An example of generalization of the Bernoulli numbers and polynomials to any dimension

Olivier Bouillot, Villebon-Georges Charpak institute, France

C.A.L.I.N. team seminary. Tuesday, 29^{th} March 2016 .

Introduction

Definition:

The numbers $\mathcal{Z}e^{s_1,\cdots,s_r}$ defined by

$$\mathcal{Z}e^{s_1,\cdots,s_r} = \sum_{0 < n_r < \cdots < n_1} \frac{1}{n_1^{s_1}\cdots n_r^{s_r}},$$

where $s_1, \dots, s_r \in \mathbb{C}$ such that $\Re(s_1 + \dots + s_k) > k$, $k \in \llbracket 1; r \rrbracket$, are called multiple zeta values.

<u>Fact:</u> There exists at least three different ways to renormalize multiple zeta values at negative integers.

$$\mathcal{Z}e^{0,-2}_{MP}(0)=rac{7}{720} \quad,\quad \mathcal{Z}e^{0,-2}_{GZ}(0)=rac{1}{120} \quad,\quad \mathcal{Z}e^{0,-2}_{FKMT}(0)=rac{1}{18} \;.$$

Question: Is there a group acting on the set of all possible multiple zeta values renormalisations?

Main goal: Define multiple Bernoulli numbers in relation with this.

Outline

1 Reminders

- Reminders on Bernoulli Polynomials and Numbers
- Reminders on Hurwitz Zeta Function and Hurwitz multiple zeta functions

- Reminders on Quasi-Symmetric Functions
- 2 Algebraic reformulation of the problem
- 3 The Structure of a Multiple Bernoulli Polynomial
- 4 The General Reflexion Formula of Multiple Bernoulli Polynomial
- 5 An Example of Multiple Bernoulli Polynomial
- 6 An algorithm to compute the double Bernoulli Numbers
- 7 Properties satisfied by Bernoulli polynomials and numbers

1 Reminders

Reminders on Bernoulli Polynomials and Numbers

Reminders on Hurwitz Zeta Function and Hurwitz multiple zeta functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reminders on Quasi-Symmetric Functions

Two Equivalent Definitions of Bernoulli Polynomials / Numbers

Bernoulli numbers:	Bernoulli polynomials:	
By a generating function:	By a generating function:	
$rac{t}{e^t-1} = \sum_{n\geq 0} b_n rac{t^n}{n!} \; .$	$\frac{te^{xt}}{e^t - 1} = \sum_{n \ge 0} B_n(x) \frac{t^n}{n!} .$ By a recursive formula:	
By a recursive formula:	By a recursive formula:	
$\left\{ egin{array}{l} b_0 = 1 \ , \ orall n \in \mathbb{N} \ , \ \sum_{k=0}^n inom{n+1}{k} \ b_k = 0 \ . \end{array} ight.$	$\begin{cases} B_0(x) = 1, \\ \forall n \in \mathbb{N}, B'_{n+1}(x) = (n+1)B_n(x), \\ \forall n \in \mathbb{N}^*, \int_0^1 B_n(x) dx = 0. \\ \hline First examples: \end{cases}$	
$b_n=1,-rac{1}{2},rac{1}{6},0,-rac{1}{30},0,rac{1}{42},\cdots$	$egin{array}{rcl} B_0(x)&=&1\ ,\ B_1(x)&=&x-rac{1}{2}\ ,\ B_2(x)&=&x^2-x+rac{1}{6}\ ,\ dots \end{array}$	
	・ ・ ・ 『 ・ ・ 明 ・ ・ 日 ・ うくの	

P1
$$b_{2n+1} = 0$$
 if $n > 0$.

P2
$$B_n(0) = B_n(1)$$
 if $n > 1$.

P3
$$\sum_{k=0}^{m} {\binom{m+1}{k}} b_k = 0, \ m > 0.$$

P4
$$\begin{cases} B'_n(z) = nB_{n-1}(z) \text{ if } n > 0.\\ B_n(x+y) = \sum_{k=0}^{n} {\binom{n}{k}} B_k(x) y^{n-k} \text{ for all } n. \end{cases}$$

P5
$$B_n(x+1) - B_n(x) = nx^{n-1}$$
, for all *n*.

P6
$$(-1)^n B_n(1-x) = B_n(x)$$
, for all *n*.

P7
$$\sum_{k=0}^{N-1} k^n = \frac{B_{n+1}(N) - B_{n+1}(0)}{n+1}$$
.

P8
$$\int_{a}^{x} B_{n}(t) dt = \frac{B_{n+1}(x) - B_{n+1}(a)}{n+1}$$
.

P9
$$B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$$
 for all $m > 0$ and $n \ge 0$.

э

P1
$$b_{2n+1} = 0$$
 if $n > 0$.
P2 $B_n(0) = B_n(1)$ if $n > 1$.
P3 $\sum_{k=0}^{m} {\binom{m+1}{k}} b_k = 0, m > 0$.
P4 $\begin{cases} B'_n(z) = nB_{n-1}(z) \text{ if } n > 0.\\ B_n(x+y) = \sum_{k=0}^{n} {\binom{n}{k}} B_k(x)y^{n-k} \text{ for all } n. \end{cases}$
P5 $B_n(x+1) - B_n(x) = nx^{n-1}$, for all n .
P6 $(-1)^n B_n(1-x) = B_n(x)$, for all n .
P7 $\sum_{k=0}^{N-1} k^p = \frac{B_{n+1}(N) - B_{n+1}(0)}{n+1}$.
P8 $\int_a^x B_n(t) dt = \frac{B_{n+1}(x) - B_{n+1}(a)}{n+1}$.
P9 $B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.

P1
$$b_{2n+1} = 0$$
 if $n > 0$.
P2 $B_n(0) = B_n(1)$ if $n > 1$.
P3 $\sum_{k=0}^{m} {\binom{m+1}{k}} b_k = 0, m > 0$. Has to be extended, but too particular.
P4 $\begin{cases} B'_n(z) = nB_{n-1}(z) \text{ if } n > 0.\\ B_n(x+y) = \sum_{k=0}^{n} {\binom{n}{k}} B_k(x)y^{n-k} \text{ for all } n. \end{cases}$
P5 $B_n(x+1) - B_n(x) = nx^{n-1}, \text{ for all } n.$
P6 $(-1)^n B_n(1-x) = B_n(x), \text{ for all } n.$
P7 $\sum_{k=0}^{N-1} k^p = \frac{B_{n+1}(N) - B_{n+1}(0)}{n+1}$.
P8 $\int_a^x B_n(t) dt = \frac{B_{n+1}(x) - B_{n+1}(a)}{n+1}$.
P9 $B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right) \text{ for all } m > 0 \text{ and } n \ge 0.$

P1
$$b_{2n+1} = 0$$
 if $n > 0$.
P2 $B_n(0) = B_n(1)$ if $n > 1$.
P3 $\sum_{k=0}^{m} {\binom{m+1}{k}} b_k = 0$, $m > 0$.
P4 $\begin{cases} B'_n(z) = nB_{n-1}(z)$ if $n > 0$.
 $B_n(x+y) = \sum_{k=0}^{n} {\binom{n}{k}} B_k(x)y^{n-k}$ for all n .
P5 $B_n(x+1) - B_n(x) = nx^{n-1}$, for all n .
P6 $(-1)^n B_n(1-x) = B_n(x)$, for all n .
P7 $\sum_{k=0}^{N-1} k^p = \frac{B_{n+1}(N) - B_{n+1}(0)}{n+1}$.
P8 $\int_a^x B_n(t) dt = \frac{B_{n+1}(x) - B_{n+1}(a)}{n+1}$.
P9 $B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.

