Generalization of Bernoulli numbers and polynomials to the multiple case

Olivier Bouillot, Marne-la-Vallée University, France

Resurgence, Physics and Numbers. May 18-22, 2015. Centro di Ricerca Matematica Ennio De Giorgi, Pisa, May 21st, 2015 .

(日)、(型)、(E)、(E)、(E)、(O)()

Outline

1 Introduction to mould calculus

- First definitions
- Mould operations
- Primary symmetries
- Secondary symmetries

2 Using mould calculus: a generalization of Bernoulli numbers to the multiple case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへで

Outline

1 Introduction to mould calculus

First definitions

- Mould operations
- Primary symmetries
- Secondary symmetries

2 Using mould calculus: a generalization of Bernoulli numbers to the multiple case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

Definition:

- Concrete def.: A mould is a function with a variable number of variables.
- Mathematical def. 1: A mould is a function defined on a monoid.
- Mathematical def. 2: A mould is a collection (f_0, f_1, f_2, \cdots) of functions, f_n being a function of n variables.

Typical examples: The addition : $f_n(x_1, \dots, x_n) = x_1 + \dots + x_n$.

The Multiple Zeta Values :
$$f_0: () \mapsto 1$$

 $f_1: s_1 \mapsto \sum_{0 < n_1} \frac{1}{n_1^{s_1}}$
 $f_2: (s_1, s_2) \mapsto \sum_{0 < n_2 < n_1} \frac{1}{n_1^{s_1} n_2^{s_2}}$
:

Let Ω be an alphabet, and Ω^{\star} be the set of all words

New notations:

	Functional notations	Mould notations
Name	f	M•
Evaluation	f(x)	M

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Why do we need some "new" notations ?

- \rightsquigarrow To mix easily index and exponent in notations.
- \rightsquigarrow To understand easily the type of object at first sight.

Moulds might be contracted with dual objects, called **comoulds** (which are also functions with a variable number of variables) :

Definition: Mould - Comould contraction:

The mould-comould contraction of a mould M^{\bullet} and a comould B_{\bullet} is:

$$\sum_{\bullet} M^{\bullet} B_{\bullet} := \sum_{\underline{\omega} \in \Omega^{\star}} M^{\underline{\omega}} B_{\underline{\omega}}$$

(if the sum is well-defined...)

For analytical reasons, a mould-comould contraction might be understood to be an **algebra automorphism** or a <u>derivation</u>.

Important remark:

All the following mould's definitions come from such an interpretation, in particular for the mould algebra's structure and the mould's symmetries.

Moulds:	Co-moulds:	
 → needs a commutative C-algebra C, in which moulds take their values 	 → needs a C-algebra O, in which co-moulds take their values 	
\rightsquigarrow C = algebra of coefficients	$\rightsquigarrow 0 = algebra \ of \ \mathbf{operators}$	
$\rightsquigarrow mould = any \ map \ \Omega^{\star} \longmapsto C$	$ \stackrel{\rightsquigarrow}{\longrightarrow} \textbf{co-mould} = \textbf{any homomorphism} \\ \Omega^{\star} \longmapsto \textbf{0} $	

Formal mould/comould contraction

To each letter $\omega \in \Omega$, we define a symbol a_{ω} , which will be, when necessary, specialized to B_{ω} .

 \rightsquigarrow The symbols a_{ω} do not commute.

 \rightsquigarrow The symbols a_{ω} are extended to words:

$$a_{\omega_1\cdots\omega_r}=a_{\omega_1}\cdots a_{\omega_r}$$

To each mould M[•] ∈ M[•]_C(Ω), we define a series s(M[•]) ∈ C(⟨A⟩⟩, where A = {a_ω ; ω ∈ Ω} by:

$$s(M^{ullet}) = \sum_{\underline{\omega} \in \Omega^{\star}} M^{\underline{\omega}} \ a_{\underline{\omega}} := \sum_{ullet} M^{ullet} \ a_{ullet} \ .$$

 \rightsquigarrow If φ is a specialization morphism defined by $\varphi(a_{\omega}) = B_{\omega}$, then:

$$\varphi(s(M^{\bullet})) = \sum_{\bullet} M^{\bullet} B_{\bullet} .$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● ● ●

Outline

1 Introduction to mould calculus

- First definitions
- Mould operations
- Primary symmetries
- Secondary symmetries

2 Using mould calculus: a generalization of Bernoulli numbers to the multiple case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Mould operations.

Let M^{\bullet} and N^{\bullet} be two moulds valued in an algebra $C, \lambda \in C$.

• Addition:
$$\sum_{\bullet} (M^{\bullet} + N^{\bullet}) a_{\bullet} = \sum_{\bullet} M^{\bullet} a_{\bullet} + \sum_{\bullet} N^{\bullet} a_{\bullet}$$

 $S^{\bullet} = M^{\bullet} + N^{\bullet} \iff \forall \underline{\omega} \in \Omega^{\star} , \ S^{\underline{\omega}} = M^{\underline{\omega}} + N^{\underline{\omega}} .$

Scalar multiplication: $\sum_{\bullet} (\lambda M)^{\bullet} a_{\bullet} = \lambda \sum_{\bullet} M^{\bullet} a_{\bullet}$

$$(\lambda M)^{\bullet} = \lambda \cdot M^{\bullet} \iff \forall \underline{\omega} \in \Omega^{\star} , \ (\lambda M)^{\underline{\omega}} = \lambda M^{\underline{\omega}} .$$

• Mould multiplication: $\sum_{\bullet} (M^{\bullet} \times N^{\bullet}) a_{\bullet} = \left(\sum_{\bullet} M^{\bullet} a_{\bullet}\right) \left(\sum_{\bullet} N^{\bullet} a_{\bullet}\right)$

$$P^{\bullet} = M^{\bullet} \times N^{\bullet} \iff \forall \underline{\omega} \in \Omega^{\star} , \ P^{\underline{\omega}} = \sum_{\substack{(\underline{\omega}^1 : \underline{\omega}^2) \in (\Omega^{\star})^2 \\ \underline{\omega} = \underline{\omega}^1 \cdot \underline{\omega}^2}} M^{\underline{\omega}^1} N^{\underline{\omega}^2} .$$

900

э

イロン 人間 とくほ とくほ と

Example of mould product computation: $P^{\bullet} = M^{\bullet} \times N^{\bullet}$

Example of operations on moulds:

Property: Algebraic structure

Let $\mathcal{M}^{\bullet}_{\mathsf{C}}(\Omega)$ be the set of moulds defined over the alphabet Ω and valued in the algebra C . So, $(\mathcal{M}^{\bullet}_{\mathsf{C}}(\Omega), +, ., \times)$ is a non commutive, associative, unitary C -algebra.

