2}) \in (\Omega^{\star})^{2} \, , \, \operatorname{\mathit{Me}}^{\underline{\boldsymbol{\omega}}^{1}} \operatorname{\mathit{Me}}^{\underline{\boldsymbol{\omega}}^{2}} = \sum_{\underline{\boldsymbol{\omega}} \in \operatorname{\mathit{she}}(\underline{\boldsymbol{\omega}}^{1}; \, \underline{\boldsymbol{\omega}}^{2})} \operatorname{\mathit{Me}}^{\underline{\boldsymbol{\omega}}} \, .$$

$$\underline{\mathsf{Example}:} \quad \mathcal{Z}e^{s_1, \cdots, s_r} = \sum_{1 \le n_r < \cdots < n_r} \frac{1}{n_1^{s_1} \cdots n_r^{s_r}} \text{ , where } \left\{ \begin{array}{l} \Omega = \mathbb{N}^* \\ s_1 \ge 2 \end{array} \right.$$

is symmetrel.

Symmetrility

If
$$\Omega = \{y_i ; i \in \mathbb{N}\}$$
:

$$\begin{cases} \varepsilon \widetilde{\star} \omega = \omega \widetilde{\star} \varepsilon = \omega \\ (y_i \omega_1) \widetilde{\star} (y_j \omega_2) = y_i (\omega_1 \widetilde{\star} (y_j \omega_2)) + y_j ((y_i \omega_1) \widetilde{\star} \omega_2) + (y_i \circledast y_j) (\omega_1 \widetilde{\star} \omega_2) . \end{cases}$$

Here, \circledast is a abstract contraction which replace addition in symmetrelity. Let $sh\underline{i}(\underline{\omega}^1; \underline{\omega}^2) = \{ \text{words appear in } \omega^1 \,\widetilde{\star} \, \omega^2 \text{ (with multiplicity)} \}$ A mould Mi^{\bullet} is symmetreli when :

$$\forall (\underline{\boldsymbol{\omega}}^{1}; \underline{\boldsymbol{\omega}}^{2}) \in (\Omega^{\star})^{2} \ , \ \textit{Mi}^{\underline{\boldsymbol{\omega}}^{1}}\textit{Mi}^{\underline{\boldsymbol{\omega}}^{2}} = \sum_{\underline{\boldsymbol{\omega}} \in \textit{shi}(\underline{\boldsymbol{\omega}}^{1}; \underline{\boldsymbol{\omega}}^{2})}\textit{Mi}^{\underline{\boldsymbol{\omega}}} \ ,$$

with the following recursive evaluation rule:

$$Mi^{\underline{\mathbf{v}}\cdot(\mathbf{x}\circledast y)\cdot\underline{\mathbf{w}}} = \begin{cases} \frac{Mi^{\underline{\mathbf{v}}\cdot\mathbf{x}\cdot\underline{\mathbf{w}}} - Mi^{\underline{\mathbf{v}}\cdot\mathbf{y}\cdot\underline{\mathbf{w}}}}{x-y} , & \text{if } x \neq y . \\ \\ \frac{\partial Mi^{\underline{\mathbf{v}}\cdot\mathbf{x}\cdot\underline{\mathbf{w}}}}{\partial x} , & \text{if } x = y . \end{cases}$$

Definition:

Let
$$S^* = \{ \underline{s} \in seq(\mathbb{N}^*) ; s_1 \ge 2 \text{ et } s_r \ge 2 \}$$
.
For all sequence $\underline{s} \in S^*$, we consider:
 $\mathcal{T}e^{s_1, \cdots, s_r} : \mathbb{C} - \mathbb{Z} \longrightarrow \mathbb{C}$
 $z \longmapsto \sum_{-\infty < n_r < \cdots < n_1 < +\infty} \frac{1}{(n_1 + z)^{s_1} \cdots (n_r + z)^{s_r}}$.

<u>**Remarks**</u>: 1. Multitangent functions are a generalization of Eisenstein series (r = 1).

2. Multitangent functions appear naturally in problems of holomorphic dynamics.

Property :

1 Differential property.

Let
$$\underline{\mathbf{s}} = (s_1; \cdots s_r) \in \mathcal{S}^{\star}$$
 .

