
The Algebra of Multitangent Functions

Olivier Bouillot
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Abstract

Multizeta values are numbers appearing in many different contexts. Un-
fortunately, there arithmetics remains mostly out of reach.

In this article, we define a functional analogue of the algebra of mul-
tizetas values, namely the algebra of multitangent functions, which are 1-
periodic functions defined by a process formally similar to multizeta values.

We introduce here the fundamental notions of reduction into monotan-
gent functions, projection onto multitangent functions and that of trifac-
torisation, giving a way of writing a multitangent function in terms on
Hurwitz multizeta functions. This explains why the multitangent algebra
is a functional analogue of the algebra of multizeta values. We then discuss
the most important algebraic and analytic properties of these functions and
their consequences on multizeta values, as well as their regularization in the
divergent case.

Each property of multitangent has a pendant on the side of multizeta
values. This allowed us to propose new conjectures, which have been checked
up to the weight 18.
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1. Introduction

1.1. The Riemann zeta function at positive integers

An interesting problem, but still unsolved and probably out of reach
today, is to determine the polynomial relations over Q between the numbers
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ζ(2) , ζ(3) , ζ(4) , · · · , where the Riemann zeta function ζ can be defined
by the convergent series

ζ(s) =
+∞∑
n=1

1

ns

in the domain <e s > 1 .
Thanks to Euler, we know the classical formula for all even integers s:

ζ(s) = −(2π)s

2

|Bs|
s!

.

From this, one can see that Q[ζ(2), ζ(4), ζ(6), · · · ] = Q[π2] . Now, Linde-
mann’s theorem on the transcendence of π concludes the discussion for s
even, as the last ring is of transcendence degree 1 .

Euler failed to give such a formula for ζ(3). Actually, the situation is
quite more complicated concerning the values of the Riemann zeta function
at odd integers. Essentially, nothing is known about their arithmetics. One
had to wait the end of the twentieth century to see the first results:

1. In 1979, Roger Apéry proved that ζ(3) is an irrational number (see
[1]) ;

2. In 2000, Tanguy Rivoal proved there are infinitely many numbers in
the list ζ(3) , ζ(5) , ζ(7) , · · · which are irrational numbers (see [29]) ;

3. in 2004, Wadim Zudilin showed that there is at least one number in
the list ζ(3) , ζ(5) , · · · , ζ(11) which is irrational (see [40]) .

One conjectures that each number ζ(s) , s ≥ 2, is a transcendental
number. To be more precise, the following conjecture is expected:

Conjecture 1. The numbers π , ζ(3) , ζ(5) , ζ(7) , · · · are algebraically
independent over Q .

1.2. The multizeta values

The notion of multizeta value has been introduced in order to study
questions related to this conjecture. Multizeta values are a multidimen-
sional generalization of the values of the Riemann zeta function ζ at positive
integers, defined by:

Zes1,··· ,sr =
∑

0<nr<···<n1

1

n1
s1 · · ·nrsr

,

for all sequences of S?b = {(s1; · · · ; sr) ∈ seq(N∗) ; s1 ≥ 2} .
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Their first introduction dates back to the year 1775 when Euler studied
in his famous article [21] the case of length 2. In this work, he proved
numerous remarkable relations between these numbers, like Ze2,1 = Ze3 or
more generally:

∀p ∈ N∗ ,
p−1∑
k=1

Zep+1−k,k = Zep+1 .

Although they sporadically appeared in the mathematics as well as in
the physics literature, we can say that they were forgotten during the XIXth

century and during most of the XXth century. In the last 70’s, these numbers
have been reintroduced by Jean Ecalle in holomorphic dynamics. He used
them as auxiliary coefficients in order to construct some geometrical and
analytical objects, such as solutions of differential equations with specific
dynamical properties. During the late 80’s, multizeta values appeared in
many different contexts. They have been the object of an enormous renewed
interest, which has then been massive and decisive. Finally, these numbers
began to be studied for themselves.

Today, multizeta values arise in many different areas like in:

1. Number theory (search for relations between multizeta values, in or-
der to study the hypothetical algebraic independence of values of Rie-
mann’s zeta function ; arithmetical dimorphy) : see [17], [36], [39] for
example.

2. Quantum groups, knot theory or mathematical physics (with the Drin-
feld associator which has multizeta values as coefficients): see [5], [6],
[24] ou [26].

3. Resurgence theory and analytical invariants (in many cases, these in-
variants are expressed in term of series of multizetas values) : see [3]
and [4]

4. the study of Feynman diagrams : see [5], [6] or [26].

5. the study of P1−{0; 1;∞} (through the Grothendieck-Ihara program):
see [23], [25], [27] for example.

6. the study of the “absolute Galois group”: see [24] for example.

In regard of Conjecture 1, one of the important questions is the under-
standing of the relations between multizeta numbers. There are numerous
relations between these numbers, coming in particular from their represen-
tation as iterated series or as iterated itegral. Let us remind what is the
seond representation.
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It is now a well-known fact that multizeta values has a representation as
an iterated integral. This can be seen in the following way. If we consider
the 1-differential forms

ω0 =
dt

t
and ω1 =

dt

1− t
,

the iterated integral

Waα1,···,αr =

∫
0<t1<···<tr<1

ωα1 · · ·ωαr

is well defined when (α1; · · · ;αr) ∈ {0; 1}r satisfied α1 = 1 and αr = 0 .
This allows us to defined a symmetral mould, denoted by Wa• .

It is easy to see that the moulds Ze• and Wa• are related each others
by :

Zes1,···,sr =Wa1,0[sr−1],···,1,0[s1−1]

,

for all sequences (s1; · · · ; sr) ∈ seq(N∗) stisfying s1 ≥ 2 .
Among others, the relation coming from the symmetrality and sym-

metrelity relations are particularly important. These two types of relations
allow us to express a product of two multizeta values as a Q-linear combi-
nation of multizeta values in two different ways. One conjectures that these
two families (up to a regularization process) spans all the other relations
between these numbers (see [36] or [39]). This conjecture, out of reach to-
day, would in particular show the absence of relations between multizeta
values of different weights, and so the transcendence of the numbers ζ(s) ,
s ≥ 2 .

1.3. On multitangent functions

In this article, we will present an algebra of functions, the algebra of
multitangent functions, which is in a certain sense a good analogue of the
algebra of the multizeta values. Before we give the definition, let us mention
two ideas which underlie the definition of multitangent functions.

First, we know that one of the essential ideas of the explicit calculation
of ζ(2n) , where n ∈ N, is a symmetrization of the set of summation, that
is to say a transformation which allows us to transform a sum over N into
a sum over Z . Here, the transformation comes from the expansion of the
cotangent function. By the same idea, we are able to compute numerous

sums of the form
∑
m∈N∗

ωmr

mr
, where ω is a root of unity.
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Consequently, it is a natural idea to try to symmetrize the summation
simplex of multizeta values.

Next, some well-known ideas are interesting to stress out. One knows
that working with numbers imposes a certain rigidity, while working with
functions, which will be evaluated after to a particular point, gives more
flexibility. One also knows that working with periodic functions gives us
access to a whole panel of methods.

The simplest suggestion of a functional model of multizeta values is to
consider the Hurwitz multizeta functions:

z 7−→ Hes1,··· ,sr+ (z) =
∑

0<n1<···<nr

1

(n1 + z)s1 · · · (nr + z)sr
,

for all sequences of (s1, · · · , sr) ∈ S?b . The advantage of these functions is
to have a very simple link with the multizetas values:

Hes1,··· ,sr+ (0) = Zes1,··· ,sr ,

where (s1, · · · , sr) ∈ S?b .
Unfortunately, this choice seems not to be the best one, according to the

previous remarks: these functions are not periodic and the set of summation
is not symmetric... So, we are led to modify the model by considering the
functions:

z 7−→ T es1,··· ,sr(z) =
∑

−∞<n1<···<nr<+∞

1

(n1 + z)s1 · · · (nr + z)sr
,

for all sequences of S?b,e = {(s1; · · · ; sr) ∈ seq(N∗) ; s1 ≥ 2 and sr ≥ 2} .
Obviously, these are 1-periodic functions and the set of summation is a

symmetric set. Nevertheless, what is gained on one side is obviously lost on
the other one: in spite of similar expressions, the link with multizeta values
is not so clear. Indeed, this link does exist and is actually stronger than the
one with Hurwitz multizeta functions (see §3 and §7.5.3) .

We are going to refer to these functions as “multitangent functions”.
The prefix “multi” characterizes the summation set in more than one vari-
able; the suffix “tangent” comes from the link between Einsenstein series
and the cotangent function. A more representative name would have been
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“multiple cotangent functions” or “multicotangent functions”, but we pre-
ferred to simplify it by forgetting the syllable “co”, which doesn’t alter its
quintessence.

To the best of our knowledge, this family of functions had never been
studied from the point of view of special functions, even if it is an interesting
and completely natural mathematical object. There are, actually, three
good reasons to study such a family of functions, in an algebraic as well as
in an analytical way:

1. The multitangent functions seem to have appeared for the first time
in resurgence theory and holomorphic dynamics, in a book of Jean
Ecalle (see [14], vol. 2 as well as [3] or the survey [4]). Consequently,
these functions have some direct applications.

2. The multitangent functions are deeply linked to multizeta values, at
least because of an evidence formal similarity. In a naive approach,
we can raise the same questions as for multizeta values, but this time
for multitangent functions.

3. The multitangent functions are a multidimensional generalization of
the Eisenstein series, which have been used by Eisenstein to develop
his theory of trigonometric functions in his famous article of 1847 (see
[20] or [37] for a modern approach). So, interesting facts may emerge
from this generalization.

1.4. Eisenstein series

The series considered by Eisenstein are defined for all z ∈ C− Z by:

εk(z) =
∑
m∈Z

1

(z +m)k
,

where k ∈ N∗ .
As Eisenstein himself said, “the fundamental properties of these simply-

periodic functions reveal themselves through consideration of a single iden-
tity” (see [20]):

1

p2q2
=

1

(p+ q)2

(
1

p2
+

1

q2

)
+

2

(p+ q)3

(
1

p
+

1

q

)
.

From this, he would obtain some identities, which are non trivial at a
first sight, between these series. About the ingenuity and the virtuosity of
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Eisenstein, André Weil compared his work with one of the most difficult
works, even today, of the last period of creation of Beethoven: the Diabelli
variations. It is a work of art based from the most harmless theme which
may be and which, during the variations following one another, will generate
a prodigious and extremely rich musical universe which is full of delicacy,
but also at the same time full of pianos and compositional virtuosity. The
parallel to show the beauty of the results obtained by Eisenstein is crystal
clear.

In his variations, Eisenstein obtained, in particular, the following rela-
tions:

ε2
2(z) = ε4(z) + 4ζ(2)ε2(z) . (1)

ε3(z) = ε1(z)ε2(z) . (2)

3ε4(z) = ε2(z)2 + 2ε1(z)ε3(z) . (3)

Eisenstein also proved that each of his series is in fact a polynomial
with real coefficients in ε1 . In our study of the algebraic relations between
multitangent functions, we will find another proof of the relations (1) ,
(2) and (3) . These are particular cases of more general relations: the
relation (1) is a mix of the relations of symmetrelity and of the reduction of
multitangent function into monotangent functions, while relations (2) and
(3) are the archetype of relations of symmetrelity for divergent multitangent
functions.

Let us mention that although Weil preferred in [37] the notation εk in
honour of Eisenstein, from now on, we will systematically use the notation
T es coming from multitangent functions. Also, in connection with the name
“multitangent functions”, we shall name them “monotangent functions” in
order to mean the sequence is of length one.

1.5. Results proved in this article

Because of the three fundamental reasons evoked before, we have ini-
tiated a complete study of multitangent functions. The first important
properties (see §2 and 5) are:

Property 1. 1. The mould1 T e• of multitangent function is a symmetrel
mould, that is, for all sequences ααα and βββ in S?b,e, we have

T eααα(z)T eβββ(z) =
∑

γ∈she(ααα,βββ)

T eγγγ(z) , where z ∈ C− Z .
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2. There are many Q-linear relations between of multitangent functions.

In one word, the first point allows us to find more than one half of
all the known algebraic relations between multizeta values (the relation of
symmetrelity and a few of double-shuffle relations), while the second point
allows us to find exactly the others algebraic relations between multizeta
values (the relation of symmetrality and the other double-shuffle relations).

We will also see that each multitangent function has a simple expres-
sion in term of multizeta values and monotangent functions. We will also
determine that a sort of converse is true: the algebra of multitangent func-
tions is a module over the algebra of multizeta values. The first property is
called the “reduction into monotangent functions” (see §3), while the second
property is called “projection onto multitangent functions” (see §4).

Theorem 1. (Reduction into monotangent functions)
For all sequences s = (s1; · · · ; sr) ∈ seq(N∗), there exists an explicit family

(zsk)k∈[[ 0 ;M ]] ∈
(
V ectQ(Zeσ)σ∈S?b

)M+1
, with M = max

i∈[[ 1 ; r ]]
si, such that:

T es(z) = zs0 +

max(s1;··· ;sr)∑
k=1

zskT e
k(z) , where z ∈ C− Z .

Moreover, if s ∈ S?b,e, then zs0 = zs1 = 0 .

From an algebraic point of view, let us define some algebras related to
the first point of the property 1:

MZVCV = VectQ (Zes)s∈S?b and MZVCV,p = VectQ (Zes) s∈S?
b

||s||=p
,

HMZFCV,+ = VectQ (Hes+)s∈S?b
and HMZFCV,+,p = VectQ (Hes+) s∈S?

b
||s||=p

,

HMZFCV,− = VectQ (Hes−)s∈S?e and HMZFCV,−,p = VectQ (Hes−) s∈S?e
||s||=p

,

MTGFCV = VectQ (T es)s∈S?b,e and MTGFCV,p = VectQ (T es) s∈S?
b

||s||=p
,

HMZVCV,± = VectQ

(
Hes

1

+He
s2

−

)
s1∈S?

b
s2∈S?e

,

1See the appendix for a brief introduction to mould notations and calculus.
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where p ∈ N, S?e = {(s1; · · · ; sr) ∈ seq(N∗) ; sr ≥ 2} and the weight of a
sequence s = (s1, · · · , sr) ∈ N? is defined by:

||s|| = s1 + · · ·+ sr .

Using this notation, we can state the following:

Theorem 2. (Projection onto multitangent functions)
The following assertions are equivalent:

1. For all non negative integer p , MTGFCV,p =

p−2⊕
k=0

MZVCV,p−k · T ek .

2. MTGFCV is a MZVCV -module.

3. For all sequence σσσ ∈ S?e , ZeσσσT e2 ∈MTGFCV,||σσσ||+2 .

We will see that the duality reduction/projection is a very important
process (see §5). In one sentence, we can sum up all the study by saying:

“the algebra of multitangent functions is a functional analogue of the
algebra of multizeta values: each result on multizeta values has a

translation in the algebra of multitangent functions, and conversely.”

We can also sum up this study by the following diagram:

MZVCV

projection

��

HMZF+,CV
evaluation at 0oo

� _

��
MTGFCV

reduction

OO

� � trifactorization //HMZF±,CV

In this diagram, which will be constructed throughout the article as an
evolutive one, the trifactorization is an explicit expression of each multi-
tangent function in term of Hurwitz multizeta functions. Using it, we will
be able to regularize divergent multitangent functions (see §7), that is to
say multitangent functions depending of a sequence s ∈ N?

1 − S?b,e . This
explains that we allow such sequences in the Theorem 7 .
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We will also see some analytical properties of the multitangent functions
(see 6), such as their Fourier expansion or their upper bound on the half-
plane, which would be useful for direct applications. Finally, we will perform
some explicit calculation (see section 6) to obtain:

Property 2. Let n ∈ N∗ and k ∈ N.
Let us also set E the floor function and define for (k;n) ∈ N × N∗ the
functions tk,n by:

∀x ∈ R , tk,n(x) =

{
cos(n−1)(x) , if k is odd.

sin(n−1)(x) , if k is even.

Then, we consider the moulds sg• , e• and s• , which are C-valued and
defined over the alphabet Ω = {1;−1}:

sgε =
n∏
k=1

εk, sε =
n∑
k=1

εk, eε =
n∑
k=1

εke
(2k−1) iπ

n .

Then, for all z ∈ C− Z , we have:

T en[k]

(z) =
(−1)n−1+E( kn+1

2
)πkn

(kn)!(2 sin(πz))n

∑
ε=(ε1;··· ;εn)∈Ωn

sgε(eε)kntkn,n(sεπz) .

2. Definition of the multitangent functions and its first properties

Let us begin with a general lemma which immediately shows, if a certain
condition holds, that a mould defined as an iterated sum of holomorphic
functions is a symmetrel mould valued in the algebra of holomorphic func-
tions. This will give us the analytical definition of multitangent functions,
but this will also be useful for dealing with the Hurwitz multizeta func-
tions in the sequel. In the case of multizeta values, it gives the well-known
convergence criterion.

As a consequence of this lemma, we will obtain four elementary, but
fundamental, properties of multitangent functions.

2.1. A lemma on symmetrel moulds

This is a first version of this lemma, for classical sums, that is to say
when the summation index varies from N to +∞, when N ∈ N:

12



Lemma 1. (Definition of symmetrel moulds, version 1.)

Let U be an open set of C, (fn)n∈N a sequence of holomorphic functions
on U and N ∈ N .
We assume that for all compact subsets K of U ,

||fn||∞,K =
n−→+∞

O
(

1

n

)
.

Then, for all sequences s ∈ seq(C)− {∅}, of length r, satisfying
<e (s1) > 1,

...
<e (s1 + · · ·+ sr) > r,

(4)

we have:

1. The function FesN : U −→ C
z 7−→

∑
N<nr<···<n1<+∞

(fn1(z))s1 · · · (fnr(z))sr

is well defined on U .

2. FesN is holomorphic on U and for all z ∈ U :

(FesN)
′
(z) =

∑
N<nr<···<n1<+∞

(
r∏
i=1

(fni)
si

)′
.

Moreover, Fe•N a symmetrel mould defined on the set of sequences s ∈
seq(C) satisfying (4), valued in H(U) , if we set Fe∅N = 1 .

All the interest of this lemma is to give in one result an absolute conver-
gence criterion for iterated sum as well as to give the symmetrel character.
So, from now on, each time we will consider a mould which satisfies the
hypothesis of this lemma and its second version, we will just say it will be
a symmetrel mould without further explanation.