Outline

1 Introduction to mould calculus

- First definitions
- Mould operations
- Primary symmetries
- Secondary symmetries

2 Using mould calculus: a generalization of Bernoulli numbers to the multiple case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Translating the Leibnitz rules

In practice, the comould satisfies some "Leibnitz rules", which have to be translated in terms of the a_w:

$$B_\omega(arphi\psi) = B_\omega(arphi)\psi + arphi B_\omega(\psi) \quad \rightsquigarrow \quad \Delta(\mathsf{a}_\omega) = \mathsf{a}_\omega \otimes 1 + 1 \otimes \mathsf{a}_\omega$$

$$B_{\omega}(\varphi\psi) = \sum_{\substack{\omega_1,\omega_2\in\Omega\\\omega_1+\omega_2=\omega}} B_{\omega_1}(\varphi)B_{\omega_2}(\psi) \quad \rightsquigarrow \quad \Delta(a_{\omega}) = \sum_{\substack{\omega_1,\omega_2\in\Omega\\\omega_1+\omega_2=\omega}} a_{\omega_1}\otimes a_{\omega_2}$$

(where $(\Omega, +)$ is a semi-group)

• Δ is extended to words over A in order to be an algebra homomorphism, and then to $C\langle\!\langle A \rangle\!\rangle$ by linearity. So,

 $(\mathbf{C}\langle\!\langle A \rangle\!\rangle, \cdot, \Delta)$ is a Hopf algebra.

Property:

Let $\varphi : a_{\omega} \longmapsto B_{\omega}$ be a specialization morphism.

- If $\Delta(s(M^{\bullet})) = s(M^{\bullet}) \otimes s(M^{\bullet})$ (*i.e.* is group-like), then $\varphi(s(M^{\bullet}))$ is an automorphism.
- 2 If $\Delta(s(M^{\bullet})) = s(M^{\bullet}) \otimes 1 + 1 \otimes s(M^{\bullet})$ (*i.e.* is primitive), then $\varphi(s(M^{\bullet}))$ is a derivation.

Definition: shuffle product

For $u, v \in \Omega^*$ and $a, b \in \Omega$, we define recursively the shuffle product \sqcup by:

$$\left\{ \begin{array}{rrr} 1 \amalg u &= u \amalg 1 = u \, . \\ ua \amalg vb &= (u \amalg vb) \, a + (ua \amalg v) \, b \end{array} \right.$$

Let $sh\underline{A}(\underline{\omega}^1; \underline{\omega}^2)$ be the set of words which appear in $\underline{\omega}^1 \sqcup \underline{\omega}^2$, counted with their multiplicity.

Lemma:
For any word
$$\underline{\omega} \in \Omega^*$$
, $\Delta(\underline{\omega}) = \sum_{\substack{\underline{\omega}_1, \underline{\omega}_2 \in \Omega^* \\ \underline{\omega} \in sh\underline{A}(\underline{\omega}_1, \underline{\omega}_2)}} \underline{\omega}_1 \otimes \underline{\omega}_2$.

(日)、(型)、(E)、(E)、(E)、(O)()

Property:

A mould $M^{\bullet} \in \mathcal{M}^{\bullet}_{\mathsf{C}}(\Omega)$ satisfies:

 $\blacksquare \Delta(s(M^{\bullet})) = s(M^{\bullet}) \otimes s(M^{\bullet})$ if, and only if, the mould M^{\bullet} satisfies:

$$\forall (\underline{\boldsymbol{\omega}}^1; \underline{\boldsymbol{\omega}}^2) \in (\Omega^*)^2 , \sum_{\underline{\boldsymbol{\omega}} \in sh\underline{\mathbf{A}}(\underline{\boldsymbol{\omega}}^1; \underline{\boldsymbol{\omega}}^2)} M^{\underline{\boldsymbol{\omega}}} = M^{\underline{\boldsymbol{\omega}}^1} M^{\underline{\boldsymbol{\omega}}^2} .$$
(1)

2/3

2 $\Delta(s(M^{\bullet})) = s(M^{\bullet}) \otimes 1 + 1 \otimes s(M^{\bullet})$ if, and only if, the mould M^{\bullet} satisfies:

$$\begin{cases} M^{\emptyset} = 0 \ . \\ \forall (\underline{\boldsymbol{\omega}}^{1}; \, \underline{\boldsymbol{\omega}}^{2}) \in (\Omega^{\star} - \{\emptyset\})^{2} \ , \ \sum_{\underline{\boldsymbol{\omega}} \in sh\underline{\mathbf{A}}(\underline{\boldsymbol{\omega}}^{1}; \, \underline{\boldsymbol{\omega}}^{2})} M^{\underline{\boldsymbol{\omega}}} = 0 \ . \end{cases}$$
(2)

$$\underbrace{ \begin{array}{ll} \underline{ Sketch \ of \ proof \ of \ (1):} \\ \Delta(s(M^{\bullet})) = \sum_{\omega \in \Omega^{\star}} M^{\omega} \Delta(\omega) = \sum_{\substack{(\omega, \omega_{1}, \omega_{2}) \in (\Omega^{\star})^{3} \\ \omega \in sh\underline{A}(\omega_{1}, \omega_{2})}} M^{\omega} \omega_{1} \otimes \omega_{2} \\ \downarrow \\ \Delta(s(M^{\bullet})) - s(M^{\bullet}) \otimes s(M^{\bullet}) = \sum_{\substack{(\omega_{1}, \omega_{2}) \in (\Omega^{\star})^{2} \\ \omega \in sh\underline{A}(\omega_{1}, \omega_{2})}} \left(\sum_{\substack{\omega \in \Omega \\ \omega \in sh\underline{A}(\omega_{1}, \omega_{2})}} M^{\omega} - M^{\omega_{1}} M^{\omega_{2}} \right) \omega_{1} \otimes \omega_{2} .$$