The function $\mathcal{T}e^{\underline{s}}$ is holomorphic on $\mathbb{C}-\mathbb{Z}$; it is a uniformly convergent series on any compact subset of $\mathbb{C}-\mathbb{Z}$ and satisfies:

$$\frac{\partial \mathcal{T} e^{\mathbf{s}}}{\partial z} = -\sum_{i=1}^{r} s_i \mathcal{T} e^{s_1, \cdots, s_{i-1}, s_i + 1, s_{i+1}, \cdots, s_r}$$

Parity property.

 $\forall z \in \mathbb{C} - \mathbb{Z} \ , \ \forall \underline{\mathbf{s}} \in \mathcal{S}^{\star} \ , \ \mathcal{T}e^{\underline{\mathbf{s}}}(-z) = (-1)^{||\underline{\mathbf{s}}||} \mathcal{T}e^{\overleftarrow{\underline{\mathbf{s}}}}(z) \ .$

Symmetrelity.

 $\mathcal{T}e^{\bullet}$ is symm<u>e</u>trel.

Introduction to Multitangent Functions: Reduction into Monotangent Functions, First Version.

<u>Remark</u> : A monotangent function is a multitangent function with length 1 .

Let:
$$\mathcal{M}ZV = \operatorname{Vect}_{\mathbb{Q}} \left(\mathcal{Z}e^{\mathbf{s}} \right)_{\mathbf{s} \in \operatorname{seq}(\mathbb{N}^*)} {}_{s_1 \geq 2}$$

$$m({f s})={\sf max}(s_1\,;\cdots;s_r),$$
 for all ${f s}\in{\sf seq}({\mathbb N}^*)$.

Property: Reduction of Convergent Multitangent Functions into Monotangent Functions.

$$\forall \underline{\mathbf{s}} \in \mathcal{S}^{\star} \ , \ \exists (z_2; \cdots; z_{m(\underline{\mathbf{s}})}) \in \mathcal{M}ZV^{m(\underline{\mathbf{s}})-1} \ , \ \mathcal{T}e^{\underline{\mathbf{s}}} = \sum_{\substack{k=1\\k=2}}^{m(\underline{\mathbf{s}})} z_k \mathcal{T}e^k \ .$$

Sketch of proof:

- 1. Partial fraction expansion of $rac{1}{(n_1+X)^{s_1}\cdots(n_r+X)^{s_r}}$.
- 2. Using an analytic argument:

$$\forall z \in \mathbb{C} - \mathbb{R} , |\mathcal{T}e^{\underline{s}}(z)| \leq 4r \left(\frac{2}{|\Im m z|}\right)^{s_1 + \dots + s_r - r - 1} \frac{e^{-\pi |\Im m z|}}{1 - e^{-\pi |\Im m z|}}$$

Introduction to Multitangent Functions: Examples of Reduction into Monotangent Functions.

Weight 4 $\mathcal{T}e^{2,2} = 2\zeta(2)\mathcal{T}e^2 .$ $\mathcal{T}e^{2,3} = -3\zeta(3)\mathcal{T}e^2 + \zeta(2)\mathcal{T}e^3 .$ $\mathcal{T}e^{3,2} = 3\zeta(3)\mathcal{T}e^2 + \zeta(2)\mathcal{T}e^3.$ $\mathcal{T}e^{2,1,2} = 0$. Weight 5 1

$$\begin{aligned} & \underbrace{\text{Weight 6}} \\ \mathcal{T}e^{2,4} &= \frac{8}{5}\,\zeta(2)^2 \mathcal{T}e^2 - 2\zeta(3)\mathcal{T}e^3 + \zeta(2)\mathcal{T}e^4 \ . \\ \mathcal{T}e^{3,3} &= -\frac{12}{5}\,\zeta(2)^2 \mathcal{T}e^2 \ . \\ \mathcal{T}e^{4,2} &= \frac{8}{5}\,\zeta(2)^2 \mathcal{T}e^2 + 2\zeta(3)\mathcal{T}e^3 + \zeta(2)\mathcal{T}e^4 \ . \\ \mathcal{T}e^{2,2,2} &= \frac{8}{5}\,\zeta(2)^2 \mathcal{T}e^2 \ . \\ \mathcal{T}e^{2,1,3} &= -\frac{2}{5}\,\zeta(2)^2 \mathcal{T}e^2 + \zeta(3)\mathcal{T}e^3 \ . \\ \mathcal{T}e^{3,1,2} &= -\frac{2}{5}\,\zeta(2)^2 \mathcal{T}e^2 - \zeta(3)\mathcal{T}e^3 \ . \\ \mathcal{T}e^{2,1,1,2} &= \frac{4}{5}\,\zeta(2)^2 \mathcal{T}e^2 \ . \end{aligned}$$

Relations Between Multizeta Values Obtained via the Study of Multitangent Functions: a Commutative Diagram.