P1
$$b_{2n+1} = 0$$
 if $n > 0$.
P2 $B_n(0) = B_n(1)$ if $n > 1$.
P3 $\sum_{k=0}^{m} {\binom{m+1}{k}} b_k = 0$, $m > 0$.
P4 $\begin{cases} B'_n(z) = nB_{n-1}(z)$ if $n > 0$.
Bn $(x + y) = \sum_{k=0}^{n} {\binom{n}{k}} B_k(x)y^{n-k}$ for all n .
P5 $B_n(x + 1) - B_n(x) = nx^{n-1}$, for all n .
P6 $(-1)^n B_n(1 - x) = B_n(x)$, for all n .
P7 $\sum_{k=0}^{N-1} k^p = \frac{B_{n+1}(N) - B_{n+1}(0)}{n+1}$.
P8 $\int_a^x B_n(t) dt = \frac{B_{n+1}(x) - B_{n+1}(a)}{n+1}$.
P9 $B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.

P1
$$b_{2n+1} = 0$$
 if $n > 0$.
P2 $B_n(0) = B_n(1)$ if $n > 1$.
P3 $\sum_{k=0}^{m} {\binom{m+1}{k}} b_k = 0, m > 0$.
P4 $\begin{cases} B'_n(z) = nB_{n-1}(z) \text{ if } n > 0.\\ B_n(x+y) = \sum_{k=0}^{n} {\binom{n}{k}} B_k(x)y^{n-k} \text{ for all } n. \end{cases}$ Important property, but turns out to have a generalization with a corrective term...
P5 $B_n(x+1) - B_n(x) = nx^{n-1}$, for all n .
P5 $B_n(x+1) - B_n(x) = nx^{n-1}$, for all n .
P6 $(-1)^n B_n(1-x) = B_n(x)$, for all n .
P7 $\sum_{k=0}^{N-1} k^p = \frac{B_{n+1}(N) - B_{n+1}(0)}{n+1}$.
P8 $\int_a^x B_n(t) dt = \frac{B_{n+1}(x) - B_{n+1}(a)}{n+1}$.
P9 $B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.

P1
$$b_{2n+1} = 0$$
 if $n > 0$.
P2 $B_n(0) = B_n(1)$ if $n > 1$.
P3 $\sum_{k=0}^{m} {\binom{m+1}{k}} b_k = 0$, $m > 0$.
P4 $\begin{cases} B'_n(z) = nB_{n-1}(z)$ if $n > 0$.
Bas to be extended, but too particular.
P4 $\begin{cases} B'_n(z) = nB_{n-1}(z)$ if $n > 0$.
Bas to be extended, but too particular.
P4 $\begin{cases} B'_n(z) = nB_{n-1}(z)$ if $n > 0$.
Bas to be extended, but too particular.
P5 $B_n(x+1) - B_n(x) = nx^{n-1}$, for all n .
P5 $B_n(x+1) - B_n(x) = nx^{n-1}$, for all n .
P6 $(-1)^n B_n(1-x) = B_n(x)$, for all n .
P6 $be extended, but how???$
P7 $\sum_{k=0}^{N-1} k^p = \frac{B_{n+1}(N) - B_{n+1}(0)}{n+1}$.
P8 $\int_a^x B_n(t) dt = \frac{B_{n+1}(x) - B_{n+1}(a)}{n+1}$.
P9 $B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.

P1
$$b_{2n+1} = 0$$
 if $n > 0$.
P2 $B_n(0) = B_n(1)$ if $n > 1$.
P3 $\sum_{k=0}^{m} {\binom{m+1}{k}} b_k = 0$, $m > 0$.
P4 $\begin{cases} B'_n(z) = nB_{n-1}(z)$ if $n > 0$.
B $_n(x + y) = \sum_{k=0}^{n} {\binom{n}{k}} B_k(x)y^{n-k}$ for all n .
P5 $B_n(x + 1) - B_n(x) = nx^{n-1}$, for all n .
P6 $(-1)^n B_n(1 - x) = B_n(x)$, for all n .
P7 $\sum_{k=0}^{N-1} k^p = \frac{B_{n+1}(N) - B_{n+1}(0)}{n+1}$.
P6 $\int_a^x B_n(t) dt = \frac{B_{n+1}(x) - B_{n+1}(a)}{n+1}$.
P6 $a_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.

 $\overline{k=0}$

P1
$$b_{2n+1} = 0$$
 if $n > 0$.
P2 $B_n(0) = B_n(1)$ if $n > 1$.
P3 $\sum_{k=0}^{m} {\binom{m+1}{k}} b_k = 0$, $m > 0$.
P4 $\begin{cases} B'_n(z) = nB_{n-1}(z)$ if $n > 0$.
Bas to be extended, but too particular.
P4 $\begin{cases} B'_n(z) = nB_{n-1}(z)$ if $n > 0$.
Bas to be extended, but too particular.
P4 $\begin{cases} B'_n(z) = nB_{n-1}(z)$ if $n > 0$.
Bas to be extended, but too particular.
P5 $B_n(x+1) - B_n(x) = nx^{n-1}$, for all n .
P5 $B_n(x+1) - B_n(x) = nx^{n-1}$, for all n .
P6 $(-1)^n B_n(1-x) = B_n(x)$, for all n .
P6 $be extended, but how???$
P7 $\sum_{k=0}^{N-1} k^p = \frac{B_{n+1}(N) - B_{n+1}(0)}{n+1}$.
P6 $\int_a^x B_n(t) dt = \frac{B_{n+1}(x) - B_{n+1}(a)}{n+1}$.
P6 $\int_a^x B_n(t) dt = \frac{B_{n+1}(x) - B_{n+1}(a)}{n+1}$.
P6 $h_n(x) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P7 $\sum_{k=0}^{n} B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P7 $\sum_{k=0}^{n} B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P7 $\sum_{k=0}^{n} B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P9 $B_n(mx) = m^{n-1} \sum_{k=0}^{m-1} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P7 $\sum_{k=0}^{n-1} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P7 $\sum_{k=0}^{n} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P7 $\sum_{k=0}^{n} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P9 $\sum_{k=0}^{n} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P9 $\sum_{k=0}^{n} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P9 $\sum_{k=0}^{n} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P9 $\sum_{k=0}^{n} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P9 $\sum_{k=0}^{n} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P9 $\sum_{k=0}^{n} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P9 $\sum_{k=0}^{n} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $n \ge 0$.
P9 $\sum_{k=0}^{n} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $m \ge 0$.
P9 $\sum_{k=0}^{n} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $m \ge 0$.
P9 $\sum_{k=0}^{n} B_n\left(x + \frac{k}{m}\right)$ for all $m > 0$ and $m \ge 0$.
P9 $\sum_{k=0}^$