Definition

A mould $M^{\bullet} \in \mathcal{M}^{\bullet}_{\mathsf{C}}(\Omega)$ is called:

symmetr<u>A</u>l when:

$$\forall (\underline{\boldsymbol{\omega}}^1; \underline{\boldsymbol{\omega}}^2) \in (\Omega^*)^2 , \sum_{\underline{\boldsymbol{\omega}} \in sh\underline{\boldsymbol{A}}(\underline{\boldsymbol{\omega}}^1; \underline{\boldsymbol{\omega}}^2)} M^{\underline{\boldsymbol{\omega}}} = M^{\underline{\boldsymbol{\omega}}^1} M^{\underline{\boldsymbol{\omega}}^2} .$$
(3)

3/3

2 altern<u>A</u>l when:

$$\begin{cases} M^{\emptyset} = 0 \ .\\ \forall (\underline{\boldsymbol{\omega}}^{1}; \underline{\boldsymbol{\omega}}^{2}) \in (\Omega^{\star} - \{\emptyset\})^{2} \ , \ \sum_{\underline{\boldsymbol{\omega}} \in sh\underline{\boldsymbol{A}}(\underline{\boldsymbol{\omega}}^{1}; \underline{\boldsymbol{\omega}}^{2})} M^{\underline{\boldsymbol{\omega}}} = 0 \ . \end{cases}$$
(4)

Reformulation of the previous property:

A mould $M^{\bullet} \in \mathcal{M}^{\bullet}_{\mathsf{C}}(\Omega)$ is:

1 symmetr<u>A</u>l if, and only if, $\Delta(s(M^{\bullet})) = s(M^{\bullet}) \otimes s(M^{\bullet})$.

2 altern<u>A</u>l if, and only if, $\Delta(s(M^{\bullet})) = s(M^{\bullet}) \otimes 1 + 1 \otimes s(M^{\bullet})$.

Example 1:

Let Ω be a set, and for all $\omega \in \Omega$, let $f_{\Omega} : [0; 1] \mapsto \mathbb{R}$ be a continuous function.

Let \mathcal{I}^{\bullet} be the mould defined by:

$$\mathcal{I}^{\omega_1,\cdots,\omega_r} = \int_{0 < t_r < \cdots < t_1 < 1} f_{\omega_1}(t_1) \cdots f_{\omega_r}(t_r) dt_1 \cdots dt_r.$$

Then, \mathcal{I}^{\bullet} is symmetr<u>A</u>I.

Example 2:

Any mould $M^{\bullet} \in \mathcal{M}^{\bullet}_{\mathsf{C}}(\Omega)$ such that:

$$I(\omega) \neq 1 \Longrightarrow M^{\omega} = 0$$
,

is altern<u>A</u>l .

The symmetr**E**l case: $\Delta(a_{\omega}) = \sum_{\substack{\omega_1, \omega_2 \in \Omega \\ \omega_1 \perp \omega_2 = \omega}} a_{\omega_1} \otimes a_{\omega_2}$ 1/3

Definition: stuffle product

Suppose that $(\Omega, +)$ is an additive semi-group. For $u, v \in \Omega^*$ and $a, b \in \Omega$, we define recursively the stuffle product \bowtie by:

$$\begin{cases} \varepsilon \amalg u = u \amalg \varepsilon = u . \\ ua \amalg vb = (u \amalg vb) a + (ua \amalg v) b + (u \amalg v)(a+b) . \end{cases}$$
(5)

Let $sh\underline{E}(\underline{\omega}^1; \underline{\omega}^2)$ be the set of words which appear in $\underline{\omega}^1 \sqcup \underline{\omega}^2$, counted with their multiplicity.

Lemma:
For any word
$$\underline{\omega} \in \Omega^*$$
, $\Delta(\underline{\omega}) = \sum_{\substack{\underline{\omega}_1, \underline{\omega}_2 \in \Omega^* \\ \underline{\omega} \in sh\underline{E}(\underline{\omega}_1, \underline{\omega}_2)}} \underline{\omega}_1 \otimes \underline{\omega}_2$.

(日)、(型)、(E)、(E)、(E)、(O)()

The symmetr**E**l case: $\Delta(a_{\omega}) = \sum_{\substack{\omega_1, \omega_2 \in \Omega \\ \omega_1 \perp \omega_2 = \omega}} a_{\omega_1} \otimes a_{\omega_2}$ 2/3

Property:

A mould $M^{\bullet} \in \mathcal{M}^{\bullet}_{\mathsf{C}}(\Omega)$ satisfies:

 $\blacksquare \Delta(s(M^{\bullet})) = s(M^{\bullet}) \otimes s(M^{\bullet})$ if, and only if, the mould M^{\bullet} satisfies:

$$\forall (\underline{\boldsymbol{\omega}}^1; \underline{\boldsymbol{\omega}}^2) \in (\Omega^\star)^2 , \sum_{\underline{\boldsymbol{\omega}} \in sh\underline{\mathsf{E}}(\underline{\boldsymbol{\omega}}^1; \underline{\boldsymbol{\omega}}^2)} M^{\underline{\boldsymbol{\omega}}} = M^{\underline{\boldsymbol{\omega}}^1} M^{\underline{\boldsymbol{\omega}}^2} .$$
(6)

2 $\Delta(s(M^{\bullet})) = s(M^{\bullet}) \otimes 1 + 1 \otimes s(M^{\bullet})$ if, and only if, the mould M^{\bullet} satisfies:

$$\begin{cases} M^{\emptyset} = 0 \ .\\ \forall (\underline{\boldsymbol{\omega}}^{1}; \, \underline{\boldsymbol{\omega}}^{2}) \in (\Omega^{\star} - \{\emptyset\})^{2} \ , \ \sum_{\underline{\boldsymbol{\omega}} \in sh\underline{\boldsymbol{\mathsf{E}}}(\underline{\boldsymbol{\omega}}^{1}; \, \underline{\boldsymbol{\omega}}^{2})} M^{\underline{\boldsymbol{\omega}}} = 0 \ . \end{cases}$$
(7)

(日) (日) (日) (日) (日) (日) (日) (日)

The symmetr**E**l case: $\Delta(a_{\omega}) = \sum_{\substack{\omega_1, \omega_2 \in \Omega \\ \omega_1 \perp \omega_2 = \omega}} a_{\omega_1} \otimes a_{\omega_2}$ 3/3

Definition

A mould $M^{\bullet} \in \mathcal{M}^{\bullet}_{\mathsf{C}}(\Omega)$ is called:

symmetr<u>E</u>l when:

$$\forall (\underline{\boldsymbol{\omega}}^{1}; \underline{\boldsymbol{\omega}}^{2}) \in (\Omega^{\star})^{2} , \sum_{\underline{\boldsymbol{\omega}} \in sh\underline{\mathsf{E}}(\underline{\boldsymbol{\omega}}^{1}; \underline{\boldsymbol{\omega}}^{2})} M^{\underline{\boldsymbol{\omega}}} = M^{\underline{\boldsymbol{\omega}}^{1}} M^{\underline{\boldsymbol{\omega}}^{2}} .$$
(8)

