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Introduction to mould calculus
m First definitions



Definition

m Concrete def.: A mould is a function with a variable number of variables.
m Mathematical def. 1: A mould is a function defined on a monoid.

m Mathematical def. 2: A mould is a collection (fo, f1, f2, - - - ) of functions, f,
being a function of n variables.

Typical examples:  The addition : fo(x1, -+, Xa) = X1 + -+ - + Xa.

The Multiple Zeta Values : fo: () —1

f1:$1'—>zi51



First notations.

Let Q be an alphabet, and Q* be the set of all words

m New notations:

Functional notations | Mould notations

Name f m*

Evaluation f(x) M

m Why do we need some “new” notations ?

~~ To mix easily index and exponent in notations.

~~ To understand easily the type of object at first sight.



Mould/comould'’s contractions.

Moulds might be contracted with dual objects, called comoulds (which are also
functions with a variable number of variables) :

Definition: Mould - Comould contraction:

The mould-comould contraction of a mould M*® and a comould B, is:
> M*B.:= > M“B,
° weN*

(if the sum is well-defined...)

For analytical reasons, a mould-comould contraction might be understood to
be an algebra automorphism or a derivation.

Important remark:

All the following mould’s definitions come from such an interpretation,
in particular for the mould algebra’s structure and the mould’s symmetries.



Difference between moulds and co-moulds

Moulds: Co-moulds:
~~ needs a commutative ~ needs a C-algebra O,
C-algebra C, in which in which co-moulds take
moulds take their values their values

~» C = algebra of coefficients ~» O = algebra of operators

~~ mould = any map Q* —— C | ~ co-mould = any homomorphism
Q*—0




Formal mould/comould contraction

m To each letter w € Q, we define a symbol a,,, which will be, when
necessary, specialized to B,,.

~~ The symbols a,, do not commute.

~~ The symbols a, are extended to words:

Awy-wy = Awy " Awy -

m To each mould M* € Mg(Q2), we define a series s(M*) € C{(A)), where
A={a,; weQ}by:

s(M*) = Z M a, = ZM' EN

weQ*

~ If ¢ is a specialization morphism defined by ¢(a.,) = B.,, then:

o(s(M*)) ZM‘ B. .



Introduction to mould calculus

m Mould operations



Mould operations.

Let M* and N°® be two moulds valued in an algebra C, \ € C.

= Addition: Z (M® + N*)a, = Z M®a, + Z N°®a.

S =M"+N° <= YweQ", S¥=M+N.

® Scalar multiplication: > (AM)*a, =\ M*a,

(AM)® = AM® = Ywe Q" , OAM)2 =M.

= Mould multiplication: Z (M* x N*) (Z m* a.) (Z N'a.)

2

PP = M'XN® <= Ywe @, P2= S MmN
(w!iw?)e(@*)?

w= ,‘,1 w?




Algebraic structure

m Example of mould product computation: P* = M*® x N*®

P(D _ M(D N@
pe1 - M« N(D + M@ N1
pwnw2 | w1w2 N(D + Mt Ne2 M@ N@1w2

= Example of operations on moulds:

(A*xB*)xC* = A*x(B*xC").
A* x1®° = 1°xA*=A°.
(A'—i—B')XC' = A*xXC*+B*xC*.
A*x (B*+C*) = A*xB*+A*xC*.

A*x B* # B*XxA*.

Property: Algebraic structure

Let Mg(2) be the set of moulds defined over the alphabet Q and valued in the
algebra C.

So, (Mg(R),+, ., X) is a non commuative, associative, unitary C-algebra.
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Translating the Leibnitz rules

m In practice, the comould satisfies some “Leibnitz rules”, which have to be
translated in terms of the a,,:

Bu(py) = Bu(@)+¢Bu(y) ~ Ala) = aw@l+l@a,

Bu(py) = E By (#)Bur(¥) ~ Alaw) = E aw; ® aw,
wi,wy €N wy,wy€Q
witwy=w witwy=w

(where (2, +) is a semi-group)

m A is extended to words over A in order to be an algebra homomorphism,
and then to C{(A)) by linearity. So,

(C{A)),-, A) is a Hopf algebra.