1 Reminders

- Reminders on Bernoulli Polynomials and Numbers
- Reminders on Hurwitz Zeta Function and Hurwitz multiple zeta functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

Reminders on Quasi-Symmetric Functions

Definition:

The Hurwitz Zeta Function is defined, for $\Re e \ s > 1$, and $z \in \mathbb{C} - \mathbb{N}_{<0}$, by:

$$\zeta(s,z) = \sum_{n>0} \frac{1}{(n+z)^s} \; .$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへで

Property:

H1
$$\begin{cases} \frac{\partial \zeta}{\partial z}(s,z) = -s\zeta(s+1,z).\\ \zeta(s,x+y) = \sum_{n\geq 0} {\binom{-s}{n}} \zeta(s+n,x)y^n. \end{cases}$$

H2 $\zeta(s,z-1) - \zeta(s,z) = z^{-s}.$
H3 $\zeta(s,mz) = m^{-s} \sum_{k=0}^{m-1} \zeta\left(s,z+\frac{k}{m}\right) \text{ if } m \in \mathbb{N}^*. \end{cases}$

Link between the Hurwitz Zeta Function and the Bernoulli polynomials

Property:

 $s \mapsto \zeta(s, z)$ can be analytically extend to a meromorphic function on \mathbb{C} , with a simple pole located at 1.

Remark:
$$\zeta(-n,z) = -\frac{B_{n+1}(z)}{n+1}$$
 for all $n \in \mathbb{N}$.
 $\zeta(-n,0) = -\frac{b_{n+1}}{n+1}$ for all $n \in \mathbb{N}$.

Related properties:

	Hurwitz zeta function	Bernoulli polynomials
Derivative property	H1	P4
Difference equation	H2	P5
Multiplication theorem	H3	P9

Consequence:

The extension from Bernoulli to multiple Bernoulli polynomials will be done using a generalization of the Hurwitz zeta function: the **Hurwitz multiple zeta functions**.

SQC

Definition of Hurwitz Multiple Zeta Functions

$$\begin{aligned} \mathcal{H}e^{s_1,\cdots,s_r}(z) &= \sum_{0 < n_r < \cdots < n_1} \frac{1}{(n_1+z)^{s_1}\cdots(n_r+z)^{s_r}} \text{, if } z \in \mathbb{C} - \mathbb{N}_{<0} \text{ and} \\ (s_1,\cdots,s_r) \in (\mathbb{N}^*)^r \text{, such that } s_1 \geq 2 \text{.} \end{aligned}$$

Lemma 1: (B., J. Ecalle, 2012)

For all sequences $(s_1, \cdots, s_r) \in (\mathbb{N}^*)^r$, $s_1 \geq 2$, we have:

$$\mathcal{H}e^{s_1,\cdots,s_r}(z-1)-\mathcal{H}e^{s_1,\cdots,s_r}(z)=\mathcal{H}e^{s_1,\cdots,s_{r-1}}(z)\cdot z^{-s_r}$$

Lemma 2:

The Hurwitz Multiple Zeta Functions multiply by the stuffle product (of \mathbb{N}^*).

<u>Reminder</u>: If $(\Omega, +)$ is a semi-group, the stuffle \perp is defined over Ω^* by:

$$\begin{cases} \varepsilon \amalg u = u \amalg \varepsilon = u . \\ ua \amalg vb = (u \amalg vb) a + (ua \amalg v) b + (u \amalg v)(a + b) . \\ \vdots = (u \amalg vb) a + (ua \amalg v) b + (u \amalg v)(a + b) . \end{cases}$$

1 Reminders

- Reminders on Bernoulli Polynomials and Numbers
- Reminders on Hurwitz Zeta Function and Hurwitz multiple zeta functions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reminders on Quasi-Symmetric Functions

Reminders on Quasi-symmetric functions

Definition:

Let $x = \{x_1, x_2, x_3, \dots\}$ be an infinite commutative alphabet. A series is said to be quasi-symmetric when its coefficient of $x_1^{s_1} \cdots x_r^{s_r}$ is equals to this of $x_{i_1}^{s_1} \cdots x_{i_r}^{s_r}$ for all $i_1 < \dots < i_r$.

- $\underline{\text{Example :}} \quad M_{2,1}(x_1, x_2, x_3, \ldots) = x_1^2 x_2 + x_1^2 x_3 + \cdots + x_1^2 x_n + \cdots + x_2^2 x_3 + \cdots \\ x_1 x_2^2 \text{ is not in } M_{2,1} \text{ but in } M_{1,2}.$
- Fact 1: Quasi-symmetric functions span a vector space: QSym.
 A basis of QSym is given by the monomials M_I, for composition I = (i₁, ..., i_r):

$$M_{i_1,\cdots,i_r}(X) = \sum_{0 < n_1 < \cdots < n_r} x_{n_1}^{i_1} \cdots x_{n_r}^{i_r}$$

- Fact 2: QSym is an algebra whose product is the stuffle product.
 - QSym is also a Hopf algebra whose coproduct Δ is given by:

$$\Delta(M_{i_1,\cdots,i_r}(\mathsf{x})) = \sum_{k=0}^r M_{i_1,\cdots,i_k}(\mathsf{x}) \otimes M_{i_{k+1},\cdots,i_r}(\mathsf{x}) \ .$$

1 Reminders

- 2 Algebraic reformulation of the problem
- 3 The Structure of a Multiple Bernoulli Polynomial
- 4 The General Reflexion Formula of Multiple Bernoulli Polynomial
- 5 An Example of Multiple Bernoulli Polynomial
- 6 An algorithm to compute the double Bernoulli Numbers
- 7 Properties satisfied by Bernoulli polynomials and numbers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main Goal

Heuristic:

 $B^{s_1, \cdots, s_r}(z) = Multiple$ (Divided) Bernoulli Polynomials $= \mathcal{H}e^{-s_1, \cdots, -s_r}(z)$.

 $b^{s_1, \cdots, s_r} = Multiple$ (Divided) Bernoulli Numbers $= \mathcal{H}e^{-s_1, \cdots, -s_r}(0)$.

