An example of generalization of the Bernoulli numbers and

polynomials to any dimension

Olivier Bouillot,
Villebon-Georges Charpak institute, France

C.A.L.LLN. team seminary.
Tuesday, 29™" March 2016 .



Introduction

The numbers Ze>"** defined by

1
51»""5r p—
Ze - Z nst - - - n.Sr ’
0<n, <---<ny
where s, -+, s, € C such that R(s1 + -+ sx) > k, k € [1; r], are called

multiple zeta values.

Fact: There exists at least three different ways to renormalize multiple zeta
values at negative integers.

_ _ 1 .
Zeyp (0) = 720 Zeg; *(0) = 10 Zepiur(0) =

1
18

Question: Is there a group acting on the set of all possible multiple zeta values
renormalisations?

Main goal: Define multiple Bernoulli numbers in relation with this.
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m Reminders on Bernoulli Polynomials and Numbers



Two Equivalent Definitions of Bernoulli Polynomials / Numbers

Bernoulli numbers: Bernoulli polynomials:
By a generating function: By a generating function:
t t" e t"
ef—lzzbnm' et—lzan(X)m'
n>0 n>0
By a recursive formula: By a recursive formula:
bp=1, BO(X)::[»/
v N n n+1 b 0 VHGN, Bn-{-l(X):(n—’—l)Bn(X) ’
neN, =0. .
;0( k ) g VnGN,/ Bn(x) dx =0
- 0
First examples: First examples:
11 1 1
ﬂ:17_7777 [ S e B 17
b 26" 300 22 °() 1
Bl(X) = X E )
By(x) = x —x—l—% ,




Elementary properties satisfied by the Bernoulli polynomials and numbers

Pl b1 =0if n>0.
P2 B,(0) = By(1) if n> 1.

T m-+1
P3 Z( p )bkzo,m>0.

k=0

B} (z) = nBn—1(z) if n > 0.
Bix+y)= Z (Z) Bi(x)y"™* for all n.
k=0

P5 B,(x+ 1) — Ba(x) = nx"7, for all n.
P6 (—1)"By(1 — x) = Ba(x), for all n.

P4

n_ Bny1(N) — Bay1(0)
P7 Zk = o .

P8 /X By(t) dt = Brri(x) = Bra(3)
L n+1 '

m—1

PO By(mx) = m" Z B, (x—|— %) for all m > 0 and n > 0.
k=0



Elementary properties satisfied by the Bernoulli polynomials and numbers

Have to be extended,

but is not restritive enough.

Pl bopi1 =0 if n> 0.
P2 B,(0) = Bn(1) if n> 1.

“ 1
P3 Z(’": )bkzo, m> 0.

k=0
B/(z) = nB,—1(z) if n > 0.

P4 “ n n—k
Bix+y)= Z <k> By (x)y"™" for all n.

k=0
P5 Bi(x+ 1) — Ba(x) = nx"", for all n.
P6 (—1)"Ba(1 — x) = Ba(x), for all n.

N—1
p7 Z WP — B+1(N) — Br1(0) '
—~ n+1

P8 / " By(t) dt = Bra(x) = Bra(a)
. n+1 '

m—1

P9 B,(mx)=m"" Z B, (x—|— %) for all m > 0 and n > 0.
k=0
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but is not restritive enough.
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P3 Z (m:— 1) by =0, m>0. Hastobe extended, but too particular.
k=0
B/(z) = nB,—1(z) if n > 0.

P4 Ba(x+y) =) (Z) Bi(x)y"™* for all n.

k=0
P5 Bi(x+ 1) — Ba(x) = nx"", for all n.
P6 (—1)"Ba(1 — x) = Ba(x), for all n.

N—1
p7 Z WP — B+1(N) — Br1(0) '
—~ n+1
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. n+1 '

m—1

P9 B,(mx)=m"" Z B, (x—|— %) for all m > 0 and n > 0.
k=0



Elementary properties satisfied by the Bernoulli polynomials and numbers

P1
P2

P3

P4

P5
P6

P7

P8

P9

bans1 =0 if n>0. Have to be extended,

B,(0) = By(1) if n> 1. but is not restritive enough.