Property:

The symmetrelity of $\mathcal{T}e^{\bullet}$ and the precedent commutative diagram show the symmetrelity of $\mathcal{Z}e^{\bullet}$.

<u>Remark:</u> We obtain other relations between multizeta values, for example some of regularization.

Relations Between Multizeta Values Obtained via the Study of Multitangent Functions: For weight 4.

Multitangent functions give us the following relations between multizetas values:

By the commutative diagram:

$$\begin{aligned} 6\mathcal{Z}e^{2,2} + 8\mathcal{Z}e^4 &= 5(\mathcal{Z}e^2)^2 \\ 2\mathcal{Z}e^{2,2} + \mathcal{Z}e^4 &= (\mathcal{Z}e^2)^2 . \end{aligned}$$

• By the absence of composant Te^1 :

$$2\mathcal{Z}e^{2,2} + 4\mathcal{Z}e^{3,1} = \left(\mathcal{Z}e^2\right)^2 \,.$$

<u>Consequences:</u> For the weight 4, we find all the symmetr<u>elity</u> and symmetr<u>ality</u> relations. We find sufficiently many relations to deduce those of regularization.

Problem : We are not able to find Euler relation: $Ze^{2,1} = Ze^3 \cdots$

Theorem: Multitangent Functions Renormalization.

There exists an extension of multitangent functions to seq(\mathbb{N}^*) such that: 1. $\mathcal{T}e^{\bullet}$ is always symmetrel.

2.
$$\forall z \in \mathbb{C} - \mathbb{Z}$$
 , $\mathcal{T}e^1(z) = rac{\pi}{ an(\pi z)}$

This extension automatically satisfies:

the differential property. the parity property.

It also satisfy the reduction property.

The removal to the right algorithm does not apply:

- 1. $\mathcal{T}e^{\bullet} = \mathcal{H}e^{\bullet}_{+} \times \mathcal{C}e^{\bullet} \times \mathcal{H}e^{\bullet}_{-}$.
- 2. Renormalize $\mathcal{H}e^{\bullet}_{\pm}$ by the removal to the right/left algorithm.

Problem: Divergent multitangent functions are not written in an internal way...

We would like to express divergent multitangent functions with convergent multitangent functions.

Let us consider colored multizeta values and colored multitangent functions:

For
$$\left(\frac{e}{\underline{s}}\right) \in \operatorname{seq}\left(\mathbb{Q}/\mathbb{Z} \times \mathbb{N}^*\right)$$
 and $e_k = e^{-2i\pi\varepsilon_k}$, for $k \in \llbracket 1; n \rrbracket$, we denote:

$$\mathcal{Z}e^{\left(\frac{\varepsilon_1}{s_1}, \cdots, \frac{\varepsilon_r}{s_r}\right)} = \sum_{1 \le n_r < \cdots < n_1} \frac{e_1^{n_1} \cdots e_r^{n_r}}{n_1^{s_1} \cdots n_r^{s_r}} \cdot \mathcal{T}e^{\left(\frac{\varepsilon_1}{s_1}, \cdots, \frac{\varepsilon_r}{s_r}\right)}(z) = \sum_{-\infty < n_r < \cdots < n_1 < +\infty} \frac{e_1^{n_1} \cdots e_r^{n_r}}{(n_1 + z)^{s_1} \cdots (n_r + z)^{s_r}} \cdot$$

Theorem: The Generating Functions $\mathcal{T}ig^{\bullet}$.