We want to define $B^{s_1, \dots, s_r}(z)$ such that:

- their properties are similar to Hurwitz Multiple Zeta Functions' properties.
- their properties generalize these of Bernoulli polynomials.

Main Goal:

Find some polynomials B^{s_1, \dots, s_r} such that:

$$\begin{array}{l} B^n(z) = \displaystyle \frac{B_{n+1}(z)}{n+1} \text{ , where } n \geq 0 \text{ ,} \\ B^{n_1, \cdots, n_r}(z+1) - B^{n_1, \cdots, n_r}(z) = B^{n_1, \cdots, n_{r-1}}(z) z^{n_r} \text{ , for } n_1, \cdots, n_r \geq 0 \text{ ,} \\ \text{, the } B^{n_1, \cdots, n_r} \text{ multiply by the stuffle product.} \end{array}$$

An algebraic construction

Notation 1:

Let $X = \{X_1, \dots, X_n, \dots\}$ be a (commutative) alphabet of indeterminates. We denotes:

$$\mathcal{B}^{Y_1,\cdots,Y_r}(z) = \sum_{n_1,\cdots,n_r \ge 0} B^{n_1,\cdots,n_r}(z) \frac{Y_1^{n_1}}{n_1!} \cdots \frac{Y_r^{n_r}}{n_r!} ,$$

for all $r \in \mathbb{N}^*$, $Y_1, \cdots, Y_r \in X$.

Remark:
$$\mathcal{B}^{Y_1,\cdots,Y_r}(z+1) - \mathcal{B}^{Y_1,\cdots,Y_r}(z) = \mathcal{B}^{Y_1,\cdots,Y_{r-1}}(z)e^{zY_r}$$
.

Notation 2:

Let $A = \{a_1, \dots, a_n, \dots\}$ be a non-commutative alphabet. We denotes:

$$\mathfrak{B}(z) = 1 + \sum_{r>0} \sum_{k_1, \cdots, k_r > 0} \mathcal{B}^{X_{k_1}, \cdots, X_{k_r}}(z) a_{k_1} \cdots a_{k_r} \in \mathbb{C}[z] \llbracket X \rrbracket \langle\!\langle \mathsf{A}
angle \rangle \; .$$

Remark:
$$\mathfrak{B}(z+1) = \mathfrak{B}(z) \cdot \left(1 + \sum_{k>0} e^{zX_k} a_k\right)$$

The abstract construction in the case of quasi-symmetric functions

Let see an analogue of $\mathfrak{B}(z)$ where the multiple Bernoulli polynomials are replaced with the monomial functions $M_l(x)$ of QSym:

$$M^{Y_{1}, \cdots, Y_{r}}(x) := \sum_{n_{1}, \cdots, n_{r} \geq 0} M_{n_{1}+1, \cdots, n_{r}+1}(x) \frac{Y_{1}^{n_{1}}}{n_{1}!} \cdots \frac{Y_{r}^{n_{r}}}{n_{r}!} \text{, for all } Y_{1}, \cdots, Y_{r} \in X \text{.}$$

$$\begin{split} \mathfrak{M} &:= 1 + \sum_{r>0} \sum_{k_1, \cdots, k_r > 0} \mathcal{M}^{X_{k_1}, \cdots, X_{k_r}}(\mathsf{x}) \ \mathbf{a}_{k_1} \cdots \mathbf{a}_{k_r} \\ &= 1 + \sum_{r>0} \sum_{0 < p_1 < \cdots < p_r} \prod_{i=1}^r \left(1 + \sum_{k>0} x_n e^{x_n X_k} \mathbf{a}_k \right) \mathcal{M}^{X_{k_1}, \cdots, X_{k_r}}(\mathsf{x}) \\ &= \prod_{n>0} \left(1 + \sum_{k>0} x_n e^{x_n X_k} \mathbf{a}_k \right) \in \mathbb{C}[\![\mathsf{x}]\!][\![\mathsf{X}]\!]\langle\!\langle \mathsf{A} \rangle\!\rangle \;. \end{split}$$

Computation of the coproduct of \mathfrak{M} : (which does not act on the X's)

$$\Delta M^{Y_1, \cdots, Y_r}(x) = \sum_{k=0}^r M^{Y_1, \dots, Y_k}(x) \otimes M^{Y_{k+1}, \dots, Y_r}(x) \ .$$

 $\Delta \mathfrak{M} = \mathfrak{M} \otimes \mathfrak{M}$.

Property: (J. Y. Thibon, F. Chapoton, J. Ecalle, F. Menous, D. Sauzin, ...)

A family of objects $(B^{n_1,\dots,n_r})_{n_1,n_2,n_3,\dots\geq 0}$ multiply by the stuffle product if, and only if, there exists a character χ_z of QSym such that

$$\chi_z(M_{n_1+1,\cdots,n_r+1}(\mathsf{x})) = B^{n_1,\cdots,n_r}(z) \tag{1}$$

Consequences:

1. χ_z can be extended to QSym[X], applying it terms by terms.

$$\chi_z\left(\mathcal{M}^{Y_1,\cdots,Y_r}(\mathsf{x})
ight)=\mathcal{B}^{Y_1,\cdots,Y_r}(z)$$
 , for all $Y_1,\cdots,Y_r\in\mathsf{X}$.

2. If B^{n_1,\dots,n_r} multiply the stuffle, $\mathfrak{B} = \chi_z(\mathfrak{M})$ is "group-like" in $\mathbb{C}[z][X]\langle\!\langle A \rangle\!\rangle$.

Reformulation of the main goal

Find some polynomials B^{n_1, \dots, n_r} such that:

$$\begin{array}{l} \langle \mathfrak{B}(z)|a_k\rangle = \frac{e^{zX_k}}{e^{X_k} - 1} - \frac{1}{X_k} \ , \\ \mathfrak{B}(z+1) = \mathfrak{B}(z) \cdot \mathfrak{E}(z) \ , \ \text{where} \ \mathfrak{E}(z) = 1 + \sum_{k>0} e^{zX_k} a_k \ , \\ \mathfrak{B} \ \text{is a "group-like" element of } \mathbb{C}[z][\![X]\!]\langle\!\langle \mathsf{A}\rangle\!\rangle \ . \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへぐ

1 Reminders

- 2 Algebraic reformulation of the problem
- 3 The Structure of a Multiple Bernoulli Polynomial
- 4 The General Reflexion Formula of Multiple Bernoulli Polynomial
- 5 An Example of Multiple Bernoulli Polynomial
- 6 An algorithm to compute the double Bernoulli Numbers
- 7 Properties satisfied by Bernoulli polynomials and numbers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A singular solution

$$\underline{\mathsf{Remainder:}} \,\, \mathfrak{E}(z) = 1 + \sum_{k>0} e^{zX_k} \,\, \mathsf{a}_k.$$