In the following proof, we will just indicate the reason of the conditions
imposed to obtain absolute convergence of the series and the holomorphy
of FesN . Nevertheless, we will prove in detail the symmetrelity of FesN even
if it is also elementary and a direct consequence of a calculation made by
Michael Hoffman (see [22], page 485) .
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Proof. Points 1 and 2 can be proved simultaneously because the series
which defines FesN is normally convergent on every compact subset of U .
Thus, the classical theorem of Weierstrass for limit of sequences of holo-
morphic functions concludes the proposition. Actually, if K is a compact
subset of U , there exists MK > 0 such that for all n ∈ N:

||fn||∞,K ≤
MK

n+ 1
.

Besides, for z ∈ K, we can write fn(z) = rn(z)eiθn(z) with rn(z) ≥ 0 and
θn(z) ∈]− π; π] . Thus: |fn(z)i| = e−θn(z) ∈ [0; eπ] .

In particular, we obtain: |fn(z)s| ≤ MK
<e seπ=ms

(n+ 1)<e s
. Therefore, there exists

a constant C > 0 satisfying:∑
N<nr<···<n1

||f s1n1
· · · f srnr ||∞,K ≤

∑
N<nr<···<n1

C

(n1 + 1)<e s1 · · · (nr + 1)<e sr

≤ CZe<e s1,··· ,<e sr < +∞ .

Let N ∈ N . We will show the symmetrelity of Fe•N(z) by an induction

process. To be precise, we will show the equality Fes
1

N (z)Fes
2

N (z) =
∑

γ∈she(s1;s2)

Fe
γ

N(z) ,

with sequences s1 and s2 of seq(C) satisfying (4) . The induction is over the
integer l(s1) + l(s2) .

Before starting2, let us remind that, if s ∈ seq(C) satisfy (4), then, by
definition of Fe•N , we have:

FesN =
∑
p>N

(fp)
skFes

<r

p .

Anchor step: Let (u; v) ∈ (seq(C))2 satisfying (4) and l(u) = l(v) = 1.
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Writing u = (u) and v = (v), we successively have, for N ∈ N:

FeuNFe
v
N =

(∑
p>N

(fp)
u

)(∑
q>N

(fq)
v

)

=
∑

p>q>N

(fp)
u(fq)

v +
∑

p=q>N

(fp)
u(fq)

v +
∑

q>p>N

(fp)
u(fq)

v

=
∑
q>N

(fq)
vFeuq (z) + Feu+v

N (z) +
∑
p>N

(fp)
uFevp(z)

= Feu,vN + Feu+v
N + Fev,uN =

∑
w∈she(u;v)

FewN .

Thus, the property is initialised.

Induction step: Let us suppose that the result is proved for all sequences u
and v of seq(C) satisfying (4) and such that l(u) + l(v) ≥ 2 .

In the same way as for length 1 and by the use of the induction hypothesis,
if u and v are of length k and l respectively, we successively have:

2Let us remind that if s = (s1, · · · , sr), the notation s≤k refers to the sequence
(s1, · · · , sk) of the first k terms of s, while s<k refers to the empty sequence when k = 1
or the sequence of the first (k − 1) terms of s if k ≥ 2 .
For this notation, see the annex on mould calculus.
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FeuNFe
v
N =

∑
p>q>N

(fp)
uk(fq)

vlFeu
≤k−1

p Fev
≤l−1

q +
∑

n=p=q>N

(fn)uk+vlFeu
≤k−1

n Fev
≤l−1

n

+
∑

q>p>N

(fp)
uk(fq)

vlFeu
≤k−1

p Fev
≤l−1

q

=
∑
q>N

(fq)
vlFev

≤l−1

q Feuq +
∑
n>N

(fn)uk+vlFeu
≤k−1

n Fev
≤l−1

n

+
∑
p>N

(fp)
ukFeu

≤k−1

p Fevp

=
∑

w∈she(u;v≤l−1)

(∑
q>N

(fq)
vlFewq

)
+

∑
w∈she(u≤k−1;v≤l−1)

(∑
n>N

(fn)uk+vlFewn

)

+
∑

w∈she(u≤k−1;s)

(∑
p>N

(fp)
ukFewp

)

=
∑

w∈she(u;v≤l−1)·vl

FewN +
∑

w∈she(u≤k−1;v≤l−1)·(uk+vl)

FewN +
∑

w∈she(u≤k−1;v)·uk

FewN

=
∑

w∈she(u;v)

FewN .

Thus, by induction, for all sequences s1 and s2 of seq(C) satisfying (4),
we have:

Fes
1

NFe
s2

N =
∑

γγγ∈she(s1;s2)

Fe
γγγ

N where N ∈ N .

In other words, for all z ∈ U and N ∈ N, the mould Fe•N(z) is a
symmetrel one.

We obtain, as a corollary, the second version of this lemma, but for sums
over all integers:

Lemma 2. (Definition of symmetrel moulds, version 2.)

Let U be an open set of C, (fn)n∈Z a sequence of holomorphic functions
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on U .
We assume that for all compact subsets K of U ,

||fn||∞,K =
n−→±∞

O
(

1

|n|

)
.

1. Then, for all sequences s ∈ seq(C)− {∅}, of length r, satisfying

∀k ∈ [[ 1 ; r ]],

{
<e (s1 + · · ·+ sk) > k,
<e (sr + · · ·+ sr−k+1) > k,

(5)

the function Fes : U −→ C
z 7−→

∑
−∞<nr<···<n1<+∞

(
fn1(z)

)s1 · · · (fnr(z)
)sr

is well defined on U , holomorphic on U and satisfy:

∀z ∈ U , (Fes)′ (z) =
∑

−∞<nr<···<n1<+∞

(
r∏
i=1

(fni(z))si

)′
.

2. Moreover, Fe•N a symmetrel mould defined on the set of sequences
s ∈ seq(C) satisfying (12), valued in H(U) , if we set Fe∅N = 1 .

Proof. The lemma for definition of symmetrel moulds, version 1, has sev-
eral consequences:
• The mould Fe• can be factorised:

Fe•(z) = Fe•+(z)× Ce•(z)× Fe•−(z) , (6)

where, for all s ∈ seq(C) satisfying (5), the functions Fes+ , Ces and Fes−
are defined on U by:

Fes+(z) =
∑

0<nk<···<n1<+∞

l(s)∏
i=1

(fni(z))si .

Ces(z) =


1 , if l(s) = 0 .

(f0(z))s1 , if l(s) = 1 .
0 , otherwise.

Fes−(z) =
∑

−∞<nr<···<nk<0

l(s)∏
i=k

(fni(z))si .

17



Actually, let us set Fes+0(z) =
∑

0≤nr<···<n1<+∞

l(s)∏
i=k

(fni(z))si where z ∈ U

and s ∈ seq(C) satisfying (5) . In the definition of Fe•+0(z), we obtain by
isolating the summation index nr when it is equal to 0:

Fes+0(z) =
∑

0=nr<nr−1<···<n1<+∞

l(s)∏
i=k

(fni(z))si +
∑

0<nr<nr−1<···<n1<+∞

l(s)∏
i=k

(fni(z))si

= (f0(z))sr Fes
≤r−1

+ (z) + Fes+(z) =
(
Fe•+(z)× Ce•(z)

)s
.

In the same way, we show that Fe•(z) = Fe•+0(z) × Fe•−(z), which im-
plies the trifactorisation (6) .

• Since s ∈ seq(C) satisfies (5), s and
←
s satisfy (4) . The lemma for

definition of symmetrel moulds, version 1, shows us that the functions Fes
≤k

+

and Fes
≥k

− are well defined and holomorphic on U and that their derivatives
can be calculated by a term by term process.

Thus, Fes is well defined and holomorphic on U , with a derivative which
is the summation of the summand derivatives.

• Moreover, according to the first version of this lemma, Fe•+ and Fe•− are
symmetrel moulds, as well as Ce• . Since the mould product of symmetrel
moulds defines a symmetrel mould, we deduce that Fe• is a symmetrel
mould for all z ∈ U .

2.2. Application: definition of multitangent functions

Let us consider U = C− Z and for n ∈ Z, the functions

fn : U −→ C

z 7−→ 1

n+ z
.

It is clear that, for all compact subsets K of C− Z,

||fn||∞,K =
n−→±∞

O
(

1

|n|

)
.

18



The lemma for definition of symmetrel moulds, version 2, allows us to define
a symmetrel mould, denoted T e•, defined by:

T es : C− Z −→ C

z 7−→
∑

−∞<nr<···<n1<+∞

1

(n1 + z)s1 · · · (nr + z)sr
.

This mould, which will be called the mould of multitangent functions, is
defined, a priori, for all sequences

s ∈ S?b,e =
{
s ∈ seq(N∗); s1 ≥ 2 and sl(s) ≥ 2

}
and is valued in the algebra of holomorphic functions defined on C− Z .

2.3. First properties of multitangent functions

Here are the first elementary properties satisfied by the multitangent
functions. These are consequences of Lemma 2 or of a simple change of
variables in the summations (third point):

Property 3. 1. The function T es is well-defined for sequences s ∈ S?b,e .

2. The function T es is holomorphic on C−Z for all sequences s ∈ S?b,e, it
is a uniformly convergent series on every compact subset of C−Z and
satisfies, for all s ∈ S?b,e and all z ∈ C− Z:

∂T es

∂z
(z) = −

l(s)∑
i=1

siT es1,··· ,si−1,si+1,si+1,··· ,sl(s)(z) .

3. For all sequences s ∈ S?b,e and all z ∈ C− Z we have:

T es(−z) = (−1)||s||T e
←
s (z) .

4. For all z ∈ C − Z , T e•(z) is symmetrel , that is, for all sequences
(ααα;βββ) ∈ (S?b,e)2:

T eααα(z)T eβββ(z) =
∑

γγγ∈she(ααα;βββ)

T eγγγ(z) .

We will speak respectively of the differentiation property and the parity
property to refer to the formula of the second point and that of the third
point.
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3. Reduction into monotangent functions

The aim of this section is to show a non trivial link between multitan-
gent functions and multizeta values. More precisely, we will show that all
(convergent) multitangent functions can be expressed in terms of multizeta
values and monotangent functions3. In order to do this, we will proceed
classically, that is, we will perform a partial fraction expansion (in the vari-
able z) and then sum then after a reorganisation of the terms.

Let us remark that this idea had already been mentioned by Jean Ecalle
(cf [14], p. 429) .

3.1. A partial fraction expansion

Let us fix a positive integer r, a family of positive integers s = (si)1≤i≤r
and finaly a family of complex numbers a = (ai)1≤i≤r, where the ai are
pairwise distinct. Let us also consider the rational fraction defined by

Fa,s(X) =
1

(X + a1)s1 · · · (X + ar)sr
.

We know that the partial fraction expansion of Fa,s(X) can be written
in the following way:

Fa,s(X) =
r∑
i=1

si−1∑
j=0

1

j!

(
Fa≤i−1·a≥i+1,s≤i−1·s≥i+1

)(j)
(−ai)

(X + ai)si−j
.

With the previous notations, an easy computation shows that, for all
k ∈ N, we have:

(−1)k

k!
F (k)
a,s (X) =

∑
n1,··· ,nr≥0
n1+···+nr=k

(
s1+n1−1
s1−1

)
· · ·
(
sr+nr−1
sr−1

)
(X + a1)s1+n1 · · · (X + ar)sr+nr

.

To conclude this subsection, let us introduce three notations:

3Let us recall that a monotangent function is a multitangent function of length 1 .
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εs,ki = (−1)s1+···+si−1+si+1+···+sr+k1+···+ki−1+ki+1+···+kr ,

iDs
k(a) =

(
i−1∏
l=1

(ai − al)sl+kl
)(

r∏
l=i+1

(al − ai)sl+kl
)
,

iBs
k =

(
i−1∏
l=1

(−1)kl

)(
r∏

l=i+1

(−1)sl

) r∏
l=1
l 6=i

(
sl + kl − 1
sl − 1

) .

Of course, in the previous notations iDs
k(a) and iBs

k, the sequence k has

the same length than a and an ith index which does not intervene.
So, we finally have the following partial fraction expansion:

Fa,s(X) =
r∑
i=1

si−1∑
k=0

∑
k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr≥0

εs,ki
(X + ai)si−k

iBs
k

iDs
k(a)

, (7)

3.2. Expression of a multitangent function in terms of multizeta values and
monotangent functions

Plugging (7) in the definition of a multitangent function, we can ex-
change the multiple summation (from the definition of a multitangent) with
the finite summation (from the partial fraction expansion), because of the
absolute convergence, and then sum by decomposing the multiple summa-
tion into three terms. Then, the following are successively equal to T es(z),
if s ∈ S?b,e:
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(
r∑
i=1

si−1∑
k=0

∑
k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr≥0

∑
−∞<nr<···<n1<+∞

)( εs,ki
(z + ni)si−k

iBs
k

iDs
k(n)

)

=

(
r∑
i=1

si−1∑
k=0

∑
k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr≥0

∑
ni∈Z

∑
(n1;··· ;ni−1)∈Zi−1

ni<ni−1<···<n1

∑
(ni+1;··· ;nr)∈Nr−i
nr<···<ni+1<ni

)( εs,ki
(z + ni)si−k

iBs
k

iDs
k(n)

)

=

(
r∑
i=1

si−1∑
k=0

∑
k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr≥0

)iBs
k

∑
ni∈Z

(
εs,ki

(z + ni)si−k

[ ∑
(ni+1;··· ;nr)∈Zr−i
−∞≤nr<···<ni+1<ni

1

iDs≥i

k≥i
(n)

]

[ ∑
(n1;··· ;ni−1)∈Zi−1

ni<ni−1<···<n1≤+∞

1

iDs≤i

k≤i
(n)

]) .

So, we have the following relation:

T es(z) =
r∑
i=1

si−1∑
k=0

Zs
i,kT e

si−k(z) ,

where

Zs
i,k =

∑
k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr≥0

iBs
kZe

sr+kr,··· ,si+1+ki+1Zes1+k1,··· ,si−1+ki−1 .

The divergent monotangent T e1 : z 7−→ π

tan(πz)
seems to appear in this

relation. Nevertheless, the T e1 coefficient is necessarily null. Indeed, it
is not difficult to see that all (convergent) multitangent function decrease
exponentially to 0when z −→ +∞ with <e z 6= 0 , for example . So, we
obtain:

Theorem 3. (Reduction into monotangent functions, version 1)
For all sequence s ∈ S?b,e, we have:

T es(z) =
r∑
i=1

si∑
k=2

Zs
i,si−kT e

k(z) where z ∈ C− Z .
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3.3. Tables of convergent multitangent functions

With a suitable computer algebra software, we can easily generate a
table of multitangent functions up to a fixed weight. Different tables can
be computed:

1. those given by the previous theorem ;

2. those obtained from the first ones, as soon as we have downloaded a
table of exact values of the multizeta values (see [30] for this purpose) ;

3. those obtained from the first ones, as soon as we have downloaded a
table of numerical values of the multizeta values (see [2] or [11] for
this purpose) ;

4. those obtained from the first ones, after a linearization of products of
multizeta values (the choice of linearization by symmetrelity is more
natural in this context than using the symmetrality) .

Table 1 contains some examples of such tables. Some boxes in it are
empty, which means the expression is the same than in the previous column.
Let us immediately remark that there are a lot of Q-linear relations between
multitangents and all of them all absolutely non trivial. Here are two of
them which are easy to state, but the second one is still quite mysterious:

T e2,1,2 = 0 . (8)

3T e2,2,2 + 2T e3,3 = 0 . (9)

We will study this in detail in Section 5.3.

3.4. Linear independence of monotangent functions

At this stage, let us authorize a little incursion in the world of the
arithmetic of multitangent functions, a quite obscur world. We have the
following lemma. Although it is a simple one, which admits many different
proofs, it will be a fundamental lemma which will be used here and there
repeatedly in this article.

Lemma 3. The monotangent functions are C-linearly independant.

We give a proof based on the differentiation property of multitangent
functions. It is possible to prove this using the Fourier coefficients of mono-
tangent functions or by looking at the poles of monotangent functions, etc.
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Proof. Let us suppose the familly (T en)n∈N∗ is not C-free.
So, we would have acces to an integer r ≥ 2, a r-tuple of integers

(n1; · · · ;nr) satisfying 0 < n1 < · · · < nr and a r-tuple of non all zeros
complex numbers (λn1 ; · · · ;λnr) such that:

r∑
k=1

λnkT enk = 0 .

Using the differentiation property of multitangent functions, we would
obtain:

r∑
k=1

(−1)nk−1λnk
(nk − 2)!

∂nk−1T e1

∂znk−1
= 0 .

So, T e1 would satisfy a linear differential equation with constant coef-
ficients, and therefore could be written as a C-linear combination of expo-
nential polynomials. This would allow us to obtain an analytic continuation
over all C of the cotangent function.

Because such an analytic continuation is impossible, we have proved that
monotangent functions are C-free. �

Since we have just seen that there exists a lot of linear relations be-
tween multitangent functions, we know that this lemma can not be extended
to multitangent functions. In fact, since we know the Eisenstein relation
T e2(z)T e1(z) = T e3(z), we can affirm that monotangent functions are not
algebraically independent, even if we restrict to convergent monotangent
functions:

2
(
T e3

)2

= 3T e2T e4 −
(
T e2

)3

.

3.5. A first approach to algebraic structure of MTGF

Recall that we have denoted byMTGFCV the algebra, over the field of
rational numbers, spanned by all the functions T es , s ∈ S?b,e . Now, we will
be more precise: for p ∈ N, we will denote by MTGFCV,p the Q-algebra
spanned by all the functions T es , with sequences s ∈ S?b,e of weight p . In
the same way, we will denote byMZVCV,p the Q-algebra spanned by all the
numbers Zes , with sequences s ∈ S?b of weight p . Then, MZVCV will be
the Q-algebra spanned by all the numbers Zes , with sequences s ∈ S?b .

So, the reduction into monotangent functions, together with the previous
lemma, yields the following corollary4:

4The notation E · α denotes the set {e · α; e ∈ E} .
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Corollary 1. For all p ∈ N , MTGFCV,p ⊆
p−2⊕
k=0

MZVCV,p−k · T ek .

Proof. Because of the symmetrelity of Ze•, we know that each vector
space MV Zp is a Q-algebra. So, the reduction process gives the inclusion

MTGFCV,p ⊆
p−2∑
k=0

MZVCV,p−k · T ek . But, from the previous lemma, it is

quite clear that

p−2∑
k=0

MZVCV,p−k · T ek =

p−2⊕
k=0

MZVCV,p−k · T ek . �

3.6. Consequences

An easy consequence of this section is that each property on multitan-
gent functions that will be proven will have implications on multizeta values.
The process will often be like this: we express the fact we are studying in
terms of multitangent functions, then we reduce all the multitangents into
monotangent functions and finally use the C-linear independence of the
monotangent functions to conclude something on multizeta values.

The following diagram will evolve throughout the article to explain how
the multitangent functions are linked to the multizeta values.