Z (m:— 1) by =0, m>0. Hastobe extended, but too particular.
k=0

B}(z) = nBn—1(z) if n > 0. Important property, but turns

out to have a generalization

n e
Bi(x+y) = By (x)y ¥ for all n. with a corrective term...
k=0 k

n

Ba(x 4+ 1) — Ba(x) = nx"7, for all n.
(—=1)"Bn(1 — x) = Ba(x), for all n.

”Z‘l wo _ Bona(N) = Bria(0)
pos n+1 '

/: B, (t) dt = w .

m—1

By(mx) = m"! Z B, (x—|— %) for all m > 0 and n > 0.
k=0
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k—0



Reminders

m Reminders on Hurwitz Zeta Function and Hurwitz multiple zeta functions



On the Hurwitz Zeta Function

The Hurwitz Zeta Function is defined, for e s > 1, and z € C — Ng, by:

(s, 2) ZZﬁ :

n>0

Property:

%(s,z) = —sC(s+1,2z).
(s, x+y)= Z (—ns) ¢(s+ n,x)y".

n>0
H2 ((s,z—1) —((s,z) = z~°.

H1

m—1

H3 ((s,mz) = m_sZ§ (s,z—|— g) if me N

k=0



Link between the Hurwitz Zeta Function and the Bernoulli polynomials

s —> ((s, z) can be analytically extend to a meromorphic function on C, with
a simple pole located at 1.

. o Bn+1(z)
Remark: ((—n,z) = ntl forallne N .
_ bn+1
¢(—n,0) = i forallne N .

Related properties:

Hurwitz zeta function | Bernoulli polynomials
Derivative property H1 P4
Difference equation H2 P5
Multiplication theorem H3 P9

Consequence:

The extension from Bernoulli to multiple Bernoulli polynomials will be done
using a generalization of the Hurwitz zeta function: the Hurwitz multiple zeta
functions.



On Hurwitz Multiple Zeta Functions

Definition of Hurwitz Multiple Zeta Functions
1

S1>°"* »Sr = if C—-N d
fte (2) Z (m+z)2--(n+2z)’ "z <o an
0<n,<---<m

(s1,---,s) € (N*), such that s, > 2.

Lemma 1: (B., J. Ecalle, 2012)

For all sequences (s, ,s:) € (N*)", s1 > 2, we have:

He (2 — 1) — He T (2) = He T (2) - 2

The Hurwitz Multiple Zeta Functions multiply by the stuffle product (of N*).

Reminder: If (2, +) is a semi-group, the stuffle i is defined over Q* by:

ewuy = uuwe = u.
vawvb = (uwvb)a+ (vawv)b+ (uwv)(a+b).



Reminders

= Reminders on Quasi-Symmetric Functions



Reminders on Quasi-symmetric functions

Definition:

Let x = {x1, x2, x3, - - - } be an infinite commutative alphabet.
A series is said to be quasi-symmetric when its coefficient of x;* - - - x7" is equals
to this of x;* ---x forall it <--- <.

2 2 2 2
Example : Mo 1(x1, %2, X3,...) = Xix2 + xixz + -+ xixn+ -+ X553+ -+
X1X22 is not in M> 1 but in My .

Fact 1: e Quasi-symmetric functions span a vector space: QSym.
e A basis of QSym is given by the monomials M, for composition
= (i, i)

. A j
Mii(X) = > xaox

0<m<---<ny

Fact 2: e QSym is an algebra whose product is the stuffle product.
e QSym is also a Hopf algebra whose coproduct A is given by:

A(M,‘ly... 7,‘r(X)) = Z M"l»"' ’,'k(X) (4 Mfk+1:"' ’,',(X) .
k=0



Algebraic reformulation of the problem



B % (z) = Multiple (Divided) Bernoulli Polynomials = He ™" =% (z) .

b1 = Multiple (Divided) Bernoulli Numbers = He ™"~ (0) .

We want to define B *(z) such that:
m their properties are similar to Hurwitz Multiple Zeta Functions’ properties.

m their properties generalize these of Bernoulli polynomials.