2 altern<u>E</u>l when:

$$\begin{cases} M^{\emptyset} = 0 \ . \\ \forall (\underline{\boldsymbol{\omega}}^1; \, \underline{\boldsymbol{\omega}}^2) \in (\Omega^* - \{\emptyset\})^2 \ , \ \sum_{\underline{\boldsymbol{\omega}} \in sh\underline{\boldsymbol{E}}(\underline{\boldsymbol{\omega}}^1; \, \underline{\boldsymbol{\omega}}^2)} M^{\underline{\boldsymbol{\omega}}} = 0 \ . \end{cases}$$
(9)

Reformulation of the previous property:

A mould $M^{\bullet} \in \mathcal{M}^{\bullet}_{\mathsf{C}}(\Omega)$ is:

- **1** symmetr**E**l if, and only if, $\Delta(s(M^{\bullet})) = s(M^{\bullet}) \otimes s(M^{\bullet})$.
- **2** altern<u>E</u>l if, and only if, $\Delta(s(M^{\bullet})) = s(M^{\bullet}) \otimes 1 + 1 \otimes s(M^{\bullet})$.

An example of symmetr<u>E</u>I and altern<u>E</u>I moulds

Example 1:

Let $(u_n)_{n \in \mathbb{N}_{>1}}$ be a sequence of complex numbers such that:

$$\exists \alpha \geq 2, \ u_n \underset{n \to +\infty}{=} \mathcal{O}(n^{-\alpha}).$$

Let $\mathcal{S}^{\bullet} \in \mathcal{M}^{\bullet}_{\mathbb{R}}(\mathbb{N}_{\geq 1})$ be the mould defined by:

$$\mathcal{S}^{\mathbf{s}_1,\cdots,\mathbf{s}_r} = \sum_{0 < n_r < \cdots < n_1 < +\infty} u_{n_1}^{\mathbf{s}_1} \cdots u_{n_r}^{\mathbf{s}_2}.$$

Then, \mathcal{S}^{\bullet} is symmetr<u>E</u>I .

Example 2:

The mould $M^{\bullet} \in \mathcal{M}^{\bullet}_{\mathbb{R}}(\Omega)$ defined by:

$$M^{\omega} = \frac{(-1)^{l(\omega)}}{l(\omega)} ,$$

is altern**E**I .

Outline

1 Introduction to mould calculus

- First definitions
- Mould operations
- Primary symmetries
- Secondary symmetries

2 Using mould calculus: a generalization of Bernoulli numbers to the multiple case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Other point of view on moulds:

A mould is a collection of functions (f_0, f_1, f_2, \cdots) , where $f_i : \Omega^i \mapsto \mathbf{C}$.

Definition:

A formal mould is a collection of formal series (S_0, S_1, S_2, \dots) , where S_n is a formal power series in n indeterminates (and consequently, S_0 is constant)

<u>Notation</u>: $\mathcal{FM}^{\bullet}_{C} = \{\text{formal mould with values in the algebra } C\}$.

What is the difference between a mould and a formal mould?

Mould $M^{ullet}\in\mathcal{M}^{ullet}_{C}(\Omega)$	Formal mould $M^{ullet} \in \mathcal{FM}^{ullet}_{C}$
where $\Omega = (X_1, X_2, \cdots)$.	
No link between M^{X_1,X_2} and M^{X_2,X_1} !!!	M^{X_1,X_2} and M^{X_2,X_1} are related by the <u>substitution</u> of the indeterminates.

Definition:

With a mould $M^{\bullet} \in \mathcal{M}^{\bullet}_{C}(\mathbb{N})$, we associate two formal moulds Mog^{\bullet} and Meg^{\bullet} defined by:

$$Mog^{X_1, \dots, X_r} = \sum_{s_1, \dots, s_r \in \mathbb{N}} M^{s_1, \dots, s_r} X_1^{s_1} \dots X_r^{s_r} .$$
$$Meg^{X_1, \dots, X_r} = \sum_{s_1, \dots, s_r \in \mathbb{N}} M^{s_1, \dots, s_r} \frac{X_1^{s_1}}{s_1!} \dots \frac{X_r^{s_r}}{s_r!} .$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition:

The secondary symmetries of a mould are the symmetries of its corresponding formal moulds.

Theorem: (Ecalle, $\sim 80's$)

Let $M^{\bullet} \in \mathcal{M}^{\bullet}_{\mathsf{C}}(\mathbb{N})$ be a mould.

- **1** M^{\bullet} is symmetr<u>A</u>l if, and only if, Mog^{\bullet} is symmetr<u>A</u>l.
- 2 M^{\bullet} is altern<u>A</u>l if, and only if, Mog^{\bullet} is altern<u>A</u>l.

Theorem: (B., 2015)

Let $M^{\bullet} \in \mathcal{M}^{\bullet}_{\mathsf{C}}(\mathbb{N})$ be a mould.

- **1** M^{\bullet} is symmetr<u>A</u>l if, and only if, Meg^{\bullet} is symmetr<u>A</u>l.
- 2 M^{\bullet} is altern<u>A</u>l if, and only if, Meg^{\bullet} is altern<u>A</u>l.
- 3 M^{\bullet} is symmetr<u>E</u>l if, and only if, Meg^{\bullet} is symmetr<u>E</u>l.
- $\underline{\mathbf{M}}^{\bullet} \text{ is altern} \underline{\mathbf{E}} \text{ I if, and only if, } Meg^{\bullet} \text{ is altern} \underline{\mathbf{E}} \text{ I} .$

1 Let us consider:

$$\begin{split} & \textbf{X} = \{X_1, X_2, \cdots\} \text{ be an infinite set of indeterminates.} \\ & \textbf{Y} = \mathbb{N}\textbf{X} = \left\{\sum_{x \in \textbf{X}} \lambda_x x \text{ ; } (\lambda_X)_{X \in \textbf{X}} \in \mathbb{N}^{\textbf{X}} \text{ has finitely nonzero terms} \right\}. \\ & \textbf{A} = \{A_y \text{ ; } y \in \textbf{Y}\}. \end{split}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