Property:
Let ¢ : a, — B, be a specialization morphism.
If A(s(M*®)) =s(M®)® s(M?®) (i.e. is group-like), then ¢ (s(M*)) is an
automorphism.
If A(s(M®)) =s(M*)®1+1®s(M®) (ie. is primitive), then ¢ (s(M*))
is a derivation.



The symmetrAl case: A(a,) =a,®1+1® a, 1/3

Definition: shuffle product
For u,v € Q* and a, b € Q, we define recursively the shuffle product L1 by:

lwuy = wvWwl = u.
vallvb = (uwvb)a+ (vawv)b

Let shA(g1 ; gz) be the set of words which appear in w! LU w?, counted with
their multiplicity.

Lemma:

For any word w € Q*, A(w) = Z w1 Qwo .

wi,wy EQ*X
weshA(w) ,.w))



The symmetrAl case: A(a,) =a,®1+1® a, 2/3

A mould M* € Mg(Q) satisfies:
A(s(M*®)) = s(M*®) ® s(M*®) if, and only if, the mould M* satisfies:
Ve e (@), S ME=mE v 1)

weshA(w! ; w?)

A(s(M*®)) =s(M*)®1+1®s(M*®) if, and only if, the mould M*® satisfies:

M?=0.
{ V(w'; W) € (- {0})°, > mM2=o0. (2

weshA(w! ; w?)

Sketch of proof of (1): A(s(M*))= > M“A(w)= >  Mwi@w

wer (w,w1,w2)€(Q%)3
wEshA(wy ,w2)

A(s(M*)—s(M)es(M*) = Y ( S MY M ) W ® wz .

)2 cQ
(w1,w2)€(Q2*) wEshA(L )




The symmetrAl case: A(a,) =a,®1+1® a, 3/3

A mould M* € Mg(Q) is called:

symmetrAl when:
Vwhiw)e (@), > me=meme 3)
weshA(w! ;w?)

alternAl when:

MP=0.
{ V(w'; w?) € (2" — {0})?, > M=o (4)

weshAw! ; w?)

A mould M* € Mg(Q) is:
symmetrAl if, and only if, A(s(M*)) = s(M*) ® s(M*®).
alternAl if, and only if, A(s(M*®)) =s(M*) ® 1 +1® s(M*®).



An example of symmetrAl and alternAl moulds

Example 1:

Let Q be a set, and for all w € Q, let fy : [0; 1] — R be a continuous function.

Let Z° be the mould defined by:

e f for() £, (t) d - .
0<t, <<ty <1

Then, Z° is symmetrAl .

Example 2:
Any mould M* € Mg(€) such that:

(w)#1= M“=0,

is alternAl .



Definition: stuffle product

Suppose that (€2, +) is an additive semi-group. For u,v € Q* and a,b € Q, we
define recursively the stuffle product =1 by:

ey = ule = u.
{ual;uvb = (uwvb)a+ (vawv)b+ (uv)(a+b). (®)

Let shE(w'; w?) be the set of words which appear in w' 1 w?, counted with
their multiplicity.

For any word w € Q*, A(w) = Z w1 Qwo .
wi,wy QX

wEshE(wy ,w))



The symmetrEl case: A(a,) = Z A, ® Ay, 2/3

w1 ,wp €N
wylwy=w

A mould M*® € Mg(Q) satisfies:
A(s(M*®)) = s(M*®) ® s(M*®) if, and only if, the mould M* satisfies:

V' iw) e (@), Y ME=meme (6)

weshE(w! ; w?)

A(s(M*®)) =s(M*)®1+1®s(M*®) if, and only if, the mould M*® satisfies:

M’ =0.
{ Ve e (@ {0}, Y M==0. ™

weshE(w! ; w?)