MZVCV

MTGFCV

reduction

OO

Figure 1: Links between multizeta values and multitangent functions

To illustrate this idea, let us show how a calculation on multitangent
functions, which will be done in section 8, gives us a calculation of multizeta
values. For this purpose, let us consider the following formal power series:

Z2 =
∑
p≥0

Ze2[p]

Xp , T2(z) =
∑
p≥0

Te2[p]

(z)Xp .
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The Property 14 will show that, in C
[[√

X
]]

, we have:

T2(z) = 1 +
∑
k≥1

22k−1π2k−2

(2k)!
XkTe2(z) = 1 +

ch(2π
√
X)− 1

2π2
Te2(z) . (10)

On the other hand, the reduction into monotangent functions implies

T2(z) = 1 +XZ2
2Te2(z) , (11)

because we have, for all p ∈ N: Te2[p]

=

p∑
i=1

Ze2[p−i]Ze2[i−1]Te2(z) .

From the last two equations, we therefore obtain: Z2 =
sh2(π

√
X)

π
√
X

, that

is:

∀n ∈ N , Ze2[n]

=
π2n

(2n+ 1)!
.

4. Projection onto multitangent functions

4.1. A second approach to the algebraic structure of MTGF

We have just seen that for all p ∈ N:

MTGFCV,p ⊆
p−2⊕
k=0

MZVCV,p−k · T ek .

The table of convergent multitangents that we have established up to weight
18 shows that the inclusion is in fact an equality. This is why we conjecture
that the equality holds for all p ∈ N .

Conjecture 2. For all p ∈ N , MTGFCV,p =

p−2⊕
k=0

MZVCV,p−k · T ek .
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4.2. A structure of MZV -module

Recall the notation S?b = {s ∈ seq(N∗); s = ∅ or s1 ≥ 2} .
If Conjecture 2 is true, then MZVp · T eq can be seen as a subset of

MTGFCV,p+q for all integers (p; q) ∈ N2 . This lead us to the following
conjecture:

Conjecture 3. 1. For all sequences σσσ ∈ S?e and s ∈ S?b,e , we have:

ZeσσσT es ∈MTGFCV,||σσσ||+||s|| .

2. MTGFCV is a MZVCV -module.

Of course, the second point is a direct consequence of the first one,
but it is the one which interests us in theory ; in practice, we will favour
the first one because of the weight homogeneity. What is important is the
equivalence between the conjectures 2 and 3:

Property 4. Conjecture 2 is equivalent to Conjecture 3.

Proof. 1. Let us suppose that Conjecture 2 holds.
Thus, according to the reduction into monotangent functions and the

symmetrelity of the mould Ze•, it follows, for (σσσ; s) ∈ S?e × S?b,e, that

ZeσσσT es =

max(s1;··· ;sr)∑
k=2

(∑
i

ciZesi,kZeσσσ
)
T ek,where si,k ∈ S?b ,

=

max(s1;··· ;sr)∑
k=2

(∑
i

ciZeσσσi,k
)
T ek,where σσσi,k ∈ S?b .

According to Conjecture 3, we are now able to write each term of the
form Zeσσσi,kT ek in MTGFCV,||σσσ||+||s|| that is, ZeσσσT es ∈ MTGFCV,||σσσ||+||s|| .
This concludes that MTGFCV is a MZVCV -module.

2. Let us suppose that Conjecture 3 holds.
According to Conjecture 3, for all sequences s ∈ S?b and all integer k ≥ 2,

we are able to express ZesT ek in MTGFCV,||s||+k . In other words, for all
p ∈ N:

p−2⊕
k=0

MZVCV,p−k · T ek ⊆MTGFCV,p .
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We now conclude to the equality

MTGFCV,p =

p−2⊕
k=0

MZVCV,p−k · T ek

for all p ∈ N from Corollary 1 �

The first point of Conjecture 3 can be a bit reduced. We will restrict to
the following statement:

Conjecture 4. For all sequences σσσ ∈ S?b , ZeσσσT e2 ∈MTGFCV,||σσσ||+2 .

From the differentiation property, it is easy to see that we have not lost
information.

Property 5. Conjecture 4 is equivalent to Conjectures 2 and 3.

Proof. It is sufficient to show that Conjecture 4 implies the first point of
Conjecture 3.
So, assume that Conjecture 4 holds ; that is to say that we are able to
express each expression of the type ZeσσσT e2 in MTGFCV,||σσσ||+2 . Using
the differentiation property, we find explicitly an expression of ZeσσσT ek in
MTGFCV,||σσσ||+k for all k ≥ 2 . In other words, we have proved the first
point of Conjecture 3, which is the desired conclusion. �

4.3. About the projection of a multizeta value onto multitangent functions

For k ∈ N , k ≥ 2, an explicit expression of ZeσσσT ek ∈MTGF2,||σσσ||+k will
be called a projection of the multizeta Zeσσσ onto the space of multitangent
functions, or a projection onto multitangents to shorten the terminology.

4.3.1. A converse of the reduction into monotangent functions

The relations of projections onto multitangent functions can be consid-
ered as a converse of the reduction into monotangent functions in the fol-
lowing sense: according to Conjecture 3, each property that will be proven
on multizeta values will have implications on multitangent functions.

The process will often be like this: we express the fact we are studying
in terms of multizeta functions, then we multiply the different relations by
a monotangent function and finally project all of these onto multitangent
functions to conclude something on multitangent functions.

The diagram on the figure 2 completes the figure 1. An arrow indi-
cates a link between two algebras while an arrow in dotted lines indicates
a hypothetical link.
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MZVCV

reduction

��
MTGFCV

projection

OO

Figure 2: Links between multizeta values and multitangent functions

4.3.2. How to find a projection onto multitangents in practice ?

The idea is to proceed by induction on the weight of σσσ. Let us suppose
that we know how to express ZesT e2 inMTGFCV,p+2 for all sequences s of
weight p < ||σσσ|| . According to the differentiation property, we know how
to express ZesT e||σσσ||−||s||+2 in MTGFCV,||σσσ||+2 .

We write the reduction into monotangent functions of T es , for all se-
quences s ∈ S?b,e of weight ||σσσ||+ 2, as: ∑

i∈E(s)

Zesi
 T e2 + · · · .

Here, the set E(s) is finite and has only sequences of S?b of weight ||σσσ|| ;
the dotted stand for some elements ofMTGFCV,||σσσ||+2 . In order to express
ZeσσσT e2 in MTGFCV,||σσσ||+2 , the idea is to find out a linear relation with

rational coefficients between
∑
i∈E(s)

Zesi which is equal to Zeσσσ .

4.3.3. Some examples

As an example, let us express ZesT e2 inMTGF2,||s||+2, for all sequences
satisfying ||s|| ≤ 5 :

The table 1 gives us Ze2T e2 =
1

2
T e2,2 .

Moreover, we know that all multizeta values of weight 3 and 4 can be
respectively expressed in terms of Ze3 and (Ze2)2. Hence, we only have to
consider the quantities Ze3T e2 and (Ze2)2T e2 .
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The table 1 gives us the reduction into monotangent functions of weight
5 and 6. We can, for example, choose the expressions

Ze3T e2 =
1

6
T e3,2 − 1

6
T e2,3.

(Ze2)2T e2 = − 5

12
T e3,3.

The case ||s|| = 5 is a bit more complicated. Indeed, a classical conjec-
ture is that the Q-vector space spanned by multizeta values of weight 5 is
a 2 dimensional vector space and one of its base is (Ze5;Ze2Ze3). What is
certain, is that its dimension is bounded by 2 . Therefore, it is sufficient to
express Ze5T e2 and Ze2Ze3T e2 in MTGF2,7 . An easy calculation based
on reduction into monotangent functions gives us the following projections:

Ze5T e2 =
1

30

(
T e2,5 + 2T e3,4 − 2T e4,3 − T e5,2

)
.

Ze2Ze3T e2 =
1

12
T e3,2,2 − 1

12
T e2,2,3

+
1

24
T e2,5 +

1

12
T e3,4 − 1

12
T e4,3 − 1

24
T e5,2 .

To complete our calculation, we only have to use the exact expressions
of multizeta values in terms of those just considered (see for instance [30]) .
The table 2 gives us the complete table of projection onto multitangents of
all the multizeta values of weight at most 5 .

4.3.4. An abstract formalization of the method

Recall that all multizeta values of weight n can be expressed as a Q-linear
combination of a finite number of them, which are called the irreducible
multizeta values. Let us denote by cn the number of irreducibles of weight n.

A theorem proved by Goncharov and Terasoma shows that if (dn)n∈N is
the sequence defined by

d1 = 0 ,

d2 = d3 = 1 ,

∀n ∈ N, dn+3 = dn+1 + dn ,
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then we have: cn ≤ dn for all n ∈ N . A conjecture due to Zagier5 asserts
that (cn)n∈N satisfies the same recurrence relation as (dn)n∈N, that is, cn = dn
for all n ∈ N .

Let σσσ ∈ S?b be of weight p. Our objective is to express ZeσσσT e2 in
MTGFCV,p+2 .

For this, first begin to write all the reductions into multitangents of
weight p + 2 and of valuation at least 2. Then, isolate from the same side
of the sign = the components T e2 . Now, in all these expressions, we can
express each multizeta value in terms of the cp corresponding irreducibles.
Since each term ZeσσσT ek, k ≥ 3, which appear in a reduction into monotan-
gents can be expressed by induction in MTGFCV,p+2, we will have written
some Q-linear equations with a left-hand side composed of terms of the form
ZeσσσT e2 and a right-hand side expressed in MTGFCV,p+2 .

As an example, let us do it for weight 4. Each multizeta value of weight
4 can be written in term of Ze4, so we obtain the system:

4Ze4T e2 = T e2,4 + 2Ze3T e3 −Ze2T e4.

−6Ze4T e2 = T e3,3.

4Ze4T e2 = T e4,2 − 2Ze3T e3 −Ze2T e4.

4Ze4T e2 = T e2,4 + 2Ze3T e3 −Ze2T e4.

−Ze4T e2 = T e2,1,3 −Ze3T e3.

4Ze4T e2. = T e2,2,2

−Ze4T e2. = T e3,1,2 + Ze3T e3

2Ze4T e2. = T e2,1,1,2

If we see the quantity Ze4T e2 as a formal variable, this system is con-

5Concerning this well-known conjecture, we refer the reader to the works of P. Deligne
and A. B. Goncharov ([13]), of T. Terasoma ([35]) as well as the recent works of F. Brown
([7] and [8]) .
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nected to the column matrix t(4;−6; 4; 4;−1; 4;−1; 2), which has rank 1 .
Of course, the second equation can be chosen to produce the simplest rela-
tions when we will have to derive it.

The first difficulty is to find out the dimension of the matrix we have to
deal with. This is exactly the question of the number of irreducible multizeta
values of weight n, which is hypothetically solved by the conjecture of Zagier.
Of course, we can bypass this difficulty by treating all the possible values of
cn, i.e. 1, · · · , dn , but this is not really satisfying. Nevertheless, we know
that, if A ∈Mp,q(Q) has rank q and if its column are denoted by a1, · · · , aq,
then the matrix with columns a1−αa2, a3, · · · , ar , α ∈ Q, has rank q− 1 .
Applying this principle to our matrix (eventually more once), it is sufficient
to consider the case where cn = dn, i.e. to suppose that Zagier’s conjecture
holds.

If we suppose that Zagier’s Conjecture holds, the second difficulty is now
to evaluate the rank of the matrix...

The table 3 shows us a submatrix of those obtained, using the values
of multizeta values given by [30], for the weight 1 = c4 , 2 = c5 , 2 = c6 ,
3 = c7 . Our table of multitangents up to weight 18 shows easily that the
equality cn = dn is valid up to n = 16 . Consequently, Conjecture 4, and
then Conjectures 2 and 3 , hold up to weight 18 .

4.4. About unit cleansing of multitangent functions

Let us call valuation of a sequence of positive integers, the smallest inte-
gers composing this sequence. Following [19], we know that every multizeta
value, even if it is a divergent one, can be expressed as a Q-linear combina-
tion of multizeta values with a valuation at least 2 , the same weight and
a length which might be lesser. Moreover, this expression is unique up to
the relations of symmetrelity . For a proof of this fact, see for instance the
recent article [19]. The most famous example of such a relation is due to
Euler: Ze2,1 = Ze3.

Such an expression can be called a “unit cleansing of multizeta values”.

4.4.1. A conjecture about cleansing of multitangent functions

We conjecture a similar result relatively to multitangent functions. De-
noting MTGF2 = V ectQ(T es)s∈seq(N2), the vector space spanned by mul-
titangents with valuation at least 2, and MTGF2,p = V ectQ(T es) s∈seq(N2)

||s||=p
,
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the subspace of convergent multitangent functions with valuation at least 2
and weight p, this can be written:

Conjecture 5. For all sequences s ∈ S?b,e, T es ∈MTGF2,||s|| .

For example, the simplest convergent multitangent, which is not cleaned
and not the null function, is T e2,1,3 . Its unit cleansing is given by the
following relations:

T e2,1,3 =
1

4
T e4,2 − 1

4
T e2,4 +

1

6
T e3,3

= T e4,2 − 1

4
T e2,4 − 1

4
T e2,2,2

= T e4,2 − 1

4
T e2,4 +

1

15
T e3,3 − 3

20
T e2,2,2 .

As this example shows us, there is no uniqueness of such a cleansing.
This is, of course, due to the many relations between multitangent func-
tions. Here, the responsible relation is 3T e2,2,2 + 2T e3,3 = 0, which is
the prototype of a more general relation between multitangent functions:
∀k ∈ N∗ , 3T e2[3k]

+ (−1)k2T e3[2k]
= 0. This relation is immediately ob-

tained from the reduction into monotangent functions, or by the evaluation
of T en[p]

that will be given in section 8
The table 4 gives us more examples of unit cleansing for multitangent

functions.

4.4.2. On projection onto unit-free multitangent functions

By analogy with Conjecture 4, it is quite natural to consider the follow-
ing conjecture:

Conjecture 6. For all sequences σσσ ∈ S?b , ZeσσσT e2 ∈MTGF2,||σσσ||+2 .

Conjectures 4 and 6 are probably equivalent but it is sufficient for us to
know that Conjecture 6 implies Conjecture 4.

Of course, what we have said on the abstract formalization of the method
is also valid in this case. The only modification is to consider multitangent
functions of MTGF2,||σσσ||+2 instead of MTGFCV,||σσσ||+2 . So, we will obtain
a linear system with fn+2 equations6and cn unknown ; the matrix we will
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obtain has size fn+2 × cn .

The table 3 shows us the obtained matrix7, using the values of multizeta
values given by [30], for the weight 1 = c4 , 2 = c5 , 2 = c6 , 3 = c7 . Again,
the table of multitangents up to weight 18 shows easily that the equality
cn = dn is valid up to n = 16 . Consequently, Conjecture 6 holds up to the
weight 18 .

It leads to think that:

Conjecture 7. Let (cn)n∈N be the sequence defined by:
c1 = 0, c2 = c3 = 1.

∀n ∈ N, cn+3 = cn+1 + cn.

If p ≥ 2, the fp+2 × cp matrix obtained by the previous process from all the
sequences of weight p has rank cp .

This new conjecture is equivalent to Conjecture 6 and hence implies
Conjecture 5 as well as Conjectures 2 and 3 .

Here is a quantitative argument to support this last conjecture, and
consequently all of the other conjectures of this section:

The first matrices we have obtained contain lots of 0’s. This allows us
to say they have “highly” rank cn ; we are hinting that if this matrix have
rank cn, this is not by chance. It results from the large number of equations
and from the small number of unknowns (in comparison to the other one) ,
but also from the repartition of the large number of zeros which forced the
column vectors to be linearly independent.

Moreover, we know:

fp+2 ≈ 0, 281, 62p+2 , cp ≈ 0, 411, 32p .

Thus, the more p will be tall, the more there will be “chances” to find
some linearly independent rows. Therefore, the conjecture will be probably
more true.

6Here, (fn)n∈N denote the classical Fibonacci series.
7That’s why, in section 4.3.4, we refer oursef to the same table as submatrix of these

we must have. It was the submatrix obtained by considering only multitangent functions
of MTGF2,||σσσ||+2 .
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4.4.3. Unit cleansing of divergent multitangent functions

Let us finish this section by a little anticipation on a later section. We
will see in Section 7 that there exists a regularization process allowing us
to define multitangent functions for sequences s ∈ seq(N∗) which begin or
finish by a 1 . These functions will be expressed by the reduction into
monotangent functions, with a small non-zero correction which will be a
power of π in a few cases. So, according to Conjecture 4, each divergent
multitangent function can be expressed as a Q-linear combination of unit-
free convergent multitangent functions.

Therefore, Conjecture 5 can be generalised to:

Conjecture 8. For all sequences s ∈ seq(N∗) , T es ∈MTGF2,||s|| .

5. Algebraic properties

5.1. Is MTGFCV a graded algebra ?

Many conjectures have been stated about multizeta values. These are
deep ones, but seem to be completely out of reach nowadays. We will see
a first application of the dual process of reduction and projection. Thanks
to it, we will state a new conjecture, which is related to a hypothetical
structure of graded algebra. Then, we will see two simple examples where
it is impossible to have non-trivial Q-linear relations between multitangent
functions of different weights.

5.1.1. Hypothetical absence of Q-linear relations between different weight

Let us remind the following well-known conjecture on multizeta values:

Conjecture 9. There is no null Q-linear relation between multizeta values
of different weights:

MZVCV =
∑
p∈N

MZVCV,p =
⊕
p∈N

MZVCV,p .

In other words, MZVCV is a graded Q-algebra.

Let us remark that this conjecture implies in particular the transcen-
dence of all the numbers Zes, where s ≥ 2 . Because of the reduc-
tion/projection process, we can state the analogue conjecture for the mul-
titangent functions:
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Conjecture 10. There is no null Q-linear relation between multitangent
functions of different weights:

MTGFCV =
∑
p∈N

MTGFCV,p+2 =
⊕
p∈N

MTGFCV,p+2 .

In other words, MTGFCV is a graded Q-algebra.

In Section 4, we have conjectured that for all sequences σσσ ∈ S?b , we have
ZeσσσT e2 ∈MTGFCV,||σσσ||+2 . The following property explains how these two
conjectures are related.

Property 6. 1. Conjecture 9 implies Conjecture 10.
2. Conjectures 3 and 10 imply Conjecture 9.

Proof. 1. Suppose that there exists a Q-linear relation between multitan-
gent functions of different weights. So, there exists a a family of non zero Q-

linear combination of multitangent functions (ti)i∈I ∈
∏
i∈I

MTGFCV,i such

that ∑
i∈I

ti = 0 ,

where I is a finite set.
Each ti is a Q-linear combination of convergent multitangents of weight

i that we can suppose to be nonzero. By reduction into monotangent func-
tions, for all terms ti, there exist a familly (zi,j)j∈[[ 1 ; i ]] of multizeta values,
zi,j being of weight j, such that:

ti =
i∑

k=2

zi,i−kT ek.