1 Let us consider:

$$\begin{split} \mathbf{X} &= \{X_1, X_2, \cdots\} \text{ be an infinite set of indeterminates.} \\ \mathbf{Y} &= \mathbb{N}\mathbf{X} = \left\{\sum_{x \in \mathbf{X}} \lambda_x x \text{ ; } (\lambda_x)_{X \in \mathbf{X}} \in \mathbb{N}^{\mathbf{X}} \text{ has finitely nonzero terms} \right\}. \\ \mathbf{A} &= \{A_y \text{ ; } y \in \mathbf{Y}\}. \end{split}$$

2 We extend the definition of Mog^{\bullet} and Meg^{\bullet} to words constructed over A^{*}:

$$Mog^{A_{y_1},\cdots,A_{y_r}}:=Mog^{y_1,\cdots,y_r}$$
 , $Meg^{A_{y_1},\cdots,A_{y_r}}:=Meg^{y_1,\cdots,y_r}$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

1 Let us consider:

$$\begin{split} \mathbf{X} &= \{X_1, X_2, \cdots\} \text{ be an infinite set of indeterminates.} \\ \mathbf{Y} &= \mathbb{N}\mathbf{X} = \left\{\sum_{x \in \mathbf{X}} \lambda_x x \text{ ; } (\lambda_x)_{x \in \mathbf{X}} \in \mathbb{N}^{\mathbf{X}} \text{ has finitely nonzero terms} \right\}. \\ \mathbf{A} &= \{A_y \text{ ; } y \in \mathbf{Y}\}. \end{split}$$

2 We extend the definition of Mog^{\bullet} and Meg^{\bullet} to words constructed over A^{*}:

$$Mog^{A_{y_1},\cdots,A_{y_r}} := Mog^{y_1,\cdots,y_r}$$
, $Meg^{A_{y_1},\cdots,A_{y_r}} := Meg^{y_1,\cdots,y_r}$

We define a secondary formal mould/comould contraction, *i.e.* to a formal mould *FM*[●] ∈ *FM*[●], we associate a series *S*(*FM*[●]) ∈ C[[X]]⟨A⟩ by:

$$S(FM^{\bullet}) = \sum_{\underline{\omega} \in A^{\star}} FM^{\underline{\omega}} A_{\underline{\omega}} := \sum_{\bullet} FM^{\bullet} A_{\bullet} .$$

1 Let us consider:

$$\begin{split} \mathbf{X} &= \{X_1, X_2, \cdots\} \text{ be an infinite set of indeterminates.} \\ \mathbf{Y} &= \mathbb{N}\mathbf{X} = \left\{\sum_{\mathbf{x}} \lambda_x x \text{ ; } (\lambda_X)_{X \in \mathbf{X}} \in \mathbb{N}^{\mathbf{X}} \text{ has finitely nonzero terms} \right\}. \end{split}$$

$$\mathsf{A} = \{ \mathsf{A}_y \; ; \; y \in \mathbf{Y} \}.$$

2 We extend the definition of *Mog*[•] and *Meg*[•] to words constructed over A^{*}:

$$Mog^{A_{y_1},\cdots,A_{y_r}}:=Mog^{y_1,\cdots,y_r}$$
, $Meg^{A_{y_1},\cdots,A_{y_r}}:=Meg^{y_1,\cdots,y_r}$

I We define a secondary formal mould/comould contraction, *i.e.* to a formal mould *FM*[●] ∈ *FM*[●], we associate a series *S*(*FM*[●]) ∈ C[[X]]⟨A⟩ by:

$$S(FM^{\bullet}) = \sum_{\underline{\omega} \in A^{\star}} FM^{\underline{\omega}} A_{\underline{\omega}} := \sum_{\bullet} FM^{\bullet} A_{\bullet} .$$

4 We define a map Δ as before, *i.e.* a coproduct, by:

$$\underline{Case \ Al:} \qquad \Delta(A_y) = A_y \otimes 1 + 1 \otimes A_y \qquad \Delta(\underline{A}) = \sum_{\substack{\underline{B}:\underline{C} \in A^* \\ \underline{A} \in sh\underline{A}(\underline{B}:\underline{C})}} \underline{B} \otimes \underline{C}$$

$$\underline{Case \ El:} \qquad \Delta(A_y) = \sum_{u \in C^*} A_u \otimes A_v \qquad \Delta(\underline{A}) = \sum_{\substack{\underline{B}:\underline{C} \in A^* \\ \underline{A} \in sh\underline{A}(\underline{B}:\underline{C})}} \underline{B} \otimes \underline{C}$$

▲□▶ ▲圖▶ ▲画▶ ▲画▶ ▲画 ● ● ●

1 Let us consider:

 $\mathbf{X} = \{X_1, X_2, \cdots\}$ be an infinite set of indeterminates.

$$\mathbf{Y} = \mathbb{N}\mathbf{X} = \left\{ \sum_{x \in \mathbf{X}} \lambda_x x ; \ (\lambda_x)_{X \in \mathbf{X}} \in \mathbb{N}^{\mathbf{X}} \text{ has finitely nonzero terms} \right\}.$$
$$\mathbf{A} = \{A_y : y \in \mathbf{Y}\}.$$

١

I We define a secondary formal mould/comould contraction, *i.e.* to a formal mould *FM*[●] ∈ *FM*[●], we associate a series *S*(*FM*[●]) ∈ C[[X]]⟨A⟩⟩ by:

$$S(FM^{\bullet}) = \sum_{\underline{\omega} \in A^{\star}} FM^{\underline{\omega}} A_{\underline{\omega}} := \sum_{\bullet} FM^{\bullet} A_{\bullet} .$$

4 We define a map Δ as before, *i.e.* a coproduct, by:

$$\underline{Case \ Al:} \qquad \Delta(A_y) = A_y \otimes 1 + 1 \otimes A_y \qquad \Delta(\underline{A}) = \sum_{\substack{\underline{B}, \underline{C} \in A^* \\ \underline{A} \in sh\underline{A}(\underline{B}, \underline{C})}} \underline{B} \otimes \underline{C}$$

$$\underline{Case \ El:} \qquad \Delta(A_y) = \sum_{\substack{u, v \in \mathbf{Y} \\ u \neq v = v}} A_u \otimes A_v \qquad \Delta(\underline{A}) = \sum_{\substack{\underline{B}, \underline{C} \in A^* \\ \underline{A} \in sh\underline{A}(\underline{B}, \underline{C})}} \underline{B} \otimes \underline{C}$$

Solve, we just have to adapt the proof of $\Delta(s(M^{\bullet})) = s(M^{\bullet}) \otimes s(M^{\bullet}) \iff M^{\bullet} \text{ is symmetr} \underline{A} | / \text{symmetr} \underline{E} | . = 0$

Exercices

- Adapt the previous construction to have a better understanding of the symmetr<u>l</u>lity. Then prove that:
 - a. M^{\bullet} is symmetr**E**I $\iff Mog^{\bullet}$ is symmetr**I**I.
 - b. M^{\bullet} is altern<u>E</u>I $\iff Mog^{\bullet}$ is altern<u>I</u>I.
- **2** Let $\delta_{a,b}$ be the Kronecker symbol.