The symmetrEl case: A(a,) = Z A, ® Ay, 3/3

w1 ,wp €N

wylwy=w

A mould M* € Mg(Q) is called:

symmetrE| when:

V' w?) e (@), > me=mewe ®)

weshE(w! ; w?)

alternEl when:

MP=0.
{ V(w'; w?) € (0 —{0}), > o m=o0. (9)

weshE(w! ;w?)

A mould M* € Mg(Q) is:
symmetrEl if, and only if, A(s(M*)) = s(M®) ® s(M*®).
alternEl if, and only if, A(s(M®)) =s(M*) ® 1 +1® s(M°®).



An example of symmetrEl and alternEl moulds

Example 1:

Let (un)nens, be a sequence of complex numbers such that:

Ja>2,u, = O %).
n—-+o0o

Let S* € Mg(N>1) be the mould defined by:

1S s1 2
S = E Ups * - U,

0<n, <+ <np <400

Then, S° is symmetrEl .

Example 2:

The mould M* € Mz(R) defined by:

is alternEl .
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Formal moulds

Other point of view on moulds: A mould is a collection of functions
(fo, fi, f,---), where f; : Q' — C.

A formal mould is a collection of formal series (So, S1, 52, -+ ), where S, is a
formal power series in n indeterminates (and consequently, Sp is constant)

Notation: FM¢ = {formal mould with values in the algebra C} .

What is the difference between a mould and a formal mould?

Mould M* € Mg(Q) Formal mould M*® € FM¢
where Q = (X1, X2, ---).

No link between M*1X2 and M>2X1 11| M*1%2 and M*2%1 are related by
the substitution of the indeterminates.



Generics example of formal moulds

With a mould M* € Mg(N), we associate two formal moulds Mog® and Meg*®
defined by:

Mogxlr“,xr — E Msl,"',srxlﬂ X:r )
s1,°0+,SrEN
Sl Sr
Meth---,Xr — E ML oS X X;
5! s

si,5srEN




Secondary symmetries

The secondary symmetries of a mould are the symmetries of its corresponding
formal moulds.

Theorem: (Ecalle, ~ 80’s)

Let M* € Mg(N) be a mould.
M?® is symmetrAl if, and only if, Mog® is symmetrAl .
M?® is alternAl if, and only if, Mog® is alternAl .

Theorem: (B., 2015)

Let M* € Mg(N) be a mould.
M?® is symmetrAl if, and only if, Meg® is symmetrAl .
M?® is alternAl if, and only if, Meg® is alternAl .
M?® is symmetrEl if, and only if, Meg® is symmetrEl .
@ M® is alternEl if, and only if, Meg® is alternEl .



Algebraic construction to prove our result on secondary symmetries

Let us consider:
X = {Xi, Xz, } be an infinite set of indeterminates.

Y =NX= Z Aex 3 (Ax)xex € NX has finitely nonzero terms}.
xeX
A={A,; yeY}



Algebraic construction to prove our result on secondary symmetries

Let us consider:
X = {Xi, Xz, } be an infinite set of indeterminates.

Y =NX= Z Aex 3 (Ax)xex € NX has finitely nonzero terms}.
xeX
A={A,; yeY}
We extend the definition of Mog® and Meg® to words constructed over A*:

Ay A Ay A
Mog vy — Mog}/h SYr , Meg vy — Meg}’la sYr



Algebraic construction to prove our result on secondary symmetries

Let us consider:
X = {Xi, Xz, } be an infinite set of indeterminates.

Y =NX= Z Aex 3 (Ax)xex € NX has finitely nonzero terms}.
xeX
A={A,; yeY}
We extend the definition of Mog® and Meg® to words constructed over A*:
MogAy1"" Ay, = MogYL"' SYr , MegAyl,m Ay, — Megyl"" Yr
We define a secondary formal mould/comould contraction, i.e. to a formal
mould FM*® € FMg, we associate a series S(FM*) € C[X]({(A)) b
S(FM*) = > FM# A, = ZFM’ A, .

wWEA*



Algebraic construction to prove our result on secondary symmetries

Let us consider:
X = {Xi, Xz, } be an infinite set of indeterminates.