Find some polynomials B> »* such that:
Bn+1(z)
n+1
B™ " (z 4 1) — B™ " (z) = B™ 1 (2)Z2™, for ny,--- ,n, >0,

B"(z) = , where n >0,

the B™""»" multiply by the stuffle product.



An algebraic construction

Notation 1:

Let X = {Xi, -, Xa, -} be a (commutative) alphabet of indeterminates.
We denotes:

ny ny
B = Y B

9
ny! n,!
N1y 0y >0 ! r

forall r e N*, Yi,--- Y, € X.

Remark: B0 Y (z 4 1) — B Yr(z2) = BM 7 Yi-1(2)e"r |

Notation 2:
Let A={a, -, an, -} be a non-commutative alphabet.
We denotes:

Bz)=1+>. > B M (2)ay - a, € CIX](A) -

r>0 ki, ,ky>0

Remark: B(z + 1) = B(z) - ( + Z e ak)

k>0



The abstract construction in the case of quasi-symmetric functions

Let see an analogue of B(z) where the multiple Bernoulli polynomials are
replaced with the monomial functions M;(x) of QSym:

ny n,
Yl “ .. Yr '
ny! n,!

MY () = N My, (%) forall Yi,---, Y, €X.

ny,-ee,np 20

Mo Y Y M,

r>0 ki, ,ky>0

= 1+ Z Z lL[ (1 + anex"xk ak) Mk Ky (x)

N r>0 0<p1<---<pr i=1 k>0
- 11 (1 +3 xne*"xkak) e CIIXT(AY -
n>0 k>0

Computation of the coproduct of 91: (which does not act on the X's)

AMYI"”’Y'(X) — Z MY1 ..... Yk(X) ® MYk+1 ..... Y,(X) .
k=0

AM=M M .



Transcription of the multiplication by the stuffle

Property: (J. Y. Thibon, F. Chapoton, J. Ecalle, F. Menous, D. Sauzin, ...)

A family of objects (B™ ™), ny.ns,--->0 multiply by the stuffle product if, and
only if, there exists a character x, of QSym such that

Xe (Mo 1, 11 () = B (2) (1)

Consequences:
1. x; can be extended to QSym[X], applying it terms by terms.
Xz (MY“” ’Y’(x)) =B (2), forall Yi,---, Y, €X.

2. If B™ ™ multiply the stuffle, B = x.(9M) is “group-like” in C[z][X]{A)).



Reformulation of the main goal

Reformulation of the main goal

Find some polynomials B™ " such that:

eZXk 1

(B(2)|ax) = F—1 X'

B(z+1) =B(z) - €(z) , where E(z) =1+ Z e ay
k>0
B is a “group-like” element of C[z][X](A)) .



The Structure of a Multiple Bernoulli Polynomial



A singular solution

Remainder: ¢(z) =1+ Z e ay.
k>0

From a false solution to a singular solution...

ez(Xk1 +e X, )

S(z):H@(z—n):l—i—Z Z = ak, - - ak isa

n>0 r>0 ky,- k>0 H(eXk1+~-+Xk,- _ 1)

X,
(B@)la) = 1~ 5
B(z+1) = B(2) - €(2)
B is a “group-like” element of C[z][X](A)) .

false solution to system

Explanations: 1. B(z) =.---= B(z—n) - &z—n)-- Q‘S(z -1)
== ( I|m %z—n)) H@(z—n).

2. 8(2) € Cl2J(X)(A), S(2) & Clz][X](A)-

Heuristic: Find a correction of S, to send it into C[z][X]{A)).



Another solution

Fact: If A(f)(z) = f(z — 1) — f(z2), ker AN zC[z] = {0}.
Consequence: There exist a unique family of polynomials such that:
{ Byt M (z 1) — Bt (2) = BT (2) 2™
Byt "(0)=0.
This produces a series Bg € C[z][X]({(A)) defined by:
Bo(z) =1+ Z By M () ay e a

r>0  ky,--- ,ky>0

Lemma: (B., 2013)

The noncommutative series By is a “group-like” element of C[z][X](A)).