Let M^{\bullet} be a mould such that:

$$M^{a}M^{b} = M^{a,b} + M^{b,a} + \delta_{a,b}M^{b}$$

$$M^{a}M^{b,c} = M^{a,b,c} + M^{b,a,c} + M^{b,c,a} + \delta_{a,b}M^{a,c} + \delta_{a,c}M^{b,a}$$

$$M^{a,b}M^{c,d} = M^{a,b,c,d} + M^{a,c,b,d} + M^{a,c,d,b} + M^{c,d,a,b} + M^{c,a,d,b} + M^{c,a,b,d} + \delta_{a,c}(M^{c,b,d} + M^{c,d,b}) + \delta_{a,c}\delta_{b,d}M^{c,d}$$

$$\vdots$$

(日)、(型)、(E)、(E)、(E)、(O)()

- a. Define a (primary) mould symmetry satisfied by M^{\bullet} .
- b. What are its corresponding secondary symmetries ?

Outline

1 Introduction to mould calculus

- First definitions
- Mould operations
- Primary symmetries
- Secondary symmetries

2 Using mould calculus: a generalization of Bernoulli numbers to the multiple case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition:

The numbers $\mathcal{Z}e^{s_1,\cdots,s_r}$ defined by

$$\mathcal{Z}e^{s_1,\cdots,s_r}=\sum_{0< n_r<\cdots< n_1}\frac{1}{n_1^{s_1}\cdots n_r^{s_r}},$$

where $s_1, \dots, s_r \in \mathbb{C}$ such that $\Re(s_1 + \dots + s_k) > k$, $k \in \llbracket 1; r \rrbracket$, are called multiple zeta values.

<u>Fact:</u> There exist at least three different ways to renormalise multiple zeta values at negative integers.

$$\mathcal{Z}e^{0,-2}_{MP}(0)=rac{7}{720} \quad,\quad \mathcal{Z}e^{0,-2}_{GZ}(0)=rac{1}{120} \quad,\quad \mathcal{Z}e^{0,-2}_{FKMT}(0)=rac{1}{18} \;.$$

Question: Is there a group acting on the set of all possible multiple zeta values renormalisations?

Main goal: Define multiple Bernoulli numbers in relation with this.

Definition:

The Riemann and Hurwitz zeta functions are defined, for $\Re e \ s>$ 1, and $z\in \mathbb{C}-\mathbb{N}_{<0},$ by:

$$\zeta(s) = \sum_{n \ge 0} \frac{1}{n^s} \quad , \quad \zeta(s,z) = \sum_{n \ge 0} \frac{1}{(n+z)^s} \; .$$

Property:

 $s \mapsto \zeta(s)$ and $s \mapsto \zeta(s, z)$ can be analytically extend to a meromorphic function on \mathbb{C} , with a simple pole located at 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Remark:
$$\zeta(-n) = -\frac{b_{n+1}}{n+1}$$
 for all $n \in \mathbb{N}$.
 $\zeta(-n,z) = -\frac{B_{n+1}(z)}{n+1}$ for all $n \in \mathbb{N}$.

Hurwitz Multiple Zeta Functions

Definition: Hurwitz multiple zeta functions

Let $z \in \mathbb{C} - \mathbb{N}_{<0}$ and $(s_1, \cdots, s_r) \in (\mathbb{N}_{\geq 1})^r$, such that $s_1 \geq 2$. The Hurwitz multiple zeta functions are defined by:

$$\mathcal{H}e^{s_1,\cdots,s_r}(z) = \sum_{0 < n_r < \cdots < n_1} \frac{1}{(n_1 + z)^{s_1} \cdots (n_r + z)^{s_r}}$$

Lemma: (B., Ecalle, 2013)

Let Δ_{-} be the difference operator: $\Delta_{-}(f)(z) = f(z-1) - f(z)$ Then: $\Delta_{-}(\mathcal{H}e^{\bullet}) = \mathcal{H}e^{\bullet} \times J^{\bullet}$, where $J^{s_{1}, \cdots s_{r}}(z) = \begin{cases} z^{-s_{1}} & \text{if } r = 1. \\ 0 & \text{otherwise.} \end{cases}$

Heuristic:

 $\mathcal{B}e^{s_1, \dots, s_r}(z) = Multiple (divided) Bernoulli polynomials = <math>\mathcal{H}e^{-s_1, \dots, -s_r}(z)$. $be^{s_1, \dots, s_r} = Multiple (divided) Bernoulli numbers = \mathcal{H}e^{-s_1, \dots, -s_r}(0)$.

 $) \land (\land)$

Property 1: Difference Equation

$$\Delta\left(rac{B_n}{n}
ight)(x)=x^{n-1} ext{ for all } n\in\mathbb{N}^*, ext{ where } \Delta(f)(z)=f(z+1)-f(z) \ .$$

Property 2: Reflexion Formula

$$(-1)^n B_n(1-x) = B_n(x)$$
 for all $n \in \mathbb{N}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ
We want to define a mould $\mathcal{B}e^{\bullet}(z) \in \mathcal{M}^{\bullet}_{\mathbb{Q}[z]}(\mathbb{N})$ such that:

- its values have properties similar to Hurwitz Multiple Zeta Functions' properties.
- its values have properties generalizing these of Bernoulli polynomials.