From a false solution to a singular solution...

$$\begin{split} \mathcal{S}(z) &= \prod_{n>0}^{\longleftarrow} \mathfrak{E}(z-n) = 1 + \sum_{r>0} \sum_{k_1, \cdots, k_r>0} \frac{e^{z(X_{k_1}+\cdots+X_{k_r})}}{\prod_{i=1}^r (e^{X_{k_1}+\cdots+X_{k_i}} - 1)} a_{k_1} \cdots a_{k_r} \text{ is a} \\ \begin{cases} \langle \mathfrak{B}(z) | a_k \rangle = \frac{e^{zX_k}}{e^{X_k} - 1} - \frac{1}{X_k} \\ \mathfrak{B}(z+1) = \mathfrak{B}(z) \cdot \mathfrak{E}(z) \\ \mathfrak{B} \text{ is a "group-like" element of } \mathbb{C}[z][\![X]\!] \langle \langle A \rangle \rangle \\ \end{cases} \\ \end{split}$$
$$\begin{aligned} \frac{\mathsf{Explanations:}}{\sum_{n>0}^r \mathfrak{E}(z-n)} \frac{1}{\sum_{n>0}^r \mathfrak{E}(z-n)} \cdots \mathbb{E}(z-n) \cdots \mathbb{E}(z-n) \\ = \cdots = \left(\lim_{n \longrightarrow +\infty} \mathfrak{B}(z-n) \right) \cdot \prod_{n>0}^{\leftarrow} \mathfrak{E}(z-n) \\ \sum_{n>0}^r \mathfrak{E}(z-n) \\ \frac{1}{\sum_{n>0}^r \mathfrak{E}(z-n)} \frac{1}{\sum_{n>0}^r \mathfrak{E}(z-n)} \\ \frac{1}{\sum_{n>0}^r \mathfrak{E}(z-n)} \\$$

・ロト ・四ト ・ヨト ・ヨー うへの

<u>**Heuristic:**</u> Find a correction of S, to send it into $\mathbb{C}[z][X]\langle\!\langle A \rangle\!\rangle$.

Another solution

Fact: If
$$\Delta(f)(z) = f(z-1) - f(z)$$
, ker $\Delta \cap z\mathbb{C}[z] = \{0\}$.

Consequence: There exist a unique family of polynomials such that:

$$\begin{cases} B_0^{n_1,\cdots,n_r}(z+1) - B_0^{n_1,\cdots,n_r}(z) = B_0^{n_1,\cdots,n_{r-1}}(z) z^{n_r} \\ B_0^{n_1,\cdots,n_r}(0) = 0 . \end{cases}$$

This produces a series $\mathfrak{B}_0 \in \mathbb{C}[z][X]\langle\!\langle A \rangle\!\rangle$ defined by:

$$\mathfrak{B}_0(z) = 1 + \sum_{r>0} \sum_{k_1, \cdots, k_r>0} \mathcal{B}_0^{X_{k_1}, \cdots, X_{k_r}}(z) a_{k_1} \cdots a_{k_r} .$$

Lemma: (B., 2013)

- **I** The noncommutative series \mathfrak{B}_0 is a "group-like" element of $\mathbb{C}[z][X]\langle\langle A\rangle\rangle$.
- **2** The coefficients of $\mathfrak{B}_0(z)$ satisfy a recurence relation:

$$\begin{cases} \mathcal{B}_0^{Y_1}(z) = \frac{e^{zY_1} - 1}{e^{Y_1} - 1} , \ Y_1 \in X \\ \mathcal{B}_0^{Y_1, \dots, Y_r}(z) = \frac{\mathcal{B}_0^{Y_1 + Y_2, Y_3, \dots, Y_r}(z) - \mathcal{B}_0^{Y_2, Y_3, \dots, Y_r}(z)}{e^{Y_1} - 1} , \ Y_1, \dots, Y_r \in X \end{cases}$$

B The series \mathfrak{B}_0 can be expressed in terms of \mathcal{S} : $\mathfrak{B}_0(z) = (\mathcal{S}(0))^{-1} \cdot \mathcal{S}(z)$.

Characterization of the set of solutions

 $\underline{\textbf{Reminder:}}$ A family of multiple Bernoulli polynomials produces a series $\mathfrak B$ such that:

$$\mathfrak{B}(z+1) = \mathfrak{B}(z) \cdot \mathfrak{E}(z)$$
, where $\mathfrak{E}(z) = 1 + \sum_{k>0} e^{zX_k} a_k$,
 \mathfrak{B} is a "group-like" element of $\mathbb{C}[z]\llbracket X \rrbracket \langle\!\langle \mathsf{A} \rangle\!\rangle$,

$$\langle \mathfrak{B}(z)|a_k
angle = rac{e^{-z}}{e^{X_k}-1} - rac{1}{X_k}$$

Proposition: (B. 2013)

Any familly of polynomials which are solution of the previous system comes from a noncommutative series $\mathfrak{B} \in \mathbb{C}[z][\![X]\!]\langle\!\langle A \rangle\!\rangle$ such that there exists $\mathfrak{b} \in \mathbb{C}[\![X]\!]\langle\!\langle A \rangle\!\rangle$ satisfying: 1. $\langle \mathfrak{b} | A_k \rangle = \frac{1}{e^{X_k} - 1} - \frac{1}{X_k}$ 2. \mathfrak{b} is "group-like" 3. $\mathfrak{B}(z) = \mathfrak{b} \cdot \mathfrak{B}_0 = \mathfrak{b} \cdot (\mathcal{S}(0))^{-1} \cdot \mathcal{S}(z)$.

Theorem: (B., 2013)

The subgroup of "group-like" series of $\mathbb{C}[z][X]\langle\langle A \rangle\rangle$, with vanishing coefficients in length 1, acts on the set of all possible multiple Bernoulli polynomials, *i.e.* on the set of all possible *algebraic* renormalization.

1 Reminders

- 2 Algebraic reformulation of the problem
- 3 The Structure of a Multiple Bernoulli Polynomial
- 4 The General Reflexion Formula of Multiple Bernoulli Polynomial
- 5 An Example of Multiple Bernoulli Polynomial
- 6 An algorithm to compute the double Bernoulli Numbers
- 7 Properties satisfied by Bernoulli polynomials and numbers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

New Goal:

From $\mathfrak{B}(z) = \mathfrak{b} \cdot \mathfrak{B}_0$, determine a suitable series \mathfrak{b} such that the reflexion formula

$$(-1)^n B_n(1-z) = B_n(z) \ , n \in \mathbb{N}$$

has a nice generalization.