Let us remark that, for a fixed i in I, there exists zi,j 6= 0: indeed, if the
contrary holds, we would have ti = 0 . Thus, denoting by M the greatest
element of I, we can write:

0 =
∑
i∈I

ti =
∑
i∈I

i∑
k=2

zi,i−kT ek =
M∑
k=2

(∑
i∈I
i≥k

zi,i−k

)
T ek.
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Consequently, the linear independence of the monotangent functions implies
that for all k ∈ [[ 2 ; M ]]: ∑

i∈I
i≥k

zi,i−k = 0 .

We have obtained a non trivial Q-linear relation between multizeta values

of different weight. Thus:
∑
k∈N∗
Zk 6=

⊕
k∈N∗
Zk .

We have therefore shown that:∑
k∈N∗
Tk 6=

⊕
k∈N∗
Tk =⇒

∑
k∈N∗
Zk 6=

⊕
k∈N∗
Zk .

2. Suppose now that there exists some non trivial Q-linear relation between
of multizeta values of different weight. So, there exist two famillies, one
of sequences s1, · · · , sn in S?b and the second of non-zero rational numbers
c1, · · · , cn such that:

n∑
i=1

ciZes
i

= 0 .

The map i 7−→ ||si|| is supposed non constant.
Thus:

n∑
i=1

ciZes
iT e2(z) = 0 , where z ∈ C− Z .

Conjecture 3 gives us, for all i ∈ [[ 1 ; n ]], an expression of ciZes
iT e2 as a

Q-linear combination of multitangent functions of weight ||si|| + 2 : there
exist an integer ni and some sequences si,1 , · · · , si,ni in S?b,e and rational
numbers ci,1 , · · · , ci,ni satisfying:

ciZes
iT e2 =

ni∑
j=1

ci,jT es
i,j

.

We therefore obtain a non-trivial Q-linear relation between multitangent
functions (otherwise, all the ci would be zero) not all of the same weight:

n∑
i=1

ni∑
j=1

ci,jT es
i,j

= 0 .

This is a contradiction with the absence of Q-linear relation between mul-
titangent functions of different weights. Therefore, we have shown:
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∑
k∈N∗
Tk =

⊕
k∈N∗
Tk

∀σσσ ∈ S?b ,ZeσσσT e2 ∈ T||σσσ||+2

=⇒
∑
k∈N∗
Zk =

⊕
k∈N∗
Zk .

5.1.2. Transcendence of multitangent functions which are not identically
zero

As an example of the absence of the existence of the Q-linear combi-
nation between multitangent of different weight, we can of course think
of Lemma 3, that is to the linear independence of monotangent functions.
Another example can concern a transcendence property.

In order to use a transcendence method, it may be useful to know if a
function is transcendent or not. Here, a transcendent function is defined as a
function from a set Ω ⊂ C valued in C, which is transcendent over C[X] . If
we find a nonzero multitangent function which is not transcendent, then we
would have a Q-linear relation between multitangents of different weights.
Fortunately for Conjecture 10, we can state that:

Lemma 4. Any nonzero multitangent function is transcendent.

Let us remark that if we want to be able to use this lemma in a transcen-
dence argument, it will be necessary to characterize the null multitangent
functions. This will be hypothetically done in a forthcoming section (see
Section 8.3).

Proof. Let us consider s ∈ S?b,e such that T es 6≡ 0 .
If we suppose that T es is an algebraic function, there exists a polynomial

P ∈ C[X;Y ] such that P
(
z; T es(z)

)
≡ 0. Let us consider the smallest

possible degree in X of such a polynomial, which will be denoted by d
. Writing P in an expanded form, there exists a non-trivial familly of
polynoms (Pi)i∈[[ 0 ; d ]] such that we would have:

d∑
i=0

Pi(z) (T es(z))i = 0 , where z ∈ C− Z .

Thanks to the exponentially flat character of convergent multitangent func-
tions, when z goes to the infinity outside of the real axis, we would obtain
for all polynomial P and sequence s ∈ S?b,e:

P (z)T es(z) −→ 0 .
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Thus:
d∑
i=1

Pi(z) (T es(z))i −→ 0 .

Because the function
d∑
i=0

Pi (T es)i is supposed to be null, we therefore would

have P0(z) −→ 0, that is P0 would be null. From the hypothesis, T es is not
the null function. So:

d∑
i=1

Pi(z) (T es(z))i−1 =
d−1∑
i=0

Pi+1(z) (T es(z))i ≡ 0 .

This contradicts the fact that d is the smallest possible degree in X for
such a polynomial P . Consequently, we have shown that every nonzero
multitangent function is transcendent. �

5.2. On a hypothetical basis of MTGFCV,p
In this paragraph, we will study the analogue of Zagier’s conjecture on

the dimension of MZVCV,p . For this, we will use the reduction/projection
process to translate it in MTGFCV . Recall that the Zagier conjecture
states that (dim MZVCV,n)n∈N would satisfy the recurrence relation:

c0 = 1 , c1 = 0 , c2 = 1 .

cn+3 = cn+1 + cn , where n ∈ N .

The translation into MTGFCV is:

Conjecture 11. (dim MTGFCV,n+2)n∈N would satisfy the recurrence rela-
tion: 

d0 = d1 = 1 , d2 = 2 , d3 = 3 .

dn+4 = dn+3 + dn+2 − dn , where n ∈ N .

Of course, this conjecture is related to that of Zagier:

Property 7. Let us suppose that Conjecture 3 holds, i.e. that MTGFCV
is a MZVCV -module.
Then, Conjecture 11 is equivalent to the Zagier’s conjecture.
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The proof is based on Property 8. We have the following formal power
series which are respectively the hypotheticaly Hilbert-Poincaré series of the
hypotheticaly graded Q-algebras MZVCV and MTGFCV :

HMZVCV =
∑
p∈N

dim MZVCV,pX
p ?

=
1

1−X2 −X3
.

HMTGFCV =
∑
p∈N

dim MTGFCV,p+2X
p ?

=
1

(1−X2 −X3)(1−X)
.

So, it will to sufficient to prove that (1−X)HMTGFCV = HMZVCV , which is
done in the following:

Property 8. Let us suppose that Conjecture 3 holds, i.e. that MTGFCV
is a MZVCV -module.

1. If
(
Zeskp

)
k=1,··· ,dim MZVCV,p

denotes a basis of MV ZCV,p for all p ∈ N ,

then
(
ZeskuT ev

)
k=1,··· ,dimMZVu

u+v=p+2
v≥2

is a basis of MTGFCV,p+2 for all p ∈ N .

2. We have: ∀p ∈ N , dim MTGFCV,p+2 =

p∑
k=0

dim MZVCV,k .

Proof. Because the second point follows directly from the first one, we
will only prove that a basis of MTGFCV,p+2 is given by the family:(

ZeskuT ev
)
k=1,··· ,dim MZVu

u+v=p+2
v≥2

.

Step 0:

Because we have supposed thatMTGFCV is aMZVCV -module, each term
of the hypothetical basis is indeed an element of MTGFCV,p+2 .

Step 1: the linear independence property.

If we suppose the existence of scalars (λv,k) such that:

p+2∑
v=2

dim MZVCV,n+2−v∑
k=1

λv,kZes
k
uT ev = 0 ,
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by the linear independence of monotangent functions, we obtain:

∀v ∈ [[ 2 ; p+ 2 ]] ,

dim MZVCV,n+2−v∑
k=1

λv,kZes
k
u = 0 .

Consequently, from the linear independence of the
(
Zesku

)
k=1,··· ,dim MZVu

,

we conclude that all the scalars λv,k are null, which concludes this step.

Step 2: the spanning property.

By the reduction into monotangent functions, one writes each multitangent
function in term of Zes1Zes2T en. Consequently, using the symmetrelity of
the mould Ze•, we now only have to express each multizeta value of weight
k which appears in such a relation in terms of the basis of MZVCV,k .

By this process, we would have expressed each convergent multitangent
function in term of ZeskuT ev , where k ∈ [[ 1 ; dim MZVu ]] , u + v = p + 2
and v ≥ 2 because the reduction into monotangent functions, as well as the
symmetrelity , preserves the weight. �

To conclude this paragraph, we give in the following figure the first
hypothetical dimensions of the space of multitangent functions of weight
p + 2 . We can recognize the sequences A000931 and A023434 from the
On-Line Encyclopedia of Integer Sequences (see [34])

p 0 1 2 3 4 5 6 7 8 9 10 11 12

dim MZVCV,p 1 0 1 1 1 2 2 3 4 5 7 9 12

dim MTGFCV,p+2 1 1 2 3 4 6 8 11 15 20 27 36 48

Figure 3: The first hypothetical dimensions of the space of multitangent
functions of weight p+ 2.

5.3. The Q-linear relations between multitangent functions

We know that multizeta values have two encodings. The first one is
the one we have used since the beginning of this article, resulting from the
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specialization xn = n−1 (up to a convention of choosing the summation
sequence to an increasing or a decreasing sequence) of the monomial basis
of quasi-symmetric functions: it is exactly the symmetrel mould Ze• . The
second one comes from an iterated integral representation (which has been
mentioned in the introduction, see ??): it is the symmetral mould Wa• .

Because of the dual process reduction/projection, we can imagine that
the symmetral coding has a translation in the algebra MTGF . One can
think that a quadratic relation in MZV will be translated in MTGF into
another quadratic relation, but this does not secure to be true (essentially
because Hurwitz multizeta functions have one and only one encoding) . In
fact, there are lots of null Q-linear relations between multitangent functions;
these will replace the symmetrality relations. Of course, the existence of
these is a natural fact, but, as we will see, they all have an odd look. So,
the situation is not yet completely understood.

We will see in the following that sometimes, it is possible to prove easily a
relation using multitangent properties (because it is the derivative of a well-
know relation between multitangent function or using a parity argument).
Most of the time, these relations remain completely mysterious.

Now, let us explain what happens for small weights.

Up to weight 5. The only Q-linear relation up to weight 5 is the surprising
existence of a null multitangent function, T e2,1,2 . Although it is an interest-
ing fact, we are going to postpone the study of null multitangent functions
in section 8.3) . Let us just mention that many multitangent functions are
the null function and that we have a conjectural characterization of those.

Weight 6. Unless it is an easy case, this is the first interesting weight. Ac-
cording to dim MZV2 = dim MZV3 = dim MZV4 = 1, we deduce8 from
Conjecture 2 that dim MTGF6 = 4 . Consequently, there exist exactly four
independent Q-linear relations between multitangent functions of weight 6.
Actually, it is not difficult to find them, using the known values of multizeta
values of weight 4 .

These four independent relations are given in the table 5.

Weight 7. Concerning the weight 7, we obtain table 6. Because it is con-
jectured that dim MTGF7 = 6 and becauseMTGF7 is spanned by sixteen
functions, one is tempted to find exactly ten independent relations. That is

8Because Conjecture 4 is true for the global weight 6 as we have seen this with the
table 2 .
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what we obtain, but the remaining question is “are there any other relations
between multitangent functions of weight 7?” Consequently, this is the first
weight where we can only speak hypothetically.

5.4. On the possibility of finding relations between multizeta values from the
multitangent functions

5.4.1. Two different process for multiplying two multitangent functions.

It is clear that we have two possibilities to compute a product of two
multitangent functions, according to the symmetrelity of T e• and to the
relations of reduction into monotangent functions. This is summed up in the
following diagram, where “reduction” (resp. “symmetrel multiplication”)
indicates the linear extension toMTGFCV (resp. MTGFCV ⊗MTGFCV )
of the reduction process (resp. the multiplication by the symmetrelity of
T e•):

MTGF ⊗MTGF
symmetrel

multiplication
//

reduction⊗reduction
��

MTGF

reduction

��

MTGF ⊗MTGF

symmetrel multiplication
��

MTGF reduction //MTGF

Obviously, these two process give the same result in MTGFCV , but
the expression is different. This gives us the opportunity to find out some
relations between multizeta values.

First, we see that the previous commutative diagram gives us a way
to find out all the relations of symmetrelity . Let us emphasize that the
following property is not the best way to prove the symmetrelity of Ze•, but
its aim is just to begin to describe the relations between multizeta values
obtained from those of multitangent functions.

Property 9. 1. The relations of symmetrelity of T e• and the previous
commutative diagram imply all the relations of symmetrelity of Ze•.

2. The previous commutative diagram gives us more relations than those
of symmetrelity .

Proof. Let us consider two sequences s1 and s2 in S?b,e and denote by M0,
the largest integer which appears in these two sequences, and finally set
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M = M0 + 1.

Using the symmetrelity of T e• and then from the recursive definition of
the set she, we obtain:

T es1·MT es1·M =
∑

s∈she(s1;s2·M)∪she(s1·M ;s2)

T es·M +
∑

s∈she(s1;s2)

T es·2M .

Thus, the coefficient of T e2M in the product T es1·MT es1·M , obtained first
by the symmetrel multiplication and then by reduction into monotangent
functions, is: ∑

s∈she(s1;s2)

Zes .

On an other hand, in the reduction into monotangent functions of T es1·M

and T es2·M , the only monotangents which may contribute to T e2M are the
terms T eM coming from the reduction into monotangent functions of T es1·M

and T es2·M . These are respectively equal to Zes1T eM and Zes2T eM . Con-
sequently, the coefficient of T e2M in the product T es1·MT es1·M , obtained
first by reduction into monotangent functions, then by the symmetrel mul-
tiplication and finally by reduction one more time is: Zes1Zes2

.
As a consequence, we obtain the relation we are looking for:

Zes1Zes2

=
∑

s∈she(s1;s2)

Zes .

2. As well, the previous diagram gives us more than the symmetrelity
relations of the multizeta values. To see this, we can make the calculation
in the simplest case where the diagram gives a result:

1. T e2 × T e2,2 = 2Ze2
(
T e2

)2
= 4Ze2T e2,2 + 2Ze2T e4

= 8
(
Ze2

)2T e2 + 2Ze2T e4 .

2. T e2 × T e2,2 = 3T e2,2,2 + T e4,2 + T e2,4

=
(

3
(
Ze2

)2
+ 6Ze2,2 + 8Ze4

)
T e2 + 2Ze2T e4 .
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Thus, by the linear independence of monotangent functions, we obtain:

6Ze2,2 + 8Ze4 = 5
(
Ze2

)2
. (12)

Using the symmetrelity of multizeta values, (12) can be written:

3Ze4 = 4Ze2,2 . (13)

But, the only relation of symmetrelity of weight 4 is:(
Ze2

)2
= 2Ze2,2 + Ze4 . (14)

If (13) could be proven from (14), using uniquely the symmetrelity of

Ze•, we would know the following values


Ze4 =

2

5

(
Ze2

)2
.

Ze2,2 =
3

10

(
Ze2

)2
.

To prove these relations, we actually need the following three equations
which come from the three types of relations describing hypothetically the
kernel of the map ζ:

(
Ze2

)2
= 2Ze2,2 + Ze4 .(

Ze2
)2

= 2Ze2,2 + 4Ze3,1 .

Ze4 = Ze2,2 + Ze3,1 .

This proves that the diagram gives us more relations than those of sym-
metrelity . �

Let us also remark that we can write another commutative diagram for
the derivative of a multitangent function, but this does not give us a way
to find relations between multizeta values.

5.5. Back to the absence of the monotangent T e1 in the relations of reduc-
tion

We have seen that the convergent multitangent functions are exponen-
tially flat, near infinity (see §6.3). This implies the absence of the mono-
tangent T e1 in the relations of reduction. From this, we can deduce some
relations between multizeta values. For all sequences s ∈ S?b,e, we have:
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l(s)∑
i=1

∑
k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=si−1

iBs
kZe

s1+k1,··· ,si−1+ki−1Zesr+kr,··· ,si+1+ki+1 = 0 .

On the other hand, we can prove these relations between multizeta val-
ues in an independent way. Consequently, this will immediately show the
exponentially flat character as a corollary and also will answer the question
“Are these relations consequences of the quadratic relations?”

Indeed, these relations are consequences of symmetrality relations of
multizetas values. Let us denote by S(r) the left hand side of the previous
equality, that is, for all positive integer r and all sequences s ∈ S?b,e of length
r:

S(r) =

l(s)∑
i=1

∑
k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=si−1

iBs
kZe

s1+k1,··· ,si−1+ki−1Zesr+kr,··· ,si+1+ki+1 .

We will show that S(r) = 0 for all sequences s ∈ S?b,e, by linearization of
the product of multizeta values coming from the relations of symmetrality.
Let us explain this in detail.

Each multizeta value can be written as an iterated integral. Such an
expression can be for all sequences s ∈ S?b :

Zes =

∫
0<u1<···<ur<+∞

u1
s1−1(u2 − u1)s2−1 · · · (ur − ur−1)sr

(eu1 − 1) · · · (eur − 1)

du1 · · · dur
r∏
i=1

(si − 1)!

.

Thus, for all sequences s ∈ S?b,e of length r and all i ∈ [[ 1 ; r ]], we have
if we setting u0 = 0 and ur+1 = 0:∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=si−1

iBs
kZe

s1+k1,··· ,si−1+ki−1Zesr+kr,··· ,si+1+ki+1
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=
∑

k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=si−1

(−1)si+1+···+sr

r∏
p=1

(sp − 1)!

· (si − 1)!

k1! · · · k̂i! · · · kr!

(∫
0<u1<···<ui−1<+∞

i−2∏
p=0

(up+1 − up)sp+1+kp+1−1

eup+1 − 1
du1 · · · dui−1

)
(∫

0<ur<···<ui+1<+∞

r∏
p=i+1

(up − up+1)sp+kp−1

eup − 1
dui+1 · · · dur

)
,

=
(−1)si+1+···+sr

r∏
p=1

(sp − 1)!

∫
{0<u1<···<ui−1<+∞}×{0<ur<···<ui+1<+∞}

gi(u1; · · · ;ur)du1 · · · d̂ui . . . dur ,

where gi(u1; · · · ;ur) =

 ∏
p∈[[ 1 ; r ]]−{i}

(up − up−1)sp−1

eup − 1

 (ui+1 − ui−1)si−1, al-

ways with u0 = 0 and ur+1 = 0 .

In order to conclude that S(r) = 0, we need the shuffle product

{0 < u1 < · · · < ui−1 < +∞}× {0 < ur < · · · < ui+1 < +∞} .