Main Goal:

Find $\mathcal{B}e^{\bullet} \in \mathcal{M}^{\bullet}_{\mathbb{C}[z]}(\mathbb{N})$ such that:

(日)、(型)、(E)、(E)、(E)、(O)()

A singular solution

$$\begin{aligned} \mathcal{B}e^{s}(z) &= \frac{\mathcal{B}_{s+1}(z)}{s+1} \text{ , where } s \geq 0 \\ \Delta(\mathcal{B}e^{\bullet})(z) &= \mathcal{B}e^{\bullet} \times J^{\bullet}(z) \end{aligned} & \longleftrightarrow \begin{cases} \mathcal{B}eeg^{X}(z) &= \frac{e^{zX}}{e^{X}-1} - \frac{1}{X} \\ \Delta(\mathcal{B}eeg^{\bullet})(z) &= \mathcal{B}eeg^{\bullet} \times Jeg^{\bullet}(z) \\ \mathcal{B}eeg^{\bullet} \text{ is symmetr}\underline{E}I . \end{cases} \end{cases}$$

Reminders:

I
$$Jeg^{X}(z) = e^{zX}$$
 and $Jeg^{X_1, \dots, X_r} = 0$ if $r \neq 1$.

$$\Delta\left(\frac{e^{zX}}{e^X-1}\right) = e^{zX} \ .$$

From a false solution to a singular solution...

$$Sing^{X_1, \cdots, X_r}(z) = \frac{e^{z(X_{k_1} + \cdots + X_{k_r})}}{\prod_{i=1}^r (e^{X_{k_1} + \cdots + X_{k_i}} - 1)}$$
 is a false solution to the system we are

solving...:

$$\mathcal{S}ing^{\bullet}(z)
ot\in \mathcal{FM}^{\bullet}_{\mathbb{C}[X]}$$
 but $\mathcal{S}ing^{\bullet}(z) \in \mathcal{FM}^{\bullet}_{\mathbb{C}[X]}$.

200

Another solution

<u>Fact</u>: If $\Delta(f)(z) = f(z-1) - f(z)$, ker $\Delta \cap z\mathbb{C}[z] = \{0\}$.

Consequence: There exists a unique family of polynomials (Be^{s_1, \dots, s_r}) such that:

$$\begin{cases} Be_0^{n_1,\cdots,n_r}(z+1) - Be_0^{n_1,\cdots,n_r}(z) = Be_0^{n_1,\cdots,n_{r-1}}(z)z^{n_r} \\ Be_0^{n_1,\cdots,n_r}(0) = 0 \end{cases}$$

This produces $\mathcal{B}e_0^{\bullet} \in \mathcal{M}^{\bullet}_{\mathbb{C}[z]}(\mathbb{N})$ and $\mathcal{B}eeg_0^{\bullet} \in \mathcal{FM}^{\bullet}_{\mathbb{C}[z]}$.

Lemma: (B., 2013)

- **1** The moulds $\mathcal{B}e_0^{\bullet}(z)$ and $\mathcal{B}eeg_0^{\bullet}(z)$ are symmetr**E**.
- **2** The mould $\mathcal{B}eeg_0^{\bullet}(z)$ satisfies a recurence relation:

$$\begin{cases} \mathcal{B}e_0^{Y_1}(z) = \frac{e^{zY_1} - 1}{e^{Y_1} - 1} \\ \mathcal{B}e_0^{Y_1, \dots, Y_r}(z) = \frac{\mathcal{B}e_0^{Y_1 + Y_2, Y_3, \dots, Y_r}(z) - \mathcal{B}e_0^{Y_2, Y_3, \dots, Y_r}(z)}{e^{Y_1} - 1} \end{cases}$$

 $Beeg_0^{\bullet}(z) = (Sing^{\bullet}(0))^{\times -1} \times Sing^{\bullet}(z).$

٠

Proposition: (B. 2013)

Any familly of polynomials which are solution of the previous system comes from a formal mould $\mathcal{B}eeg^{\bullet}$ valued in $\mathbb{C}[z]$ such that there exists a formal mould $beeg^{\bullet}$ valued in \mathbb{C} satisfying:

1.
$$beeg^X = \frac{1}{e^X - 1} - \frac{1}{X}$$
 2. $beeg^{\bullet}$ is symmetrE

3.
$$\mathcal{B}eeg^{\bullet}(z) = beeg^{\bullet} \times \mathcal{B}eeg_0^{\bullet}(z) = beeg^{\bullet} \times (\mathcal{S}ing^{\bullet}(0))^{\times -1} \times \mathcal{S}ing^{\bullet}(z)$$

Theorem: (B., 2013)

The subgroup of symmetr<u>E</u>I formal moulds with vanishing coefficients in length 1, acts on the set of all possible multiple Bernoulli polynomials, *i.e.* on the set of all possible *algebraic* renormalization of multiple zeta values at negative integers.

Using the Reflexion Formula of Bernoulli polynomials

Notations:
$$M^{-\bullet}: (\omega_1, \cdots, \omega_r) \longmapsto M^{-\omega_1, \cdots, -\omega_r}$$
.

$$M^{\bullet}$$
 : $(\omega_1, \cdots, \omega_r) \longmapsto M^{\omega_r, \cdots, \omega_1}$

Lemma: (B., 2013)

Let Sg^{\bullet} be the mould defined by: $Sg^{X_1, \cdots, X_r} = (-1)^r$. For all $z \in \mathbb{C}$, we have:

$$Sing^{-\bullet}(0) = \left(Sing^{\overleftarrow{\bullet}}(0)\right)^{\times -1} \times Sg^{\bullet}$$
, $Sing^{-\bullet}(1-z) = \left(Sing^{\overleftarrow{\bullet}}(z)\right)^{\times -1}$

<u>Sketch of proof:</u> Use recursively $\frac{1}{e^{X}-1} + \frac{1}{e^{-X}-1} + 1 = 0$.

Examples:

$$\begin{split} \mathcal{S}ing^{-X,-Y}(0) &= \mathcal{S}ing^{X,Y}(0) + \mathcal{S}ing^{X+Y}(0) + \mathcal{S}ing^{X}(0) + 1 \ . \\ \mathcal{S}ing^{-X,-Y}(1-z) &= \mathcal{S}ing^{X,Y}(z) + \mathcal{S}ing^{X+Y}(z) \ . \end{split}$$

Theorem: (B., 2013)

For all $z \in \mathbb{C}$, we have:

$$\mathcal{B}eeg^{-\bullet}(1-z) \times \mathcal{B}eeg^{\bullet}(z) = beeg^{-\bullet} \times (1^{\bullet} + I^{\bullet}) \times beeg^{\bullet} ,$$

where $1^{X_1, \dots, X_r} = \begin{cases} 1 & \text{if } r = 0 . \\ 0 & \text{if } r > 0 . \end{cases}$ and $I^{X_1, \dots, X_r} = \begin{cases} 1 & \text{if } r = 1 . \\ 0 & \text{if } r \neq 1 . \end{cases}$