The coefficients of Bo(z) satisfy a recurence relation:

zY]
et -1
Bg/l(z):m , YieX.
Y1+Y2,Y3,-, Y, _ RY2 Y3, Y
Bg’l,n. ,Yr(z) _ B, (f) B, (2) Vi Y.eX.
et —1

The series By can be expressed in terms of S: Bo(z) = (S 0)) -S(2).



Characterization of the set of solutions

Reminder: A family of multiple Bernoulli polynomials produces a series 8 such
that:
B(z+1) =B(z) - €(z) , where &(z) =1+ Z ek ay
k>0
B is a “group-like” element of C[z][X](A)) ,

™k 1
(B(2)]ax) = K —1 X

Proposition: (B. 2013)

Any familly of polynomials which are solution of the previous system comes
from a noncommutative series B € C[z][X]{(A)) such that there exists
b € C[X]{(A)) satisfying:

1. (b]A) =

K1 X, 2. b is “group-like”

3. B(z) =b-Bo=b-(5(0)) " -S(2) .

Theorem: (B., 2013)

The subgroup of “group-like” series of C[z][X]{(A)), with vanishing coefficients
in length 1, acts on the set of all possible multiple Bernoulli polynomials, i.e.
on the set of all possible algebraic renormalization.



B The General Reflexion Formula of Multiple Bernoulli Polynomial



Some notations

New Goal:

From B(z) = b - By, determine a suitable series b such that the reflexion
formula
(=1)"Bn(1 — z) = By(z) ,neN

has a nice generalization.

For a generic series s € C[z][X](A)),
s@=3 Y ST (@Da
reN  ky,-- k>0
we consider:

) = > Y SR @an e

reN  ky,-- k>0

5(z) = Z Z s N X (2) 2y e g

reN k- k>0



The reflection equation for B (z)

Proposition: (B. 2014)
=]
Let sg =1+ Z Z (=) ak, - ak, = (1 + Za,,) . Then,

r>0 kq,-+ k>0 n>0

S(0)=(S5(0)"'-sg and S(1-z)=(S(z))" .

Corollary 1: (B. 2014)
For all z € C, we have: sg - Bo(1 — z) = (%o(z))7l .

Example:

BT H1—2) = —BYYH(2) - By (2) - BY (2

—By Y (2) + By 4 (2) + Byt (2) -



The generalization of the reflection formula

Corollary 2: (B. 2014)

B(l—z) B(z)=b-sg '-b. 2)

Remark: S(0) - sg~*-S(0) = 1.

Heuristic:

A reasonable candidate for a multi-Bernoulli polynomial comes from the

coefficients of a series B(z) = b - Bo(z) where b satisfies:

1. =—— =
£b|3k> E)(k 1 Xk

3.b-sg7t-b=1 .

2. b is “group-like”



An Example of Multiple Bernoulli Polynomial



Resolution of an equation
n-sg7tu=1.

Goal: Characterise the solutions of Lo -
uis “group-like” .

Proposition: (B., 2014)

—1)"
Let us denote y/sg=1 =1+ Z Z (22) (er> EPRERRE- DI

r>0 ky,-- k>0
1

Any “group-like” solution u of - sg™" -1 = 1 comes from a “primitive” series
v satisfying

p+0=0,

and is given by:

u = exp(v) - /58 .

If moreover (u|ax) = ﬁ — Xik then necessarily, we have:
1 1 1
(vfak) = ot == (X)) -

X —1 X, ' 2




The choice of a series v

New goal: Find a nice series v satisfying:
1. v is “primitive”. 2.8+0=0. 3. (v|ax) = 1 x
Remark: (v|ax) is an odd formal series in X € X.

Generalization: v = —v ,sob =1 .