Let:

$$\left\{ \begin{array}{l} Qig^{\emptyset}(z) = 0 \ . \\ Qig^{\binom{\varepsilon_1}{v_1}}(z) = -Te^{\binom{\varepsilon_1}{1}}(v_1 - z) \ . \\ Qig^{\binom{\varepsilon_1, \cdots, \ \varepsilon_r}{v_1, \cdots, \ v_r}}(z) = 0 \ , \ \text{si} \ r \ge 2 \ . \end{array} \right.$$

$$\left\{\begin{array}{l} \delta^{\scriptscriptstyle \psi} = 0 \ , \\ \delta^{\left(\substack{\varepsilon_1, \cdots, \varepsilon_r \\ v_1, \cdots, v_r\right)}} = \left\{\begin{array}{l} \frac{(i\pi)^r}{r!} \mathbbm{1}_{\{0\}}(\varepsilon_1) \cdots \mathbbm{1}_{\{0\}}(\varepsilon_r) & , \text{ if } r \text{ is even.} \\ 0 & , \text{ if } r \text{ is odd.} \end{array}\right.\right.$$

Then:

a

$$\mathcal{T}ig^{\bullet}(z) = \delta^{\bullet} + \mathcal{Z}ig_{+}^{\bullet} \times \mathcal{Q}ig^{\left\lceil \bullet \right\rceil}(z) \times \mathcal{Z}ig_{-}^{\left\lfloor \bullet \right\rceil}.$$

Property: Reduction into Monotangent Functions.

W

$$\forall \underline{\mathbf{s}} \in \operatorname{seq}(\mathbb{N}^*) , \exists (z_1; \cdots; z_{m(\underline{\mathbf{s}})}) \in \mathcal{M}ZV^{m(\underline{\mathbf{s}})} , \ \mathcal{T}e^{\underline{\mathbf{s}}} = \delta^{\underline{\mathbf{s}}} + \sum_{k=1}^{m(\underline{\mathbf{s}})} z_k \mathcal{T}e^k ,$$

where $\delta^{\underline{\mathbf{s}}} = \begin{cases} \frac{(i\pi)^r}{r!} & \text{, if } \underline{\mathbf{s}} = 1^{[r]} \text{ and if } r \text{ is even.} \\ 0 & \text{, else.} \end{cases}$

$$\underline{\text{Important remark:}} \ z_1 = 0 \iff \underline{\mathbf{s}} \neq 1^{[r]} \text{ or } \left\{ \begin{array}{l} \underline{\mathbf{s}} = 1^{[r]} \\ r \text{ is even } . \end{array} \right.$$

Multitangent Functions Renormalization: Examples of Reduction into Monotangent Functions.

$$\boxed{ \begin{array}{c} \hline \textbf{Weight 2} \\ \mathcal{T}e^{1,1} &= -3\,\zeta(2) \ . \\ \\ \mathcal{T}e^{1,2} &= 0 \ . \\ \\ \mathcal{T}e^{2,1} &= 0 \ . \\ \\ \mathcal{T}e^{1,1,1} &= -\zeta(2)\mathcal{T}e^1 \ . \\ \\ \hline \hline \textbf{Weight 3} \end{array} } \qquad \mathcal{T}$$

We have:

$$\begin{aligned} \mathcal{T}e^{1,1,2} &= \left(-2\mathcal{Z}e^{2,1} + \mathcal{Z}e^{2}\mathcal{Z}e^{1} - \mathcal{Z}e^{1,2}\right)\mathcal{T}e^{1} + \mathcal{Z}e^{1,1}\mathcal{T}e^{2} \\ &= \left(-2\mathcal{Z}e^{2,1} + \mathcal{Z}e^{2,1} + \mathcal{Z}e^{3}\right)\mathcal{T}e^{1} + \frac{1}{2}\left(\left(\mathcal{Z}e^{1}\right)^{2} - \mathcal{Z}e^{2}\right)\mathcal{T}e^{2} \\ &= \left(\mathcal{Z}e^{3} - \mathcal{Z}e^{2,1}\right)\mathcal{T}e^{1} - \frac{1}{2}\mathcal{Z}e^{2}\mathcal{T}e^{2} \;. \end{aligned}$$

So, by the cancellation of the Te^1 term, we obtain:

$$\mathcal{Z}e^{2,1}=\mathcal{Z}e^3$$
.

- Multitangent functions seem to be an interesting functional model for the study of multizetas values.
- There is a deep link between multizeta values and multitangent functions, the reduction into monotangent functions ; another important link, but a conjectural one, is projection on multitangent function space.
- Convergent multitangent functions don't allow us to find the full dimorphy of multizeta values: we find only $1 + \frac{1}{2}$ symmetries.
- The missing relations seem to be retrievable, but in a more complicated way...