Y =NX= Z Aex 3 (Ax)xex € NX has finitely nonzero terms}.
xeX

A={A ; yeY}
We extend the definition of Mog® and Meg® to words constructed over A*:

MogA”""’Ay’ := Mog”>" " , IVIegAyl"”’Ay’ = Meg”> "
We define a secondary formal mould/comould contraction, i.e. to a formal

mould FM*® € FMg, we associate a series S(FM*) € C[X]({(A)) b
S(FM*) = > FM# A, = ZFM’ A, .
wWEA*

B We define a map A as before, i.e. a coproduct, by:
Case Al:  A(A)=A®1+10A, AA)= Y BaC

Case B A(A) =D A®A, AA)= > BeC

u,veyY B.CeA*
utv=y A€SshE(B,C)



Algebraic construction to prove our result on secondary symmetries

Let us consider:
X = {Xi, Xz, } be an infinite set of indeterminates.

Y =NX= Z Aex 3 (Ax)xex € NX has finitely nonzero terms}.
xeX

A={A,; yeY}
We extend the definition of Mog® and Meg® to words constructed over A*:

MogAy1"" Ay, = MogYL"' SYr , MegAyl,m Ay, — Meg“"“ Yr
We define a secondary formal mould/comould contraction, i.e. to a formal

mould FM*® € FMg, we associate a series S(FM*) € C[X]({(A)) b
S(FM*) = > FM# A, = ZFM’ A, .
wWEA*

B We define a map A as before, i.e. a coproduct, by:
Case Al:  A(A)=A®1+10A, AA)= Y BaC

B.CeA*
AcshA(B,C)

Case B A(A) =D A®A, A4)= Y BocC
P At

Now, we just have to adapt the proof of
A(s(M*®)) = s(M*) ® s(M®) <= M* is symmetrAl' /symmetrEl .



Exercices

Adapt the previous construction to have a better understanding of the
symmetrllity . Then prove that:

a. M*® is symmetrEl <= Mog® is symmetrll .
b. M* is alternEl <= Mog®* is alternll .

Let 6., be the Kronecker symbol.
Let M*® be a mould such that:

MEME = M M 45, oM
MPMPS = MPBC 4 MBS 4 MBS 4 5, yM>E + 6,  MP?
Mabped = pgabed | pgacbd | pgacdb | pedab | pgeadib | pgeabd
+8a,c(MEPE 4 MDY 4 5, 5p gME?

a. Define a (primary) mould symmetry satisfied by M*.
b. What are its corresponding secondary symmetries ?



Using mould calculus: a generalization of Bernoulli numbers to the multiple
case



Why multiple Bernoulli numbers and polynomials?

The numbers Ze>"** defined by

1
51»""5r p—
Ze - Z nst - - - n.Sr ’
0<n, <---<ny
where s, -, s, € C such that R(s1 + - - - + sk) > k, k € [1; r], are called

multiple zeta values.

Fact: There exist at least three different ways to renormalise multiple zeta
values at negative integers.

_ _ 1 _
Zeyp (0) =5, Zegs z(o)zﬁ . Zepeur(0) =

1
18

Question: Is there a group acting on the set of all possible multiple zeta values
renormalisations?

Main goal: Define multiple Bernoulli numbers in relation with this.



On the Riemann and Hurwitz Zeta Functions

The Riemann and Hurwitz zeta functions are defined, for &te s > 1, and
z € C — N, by:

1 1
C(S)_HZOE ) C(57Z)_nzzo(n+z)s .

Property:

s +— ((s) and s — ((s, z) can be analytically extend to a meromorphic
function on C, with a simple pole located at 1.

b e,
n+1

¢(—n,z) _BITTI(:T) forallne N .