1
= (v]ay, ak,) = —Etf(Xk1 + Xk, ), but does not determine (v|a, ak,ak;) -

A restrictive condition:

A natural condition is to have:

there exists a, € C such that (v]ay, - ak ) = arf(Xi, + - + X, ) -

Now, there is a unique “primitive” series v satisfying this condition and the new
goal:

(_1)r71
(ofa - ag) = " F(Xig + -+ Xi) -



Definition : (B., 2014)
The series B(z) and b defined by

B(z) = exp(v) v/Sg-(5(0)7"-S(2)
b exp(v) - /Sg
are noncommutative series of C[z][X]{(A)) whose coefficients are respectively

the exponential generating functions of multiple Bernoulli polynomials and
multiple Bernoulli numbers.

Example:

The exponential generating function of bi-Bernoulli polynomials and numbers
are respectively:

XM yn 1 1 1 3
g = F(X+Y)+ S F(X)F(Y) = 2F(X) + >
PO LHXC ) + SFOOFY) — SR + 3
o= ezY_l_lezY_l
e¥—1 2 e¥-1
ez(X+Y) 1 ezY 1

(X —1)(eX+Y —1) (eX—1)(e¥ —1)°

+f(X)

_|_




Examples of explicit expression for multiple Bernoulli numbers:

Consequently, we obtain explicit expressions like, for ny, mp, n3 > 0:

o 1/ bot1 bs1 boygnmt1
2\m+1m+1 m+m+1)°

1 bn1+1 bn2+1 bn3+1
6nm+1nmn+ln+1l

1 < boytmt1 byt bny+1 brytngt1 )
4\ m+m+1nm+1l m+1lm+n+l

) _
pminn

1 bntnytns+1
3m+m+n+1-°

Remark: If n;1 =0, no = 0 or n3 = 0, the expressions are not so simple...



Table of Multiple Bernoulli Numbers in length 2

bP? | p=0| p=1 | p=2 p=3 p=24 p=>5 p==~6
3 1 1 1
=01 g | " | © 120 O | 0
-1 | L BN R SR N S B 1
9= 24 288 240 2880 504 6048 480
1 1 1
q=2 220 | % | “s0a | O 80 0
3 -y 1y 1 1
9= 240 2880 504 28800 480 60480 264
1 1 1
=4 0 | “sa | O 280 ° | % 0
A N U VO U
9= 504 6048 480 60480 264 127008 65520




@ An algorithm to compute the double Bernoulli Numbers



Table of Multiple Bernoulli Numbers in length 2

P9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
3 1 1 1
9=0| ¢ n 0 120 0 25 | 0
1| 21 L IR R S R S R O RS
9= 24 | 288 240 2830 504 | 6048 480
1 1 1
9=2] % | 5 | % | “5a | O© 480 0
DN U U O U U U S
9= 240 2880 504 28800 480 60480 264
1 1 1
9=4] % | “sa | ® | s | % | " | °
| 1 71 1 691
9= 504 6048 480 60480 264 127008 65520

m one out of four Multiple Bernoulli Numbers is null.



Table of Multiple Bernoulli Numbers in length 2

beP9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
3 1 1 1
9=0 g | "1 | O 120 O | "o | O
I T T D T T
9= 24 288 240 2880 504 6048 480
1 1 1
9=2] 0 | 5 | % | “5a | O 480 0
I DT T T T T
9= 240 2880 504 28800 480 60480 264
1 1 1
9=4] 9 | "5 | © | @ | ° | "o | O
I T T T T
9= 504 6048 480 60480 264 127008

m one out of four Multiple Bernoulli Numbers is null.

m one out of two antidiagonals is “constant”.



Table of Multiple Bernoulli Numbers in length 2

beP9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
3 1 1 1
9=0 g | "1 | O 120 O | "o | O
I T T D T T
9= 24 288 240 2880 504 6048 480
1 1 1
9=2] 0 | 5 | % | “5a | O 480 0
I DT T T T T
9= 240 2880 504 28800 480 60480 264
1 1 1
9=4] 9 | "5 | © | @ | ° | "o | O
I T T T T
9= 504 6048 480 60480 264 127008

m one out of four Multiple Bernoulli Numbers is null.
m one out of two antidiagonals is “constant”.

m “symmetrie” relatively to p=gq .