For a generic series $s \in \mathbb{C}[z] \llbracket X \rrbracket \langle\!\langle A \rangle\!\rangle$,

$$s(z) = \sum_{r \in \mathbb{N}} \sum_{k_1, \cdots, k_r > 0} s^{X_{k_1}, \cdots, X_{k_r}}(z) a_{k_1} \cdots a_{k_r} ,$$

we consider:

$$\overline{s}(z) = \sum_{r \in \mathbb{N}} \sum_{\substack{k_1, \cdots, k_r > 0 \\ k_1, \cdots, k_r > 0}} s^{X_{k_r}, \cdots, X_{k_1}}(z) a_{k_1} \cdots a_{k_r}$$

$$\widetilde{s}(z) = \sum_{r \in \mathbb{N}} \sum_{\substack{k_1, \cdots, k_r > 0 \\ k_1, \cdots, k_r > 0}} s^{-X_{k_1}, \cdots, -X_{k_r}}(z) a_{k_1} \cdots a_{k_r}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proposition: (B. 2014)

Let
$$sg = 1 + \sum_{r>0} \sum_{k_1, \cdots, k_r>0} (-1)^r a_{k_1} \cdots a_{k_r} = \left(1 + \sum_{n>0} a_n\right)^{-1}$$
. Then,
 $\widetilde{\mathcal{S}}(0) = \left(\overline{\mathcal{S}}(0)\right)^{-1} \cdot sg \quad \text{and} \quad \widetilde{\mathcal{S}}(1-z) = \left(\overline{\mathcal{S}}(z)\right)^{-1}$.

Corollary 1: (B. 2014)

For all
$$z \in \mathbb{C}$$
, we have: $sg \cdot \widetilde{\mathfrak{B}}_0(1-z) = \left(\overline{\mathfrak{B}}_0(z)\right)^{-1}$

Example:

$$\begin{split} \mathcal{B}_0^{-X,-Y,-Z}(1-z) &= & -\mathcal{B}_0^{X,Y,Z}(z) - \mathcal{B}_0^{X+Y,Z}(z) - \mathcal{B}_0^{X,Y+Z}(z) \\ & & -\mathcal{B}_0^{X+Y+Z}(z) + \mathcal{B}_0^{Y,Z}(z) + \mathcal{B}_0^{Y+Z}(z) \;. \end{split}$$

.

Corollary 2: (B. 2014)

$$\widetilde{\mathfrak{B}}(1-z)\cdot\overline{\mathfrak{B}}(z) = \widetilde{\mathfrak{b}}\cdot sg^{-1}\cdot\overline{\mathfrak{b}} .$$
⁽²⁾

Remark:
$$\widetilde{\mathcal{S}}(0) \cdot sg^{-1} \cdot \overline{\mathcal{S}}(0) = 1.$$

Heuristic:

A reasonable candidate for a multi-Bernoulli polynomial comes from the coefficients of a series $\mathfrak{B}(z) = \mathfrak{b} \cdot \mathfrak{B}_0(z)$ where \mathfrak{b} satisfies:

1. $\langle \mathfrak{b} | \mathfrak{a}_k \rangle = \frac{1}{e^{X_k} - 1} - \frac{1}{X_k}$ 3. $\tilde{\mathfrak{b}} \cdot \mathfrak{sg}^{-1} \cdot \tilde{\mathfrak{b}} = 1$.

1 Reminders

- 2 Algebraic reformulation of the problem
- 3 The Structure of a Multiple Bernoulli Polynomial
- 4 The General Reflexion Formula of Multiple Bernoulli Polynomial
- 5 An Example of Multiple Bernoulli Polynomial
- 6 An algorithm to compute the double Bernoulli Numbers
- 7 Properties satisfied by Bernoulli polynomials and numbers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Resolution of an equation

 $\underline{\textbf{Goal:}} \text{ Characterise the solutions of } \left\{ \begin{array}{l} \widetilde{\mathfrak{u}} \cdot \textit{sg}^{-1} \cdot \overline{\mathfrak{u}} = 1 \ , \\ \mathfrak{u} \text{ is "group-like"} \end{array} \right. .$

Proposition: (B., 2014)

Let us denote
$$\sqrt{sg^{-1}} = 1 + \sum_{r>0} \sum_{k_1, \cdots, k_r>0} \frac{(-1)^r}{2^{2r}} \binom{2r}{r} a_{k_1} \cdots a_{k_r}$$
.

Any "group-like" solution u of $\tilde{u} \cdot sg^{-1} \cdot \bar{u} = 1$ comes from a "primitive" series v satisfying

$$\overline{\mathfrak{v}} + \widetilde{\mathfrak{v}} = 0$$

and is given by:

$$\mathfrak{u} = exp(\mathfrak{v}) \cdot \sqrt{sg}$$
.

If moreover
$$\langle \mathfrak{u} | a_k
angle = rac{1}{e^{X_k} - 1} - rac{1}{X_k}$$
, then necessarily, we have
 $\langle \mathfrak{v} | a_k
angle = rac{1}{e^{X_k} - 1} - rac{1}{X_k} + rac{1}{2} := f(X_k) \;.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙
The choice of a series v

New goal: Find a nice series v satisfying:

1. \mathfrak{v} is "primitive". 2. $\overline{\mathfrak{v}} + \widetilde{\mathfrak{v}} = 0$. 3. $\langle \mathfrak{v} | a_k \rangle = \frac{1}{e^{X_k} - 1} - \frac{1}{X_k} + \frac{1}{2} = f(X_k)$.

<u>Remark</u>: $\langle v | a_k \rangle$ is an odd formal series in $X_k \in X$.

<u>Generalization</u>: $\tilde{\mathfrak{v}} = -\mathfrak{v}$, so $\overline{\mathfrak{v}} = \mathfrak{v}$.

 $\Longrightarrow \langle \mathfrak{v} | a_{k_1} a_{k_2} \rangle = -\frac{1}{2} f(X_{k_1} + X_{k_2})$, but does not determine $\langle \mathfrak{v} | a_{k_1} a_{k_2} a_{k_3} \rangle$.

A restrictive condition:

A natural condition is to have:

there exists
$$lpha_r\in\mathbb{C}$$
 such that $\langle \mathfrak{v}|a_{k_1}\cdots a_{k_r}
angle=lpha_rf(X_{k_1}+\cdots+X_{k_r})$.

Now, there is a unique "primitive" series v satisfying this condition and the new goal:

$$\langle \mathfrak{v} | a_{k_1} \cdots a_{k_r} \rangle = \frac{(-1)^{r-1}}{r} f(X_{k_1} + \cdots + X_{k_r}).$$

Definition

Definition : (B., 2014)

The series $\mathfrak{B}(z)$ and \mathfrak{b} defined by

$$\begin{aligned} \mathfrak{B}(z) &= \exp(\mathfrak{v}) \cdot \sqrt{\mathcal{S}g} \cdot (\mathcal{S}(0))^{-1} \cdot \mathcal{S}(z) \\ \mathfrak{b} &= \exp(\mathfrak{v}) \cdot \sqrt{\mathcal{S}g} \end{aligned}$$

are noncommutative series of $\mathbb{C}[z][X]\langle\!\langle A \rangle\!\rangle$ whose coefficients are respectively the exponential generating functions of <u>multiple Bernoulli polynomials</u> and <u>multiple Bernoulli numbers</u>.