To do it, let us introduce a few notations coming from the syntatic point of
view. We now consider the alphabet Ωr = {u1; · · · ;ur}, the non-commutative

polynomial er =
r∑
i=1

(u1 · · ·ui−1)� (ur · · ·ui+1) and the set Er of words of

seq(Ωr) which appears in er, that is to say in the linearization of the mul-
tizeta values appearing in the game:

Er = {ω ∈ seq(Ωr) ; 〈er|ω〉 6= 0}

Finally, to each word ω = ui1 · · ·uir of seq(Ωr) which contains exactly one
time all the letters of seq(Ωr) except one which will be denoted ui, we
associate an integral I(ω) defined by:

I(ω) = I(ui1 · · ·uir)

= (−1)si+1+···+sr
∫

0<ui1<···<uir<+∞
gi(u1; · · · ;ur)du1 · · · d̂ui · · · dur .
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Thus: S(r) =
1

r∏
p=1

(sp − 1)!

(∑
ω∈Er

I(ω)

)
.

We will evaluate the sum, in the right-hand side, by grouping pairwise
the element of Er . Er will then be decomposed into a family of pairs of
words we will call associate words.

Definition 1. Let us consider, for all (k; l) ∈ [[ 1 ; r ]]2, the morphism ϕk,l
from seq(Ωr) (for the word concatenation) defined by:

ϕk,l : [[ 1 ; r ]] −→ [[ 1 ; r ]]

ui 7−→


ui , if i 6= l .

uk , if i = l .

We will say that two words ω1 and ω2 of seq(Ωr) are associated when:

∃i ∈ [[ 1 ; r ]], ω2 = ϕi,i+1(ω1) or ω1 = ϕi,i+1(ω2) .

We then write: ω1 G ω2 .

Let ˜seq(Ωr) be the set of words of seq(Ωr) which contain exactly one
time all the letters of Ωr, except one. One can remark that two words of
˜seq(Ωr) can of course have a different missing letter. Finally, we associate a

permutation σω of [[ 1 ; r ]]−{i} with each word ω = us1 · · ·usr−1 of ˜seq(Ωr),
where i is the index of the absent letter of ω, defined by:

σω =

 1 · · · i− 1 i+ 1 · · · r

s1 · · · si−1 si · · · sr−1

 .

We have then:

Lemma 5. 1. For all ω ∈ Er and all integer i ∈ [[ 1 ; r − 1 ]] , we have:

σϕi,i+1(ω) = ρi,i+1 ◦ σω ◦ ρi,i+1
−1 ,
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with ρi,i+1 : [[ 1 ; r ]]− {i} −→ [[ 1 ; r ]]− {i+ 1}

k 7−→


k , if k 6= i+ 1 .

i , if k = i+ 1 .

2. For all ω ∈ Er , there exists a unique ω′ ∈ Er−{ω} such that: ω G ω′ .

3. For all (ω1;ω2) ∈ Er2 , we have : ω1 G ω2 =⇒ I(ω1) = −I(ω2) .

Since Er has 2r−1 elements counted with their multiplicity in Er, we can
conclude, from the second statement of the previous lemma that Er can be
cut into 2r−2 pairs of associated words in Er.

Thus, according to the third statement of the lemma, we finally deduce:
S(r) = 0. This can be written as:

Property 10. 1. The exponentially flat character of multitangent func-
tions implies some relations between multizeta values which are coming
from the symmetrality relations of the multizeta values.

2. The symmetrality relations of the multizeta values impose the absence
of the monotangent T e1 in the relation of reduction into monotangent
functions, and thus force the multitangent functions to be exponentially
flat.

Consequently, one can ask the following question:
“According to the exponentially flat character of convergent multitangent
functions, are we able to find all the symmetrality relations between multi-
zeta values? If the answer is negative, which relations do we obtain?”

The answer is simple and comes from a rapid exploration of the table of
multitangent functions. We immediately see that, in weight 5, we find all
the symmetrality relations of multizeta values of weight 4, but this situation
is really exceptional. For instance, in weight 6, one symmetrality relation
is not obtained:

3Ze2,2,1 + 6Ze3,1,1 + Ze2,1,2 = Ze2,1Ze2. (15)

Nevertheless, considering all Q-linear relations between multitangent
functions, we are able to find all the symmetrality relations. To illustrate
this, one can find (15) from:

4T e3,1,3 − 2T e3,1,1,2 + T e2,1,2,2 = 0 . (16)
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6. Analytic properties

As announced in Section 3.2, we now will see that each multitangent
function will decrease to 0 when z will increase to infinity, avoiding the
real axis. This is the so-called exponentially flat character of convergent
multitangent functions. For studying the convergence of series involving
multitangent functions, we look for a upper bound depending on the weight
of the sequence s and which also show us the exponentially flat character.

To obtain such an upper bound, we will have to avoid the use of the
triangular inequality, which is not precise enough sharp, so we want to use
directly a upper bound on the sum. First, we will focus us on Fourier coef-
ficients of multitangents ; then, we will deal with geometric upper bounds
of multitangent functions in order to obtain upper bound of the Fourier
coefficients. Finally, using this, we obtain a upper bound as required.

6.1. Fourier expansion of convergent multitangent functions

It is quite obvious that all convergent multitangent functions are 1-
periodic on C − Z . Thus, we are naturally interested in their Fourier
expansions. We will now compute their Fourier coefficients. The result
proved here is central for the explicit calculation of analytical invariants of
tangent-to-identity diffeomorphisms (see [3])

Let us begin by recalling the Fourier expansion of T e1 (see [33]) :

T e1(z) =
π

tan(πz)
=


iπ + 2iπ

∑
n<0

e2inπz , if =mz < 0 .

−iπ − 2iπ
∑
n>0

e2inπz , if =mz > 0 .

(17)

Since the convergence of T e1 is normal on {ζ ∈ C;=mζ < −c} and
{ζ ∈ C;=mζ > c}, for all c > 0 the expression (17) is the Fourier expansion
of T e1 . So, the differentiation property gives us for all σ ∈ N− {0; 1} and
all z ∈ C− Z:

T eσ(z) =


2iπ
∑
n<0

(−2inπ)σ−1

(σ − 1)!
e2inπz , if =mz < 0 .

−2iπ
∑
n>0

(−2inπ)σ−1

(σ − 1)!
e2inπz , if =mz > 0 .
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Inserting this Fourier expansion in the expression for the reduction into
monotangents (see §3) when s ∈ S? , we obtain:

T es(z) =
r∑
j=1

sj∑
k=2

Zs
j,sj−kT e

k(z)

=


2iπ
∑
n<0

r∑
j=1

(
sj∑
k=2

(−2inπ)k−1

(k − 1)!
Zs
j,sj−k

)
e2inπz , if =mz < 0 .

−2iπ
∑
n>0

r∑
j=1

(
sj∑
k=2

(−2inπ)k−1

(k − 1)!
Zs
j,sj−k

)
e2inπz , if =mz > 0 .

Since the convergence of this series is normal on {ζ ∈ C;=mζ < −c}
and {ζ ∈ C;=mζ > c}, for all c > 0 we obtain the Fourier expansion of the
multitangent functions:

Lemma 6. Let us set9, for all n ∈ Z and all s ∈ S? :

T̂ s
n = 2iπ

l(s)∑
j=1

(
sj∑
k=2

(−2inπ)k−1

(k − 1)!
Zs
j,sj−k

)
.

Then, for all sequences s ∈ S? and all z ∈ C− Z, we have:

T es(z) =


∑
n<0

T̂ s
n q

n , if =mz < 0 ,

−
∑
n>0

T̂ s
n q

n , if =mz > 0 ,

where q = e2πiz .

9Let us remark that the mould T̂ •n can not be a symmetrel one. For example, we
have: 

2T̂ 2,2
1 + T̂ 4

1 = 2× 4

3
π4 − 8

3
π4 = 0 .(

T̂ 2
1

)2
= 16π4.

This explains the absence of the letter e in its name.
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6.2. An upper bound for multitangent functions

In this paragraph, we will prove two geometric upper bounds (or nearly
geometric ones), where the exponent will be the weight of the multitan-
gent and then give two hypothetical upper bounds. For this, we will use
elementary methods.

We begin, for a convergent multitangent function, by proving the fol-
lowing upper bound:

Lemma 7. For all sequences s ∈ S? and all z ∈ C− R, we have :

|T es(z)| ≤ 4l(s)

|=mz|||s||−l(s)−1
.

Proof. Let s ∈ S? and z ∈ C− R .
We will denote by f s the function defined on R× R∗+ by:

fes(x; y) =
∑

−∞<nr<···<n1<+∞

1(
(n1 + x)2 + y2

) s1
2 · · ·

(
(nr + x)2 + y2

) sr
2

.

We hence have: |T es(z)| ≤ fes(<e z; |=mz|). Moreover, using an argument
we will develop in a forthcoming section (see Section 11), we obtain the
following trifactorisation:

fe•(x; y) = fe•+(x; y)× Ie•(x; y)× fe•−(x; y) ,

where the functions fe•+ , fe•− and Ie• are defined on R× R∗+ by:

fes+(x; y) =
∑

−E(x)<nr<···<n1<+∞

1

((n1 + x)2 + y2)
s1
2 · · · ((nr + x)2 + y2)

sr
2

.

fes−(x; y) =
∑

−∞<nr<···<n1<−E(x)

1

((n1 + x)2 + y2)
s1
2 · · · ((nr + x)2 + y2)

sr
2

.

Ies(x; y) =


0 , if l(s) 6= 1 .

((x− E(x))2 + y2)
− s

2 , if l(s) = 1 .
52



Thus, we successively have:

fes+(x; y)=
∑

0<nr<···<n1<+∞

1

((n1 + x− E(x))2 + y2)
s1
2 · · · ((nr + x− E(x))2 + y2)

sr
2

≤ 1

(y2)
s1−2

2 (y2)
s2−1

2 · · · (y2)
sr−1

2

fe2,1,··· ,1
+ (x− E(x); 0)

≤ 1

ys1−2ys2−1 · · · ysr−1

∑
0<nr<···<n1<+∞

1

n1
2n2 · · ·nr

=
Ze2,1,··· ,1

y||s||−l(s)−1
≤ 2

y||s||−l(s)−1
.

In the same way, we have: fes−(x; y) ≤ 2

y||s||−l(s)−1
.

Hence:

|T es(z)| ≤
l(s)∑
k=1

fes
<k

+ (<e z; |=mz|)Iesk(<e z; |=mz|)fes
>k

− (<e z; |=mz|)

≤
l(s)∑
k=1

2

|=mz|||s<k||−(k−1)−1
× 1

|=mz|sk
× 2

|=mz|||s>k||−(l(s)−k)−1

=

l(s)∑
k=1

4

|=mz|||s||−l(s)−1
=

4l(s)

|=mz|||s||−l(s)−1
.

�

Next, we present the second upper bound. It is an improvement of the
first one when we restrict to nonempty sequences of seq(N2) . The proof
uses the same notations and also the same ideas as for the first upper bound.

Lemma 8. For all s ∈ seq(N2)− {∅} and all z ∈ C− R satisfying |z| ≥ 1,

we have: |T es(z)| ≤ 1

l(s)!

(
2√
|=mz|

)||s||
.

Proof. Let s ∈ seq(N2) be a sequence of length r and z ∈ C−R satisfying
|z| ≥ 1 . Let us also consider, as in the previous proof, the notations fes ,
fes+ , fes− and Ies .

In the case where s ∈ seq(N2) ⊂ S? , we will improve the upper bounds
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which have just been found in the proof of the first upper bound by using
an integral test for convergence:

fes+(x; y) =
∑

0<nr<···<n1<+∞

r∏
i=1

(
1

((ni + x− E(x))2 + y2)
si
2

)

=
1

r!

∑
(n1;··· ;nr)∈(N∗)r
i 6=j=⇒ni 6=nj

r∏
i=1

(
1

((ni + x− E(x))2 + y2)
si
2

)

≤ 1

r!

r∏
i=1

(∑
n∈N∗

1

((n+ x− E(x))2 + y2)
si
2

)

≤ 1

r!

r∏
i=1

(∫ +∞

0

dt

((t+ x− E(x))2 + y2)
si
2

)

≤ 1

r!

1

y||s||−2r

(∫ +∞

0

du

u2 + y2

)r
≤ 1

r!

(
π
2

)r
y||s||−r

.

In the same way, we have: fes−(x; y) ≤ 1

r!

(
π
2

)r
y||s||−r

.

Hence:

|T es(z)| ≤
r∑

k=1

fes
<k

+ (<e z; |=mz|)Iesk(<e z; |=mz|)fes
>k

− (<e z; |=mz|)

≤
r∑

k=1

1

(k − 1)!

(π
2

)k−1

|=mz|||s<k||−(k−1)
× 1

|=mz|sk−1
×

1

(r − k)!

(π
2

)r−k
|=mz|||s>k||−(r−k)

≤
(
π
2

)r−1

|=mz|||s||−r
r∑

k=1

1

(k − 1)!

1

(r − k)!
≤ 2r−1

(r − 1)!

(
π
2

)r−1

|=mz|||s||−r

≤ πr−1

(r − 1)!

1

|=mz|||s||−r
≤ 4r

r!

1

|=mz|||s||−r
.

To conclude, we only have to notice that, for s ∈ seq(N2) , we have
||s|| ≥ 2l(s) . Consequently, we deduce the sought upper bound:

|T es(z)| ≤ 1

r!

(
2√
|=mz|

)||s||
.
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6.3. About the exponentially flat character

Now, we will focus on proving the exponentially flat character of conver-
gent multitangent functions. Such a result is easy to understand with the
Borel transform (for more details on it, see [3] , [9], [10] , [15] or [32] for an
introduction of this notion and underlying ideas) . It turns out that it pro-
vides an argument allowing to justify that multitangents are exponentially
flat near infinity because this transformation does not detect such functions.

The Borel transform B is defined for formal power series of the form

f(z) =
∑
n≥0

an
zn

by:

B

(∑
n≥0

an
zn+1

)
(ζ) =

∑
n≥0

an
n!
ζn .

If L : H(Ω) −→ H(Ω) is defined by L(f)(z) = f(z + 1), we thus have:

B(L(f))(ζ) = e−ζB(f)(ζ) ; then, B

(∑
p∈Z

Lp(f)

)
(ζ) = 0 .

Hence, we can deduce from this fact the exponentially flat character of
convergent multitangent functions, but not in an explicit way. Although
it might be possible to obtain it in an explicit way, we will not study this
question here because we will use Fourier expansion to find out an explicit
upper bound which shows this exponentially flat character.

6.3.1. An upper bound for Fourier coefficients of convergent multitangent
functions

Let us start by finding an upper bound of the Fourier coefficients of a
multitangent function with valuation at least 2 . For this purpose, let us
fix a sequence s of seq(N2) and c > 0 .

Let T s
+ and T s

− be the functions defined by T s
+(z) =

∑
n>0

T̂ s
n z

n and

T s
−(z) =

∑
n<0

T̂ s
n z

n. These are respectively defined and holomorphic on

{ζ ∈ C; 0 < |ζ| < e−2πc} and {ζ ∈ C; |ζ| > e2πc} .
If z ∈ C satisfies |z| = e−2πr (resp. |z| = e2πr) with r > c, we can write:

z = e−2πr+2iθπ (resp. z = e2πr+2iθπ) for θ ∈ [0; 1[. So, using the upper bound
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from Lemma 8, we obtain:
|T s

+(z)| = |T es(θ + ir)| ≤
(

2√
r

)||s||
,

|T s
−(z)| = |T es(θ − ir)| ≤

(
2√
r

)||s||
,

that is, for all r > c:
sup

|z|=e−2πr

∣∣∣T ||s||+ (z)
∣∣∣≤( 2√

r

)||s||
.

sup
|z|=e2πr

∣∣∣T ||s||− (z)
∣∣∣ ≤( 2√

r

)||s||
.

Thus, for all integer n, all sequences s ∈ seq(N2) and all r > c, the
Cauchy inequalities give us:

|T̂ s
n | ≤ 2π

(
2√
r

)||s||
e2r|n|π .

Hence, taking the limit as r −→ c gives us:∣∣∣T̂ s
n

∣∣∣ ≤ 2π

(
2√
c

)||s||
e2c|n|π.

We can repeat the same reasoning for any multitangent function, that
is, we can use the upper bound from Lemma 7 instead of Lemma 8 . We
obtain another upper bound of Fourier coefficients. These two inequalities
are summed up in the following lemma:

Lemma 9. Let us denote, for all n ∈ Z and all s ∈ S?:

T̂ s
n = 2iπ

l(s)∑
j=1

(
sj∑
k=2

(−2inπ)k−1

(k − 1)!
Zs
j,sj−k

)
.

Then, for all integer n and c > 0, we have:

1.
∣∣∣T̂ s
n

∣∣∣ ≤ 8πl(s)

c||s||−l(s)−1
e2c|n|π , where s ∈ S? .

2.
∣∣∣T̂ s
n

∣∣∣ ≤ 2π

(
2√
c

)||s||
e2c|n|π , where s ∈ seq(N2) .
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6.3.2. Using the Fourier expansion

For a given z ∈ C−R , if we use the shorthand notation n ≶ 0 to denote
n > 0 when =mz > 0, or n < 0 otherwise, the previous lemma and the
Fourier expansion of a multitangent gives us for all sequences s ∈ S? and
all c ∈

]
0 ; |=mz|

[
:

|T es(z)| ≤ 8πl(s)

c||s||−l(s)−1

∑
n≶0

e−2nπ=mze2nπc

≤ 8πl(s)

c||s||−l(s)−1

1

e2π(|=mz|−c) − 1
.

Moreover, we have
1

e2x − 1
≤ 4

sh2(x)
provided x > 0 ; so this implies:

|T es(z)| ≤ 8πl(s)

c||s||−l(s)−1

4

sh2(π(|=mz| − c))
.

This last inequality proves the exponentially flat character of convergent
multitangent functions, which was our aim. We can also use the upper

bound otbained for sequences s ∈ seq(N2) . So, setting c =
|=mz|

2
, we

have proved the following

Property 11. 1. For all sequences s ∈ S?b,e and z ∈ C− R, we have:

|T es(z)| ≤
(

2

|=mz|

)||s||−l(s)−1
32πl(s)

sh2

(
π|=mz|

2

) .

2. For all sequences s ∈ seq(N2) and z ∈ C− R, we have:

|T es(z)| ≤

(
2
√

2√
|=mz|

)||s||
8π

sh2

(
π|=mz|

2

) .

7. Study of a symmetrel extension of multitangent functions to
seq(N∗)

Our aim in this section is, if s is a divergent sequence, that is when
s ∈ seq(N∗) − S? to make a regularization of T es . To be precise, the
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question is to define T es for s ∈ seq(N∗) such that s1 = 1 or sr = 1, as well
as when s1 = sr = 1 ...