Heuristic:

$$Sing^{-\bullet}(1-z) \times Sing^{\overleftarrow{\bullet}}(z) = 1^{\bullet}$$

Consequently, we will define beeg • such that:

$$beeg^{-\bullet} \times (1^{\bullet} + I^{\bullet}) \times beeg^{\overleftarrow{\bullet}} = 1^{\bullet}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 | のへで

Consequently, we will define beeg • such that:

$$beeg^{-\bullet} \times (1^{\bullet} + I^{\bullet}) \times beeg^{\overleftarrow{\bullet}} = 1^{\bullet}$$

$$\iff beeg^{-\bullet} \times (Sg^{\bullet})^{\times -1} \times beeg^{\overleftarrow{\bullet}} = 1^{\bullet}$$

$$\iff ceeg^{-\bullet} \times ceeg^{\overleftarrow{\bullet}} = 1^{\bullet} , \text{where } ceeg^{\bullet} = beeg^{\bullet} \times (Sg^{\bullet})^{\times -\frac{1}{2}}$$

$$\iff Exp(deg^{-\bullet}) \times Exp(deg^{\overleftarrow{\bullet}}) = 1^{\bullet} , \text{where } ceeg^{\bullet} = Exp(deg^{\bullet})$$

$$\iff deg^{-\bullet} + deg^{\overleftarrow{\bullet}} = O^{\bullet} .$$

<□ > < @ > < E > < E > E のQ @

Definition of Multiple Bernoulli Polynomials and Numbers

The mould *deg*[•] defined by

$$\begin{cases} \deg^{\emptyset} := 0 \ ,\\ \deg^{X_1, \cdots, X_r} := \frac{(-1)^{r-1}}{r} \deg^{X_1 + \cdots + X_r} \ , \end{cases}$$

where $\deg^X = \frac{1}{e^X - 1} - \frac{1}{X} + \frac{1}{2}$, satifies the required conditions:
$$\begin{cases} \deg^{\bullet} + \deg^{\stackrel{\leftarrow}{\bullet}} = 0 \ ,\\ \deg^{\bullet} \text{ is altern}\underline{\mathsf{E}} \text{ l} \ . \end{cases}$$

Definition: (B., 2014)

The moulds $\mathcal{B}eeg^{\bullet}(z)$ and $beeg^{\bullet}$ are defined by:

$$\mathcal{B}eeg^{\bullet}(z) = Exp(deg^{\bullet}) \times \sqrt{\mathcal{S}g^{\bullet}} \times (\mathcal{S}ing^{\bullet}(0))^{\times -1} \times \mathcal{S}ing^{\bullet}(z)$$
.

 $beeg^{\bullet} = Exp(deg^{\bullet}) \times \sqrt{Sg^{\bullet}}$

The coefficients $\mathcal{B}e^{\bullet}(z)$ and $\mathcal{B}e^{\bullet}$ of these exponential generating series are called respectively the **Multiple Bernoulli Polynomials and Numbers**.

Consequently, we obtain explicit expressions like, for $n_1, n_2, n_3 > 0$:

$$be^{n_1,n_2} = \frac{1}{2} \left(\frac{b_{n_1+1}}{n_1+1} \frac{b_{n_2+1}}{n_2+1} - \frac{b_{n_1+n_2+1}}{n_1+n_2+1} \right)$$

$$be^{n_1,n_2,n_3} = +\frac{1}{6} \frac{b_{n_1+1}}{n_1+1} \frac{b_{n_2+1}}{n_2+1} \frac{b_{n_3+1}}{n_3+1} \\ -\frac{1}{4} \left(\frac{b_{n_1+n_2+1}}{n_1+n_2+1} \frac{b_{n_3+1}}{n_3+1} + \frac{b_{n_1+1}}{n_1+1} \frac{b_{n_2+n_3+1}}{n_2+n_3+1} \right) \\ +\frac{1}{3} \frac{b_{n_1+n_2+n_3+1}}{n_1+n_2+n_3+1} .$$

<u>Remark</u>: If $n_1 = 0$, $n_2 = 0$ or $n_3 = 0$, the expressions are not so simple...

be ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
<i>q</i> = 0	3 8	$-\frac{1}{12}$	0	$\frac{1}{120}$	0	$-\frac{1}{252}$	0
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	1 240	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
<i>q</i> = 3	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{28800}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$
<i>q</i> = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
<i>q</i> = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$	$\frac{1}{127008}$	$\frac{691}{65520}$

- one out of four Multiple Bernoulli Numbers is null.
- one out of two antidiagonals is "constant".
- "symmetry" relatively to p = q .
- cross product around the zeros are equals : $28800 \cdot 127008 = 60480^2$.

Conclusion

1. We have respectively defined the Multiple Bernoulli Polynomials and Multiple Bernoulli Numbers by:

$$\begin{cases} \mathcal{B}eeg^{\bullet}(z) &= Exp(\lceil eg^{\bullet}) \times \sqrt{\mathcal{S}g^{\bullet}} \times \left(\mathcal{S}ing^{\bullet}(0)\right)^{\times -1} \times \mathcal{S}ing^{\bullet}(z) \ \\ beeg^{\bullet} &= Exp(\lceil eg^{\bullet}) \times \sqrt{\mathcal{S}g^{\bullet}} \end{cases}$$

2. The Multiple Bernoulli Polynomials satisfy a nice generalization of:
■ the nullity of b_{2n+1} if n > 0:

$$b^{2p_1,\cdots,2p_r}=0.$$

• the symmetry
$$B_n(1) = B_n(0)$$
 if $n > 1$:
if $n_r > 0$, $B^{n_1, \cdots, n_r}(0) = B^{n_1, \cdots, n_r}(1)$.

• the difference equation
$$\Delta(B_n)(x) = nx^{n-1}$$
:
 $B^{n_1,\dots,n_r}(z+1) - B^{n_1,\dots,n_r}(z) = B^{n_1,\dots,n_{r-1}}(z) \cdot z^{n_r}$

• the reflection formula $(-1)^n B_n(1-x) = B_n(x)$:

$$\mathcal{B}eeg^{-\bullet}(1-z)\cdot\mathcal{B}eeg^{\overleftarrow{\bullet}}(z)=1^{\bullet}$$
.

THANK YOU FOR YOUR ATTENTION !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?