Remark: ((—n)



Hurwitz Multiple Zeta Functions

Definition: Hurwitz multiple zeta functions

Let z€ C—Ngo and (s1, - ,sr) € (N>1)", such that s; > 2 .
The Hurwitz multiple zeta functions are defined by:

HerT(z) = 3 1

0<n <--<ny (m +2z) - (n, + z)

Lemma: (B., Ecalle, 2013)
Let A_ be the difference operator: A_(f)(z) = f(z — 1) — f(2)

. o o o zt ifr=1
Then: A_(He®) = He® x J* , where J* " (z) = 0 otherwise

Heuristic:
Be®*r(z) = Multiple (divided) Bernoulli polynomials = He """ =% (z) .

be®t > = Multiple (divided) Bernoulli numbers = He™""" 7% (0) .



Some Properties of Bernoulli Polynomials

Property 1: Difference Equation

A (Bn) (x) = x""" for all n € N*, where A(f)(z) = f(z+1) — f(2) .

n

Property 2: Reflexion Formula

(=1)"Bn(1 — x) = Bu(x) for all n € N.



Main Goal

We want to define a mould Be®(z) € Mg, (N) such that:

m its values have properties similar to Hurwitz Multiple Zeta Functions’
properties.

m its values have properties generalizing these of Bernoulli polynomials.

Find Be® € M2,;(N) such that:

_ Bs+1 (Z)

Be'(z) = 1

, Where s > 0 ;

A (Be') (z) = Be® x J*(2)

Be® is symmetrEl .



A singular solution

Bs+1(z) X eZX :
g1 o Wheres >0 Beeg (2) = x 7~ %

Be®(z) =
A(Be®)(z) = Be® x J*(z) T\ A(Beeg®)(z) = Beeg® x Jeg*(2)
Be® is symmetrEl . Beeg® is symmetrEl .

Reminders:
JegX(z) = e and Jeg™ X =0 if r £ 1.

A er X
x_1)-€¢ -

From a false solution to a singular solution...

ez(Xkl +oor X )

r
"% 1)
i=1

Sing™ X (2) = is a false solution to the system we are
g %

solving...:
Sing*(z) € FMgx but Sing®(z) € FMxq -



Another solution

Fact: If A(f)(z) = f(z — 1) — f(z2), ker AN zC[z] = {0}.

Consequence: There exists a unique family of polynomials (Be®"">*) such
that:
{ Beyv " (z 4+ 1) — Begt ™ (2) = Beyt " (2)2"™ .

Begt ™ (0) =0 .
This produces Bej € Mg,;(N) and Beegs € FM¢y,;.

Lemma: (B., 2013)

The moulds Beg (z) and Beegs (z) are symmetrEl .

The mould Beegg (z) satisfies a recurence relation:

Y;
Y; . e’ —1
Beol(z) - e —1
Yi+Y2,Ys,--, Y, Ys,Ys,e- Y,
Beyl’m’y’(z) _ Be01+ 2,Y3 "(2) — Bel»" "(2)
0 e —1

Beegs (z) = (Sing*(0))* ™" x Sing*(z).



Characterization of the set of solutions

Proposition: (B. 2013)

Any familly of polynomials which are solution of the previous system comes
from a formal mould Beeg® valued in C[z] such that there exists a formal
mould beeg® valued in C satisfying:

1. beeg”X = - = 2. beeg® is symmetrEl

eX—-1 X
3. Beeg®(z) = beeg® x Beegy (z) = beeg® x (Sing'(O))X_1 x Sing®(z) .

Theorem: (B., 2013)

The subgroup of symmetrEl formal moulds with vanishing coefficients in length
1, acts on the set of all possible multiple Bernoulli polynomials, i.e. on the set
of all possible algebraic renormalization of multiple zeta values at negative
integers.



Using the Reflexion Formula of Bernoulli polynomials

Notations: M™°: (w1, -+ ,w,) — M~9070 79

pa—

M*® o (wi, e wp) s MO

Lemma: (B., 2013)

Let Sg® be the mould defined by: Sg™ % = (-1)".
For all z € C, we have:

xX—1

Sing=*(0) = (Singﬁi(o)) o x Sg® , Sing™*(1—2z)= (Singﬁi(z))

Sketch of proof: Use recursively exl_ 1 + efxl_ T +1=0 O
Examples:
Sing=*=Y(0) = Sing®Y(0) + Sing®*Y(0) + Sing®(0) +1 .