Moreover, we want the extension satisfies the same properties as the
convergent multitangent functions. So, we must keep:

1. The symmetrelity of the extension of T e•(z) .

2. The differentiation property (see Section 2.3).

3. The parity property (see Section 2.3).

4. The property of reduction into monotangent functions (see Section 3).

7.1. A generic method to extend the definition of a symmetrel mould

In this section, we consider a symmetrel mould Se• over the alphabet
Ω = N∗, which is well defined for sequences in S?b = {s ∈ seq(N∗) ; s1 ≥ 2} .
We want to define an extension of Se• for all the sequences of seq(N∗) such
that the ‘new’ mould Se• is again a symmetrel one.

The following lemma is due to Jean Ecalle. The first part is now well-
known while the second was not published. To be exhaustive, we shall prove
both points.

Lemma 10. 1. For all θ ∈ C , there exists a unique symmetrel exten-
sion of Se• to seq(N∗), denoted by Se•θ , such that Se1

θ = θ .

2. For all γ ∈ C , let N e•γ be the symmetrel mould defined on sequences

of seq(N∗) by: N esγ =


γr

r!
, if s = 1[r] .

0 , otherwise.

Hence, for all (θ1 ; θ2) ∈ C2 , we have:

Se•θ1 = N e•θ1−θ2 × Se
•
θ2
.

Proof. 1. If such an extension Se• exists, it may satisfy the algorithmic
right move of the ones which begin an evaluation sequence. In other words,
the following identities must be valid for all k ∈ N and all sequences s ∈ S?b :

(k + 1)Se1[k+1]·s = Se1Se1[k]·s −
∑

u∈she (1 ; 1[k]·s)−{1[k+1]·s}

Seu . (18)

By induction on the number of ones which begin the sequences, these iden-
tities impose the uniqueness of the extension Se• to seq(N∗) .
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To prove the existence of such an extension of Se•, we define Se• recur-

sively by (18). If k ∈ N and s ∈ S?b , we define Se1[k]·s
θ by:

(k + 1)Se1[k+1]·s
θ = θSe1[k]·s

θ −
∑

u∈she (1 ; 1[k]·s)−{1[k+1]·s}

Seuθ .

The only thing we have to verify is the symmetrelity of Se•θ . This may
be done by induction on k + l, where k and l denote the number of ones
which begin the first and second sequences in the product:

(k + 1)Se1[k+1]·s1

θ Se1[l]·s2

θ

= θSe1[k]·s1

θ Se1[l]·s2

θ −
∑

u∈she (1 ; 1[k]·s1)−{1[k+1]·s1}

SeuθSe
1[l]·s2

θ

= θ
∑

u∈she (1[k]·s1,1[l]·s2)

Seuθ −
∑

u∈she (1 ; 1[k]·s1)−{1[k+1]·s1}

∑
u′∈she (u;1[l]·s2)

Seu
′

θ

=
∑

u∈she (1[k]·s1;1[l]·s2)

∑
u′∈she (u;1)

Seu
′

θ −
∑

u∈she (1 ; 1[k]·s1)

∑
u′∈she (u;1[l]·s2)

Seu
′

θ

+(k + 1)
∑

u∈she (1[k+1]·s1;1[l]·s2)

Seu
′

θ

=
∑

u∈she (1[k]·s1;1[l]·s2;1)

Seuθ −
∑

u∈she (1 ; 1[k]·s1)

∑
u′∈she (u;1[l]·s2)

Seu
′

θ

+(k + 1)
∑

u∈she (1[k+1]·s1;1[l]·s2)

Seu
′

θ

=
∑

u∈she (1[k]·s1;1[l]·s2;1)

Seuθ −
∑

u∈she (1 ; 1[k]·s1;1[l]·s2)

Seu
′

θ

+(k + 1)
∑

u∈she (1[k+1]·s1;1[l]·s2)

Seu
′

θ

= (k + 1)
∑

u∈she (1[k+1]·s1;1[l]·s2)

Seu
′

θ ,

where we have used the recursive definition of Se•θ in the first and third
equality, the inductive step in the second one and finally the associativity
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and commutativity of the stuffle product in the last three equalities.

This concludes the proof of the first point and allows us to consider Se•θ
for all θ ∈ C .

2. In order to prove full generality the formula expressing Se•θ1 in terms
of Se•θ2 , it is sufficient to prove that for all θ ∈ C, we have: Se•θ = N e•θ×Se•0 .
Indeed, γ 7−→ N e•γ is a morphism from (C ; +) to (M•

C(Ω) ;×) .

Once again, we will prove it by induction on the number of ones which
begin the evaluation sequence. It is clear that the formula is valid when
s ∈ S?b . Let us suppose that the formula holds for all sequences of seq(N∗)
which begin with at most k ones.

The algorithmic right move to the right of the ones gives, using the
induction step:

(k + 1)Se1[k+1]·s
θ = Se1

θSe
1[k]·s
θ −

∑
u∈she (1 ; 1[k]·s)−{1[k+1]·s}

Seuθ

=
k∑
p=0

θp+1

p!
Se1[k−p]·s

0 −
∑

u∈she (1 ; 1[k]·s)−{1[k+1]·s}

Seuθ

=
k∑
p=0

θp+1

p!
Se1[k−p]·s

0 −
∑
u∈A

Seuθ −
∑
u∈B

Seuθ ,

where: 
A =

{
1[i] · 2 · 1[k−i−1] · s ; i ∈ [[ 0 ; k − 1 ]]

}
.

B = 1[k] · (she (1 ; s)− {1 · s}) .
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We have:∑
u∈A

Seuθ =
k−1∑
i=0

Se1[i]·2·1[k−i−1]·s
θ =

k−1∑
i=0

i∑
p=0

θp

p!
Se1[i−p]·2·1[k−i−1]·s

0

=
k−1∑
p=0

(
θp

p!

k−p−1∑
i=0

Se1[i]·2·1[k−p−i−1]·s
0

)
∑
u∈B

Seuθ =
k∑
p=0

∑
u∈she (1 ; s)−{1·s}

θp

p!
Se1[k−p]·u

0

= −θ
k

k!
Se1·s

0 +
k−1∑
p=0

θp
p!

∑
u∈1[k−p]·(she (1 ; ·s)−{1·s})

Seu0


Hence:

∑
u∈she (1 ; 1[k]·s)−{1[k+1]·s}

Seuθ = −θ
k

k!
Se1·s

0 +
k−1∑
p=0

θp
p!

∑
u∈she (1 ; 1[k−p]·s)−{1[k+1−p]·s}

Seu0


= −θ

k

k!
Se1·s

0 −
k−1∑
p=0

(
θp

p!
(k + 1− p)Se1[k+1−p]·s

0

)

= −
k∑
p=0

(
θp

p!
(k + 1− p)Se1[k+1−p]·s

0

)
We can now conclude:

(k + 1)Se1[k+1]·s
θ =

k∑
p=0

θp+1

p!
Se1[k−p]·s

0 +
k∑
p=0

(
θp

p!
(k + 1− p)Se1[k+1−p]·s

0

)

=
k∑
p=0

θk+1−p

(k − p)!
Se1[p]·s

0 +
k+1∑
p=1

p
θk+1−p

(k + 1− p)!
Se1[p]·s

0

=
θk+1

k!
+

k∑
n=1

(
(k + 1)

θn

n!
Se1[k+1−n]·s

0

)
+ (k + 1)Se1[k+1]·s

0

= (k + 1) (N e•θ × Se•0)1[k+1]·s .

By induction, for all sequences of type 1[k] · s, with s ∈ S?b , we have
Se•θ = N e•θ × Se•0 , which ends the proof of the lemma. �
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7.2. Trifactorization of T e• and consequences

The extension of multitangent functions to the divergent case is more
complicated than the case exposed in the previous section. Actually, even if
we want to impose the knowledge of T e1, one cannot apply the algorithmic
right move of the ones which begin an evaluation sequence because the ones
which begin or end the sequences will be sent respectively at the end or the
beginning of the sequences in the game. To picture this, we have:

T e1,2(z) = T e1(z)︸ ︷︷ ︸
known by
hypothesis

× T e2(z)︸ ︷︷ ︸
convergent

multitangent
function

−T e2,1(z)︸ ︷︷ ︸
problem

= unknown

− T e3(z)︸ ︷︷ ︸
convergent

multitangent
function

.

The difficulty, here, comes from the joint management of the two sources
of divergence created at −∞ and +∞ . To overcome it, we would separate
the divergence at −∞ from that at +∞ . To this end, we will use a mould
factorization in which each term has only one source of divergence. Let us
remind that we have already used and proved such a factorization when we
have proved the convergence rule for the multitangent functions (see p. 16) ,
but we give here a separate statement because of its importance:

Lemma 11. Let S?b,e = {s ∈ seq(N∗); s1 ≥ 2 and sr ≥ 2} .
Let us consider the symmetrel moulds He•+, He•− and Ce• valued in holo-
morphic functions over C − Z and defined for all sequences s ∈ S?b (resp.
s ∈ S?e and s ∈ seq(N∗)) by:

Hes+(z) =
∑

0<nr<···<n1<+∞

1

(n1 + z)s1 · · · (nr + z)sr
and He∅+(z) = 1 .

Hes−(z) =
∑

−∞<nr<···<n1<0

1

(n1 + z)s1 · · · (nr + z)sr
and He∅−(z) = 1 .

Ces(z) =


1 if s = ∅ .

1

zs
if l(s) = 1 .

0 if l(s) > 1 .

Then:
T e• = He•+ × Ce• ×He•− .
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The moulds He•+ and He•+ are named Hurwitz multizeta functions; Ce•
is going to play the role of a correction because it enters in game only for
null summation indexes in the expression of T e• . Let us remark that it is
clear from their definition that these three moulds are symmetrel , which
explains the letter e in their names.

First of all, we mention that this trifactorization acts as we wanted: it
separates the divergence sources. Secondly, it is now clear that it is sufficient
to extend (with the symmetrelity property) the definition of the two moulds
of Hurwitz multizeta functions to seq(N∗) in order to obtain an extension of
T e• to seq(N∗) which is also symmetrel . For this purpose, Lemma 10 can
be applied: given (Φ+; Φ−) ∈ H(C− Z)2, the moulds He•+ and He•− admit
a unique extension to seq(N∗) such that He1

+ = Φ+ and He1
− = Φ− .

Finally, the following figure completes the figures 1 and 2. In the follow-
ing diagram, we denote by

HMZVCV,± = VectMZVCV (z)

(
Hes

1

+He
s2

−

)
s1∈S?

b
s2∈S?e

,

where S?e = {(s1; · · · ; sr) ∈ seq(N∗) ; sr ≥ 2} . From the trifactorisation, we
see thatMTGFCV can be embedded inHMZVCV,±, which will be indicated
by a curly arrow in the diagram. Recall that an arrow indicates a link
between two algebras, while an arrow in dotted lines indicates a hypothetical
link.

MZVCV

projection

��

HMZF+,CV
evaluation at 0oo

� _

��
MTGFCV

reduction

OO

� � trifactorization //HMZF±,CV

Figure 4: Links between multizeta values and multitangent functions

As a consequence, we obtain the following

Corollary 2. Let Φ+ and Φ− be two holomorphic functions over C− Z .
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The mould T e• admits a symmetrel extension to seq(N∗) such that:
∀z ∈ C− Z , T e1(z) = Φ+(z) +

1

z
+ Φ−(z) .

∀s ∈ seq(N∗) , T es = (He•+ × Ce• ×He•−)s .

7.3. Formal Hurwitz multizeta functions and formal multitangent functions

In order to simplify the following proof, we will work in the ring of
formal power series by introducing the notion of formal Hurwitz multizeta
functions and formal multitangent functions. To distinguish whether we are
analytically or formally working without specifying it, we use two different
notations. The formal character will be denoted by a straight capital letter
while the analytic character will be denoted by a cursive capital letter (as
we have always done from the begining) .

7.3.1. The mould He•+(X)

We define formal Hurwitz multizeta functions as the Taylor expansions
near 0 of the Hurwitz multizeta functions. Using the generalised product
rule for the successive derivatives of a product as well as the formal Taylor
formula, we defined the formal Hurwitz multizeta functions by He∅+(X) = 1
and for all sequences s ∈ S?b of length r ∈ N∗ by:

Hes+(X) =
∑
k≥0

∑
k1+···+kr=k

r∏
i=1

(
si + ki − 1

ki

)
Zes1+k1,··· ,sr+kr(−X)k .

Thus, He•+(X) is a symmetrel mould defined over S?b , valued in C[[X]] .
According to Lemma 10, for all S ∈ C[[X]] , He• has a unique symmetrel
extension to seq(N∗) such that He1

+(X) = S(X) . We have now to define
in a suitable manner He1

+(X) . We can set:

He1
+(X) =

+∞∑
k=1

Zek+1(−X)k .

This definition is natural because we want the differentiation property
to be satisfied by the extension of He•+, as well as its formal analogue.
Consequently, the analytic analogue of He1

+ is

He1
+(z) =

∑
n≥1

(
1

n+ z
− 1

n

)
.

Then, we obtain:
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Property 12. For all sequences s ∈ seq(N∗), we have:

Hes+(X) =
∑
k≥0

∑
k1+···+kr=k

r∏
i=1

(
si + ki − 1

ki

)
Zes1+k1,··· ,sr+kr(−X)k .

Proof. By uniqueness of the moulds satisfying these properties, it is suf-

ficient to prove that the mould H̃e
s

+(X) defined by the right hand side
satisfies:

1. H̃e
s

+(X) extends the definition of Hes+(X) to seq(N∗) .

2. H̃e
1

+(X) = He1
+(X) .

3. H̃e
•
+(X) is a symmetrel mould.

The third point is the only one which requires some explanations. Let

us denote by M•
k the kth coefficient of H̃e

s

+(X). In order to prove the

symmetrelity of H̃e
s

+(X), we will show that:

∀(s1; s2) ∈
(
seq(N∗)

)2
, ∀p ∈ N,

p∑
k=0

M s1

k M
s2

p−k =
∑

γ∈she(s1;s2)

M
γ
p .

For (s1; s2) ∈
(
seq(N∗)

)2
and p ∈ N, we have if we denote l(s1) = r and

l(s2) = r′:
p∑

k=0

M s1

k M
s2

p−k=
∑

k1+···+kr+r′=k

(
r∏
i=1

(
s1
i + ki − 1

ki

))( r′∏
i=1

(
s2
i + ki+r − 1

ki+r

))

×Zes11+k1,··· ,s1r+krZes21+kr+1,··· ,s2r′+kr′

=
∑

k1+···+kr+r′=k

(
r∏
i=1

(
s1
i + ki − 1

ki

))( r′∏
i=1

(
s2
i + ki+r − 1

ki+r

))

×
( ∑
γγγ∈she(s1+k≤r;s2+k>r)

Zeγγγ
)
,

where s1 + k≤r and s2 + k>r respectively denote (s1
1 + k1; · · · ; s1

r + kr) and
(s2

1 + kr+1; · · · ; s2
r′ + kr+r′) . Two cases are possible:

1. γγγ is a shuffle of s1 + k≤r and s2 + k>r:

Then, we can reorder if necessary the ki’s such that the resulting term

is M
γ̃γγ
p , where γ̃γγ is deduced from γγγ by setting ki = 0 for all i.
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2. γγγ contains one or more contractions of s1 + k≤r and s2 + k>r:
We can separate indexes which do not act on contractions from the
other ones. Let us denote them by s1

i and s2
j . This gives some sums

of binomial coefficients:∑
ki+kj=K

(
s1
i + ki − 1

ki

)(
s1
j + kj − 1

kj

)
=

(
s1
i + s2

j +K − 1

K

)
,

which is exactly the expected binomial coefficient.

Thus, the term expected is again M
γ̃γγ
p , where γ̃γγ is deduced from γγγ by

cancelling all the ki’s.

Let us remark that γ̃γγ runs over the set she(s1; s2) when γγγ runs over the
set she(s1 + k≤r; s2 + k>r) . We deduce from this that:

p∑
k=0

M s1

k M
s2

p−k =
∑

γγγ∈she(s1;s2)

M
γγγ
p .

Consequently, H̃e
s

+(X) is a symmetrel mould and is equal to He•+(X) .

�

7.3.2. The mould He•−(X)

The same can be done for the mould He•−(X). Thus, we can define this
mould for all sequences s ∈ seq(N∗) by:

Hes−(X) = (−1)||s||He
←
s
+(−X)

=
∑
k≥0

∑
k1+···+kr=k

r∏
i=1

(
si + ki − 1

ki

)
Zes1+k1,··· ,sr+kr
− (−X)k ,

where Ze•− is defined from Ze• by a pseudo-parity relation:

Zes1,··· ,sr− = (−1)||s||Zesr,··· ,s1 =
∑

0<n1<···<nr

(−1)||s||

n1
s1 · · ·nrsr

=
∑

pr<···<p1<0

1

prs1 · · · p1
sr
.

Implicitly, this imposes:

He1
−(z) =

∑
n<0

(
1

n+ z
− 1

n

)
.
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7.3.3. The mould Te•(X)

We have just seen that for Φ+ and Φ− two holomorphic function over
C − Z, there exists a symmetrel extension of T e• to seq(N∗), defined by

T e• = He•+ × Ce• ×He•−, such that T e1(z) = He1
+(z) +

1

z
+He1

−(z) for all

z ∈ C− Z .
With the definition of the formal Hurwitz multizeta functions, the formal

analogue Te•(X) should be defined by:

Te•(X) = He•+(X)× Ce•(X)×He•−(X) ,

where Ces(X) =


1 , if l(s) = 0 .

X−s , if l(s) = 1 .

0 , if l(s) ≥ 2 .

Consequently, Te•(X) is a symmetrel mould defined on seq(N∗) and
valued in C((X)) .

7.4. Properties of the extension of the mould T e• to seq(N∗)
The convergent Hurwitz multizeta functions satisfies the differentiation

and parity properties, as the convergent multitangent functions. We want
that their extensions to seq(N∗) satisfy the same properties. These depend
on the choice of the functions He1

+ and He1
− . From now on, we always

define these functions by:

He1
+(z) =

∑
n>0

(
1

n+ z
− 1

n

)
, He1

−(z) =
∑
n<0

(
1

n+ z
− 1

n

)
.

With these definitions, these moulds are symmetrel and satisfy:

Lemma 12. For all sequences s ∈ seq(N∗), we have:

1.
∂Hes±
∂z

= −
l(s)∑
i=1

siHes+ei± .

2. Hes+(−z) = (−1)||s||He
←
s
−(z) , where z ∈ C− Z .
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Proof. 1. Let us begin by proving this for formal Hurwitz multizeta func-
tions.

We just have to prove the first point because the second one is the def-
inition of Hes−(X) . For positive integers s and k, the key point of the
following calculation is:

k

(
s+ k − 1

k

)
= s

(
s+ k − 1

k − 1

)
.