Table of Multiple Bernoulli Numbers in length 2

beP9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
3 1 1 1
=0 g | 0 120 0 | "% | 0
B 0 (R T S N S (U S R S B
9= 24 | 288 | 240 2880 | 504 | 6048 480
1 1 1
9=2] 9 | % | % | "oz | © 280 0
N L Y
9= 240 2880 | 504 480 264
1 1 1
g=4] 0 504 0 480 0 264 0
_s| ot | 1 | L _ L
9= 504 | 6048 | 480 264

m one out of four Multiple Bernoulli Numbers is null.
m one out of two antidiagonals is “constant”.

m “symmetrie” relatively to p=gq .
m cross product around the zeros are equals : 28800 - 127008 = 604802 .



Construction Table of Multiple Bernoulli Numbers in length 2

From these previous remarks, let us present an algorithm to compute
bi-Bernoulli numbers.

P9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
q=0
|- 1 | L S U T 1
9= 24 | 288 | 240 2880 | 504 | 6048 480
q=2
q=3
q=4
q=>5
q==56




Construction Table of Multiple Bernoulli Numbers in length 2

From these previous remarks, let us present an algorithm to compute
bi-Bernoulli numbers.

beP9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
q=0
T I T B L IR S R S RS S B
9= 24 | 288 240 2880 504 | 6048 480
g=2| o0 0 0 0
q=3
q=>5
g=6| 0 0 0 0




Construction Table of Multiple Bernoulli Numbers in length 2

From these previous remarks, let us present an algorithm to compute
bi-Bernoulli numbers.

beP9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
qg=0

1 1 1 1 1 1 1
9=1| 24 | 288 | 240 | “2880 | 504 | 6048 | 480
g=2| 0 ﬁ 0 0 0
q=3 —ﬁ
qg=4 0 —ﬁ 0 0 0
q=>5 ﬁ
qg==56 0 % 0 0 0




Construction Table of Multiple Bernoulli Numbers in length 2

From these previous remarks, let us present an algorithm to compute
bi-Bernoulli numbers.

beP9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
q=0
BN 0 IR T S N S U S R S B
9= 24 | 288 | 240 2880 | 504 | 6048 480
1 1 1
9=2] % | s | % | "5 | ° 280 0
g L1 |1 1 o1
97> 240 2880 | 504 480 264
1 1 1
=41 0 | “5a | O 430 0 264 ;
1 1 1 1
9=5| - | == | 720
504 | 6048 | 480 264
1 1
g9=6] © 480 0 264 L Y




Construction Table of Multiple Bernoulli Numbers in length 2

From these previous remarks, let us present an algorithm to compute
bi-Bernoulli numbers.

beP9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
q=0
P 11 1 1 1 1
9= 24 | 283 | 240 2880 504 | 6048 480
1 1 1
9=2] % | s | % | "5 | ° 480 0
3| 1 |1 _1 |1 _ 1
9= 240 2880 | 504 | 28300 | 480 264
1 1 1
=41 0 | “5a | O 430 0 264 0
1 1 1 1
9=5| -z | = | 75
504 | 6048 | 480 264
1 1
g9=6] © 480 0 264 L Y




Construction Table of Multiple Bernoulli Numbers in length 2

From these previous remarks, let us present an algorithm to compute
bi-Bernoulli numbers.

beP9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
q=0
P 11 1 1 1 1
9= 24 | 283 | 240 2880 504 | 6048 480
1 1 1
9=2] % | s | % | "5 | ° 480 0
3 L |1 |_1 1 11 _ 1
9= 240 2880 | 504 | 28300 | 480 60480 | — 264
1 1 1
=41 0 | “5a | O 430 0 264 0
1 1 1 1
q=5| s | = | o
504 | 6048 | 480 264
1 1
g9=6] © 480 0 264 L Y




Construction Table of Multiple Bernoulli Numbers in length 2

From these previous remarks, let us present an algorithm to compute
bi-Bernoulli numbers.