Sing™ 7Y (1 - 2) Sing®Y (z) + Sing*™ (2) .



Reflexion Formula for Multiple Bernoulli Polynomials

Theorem: (B., 2013)

For all z € C, we have:

Beeg™*(1 — z) x Beeg ._(z) = beeg™* x (1° +1°) x beeg * |

1 ifr=0. 1 ifr=1.
Xioo Xe _ Xi, X
e 1 _{o esm, e b —{o ifrAl.

Sing=*(1—z) x Singﬁ_(z) =1°

Consequently, we will define beeg® such that:

beeg™*® x (1°* +1°) x beeg -1



Resolution of a mould equation

Consequently, we will define beeg® such that:

beeg™® x (1° +/1°) x beeg * =1°

[

beeg™® x (Sg®)* ' x beeg* =1°
ceeg ® X ceeg R ,where ceeg® = beeg® x (Sg')xf%
Exp(deg™*) x Exp(deg '7) = 1° ,where ceeg® = Exp(deg®)

deg™® +deg * = 0" .



Definition of Multiple Bernoulli Polynomials and Numbers

The mould deg® defined by

deg” =0,
r—1
degxl""’X’ — &degxﬁ'””’ 7
X 1 1 1 . ) N
where deg” = X1 X + 5 satifies the required conditions:

deg® +deg " =0,
deg® is alternEl .

Definition: (B., 2014)

The moulds Beeg®(z) and beeg® are defined by:

Beeg®(z) = Exp(deg®) x /Sg* x (Sing®(0))* ' x Sing*(z) .
beeg*® = Exp(deg®) x /Sg*

The coefficients Be®(z) and Be® of these exponential generating series are
called respectively the Multiple Bernoulli Polynomials and Numbers.



Examples of explicit expression for multiple Bernoulli numbers

Consequently, we obtain explicit expressions like, for ny, mp, n3 > 0:

be:m — 1/ bo+1 bs1 bojgnyta
2\m+1m+1 m+m+1)"

1 b1 bmt1 b1
6n+1m+ln+1

1 ( brj4m+1  bngt1 bni+1  bnytng+1 )
4\ m+m+1nm+1 m+1lm+nm+1

benl sN2,n3

1 bn1+n2+"3+1
3m+nm+n+1-

Remark: If n;1 =0, no = 0 or n3 = 0, the expressions are not so simple...



Table of Multiple Bernoulli Numbers in length 2

beP9 | p=0| p=1
3 1
=% § | "p
1 1
= ]_ _— _—
9 24 | 288
1
9=2 240
1 1
= 3 —_— _—
q 240 | ~ 2880
1
=4 T
9 0 504
_s| L | L \ .
= 504 | 6048 | 480 264
m one out of four Multiple Bernoulli Numbers is null.
m one out of two antidiagonals is “constant”.
m “symmetry” relatively to p=gq .

cross product around the zeros are equals : 28800 - 127008 = 60480 .



Conclusion

1. We have respectively defined the Multiple Bernoulli Polynomials and
Multiple Bernoulli Numbers by:

Beeg®(z) = Exp([eg®) x /Sg* x (Sing'(o)) Ty Sing®(z) .
beeg® = Exp([eg®) x V/Sg*

2. The Multiple Bernoulli Polynomials satisfy a nice generalization of:
m the nullity of bypi1 if n > 0:
b2P17'“ 2Pr 0.

m the symmetry B,(1) = B,(0) if n > 1:
if n, >0, B™ " (0)=B""""(1).

m the difference equation A(B,)(x) = nx"*:
B (z 4+ 1) = B™ M (z) = B (2) - 2T

m the reflection formula (—1)"B,(1 — x) = Bu(x):

Beeg™*(1—z)-Beeg * (z) =1°.



THANK YOU FOR YOUR ATTENTION !




	Introduction to mould calculus
	First definitions
	Mould operations
	Primary symmetries
	Secondary symmetries

	Using mould calculus: a generalization of Bernoulli numbers to the multiple case