Thus, for all s ∈ seq(N∗), if the derivation of C[[X]] is denoted by D,
D(Hes+)(X) is succelssively equals to:

−
∑
k≥1

∑
k1,··· ,kr≥0
k1+···+kr=k

r∑
p=1

kp

(
r∏
i=1

(
si + ki − 1

ki

))
Zes1+k1,··· ,sr+kr(−X)k−1

= −
r∑
p=1

∑
k≥0

∑
k1,··· ,k̂p,··· ,kr≥0

kp≥1
k1+···kr=k+1

sp

 ∏
i∈[[ 1 ; r ]]−{p}

(
si + ki − 1

ki

)(sp + kp − 1

kp − 1

)
×Zes1+k1,··· ,sr+kr(−X)k

= −
r∑
p=1

∑
k≥0

∑
k1,··· ,kr≥0
k1+···+kr=k

sp

 ∏
i∈[[ 1 ; r ]]−{p}

(
si + ki − 1

ki

)(sp + kp
kp

)
×Zes1+k1,··· ,sp−1+kp−1,sp+1+kp,sp+1+kp+1,··· ,sr+kr(−X)k

= −
r∑
p=1

He
s1,··· ,sp−1,sp+1,sp+1,··· ,sr
+ (X) .

2. From the formal case to the analytic one.

It is well known that 0 ≤ Zes ≤ 2 (resp. 0 ≤ Zes− ≤ 2) for all sequences
s ∈ S?b (resp. s ∈ S?e ). Thus, the formal power series Hes+(X) and Hes−(X)
are actually Taylor expansions. Consequently, the previous equalities are
valid in the analytical case, first on the disc centered in 0 and with radius
1

2
and then on C − Z, according to the identity theorem for holomorphic

68



functions. �

These properties have immediate consequences on T e• extended to seq(N∗).
These, as well as Corollary 2 and the definition of He1

+ and H•− are summed
up in the following theorem:

Theorem 4. There exists a symmetrel extension of T e• to seq(N∗), valued
in holomorphic functions over C− Z, such that:

T e• = He•+ × Ce• ×He•− .

T e1(z) =
π

tan(πz)
, for all z ∈ C− Z .

Moreover, the following properties hold for all sequences s ∈ seq(N∗):

1.
∂T es

∂z
= −

l(s)∑
i=1

siT es+ei .

2. T es(−z) = (−1)||s||T e
←
s (z) , where z ∈ C− Z .

Proof. From the definition of He1
+ and He1

− , we only have to prove the
differentiation properties as well as the parity property. According to the
trifactorisation, for s ∈ seq(N∗) and if we denote ei = (0[i−1]; 1; 0[l(s)−i]), we
have successively:

1.
∂T es

∂z
=

∑
s1·s2·s3=s

(
∂Hes

1

+

∂z
Ces2Hes

3

− +Hes
1

+

∂Ces2

∂z
Hes

3

− +Hes
1

+ Ces
2 ∂Hes

3

−

∂z

)

= −
l(s)∑
i=1

∑
s1·s2·s3=s

l(s2)=1

siHe
s1+e

≤l(s1)
i

+ Ces2+e
l(s1)<·≤l(s1)+l(s2)
i Hes

3+e
>l(s1)+l(s2)
i

− ,

= −
l(s)∑
i=1

(
si

∑
s1·s2·s3=s+ei

l(s2)=1

Hes
1

+ Ces
2Hes

3

−

)

= −
l(s)∑
i=1

siT es+ei .

69



2. T es(−z) =
∑

s1·s2·s3=s

Hes
1

+ (−z)Ces2

(−z)Hes
3

− (−z)

= (−1)||s||
∑

s1s2s3=s

He
←
s3

+ (z)Ce
←
s2(z)He

←
s1

− (z)

= (−1)||s||T e
←
s (z) .

�

7.5. Reduction into monotangent functions

The only property of divergent multitangent which remains to be proved
is the reduction into monotangent functions. From now on and until the end
of this section, our aim is to find and prove such a property for convergent
and divergent multitangent functions. For this, we will adapt the proof
given in the convergent case. To simplify the calculation, we will apply
the same technique, that is to say a partial fraction expansion, but for
the generating series T ig• . Then, we will see that the reduction into
monotangent functions can not have exactly the same expression as in the
convergent case.

7.5.1. A first expression of Tig•(X)

The moulds Ze•, Te•(X), He•+(X), He•−(X) and Ce•(X) are symmetrel
. We will consider their generating functions, respectively denoted by Zig•,
Tig•(X), Hig•+(X), Hig•−(X) and Cig•(X). Let us remark that these
moulds are valued in C[[X]] or C((X)).

We can begin with the calculation of the generating functions ofHe•+(X):

Lemma 13. The generating function of the mould He•+(X) , denoted by
Hig•+(X) and valued in C[[X]][[(Yr)r∈N∗ ]] ' C[[X;Y1;Y2; · · · ]], is :

HigY1,··· ,Yr
+ (X) = ZigY1−X,··· ,Yr−X .

Such a result could be expected, because Hurwitz multizeta functions
He•+(z) are nothing else than translations of multizeta values. Consequently,
this should have a translation readable on the generating function.

Proof. Let r ∈ N∗. Let us denote DYi the derivation with respect to Yi
and S(F ) the constant term of F ∈ A[[Y1; · · · ;Yr]] .
For all (k1; · · · ; kr) ∈ (N∗)r , we have:
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1

k1! · · · kr!
S
(
Dk1
Y1
◦ · · · ◦Dkr

Yr
(ZigY1−X,··· ,Yr−X)

)
= S

( ∑
p1,··· ,pr≥0

Zep1+k1+1,··· ,pr+kr+1

(
r∏
i=1

(
pi + ki
ki

)
(Yi −X)pi

))

=
∑

p1,··· ,pr≥0

Zep1+k1+1,··· ,pr+kr+1

(
p1 + k1

k1

)
· · ·
(
pr + kr
kr

)
(−X)p1+···+pr

=
∑
p≥0

∑
p1+···+pr=p

Zep1+k1+1,··· ,pr+kr+1

(
p1 + k1

k1

)
· · ·
(
pr + kr
kr

)
(−X)p

= Hek1+1,··· ,kr+1
+ (X) .

Thus, the formal Taylor formula for formal power series in several inde-

terminates gives: ZigY1−X,··· ,Yr−X =
∑

k1,··· ,kr≥0

Hek1+1,··· ,kr+1
+ (X)Y k1

1 · · ·Y kr
r

= HigY1,··· ,Yr
+ (X) .

�

Moreover, according to the parity property, the generating function
ZigY1,··· ,Yr

− of Ze•− is defined by:

ZigY1,··· ,Yr
− = (−1)rZig−Yr,··· ,−Y1 .

The same calculation as in the previous proof gives:

Lemma 14. The generating function of the mould He•−(X) , denoted by
Hig•−(X) and valued in C[[X]][[(Yr)r∈N∗ ]] ' C[[X;Y1;Y2; · · · ]], is:

HigY1,··· ,Yr
− (X) = ZigY1−X,··· ,Yr−X

− .

These two lemmas, together with the trifactorisation, imply immediately
the first expression of Tig•(X) . Even if it is a standard calculation in
mould calculus, the following expression of Tig•(X) deserves to be singled
out because it is the first step of the computation of Tig•(X) .

Property 13. Let us denote by Zig•(X) and Zig•−(X) the moulds valued
in C[[X]][[(Yr)r∈N∗ ]] ' C[[X;Y1;Y2; · · · ]] respectively defined by:
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ZigY1,··· ,Yr(X) = ZigY1−X,··· ,Yr−X .

ZigY1,··· ,Yr
− (X) = ZigY1−X,··· ,Yr−X

− .

Then, in C((X))[[(Yr)r∈N∗ ]], we have:

Tig•(X) = Zig•(X)× Cig•(X)×Zig•−(X).

7.5.2. Second expression of Tig• and flexion markers

The second expression of Tig•(X) will use some notations and notions
introduced by Jean Ecalle for his study of flexion structures (see. [16], [17],
[18] or [19]). Let us introduce them before stating the result.

Flexion markers. The four flexion markers b , c , d and e act on factorisation
of (bi)sequences. So, let us consider two alphabets Ω1 , Ω2 and then their
product Ω = Ω1 × Ω2 ; let us also consider a sequence w ∈ seq(Ω) which
can be factorize:

w = w1 · · ·wr ∈ seq(Ω) .

The flexion marker b acts on wi by subtracting the right inferior element
of wi−1 to each inferior element of wi while the flexion marker d acts on wi

by adding the sum of superior elements of wi−1 to the left superior element
of wi. In the same way, the flexion marker c acts on wi by subtracting the
left inferior element of wi+1 to each inferior element of wi while the flexion
marker e acts on wi by adding the sum of superior elements of wi+1 to the
right superior element of wi.

By the use of these flexion markers, elements of Ω1 will be added each
other while element of Ω2 will be subtracted each other.

To clarify the definitions and the actions of the different markers, here

is an example. If w = · · · a · b · · · = · · ·

u6, · · · ,u9

v6 , · · · ,v9


u10, · · · ,u15

v10 , · · · ,v15

 · · · ,
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then we have:

ac =

 u6 , · · · , u9

v6:10 , · · · , v9:10

 , ae =

 u6 , · · · , u8, u9···15

v6 , · · · , v8, v9

 ,

bb =

 u11 , · · · , u15

v11:9 , · · · , v15:9

 , db =

 u6···10 , u11···15

v10 , v11 , · · · , v15

 ,

where ni···j = ni + · · ·+ nj and ni:j = ni − nj in the variables n.

Colors. If we don’t care, it is easy not to see flexion structures. But, when
there are some addition or subtraction of the variables, flexion structures
are possibly present. The use of colors is a good way to avoid passing next
to them. So, we will stiffen a bit more the situation by using colors in a
temporary way. This requires to redefine our moulds, that is, they become
bimoulds.

First, there is the bimould of coloured multizeta values defined for se-
quences in seq (Q/Z× N∗) by:

Ze

ε1, · · · , εr
s1, · · · , sr


=

∑
1≤nr<···<n1

e1
n1 · · · ernr

n1
s1 · · ·nrsr

where ek = e−2iπεk , for k ∈ [[ 1 ; n ]].

Its generating series Zig• is then a symmetril mould defined for se-
quences in seq

(
Q/Z × (Vi)i∈N∗

)
. This also gives us the definition of the

bimould Zig•−:

Zig

ε1,· · · ,εr

V1,· · · ,Vr


− = (−1)rZig

−εr , · · · ,−ε1
−Vr, · · · ,−V1


.

In a similar way, we can define formal or analytical coloured Hurwitz
multizeta functions as well as formal or analytical coloured multitangent
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functions. These are bimoulds valued in the algebra of holomorphic func-

tions over C− Z or in C[[X]] . If

(
ε1, · · · , εr

s1, · · · , sr

)
∈ seq (Q/Z× N∗)− {∅}, with

the notation ek = e−2iπεk , for k ∈ [[ 1 ; n ]], these are respectively defined by:

He

ε1, · · · , εr
s1, · · · , sr


+ (z) =

∑
0<nr<···<n1<+∞

e1
n1 · · · ernr

(n1 + z)s1 · · · (nr + z)sr
,

He

ε1, · · · , εr
s1, · · · , sr


+ (X) =

∑
k,k1,··· ,kr≥0
k1+···+kr=k

[
r∏
i=1

(
si + ki − 1

ki

)]
Ze

 ε1 , · · · , εr

s1 + k1, · · · ,sr + kr


(−X)k ,

T e

ε1, · · · , εr
s1, · · · , sr


(z) =

∑
−∞<nr<···<n1<+∞

e1
n1 · · · ernr

(n1 + z)s1 · · · (nr + z)sr
,

T e

ε1, · · · , εr
s1, · · · , sr


(X) =

∑
ε1
s1

·
ε2
s2

·
ε3
s3

=

ε
s


He

ε1
s1


+ (X)Ce

ε2
s2


(X)He

ε3
s3


− (X) .

Obviously, these definitions contain some divergent cases for Hurwitz
multizeta functions as well as for multitangent functions: in the first case, it
is when (ε1; s1) = (0; 1) , while it is when (ε1; s1) = (0; 1) or (εr; sr) = (0; 1)
in the second case. In these exceptional cases, a regularization process is
needed and is based, as we have done previously without colors, on the
regularization of the generating series Zig• and, so, on the following well-
known lemma due to Jean Ecalle (see [17] p. 5 and [19] p. 6) :

Lemma 15. Let µn1,··· ,nr =
1

r1! · · · rn!
where the non-increasing sequence

n = (n1; · · · ;nr) ∈ seq(N∗) attains r1 times its highest value, r2 times
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its second highest value, etc.
For (up)p∈[[ 1 ; r ]] ∈ Cr and k ∈ [[ 1 ; r ]] , let ek = e−2iukπ .

Finally, for all k ∈ N∗, we consider the moulds doZig•k and coZig•k defined

for all

(
u1, · · · ,ur

v1 , · · · ,vr

)
∈ seq

(
Q/Z× (Vi)i∈N∗

)
by:

doZig

u1, · · · ,ur

V1, · · · ,Vr


k =


∑

1≤nr<···<n1<k

e1
n1 · · · ernr

(n1 − V1) · · · (nr − Vr)
, if r 6= 0 .

1 , if r = 0 .

coZig

u1, · · · ,ur

V1, · · · ,Vr


k =



(−1)r
∑

1≤nr≤···≤n1<k

µn1,··· ,nr

n1 · · ·nr
, if u 6= 0 and r 6= 0 .

0 , if u = 0 and r 6= 0 .

1 , if r = 0 .

Then, the mould Zig admits an elementary mould “factorisation”:

Zig• = lim
n−→+∞

(coZig•n × doZig•n) .

Let us remark that in this “factorisation”, the mould doZig•k gives us the
dominant terms of Zig•, while the mould coZig•k play the role of correcting
the series to restore the convergence of the divergent series∑

1≤nr<···<n1<k

e1
n1 · · · ernr

(n1 − v1) · · · (nr − vr)
.

Some new moulds. Let δ be the indicator function of {0}. Let us also
consider the formal bimoulds Qig• and δ• defined on seq

(
Q/Z × (Vi)i∈N∗

)
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by: 

Qig∅ = 0 .

Qig

u1

V1


= −Te

u1

1


(V1) .

Qig

u1, · · · , ur

V1, · · · , Vr


= 0 , if r ≥ 2 .

δ∅ = 0 .

δ

u1,· · · ,ur

V1,· · · ,Vr


=


(iπ)r

r!
δ(u1) · · · δ(ur) , if r is even.

0 , if r is odd.

Second expression of Tig•. We will apply the previous lemma, which gives
an expression of Zig•, in the first expression of Tig•. This will allow us to
make a partial fraction expansion in the indeterminate X. We then obtain:

Theorem 5. Let Qig• be the bimould valued in H(C− Z) and defined for
all z ∈ C− Z by:

Qigy1,··· ,yr(z) =


−T e1(y1 − z) , if r = 1 .

0 , otherwise.

Then, for all z ∈ C− Z, we have in C[[X]][[(Vr)r∈N∗ ]]:

T ig•(z) = δ• + Zig•c ×Qigd•e(z)×Zigb•− .
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Proof. Continuing to use the same principle for our notations, we set:

doZig

u1, · · · , ur

V1, · · · , Vr


N (X) = doZig

 u1 , · · · , ur

V1 − Y , · · · ,Vr − Y


N .

coZig

u1, · · · , ur

V1, · · · , Vr


N (X) = coZig

 u1 , · · · , ur

V1 − Y , · · · ,Vr − Y


N .

doZig

u1, · · · , ur

V1, · · · , Vr


−,N (X) = (−1)rdoZig

−ur, · · · ,−u1

−Vr, · · · ,−V1


−,N (X) .

coZig

u1, · · · , ur

V1, · · · , Vr


−,N (X) = (−1)rcoZig

−ur, · · · ,−u1

−Vr, · · · ,−V1


−,N (X) .

Let

u1,· · · ,ur

V1,· · · ,Vr

 ∈ seq
(
Q/Z× (Vi)i∈N∗

)
. Lemmas 13 and 15 give:

Tig•(X) = lim
N−→+∞

(
coZig•N × Tig•N(X)× coZig•−,N

)
,

where Tig•N(X) = doZig•N(X)× Cig•(X)× doZig•−,N(X) .

It is not difficult to obtain another form of the previous trifactorisation
by proceeding in the same way as in the proof of the trifactorisation of T e•:

T ig

u1, · · · , ur

V1, · · · , Vr


N =

∑
−N<nr<···<n1<N

e1
n1 · · · ernr

(n1 − V1 +X) · · · (nr − Vr +X)
.

(19)
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Now, we can write down the partial fraction expansion in T ig•N :

Tig

u1, · · · , ur

V1, · · · , Vr


N =

r∑
k=1

∑
−N<nr<···<n1<N

 ∏
j∈[[ 1 ; r ]]
j 6=k

ej
nj

nj − nk + Vk − Vj

×
ek
nk

nk − Vk +X
.

Plugging this expansion in (19), after some calculations, we obtain in
C[[X]][[(Vr)r∈N∗ ]]:

Tig•(X) = δ• + Zig•c ×Qigd•e(X)×Zigb•− .

It is clear that Qig•(z) is also well defined in a neighbourhood of 0 in
seq(C). Moreover, the generating functions Zig• and Zig•− are actually
Taylor expansions defined in seq

(
D(0; 1)

)
. Here, the key point is that

|Zes| ≤ 4rr! for all sequences s ∈ seq(N∗) of length r. Such an upper
bound is far from being precise, but is sufficient for our purpose. A proof
of it comes from the algorithmic right move of the ones which begin an
evaluation sequence and:

]she(ααα;βββ) =

min(a;b)∑
k=0

2k
(

a

a− k

)(
b

b− k

)
.

This gives a neighbourhood of 0 in seq(C) where Zig•c×Qigd•e(X)×Zigb•−
defines an analytic function. The identity theorem for holomorphic func-
tions concludes the proof of this theorem.

�

To conclude this section, let us explain why the corrective term δ• is
mandatory.

Let us imagine this is not the case, that is to say that we have two
functions ϕ and ψ such that the mould T e• is extended to the divergent
case by T e• = He•+,ϕ×Ce•×He•−,ψ , whereHe•+,ϕ andHe•−,ψ are respectively
the extension to the divergent case of the moulds He•+ and He•− such that
He1

+ = ϕ and He1
− = ψ .
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Then, we would have the following identity because of the fundamental
equality proved in the previous theorem, but without the corrective term:

Hig•+,ϕ × Cig• ×Hig•−,ψ = T ig• = Zig•c ×Qigd•e(z)×Zigb•− .