beP9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
q=0
BN T I T D S I 1 S
9= 24 | 288 | 240 2880 | 504 | 6048 480
1 1 1
9=2] % | s | % | "5 | ° 280 0
gt oty 1 o1y 1 p 1
97> 240 2880 | 504 | 28800 | 480 60480 | 264
1 1 1
=41 0 | “5a | O 430 0 264 ;
IS R S I T R T 1
9= 504 | 6048 | 480 60480 | 264
1 1
g9=6] © 480 0 264 L Y




Construction Table of Multiple Bernoulli Numbers in length 2

From these previous remarks, let us present an algorithm to compute
bi-Bernoulli numbers.

beP9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
q=0
gy o1 1 o1 1 1
9= 24 | 283 | 240 2880 | 504 | 6048 480
1 1 1
9=2] % | s | % | "5 | ° 480 0
g A (1 |1 | _1 Sl 1 S
9= 240 2880 | 504 | 28300 | 480 60480 | 264
1 1 1
9=4) % "5 | © | @@ | ° | "o | O
_s oL | 1 pa 1 R 1
9= 504 | 6048 | 480 60480 | 264 | 127008
1 1
g9=6] © 480 0 264 0 0




Construction Table of Multiple Bernoulli Numbers in length 2

From these previous remarks, let us present an algorithm to compute
bi-Bernoulli numbers.

beP9 | p=0| p=1 | p=2 p=3 p=4 p=5 p==6
3 1 1 1
9=90 g | " | O 120 O | "o | O©
P 11 1 1 1 1
9= 24 288 240 2880 504 6048 480
1 1 1
9=2] 0 | 5 | % | “5a | O 480 0
S U S U A T S O T B
9= 240 2880 504 28800 480 60480 264
1 1 1
9=4) % "5 | © | @@ | ° | "o | O
R S O B T A S R S S O
9= 504 6048 480 60480 264 127008
1 1




Properties satisfied by Bernoulli polynomials and numbers



Properties satisfied by multiple Bernoulli polynomials 1

Proposition: (B., 2013)

The multiple Bernoulli polynomials B™ """ multiply the stuffle.

Theorem: (B., 2014)

P’1 All multiple Bernoulli numbers satisfy : B2Pr 2P — )
P’2 If n, >0, B™""(0) = B™"(1) .
P’5 B™M(z 4+ 1) — B™ o (z) = BT =1 (2) - 2™

P’6 There exists a reflexion formula for multiple Bernoulli polynoms:
B(l—2z)-B(z)=1 .

P’7 The truncated multiple sums of powers Sy, defined by

Sls\lly o = E n151 - nrsr

0<n, <---<n <N

are given by the coefficients of Bo(N) .



Properties satisfied by multiple Bernoulli polynomials 2

Proposition: (B. 2014)

For all positive integers nq,--- ,n,, b™ " = p"rom

Proposition: (B., 2014)
For a series s(z) € C[z][X]{A)), let us define A(s)(z) by:

A(s)(2) =) Z Xig + Xy (s(2)laky -+~ ak,) akg -+~ ak, -

reEN  ky,e k>0

A is a derivation, and :
P’4 The derivation of multiple Bernoulli polynomials are given by:

2:8(z) = A (b-50) 1) - (b- :5(0)*1)_1 CB(2) + A(B(2)) .



Properties satisfied by multiple Bernoulli polynomials 3

Proposition: (B., 2015)

P’3 The recurrence relation of bi-Bernoulli numbers is (partially) given by:

¢ P q k,l
d pePd |
k=0 1=0
i_ 4
2 p+1

if p,g>0.



Conclusion

1. We have respectively defined the Multiple (divided) Bernoulli Polynomials
and Multiple (divided) Bernoulli Numbers by:

{%(z) = exp(0) - v/Sg - (S(0) - S(2)
b = exp(v): VSg

They both multiply the stuffle.

2. The Multiple Bernoulli Polynomials satisfy a nice generalization of:
m the nullity of bypi1 if n > 0.
m the symmetry B,(1) = B,(0) if n > 1.
m the difference equation A(B,)(x) = nx""1.
m the reflection formula (—1)"B,(1 — x) = Ba(x).

THANK YOU FOR YOUR ATTENTION !
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