Example:

The exponential generating function of bi-Bernoulli polynomials and numbers are respectively:

$$\sum_{n_1,n_2 \ge 0} B^{n_1,n_2}(z) \frac{X^{n_1}}{n_1!} \frac{Y^{n_2}}{n_2!} = -\frac{1}{2} f(X+Y) + \frac{1}{2} f(X) f(Y) - \frac{1}{2} f(X) + \frac{3}{8} + f(X) \frac{e^{zY} - 1}{e^Y - 1} - \frac{1}{2} \frac{e^{zY} - 1}{e^Y - 1} + \frac{e^{z(X+Y)} - 1}{(e^X - 1)(e^{X+Y} - 1)} - \frac{e^{zY} - 1}{(e^X - 1)(e^Y - 1)}$$

200

Consequently, we obtain explicit expressions like, for $n_1, n_2, n_3 > 0$:

$$b^{n_1,n_2} = rac{1}{2} \left(rac{b_{n_1+1}}{n_1+1} rac{b_{n_2+1}}{n_2+1} - rac{b_{n_1+n_2+1}}{n_1+n_2+1}
ight) \,.$$

$$b^{n_1,n_2,n_3} = +\frac{1}{6} \frac{b_{n_1+1}}{n_1+1} \frac{b_{n_2+1}}{n_2+1} \frac{b_{n_3+1}}{n_3+1} \\ -\frac{1}{4} \left(\frac{b_{n_1+n_2+1}}{n_1+n_2+1} \frac{b_{n_3+1}}{n_3+1} + \frac{b_{n_1+1}}{n_1+1} \frac{b_{n_2+n_3+1}}{n_2+n_3+1} \right) \\ +\frac{1}{3} \frac{b_{n_1+n_2+n_3+1}}{n_1+n_2+n_3+1} .$$

<u>Remark</u>: If $n_1 = 0$, $n_2 = 0$ or $n_3 = 0$, the expressions are not so simple...

b ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
<i>q</i> = 0	3 8	$-\frac{1}{12}$	0	$\frac{1}{120}$	0	$-\frac{1}{252}$	0
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	$\frac{1}{240}$	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
<i>q</i> = 3	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{28800}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$
<i>q</i> = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
<i>q</i> = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$	$\frac{1}{127008}$	$\frac{691}{65520}$

1 Reminders

- 2 Algebraic reformulation of the problem
- 3 The Structure of a Multiple Bernoulli Polynomial
- 4 The General Reflexion Formula of Multiple Bernoulli Polynomial
- 5 An Example of Multiple Bernoulli Polynomial
- 6 An algorithm to compute the double Bernoulli Numbers
- 7 Properties satisfied by Bernoulli polynomials and numbers

b ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
<i>q</i> = 0	3 8	$-\frac{1}{12}$	0	$\frac{1}{120}$	0	$-\frac{1}{252}$	0
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	$\frac{1}{240}$	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
q = 3	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{28800}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$
<i>q</i> = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
<i>q</i> = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$	$\frac{1}{127008}$	$\frac{691}{65520}$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

• one out of four Multiple Bernoulli Numbers is null.

be ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
<i>q</i> = 0	3 8	$-\frac{1}{12}$	0	$\frac{1}{120}$	0	$-\frac{1}{252}$	0
q = 1	$\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	$\frac{1}{240}$	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
q = 3	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{28800}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$
<i>q</i> = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
<i>q</i> = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$	$\frac{1}{127008}$	$\frac{691}{65520}$

one out of four Multiple Bernoulli Numbers is null.

one out of two antidiagonals is "constant".

be ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
q = 0	$\frac{3}{8}$	$-\frac{1}{12}$	0	$\frac{1}{120}$	0	$-\frac{1}{252}$	0
q = 1	$\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	1 240	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
<i>q</i> = 3	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{28800}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$
<i>q</i> = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
<i>q</i> = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$	$\frac{1}{127008}$	$\frac{691}{65520}$

one out of four Multiple Bernoulli Numbers is null.

- one out of two antidiagonals is "constant".
- "symmetrie" relatively to p = q .

be ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
q = 0	$\frac{3}{8}$	$-\frac{1}{12}$	0	$\frac{1}{120}$	0	$-\frac{1}{252}$	0
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	1 240	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
<i>q</i> = 3	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{28800}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$
<i>q</i> = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
<i>q</i> = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$	$\frac{1}{127008}$	$\frac{691}{65520}$

- one out of four Multiple Bernoulli Numbers is null.
- one out of two antidiagonals is "constant".
- "symmetrie" relatively to p = q .
- cross product around the zeros are equals : $28800 \cdot 127008 = 60480^2$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

From these previous remarks, let us present an algorithm to compute bi-Bernoulli numbers.

b ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
q = 0							
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2							
<i>q</i> = 3							
<i>q</i> = 4							
<i>q</i> = 5							
<i>q</i> = 6							

From these previous remarks, let us present an algorithm to compute bi-Bernoulli numbers.

be ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
q = 0							
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0		0		0		0
q = 3							
<i>q</i> = 4	0		0		0		0
<i>q</i> = 5							
<i>q</i> = 6	0		0		0		0

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

From these previous remarks, let us present an algorithm to compute bi-Bernoulli numbers.

be ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
q = 0							
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	$\frac{1}{240}$	0		0		0
<i>q</i> = 3		$-\frac{1}{2880}$					
<i>q</i> = 4	0	$-\frac{1}{504}$	0		0		0
<i>q</i> = 5		$\frac{1}{6048}$					
<i>q</i> = 6	0	$\frac{1}{480}$	0		0		0

From these previous remarks, let us present an algorithm to compute bi-Bernoulli numbers.

be ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
q = 0							
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	1 240	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
<i>q</i> = 3	1 240	$-\frac{1}{2880}$	$-\frac{1}{504}$		$\frac{1}{480}$		$-\frac{1}{264}$
<i>q</i> = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
<i>q</i> = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$		$-\frac{1}{264}$		$\frac{691}{65520}$
<i>q</i> = 6	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0	$\frac{691}{65520}$	0

From these previous remarks, let us present an algorithm to compute bi-Bernoulli numbers.

be ^{p,q}	p = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
q = 0							
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	1 240	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
<i>q</i> = 3	1 240	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{28800}$	$\frac{1}{480}$		$-\frac{1}{264}$
<i>q</i> = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
<i>q</i> = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$		$-\frac{1}{264}$		$\frac{691}{65520}$
<i>q</i> = 6	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0	$\frac{691}{65520}$	0

From these previous remarks, let us present an algorithm to compute bi-Bernoulli numbers.

be ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
q = 0							
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	1 240	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
<i>q</i> = 3	1 240	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{28800}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$
<i>q</i> = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
<i>q</i> = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$		$-\frac{1}{264}$		$\frac{691}{65520}$
<i>q</i> = 6	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0	$\frac{691}{65520}$	0

From these previous remarks, let us present an algorithm to compute bi-Bernoulli numbers.

be ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
q = 0							
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	1 240	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
<i>q</i> = 3	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{28800}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$
<i>q</i> = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
<i>q</i> = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$		$\frac{691}{65520}$
<i>q</i> = 6	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0	$\frac{691}{65520}$	0

From these previous remarks, let us present an algorithm to compute bi-Bernoulli numbers.

be ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
<i>q</i> = 0							
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	1 240	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
<i>q</i> = 3	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{28800}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$
<i>q</i> = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
<i>q</i> = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$	$\frac{1}{127008}$	$\frac{691}{65520}$
<i>q</i> = 6	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0	$\frac{691}{65520}$	0

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

From these previous remarks, let us present an algorithm to compute bi-Bernoulli numbers.

be ^{p,q}	<i>p</i> = 0	p = 1	<i>p</i> = 2	<i>p</i> = 3	<i>p</i> = 4	<i>p</i> = 5	<i>p</i> = 6
q = 0	3 8	$-\frac{1}{12}$	0	$\frac{1}{120}$	0	$-\frac{1}{252}$	0
q = 1	$-\frac{1}{24}$	$\frac{1}{288}$	$\frac{1}{240}$	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$
<i>q</i> = 2	0	1 240	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0
<i>q</i> = 3	1 240	$-\frac{1}{2880}$	$-\frac{1}{504}$	$\frac{1}{28800}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$
<i>q</i> = 4	0	$-\frac{1}{504}$	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0
<i>q</i> = 5	$-\frac{1}{504}$	$\frac{1}{6048}$	$\frac{1}{480}$	$-\frac{1}{60480}$	$-\frac{1}{264}$	$\frac{1}{127008}$	$\frac{691}{65520}$
<i>q</i> = 6	0	$\frac{1}{480}$	0	$-\frac{1}{264}$	0	$\frac{691}{65520}$	0

1 Reminders

- 2 Algebraic reformulation of the problem
- 3 The Structure of a Multiple Bernoulli Polynomial
- 4 The General Reflexion Formula of Multiple Bernoulli Polynomial
- 5 An Example of Multiple Bernoulli Polynomial
- 6 An algorithm to compute the double Bernoulli Numbers
- 7 Properties satisfied by Bernoulli polynomials and numbers

Proposition: (B., 2013)

The multiple Bernoulli polynomials B^{n_1, \dots, n_r} multiply the stuffle.

Theorem: (B., 2014)

P'1 All multiple Bernoulli numbers satisfy : $b^{2\rho_1,\cdots,2\rho_r} = 0$.

P'2 If
$$n_r > 0$$
, $B^{n_1, \dots, n_r}(0) = B^{n_1, \dots, n_r}(1)$.

P'5
$$B^{n_1,\dots,n_r}(z+1) - B^{n_1,\dots,n_r}(z) = B^{n_1,\dots,n_{r-1}}(z) \cdot z^{n_r}$$

- P'6 There exists a reflexion formula for multiple Bernoulli polynoms: $\widetilde{\mathfrak{B}}(1-z)\cdot\overline{\mathfrak{B}}(z)=1$.
- **P'7** The truncated multiple sums of powers $S_N^{s_1, \dots, s_r}$, defined by

$$S_N^{s_1,\cdots,s_r} = \sum_{0 \le n_r < \cdots < n_1 < N} n_1^{s_1} \cdots n_r^{s_r}$$

are given by the coefficients of $\mathfrak{B}_0(N)$.

Proposition: (B. 2014)

For all positive integers n_1, \cdots, n_r , $b^{n_1, \cdots, n_r} = b^{n_r, \cdots, n_1}$.

Proposition: (B., 2014)

For a series $s(z) \in \mathbb{C}[z][X]\langle\!\langle A \rangle\!\rangle$, let us define $\Delta(s)(z)$ by:

$$\Delta(s)(z) = \sum_{r \in \mathbb{N}} \sum_{k_1, \cdots, k_r > 0} X_{k_1} \cdots X_{k_r} \langle s(z) | a_{k_1} \cdots a_{k_r} \rangle | a_{k_1} \cdots a_{k_r} |$$

 Δ is a derivation, and :

P'4 The derivation of multiple Bernoulli polynomials are given by:

$$\partial_z \mathfrak{B}(z) = \Delta \left(\mathfrak{b} \cdot \mathcal{S}(0)^{-1}
ight) \cdot \left(\mathfrak{b} \cdot \mathcal{S}(0)^{-1}
ight)^{-1} \cdot \mathfrak{B}(z) + \Delta(\mathfrak{B}(z))$$

(日)、(型)、(E)、(E)、(E)、(O)()

Proposition: (B., 2015)

P'3 The recurrence relation of bi-Bernoulli numbers is (partially) given by: $2\left(\sum_{l=0}^{p}\sum_{l=0}^{q}\binom{p}{k}\binom{q}{l}be^{k,l}-be^{p,q}\right)=$ $\left(\frac{1}{2}-\frac{1}{p+1}\right)\left(\frac{1}{2}-\frac{1}{q+1}\right)$ $+\left(\frac{1}{2}-\frac{1}{p+1}\right)be^{q}+be^{p}\left(\frac{1}{2}-\frac{1}{q+1}\right)$ $-\left(\frac{1}{2}-\frac{1}{p+1}\right)-\left(\frac{1}{2}-\frac{1}{p+q+1}\right)$ $-be^{p}+\frac{3}{4}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

if p, q > 0.

Conclusion

1. We have respectively defined the Multiple (divided) Bernoulli Polynomials and Multiple (divided) Bernoulli Numbers by:

$$\begin{cases} \mathfrak{B}(z) = exp(\mathfrak{v}) \cdot \sqrt{Sg} \cdot (S(0))^{-1} \cdot S(z) \\ \mathfrak{b} = exp(\mathfrak{v}) \cdot \sqrt{Sg} \end{cases}$$

They both multiply the stuffle.

- 2. The Multiple Bernoulli Polynomials satisfy a nice generalization of:
 - the nullity of b_{2n+1} if n > 0.
 - the symmetry $B_n(1) = B_n(0)$ if n > 1.
 - the difference equation $\Delta(B_n)(x) = nx^{n-1}$.
 - the reflection formula $(-1)^n B_n(1-x) = B_n(x)$.

THANK YOU FOR YOUR ATTENTION !