In particular, we would have equality of the constant terms of these
generating functions, that is, we would have 1 = 0 · · · Consequently, we
can not find a choice of the functions ϕ and ψ that extend the Hurwitz
multizeta functions such that there is no corrective term in the reduction
into monotangent of divergent multitangent functions.

7.5.3. Reduction into monotangent functions for divergent multitangent func-
tions

Theorem 5 admits the following corollary which comes from a direct
formal power series expansion of T ig•(z) . This corresponds exactly to the
fourth point mentionned at the beginning of this section. Let us remark
that, from now on, we only consider moulds and not bimoulds.

Let us recall that we have introduced the following notations (see sec-
tions 3.1 and 7.5.2):

iBs
k =

(
i−1∏
l=1

(−1)kl

)(
r∏

l=i+1

(−1)sl

) r∏
l=1
l 6=i

(
sl + kl − 1

sl − 1

) .

Zs
i,k =

∑
k1,··· ,k̂i,··· ,kr≥0

k1+···+k̂i+···+kr=k

iBs
kZe

sr+kr,··· ,si+1+ki+1Zes1+k1,··· ,si−1+ki−1 .

δs =


(iπ)r

r!
, if s = 1[r] et if r is even.

0 , otherwise.

Then, we have:

Theorem 6. (Reduction into monotangent functions, version 2)
For all sequences s ∈ seq(N∗), we have:

T es(z) = δs +
r∑
i=1

si∑
k=1

Zs
i,si−kT e

k(z) .

Moreover, if s ∈ S?b,e, the summation of k begins at 2 .
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This result is computable. One can give complete tables for divergent
multitangent functions up to a fixed weight, as in the convergent case (see
table 1 for the convergent case and table 7 for the divergent case) .

For example, one can see that T e2,1 and T e1,2 are null. As already
said in the introduction, this remarkable fact shows us that the relation of
symmetrelity T e2T e1 = T e2,1 + T e1,2 + T e3 = T e3(z) allows us to find in
a different way (more complicated, but more general) the simplest relations
between Eisenstein series.

8. Some explicit calculations of multitangent functions

Before presenting some explicit calculations of multitangent functions,
let us remind a few notations. If ααα is any sequence, then ααα[r] denotes the
sequence ααα · · · · ·ααα︸ ︷︷ ︸

r times

, where the sequence ααα is repeated k times. In particular,

n[k] is the sequence (n; · · · ;n) where n is repeated k times.

8.1. Calculation of T e1[r]
(z) , for r ∈ N

For all r ∈ N, T e1[r]
(z) is the constant term of TigY1,··· ,Yr , so:

T e1[r]

(X) =


(iπ)r

r!
, if r ∈ 2Z

0 , if r 6∈ 2Z

+

(
r−1∑
k=0

Zig0[k]Zig0[r−1−k]

−

)
T e1(X) .

We have evaluate
n∑
k=0

Zig0[k]Zig0[n−k]

− for n ∈ N∗, by considering the

product Z+Z−, where:
Z+ =

∑
n≥0

Zig0[n]

Xn =
∑
n≥0

Ze1[n]

Xn .

Z− =
∑
n≥0

Zig0[n]

− Xn =
∑
n≥0

Ze1[n]

− Xn .

The mould Ze• and Ze•− being symmetrel , we automatically obtain the
following formal differential equations (see Property 15) :
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DZ+ = Z+ ×

(∑
n≥0

(−1)nZen+1Xn

)
= Z+He

1
+ .

DZ− = Z− ×

(∑
n≥0

(−1)nZen+1
− Xn

)
= Z−He1

− .

So: D(Z+Z−) = Z+He
1
+Z− + Z+He

1
−Z− = Z+Z−

(
He1

+ +He1
−
)

= −2Z+Z−

(∑
n≥0

Ze2n+2X2n+1

)

= −2Z+Z−

(∑
n≥1

Ze2nX2n−1

)
.

Letting Exp be the formal exponential, we obtain:

Z+Z− = Exp

(
−
∑
n≥1

Ze2n

n
X2n

)
.

On the other hand, in C((X)), we have:

He1
+(X) +He1

−(X) = Te1(X)−X−1 = π
cos(πX)

sin(πX)
− 1

X
.

Indeed, this relation is valid in C[[X]], so:

He1
+(X) +He1

−(X) = D

(
Log

(
sin(πX)

πX

))
.

So that:

Z+Z− = Exp

(
−
∑
n≥1

Ze2n

n
X2n

)
=

sin(πX)

πX
=
∑
n≥0

(−1)n
(πX)2n

(2n+ 1)!
.

Finally, we obtain:

Te1[r]
(X) =


(iπ)r

r!
, if r ∈ 2Z

0 , if r 6∈ 2Z

+


0 , if r ∈ 2Z

(iπ)r−1

(2r − 1)!
, if r 6∈ 2Z

× Te1(X) ,
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and the analytic equality follows for all z ∈ C− Z:

T e1[r]

(z) =


(−1)p

π2p

(2p)!
, if r = 2p .

(−1)p
π2p

(2p+ 1)!
T e1(z) , if r = 2p+ 1 .

8.2. Calculation of T en[k]
(z), for n ∈ N∗ and k ∈ N

We will give an explicit evaluation of all multitangent functions of the
form T en[k]

(z), for n ∈ N∗ and k ∈ N, in term of monotangent functions
and multizeta values. This will be done by proving the following property:

Property 14. Let n ∈ N∗ and k ∈ N. Denote by E the floor function and
define the functions tk,n for (k;n) ∈ N× N∗ by:

∀x ∈ R, tk,n(x) =


cos(n−1)(x) , if k is odd.

sin(n−1)(x) , if k is even.

Consider the moulds sg• , e• and s• , which are C-valued and defined over
the alphabet Ω = {1;−1}:

sgε =
n∏
k=1

εk , sε =
n∑
k=1

εk , eε =
n∑
k=1

εke
(2k−1) iπ

n .

Then, for all z ∈ C− Z , we have:

T en[k]

(z) =
(−1)n−1+E( kn+1

2
)πkn

(kn)!(2 sin(πz))n

∑
ε=(ε1;··· ;εn)∈Ωn

sgε(eε)kntkn,n(sεπz) .

In order to prove this, we will use an elementary theory of formal power
series in one indeterminate. The central point is the following lemma. This
gives us a formal differential equation automatically satisfied by the gener-
ating functions of the family of multitangent functions under consideration.
Then, we only have to find out a formal power series expansion of solutions
of this equation.
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8.2.1. A property linking symmetrelity and formal differential equation

Let us begin by proving the following general property concerning sym-
metrel moulds:

Property 15. Let us consider a commutative algebra A, a semigroup (Ω; +)
and a symmetrel mould Se• ∈M•

A(Ω) .
For all ω ∈ Ω , we set:

Fω =
+∞∑
p=0

Seω
[p]

Xp , Gω =
+∞∑
p=0

(−1)pSe(p+1)ωXp.

For a given ω ∈ Ω, the formal power series Fω satisfies the differential
equation:

DY = Y Gω .

Let us point out that this property is well known is combinatorics as the
Newton relations for symmetric functions. Here, the term Fω means to be
the elementary symmetric functions while the term Gω is then the power
sums.

The proof of this property we will give here is based on the algorithmic
removal to the right of the ones which begin an evaluation sequence ω ∈ Ω of
the mould Se• ; so the proof is exactly based on the notion of symmetrelity
. This algorithm is recursively presented by the following formula:

∀p ∈ N,∀ω ∈ Ω, Seω
[p]

Seω = (p+ 1)Seω
[p+1]

+

p−1∑
k=0

Seω
[k],2ω,ω[p−k−1]

.

Proof. Let us fix ω ∈ Ω and introduce the temporary notation up,l for
(p; l) ∈ N× N∗:

up,l = (−1)l
p∑

k=0

Seω
[k],lω,ω[p−k]

.

Then, using the symmetrelity property, we have for (p; l) ∈ (N∗)2 :

(−1)lSeω
[p]
Selω = (−1)l

p∑
k=0

Seω
[k],lω,ω[p−k] − (−1)l+1

p−1∑
k=0

Seω
[k],(l+1)ω,ω[p−1−k]

= up,l − up−1,l+1 .
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This implies successively, for p ∈ N∗:
p−1∑
l=0

(−1)lSeω
[p−l]

Se(l+1)ω = −
p∑
l=1

(−1)lSeω
[p−(l−1)]

Selω

= −
p∑
l=1

(
up−(l−1),l − up−l,l+1

)
= u0,p+1 − up,1

= (−1)p+1Se(p+1)ω + (p+ 1)Seω
[p+1]

.

Then: (p+ 1)Seω
[p+1]

=

p∑
l=0

(−1)lSeω
[p−1]

Se(l+1)ω , for all p ∈ N∗ .

Since the previous equality is also true for p = 0, we can state the fol-
lowing equality between formal power series:

DFω = FωGω .

�

Using the fact that two formal power series with the same formal deriva-
tive differ only by their constant term, it is not difficult to see, if A is a ring
and if ϕ ∈ A[[X]], then formal power series satisfying DY = Y Dϕ are
defined by:

Y (X) = CExp(ϕ(X)− ϕ(0)), C ∈ A .

Here, Exp refers to the formal exponential. The resolution of such a
formal differential equation boils down to a problem of expressing a formal
indefinite integral. The constant C is then determined by the constant term
in Y .

Indeed, as already announced in the course of the evaluation of Te1,··· ,1(X)
(see Section 8.1), by the symmetrelity of Ze•, the formal power series

Z+ =
∑
r≥0

Ze1[r]

Xr satisfies the formal differential equation:

DZ+ = Z+

(∑
p≥0

(−1)pZep+1Xp

)
= Z+He

1
+ .
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8.2.2. Application to the mould Te•(X)

Recall that the mould Te•(X) has been extended to seq(N∗) in the previ-
ous section, in such a way as to preserve the symmetrelity property. Hence,

the previous property applies: if we set, for n ∈ N∗, Tn =
+∞∑
p=0

Ten
[p]

(X)Y p

and Un =
+∞∑
p=0

(−1)pTen(p+1)(X)Y p, we then have, for all positive integer n,

in C((X))[[Y ]]:
DTn = TnUn .

We just need to compute a formal indefinite integral of Un in order to
calculate Ten

[p]
(X) for all p ∈ N. Let us consider Vn ∈ C((X))[[Y ]] defined

by Vn(X;Y ) = Un(X;Y n) . A permutation of formal summation symbols
(which is a priori a non-authorized operation) , followed by a partial fraction
expansion, suggests we have for all positive integer n:

nY n−1Vn(X;Y ) = −
n−1∑
k=0

e(2k+1) iπ
n Te1

(
X − e(2k+1) iπ

n Y
)
.

Recall that, here, S and D(Y ) denote respectively the taking of the con-
stant term and the formal derivative relative to the indeterminate Y . In-
deed, the Taylor formula permits to prove this relation in the ring C((X))[[Y ]] .
For l ∈ N , if we denote the right hand side of the previous equality by Wn,
we have successively:

1

l!
S
(
Dl

(Y )Wn

)
= S

(
−

n−1∑
k=0

e(2k+1)(l+1) iπ
n Tel+1

(
X − e(2k+1) iπ

n Y
))

= −

(
n−1∑
k=0

e(2k+1)(l+1) iπ
n

)
Tel+1(X)

=


0 , si l + 1 6≡ 0[n] .

n(−1)q+1Teqn(X) , si l + 1 = qn .
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Hence: Wn =
+∞∑
l=0

1

l!
S
(
Dl

(Y )Wn

)
Y l =

+∞∑
q=1

n(−1)q+1Teqn(X)Y qn−1

= nY n−1

+∞∑
q=0

(−1)qTen(q+1)(X)Y qn

= nY n−1Vn(X;Y ) .

In the ring C((X))[[Y ]], we therefore have:

nY n−1Vn(X;Y ) = −
n−1∑
k=0

e(2k+1) iπ
n Te1

(
X − e(2k+1) iπ

n Y
)
.

The ring morphism ϕn : C((X))[[Y ]] −→ C((X))[[Y 1/n]] defined by

ϕn(Y ) = Y 1/n

is a continuous one for the l-adic topology; we hence observe that if P is
a polynomial with coefficients in C((X)), then ϕ(P (X;Y )) = P (X;Y 1/n) .
This can be extended to formal power series of C((X))[[Y ]], using the conti-
nuity of ϕn and the density of polynomials.

Transposed in C((X))[[Y 1/n]] using the morphisms ϕn, the relation ex-
pressing Vn(X;Y ) becomes in C((X))[[Y 1/n]] :

Un(X;Y ) = − 1

n

n−1∑
k=0

e(2k+1) iπ
n Te1

(
X − e(2k+1) iπ

n Y
1
n

)
Y

1
n
−1 .

A priori, this last equality is in C((X))[[Y 1/n]], while by definition we have
Un ∈ C((X))[[Y ]] . We can then proceed component by component in the
ring C((X))[[Y ]] .

To express Tn by using the general formula of solving a first order formal
differential equation, it is sufficient to determine the exponential of the
formal indefinite integral (in Y ), without constant term, of ωTe1(X + ωY )
in C((X))[[Y ]] .

To this purpose, let us remind we have proved in C((X))[[Y ]], the relation

Te1(X + Y ) =
π

tan(πX + πY )
. Therefore, the formal indefinite integral

in Y of ωTe1(X + ωY ), for ω ∈ C, without constant term, is given by

Log

(
sin(π(X + ωY ))

sin(πX)

)
. Consequently, in C((X))[[Y 1/n]], the formal indef-

inite primitive in Y without constant term of
ω

n
Te1
(
X + ωY

1
n

)
Y

1
n
−1 is
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Log

(
sin(π(X + ωY

1
n ))

sin(πX)

)
. Thus, by solving the formal differential equa-

tion in C((X))[[Y 1/n]], we deduce that for all positive integer n:

Tn =
+∞∑
p=0

Ten
[p]

(X)Y p =

n−1∏
k=0

sin
(
π
(
X − e(2k+1) iπ

n Y
1
n

))
sinn(πX)

.

Let us insist on the fact that, although seeming to be a priori a relation
in C((X))[[Y 1/n]], this equality hold in fact in C((X))[[Y ]], by definition of Tn .

8.2.3. A new formal power series expansion of Tn
In order to calculate Ten

[p]
(X) for (n; p) ∈ (N∗)2, we need a formal power

series expansion of Tn expressed in another way than its definition. To get
this new expansion, it is convenient to expand a product of many sinus
terms.

It is easily seen, by induction on n, that in C[[X1; · · · ;Xn]]:

n∏
k=1

sin(Xk) =
(−1)n−1

2n

∑
(ε1;··· ;εn)∈{+1;−1}n

(−1)]{k∈[[ 1 ;n ]];εk=−1} sin(n−1)

(
n∑
k=1

εkXk

)
.

Let us consider the moulds sg• , e• and s• , which are C-valued and
defined over the alphabet Ω = {1;−1} for all sequences ε ∈ seq(Ω) by:

sgε =
n∏
k=1

εk = (−1)]{i∈[[ 1 ;n ]];εi=−1}, sε =
n∑
k=1

εk and eε =
n∑
k=1

εke
(2k−1) iπ

n .

Let E be the floor function and define all for (k;n) ∈ N×N∗ the functions
tk,n by:

∀x ∈ R , tk,n(x) =


cos(n−1)(x) , if k is odd.

sin(n−1)(x) , if k is even.

It follows that for all n ∈ N∗, we have successively:
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Tn =
(−1)n−1

(2 sin(πX))n

∑
ε=(ε1;··· ;εn)∈Ωn

sgε sin(n−1)
(
sεπX + eεπY

1
n

)
=

(−1)n−1

(2 sin(πX))n

∑
ε=(ε;··· ;εn)∈Ωn

(
sgε

+∞∑
k=0

(−1)E( k+1
2

)(eεπ)k

k!
tk,n(sεπX)Y

k
n

)
,

=
+∞∑
k=0

(−1)n−1+E( k+1
2

)πk

k!(2 sin(πX))n

∑
ε=(ε1;··· ;εn)∈Ωn

sgε(eε)ktk,n(sεπX)Y
k
n

 .

Note that we have used in the second equality

sin(n−1)(X + Y ) =
+∞∑
k=0

(−1)E( k+1
2

)

k!
tk,n(X)Y k in C[[X;Y ]] ,

and that in the last sum, Ωn is a finite set.

As already indicated before the end of the previous paragraph, we have
by definition of Tn : Tn ∈ C((X))[[Y ]]. This imposes the vanishing of the

coefficients of Y
k
n if n - k in the previous equality. Hence:

Tn =
+∞∑
k=0

(−1)n−1+E( kn+1
2

)πkn

(kn)!(2 sin(πX))n

∑
ε=(ε1;··· ;εn)∈Ωn

sgε(eε)kntkn,n(sεπX)Y k

 .

It follows that we have proved, for all (n; k) ∈ N∗×N, the formal equality
announced in Property 14:

Ten
[k]

=
(−1)n−1+E( kn+1

2
)πkn

(kn)!(2 sin(πX))n

∑
ε=(ε1;··· ;εn)∈Ωn

sgε(eε)kntkn,n(sεπX) .

To conclude this calculation, we only have to justify that the analytic
equality follows from the formal one. This is obvious because each (conver-
gent or divergent) multitangent function is a Laurent series at 0 which is
exactly given by the expression of the associated formal multitangent func-
tion. In the componentwise equality which has just been proved, we can
thus replace the straight capital letters by cursive capital letters to conclude
the proof of Property 14.
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8.2.4. A few examples

For n = 1, this result gives, for k ∈ N∗ and z ∈ C− Z :

T e1[k]
(z) =


(−1)pπ2p

(2p)!
, if k = 2p .

(−1)pπ2p

(2p+ 1)!
T e1(z) , if k = 2p+ 1 .

Also, for n = 2, this result gives, for k ∈ N∗ and z ∈ C− Z :

T e2[k]

(z) =
22k−1π2k−2

(2k)!
T e2(z).

The table 8 gives some others explicit results from this property.

8.3. About odd, even or null multitangent functions

Surprisingly, there exists convergent multitangent functions which are
null (see table 1). The first multitangent with this property is T e2,1,2. It is
easy to see: the reduction into monotangent functions impose on T e2,1,2 to
be C-linearly dependent to T e2, hence to be an even function ; nevertheless,
the parity property tells us T e2,1,2 is also an odd function. Necessary, the
multitangent function T e2,1,2 is the null function.

In the same manner, we can state the following lemma:

Lemma 16. Let s ∈ S?b,e∩seq
(
{1; 2}

)
be a symmetric sequence (i.e.

←
s = s),

of odd weight and of length greater than 1 .
Then, T es is the null function.

When we look at a table of convergent multitangent functions up to
weight 18, it seems that the converse is also true:

Conjecture 12. (Caracterisation of null multitangent functions) The null
convergent multitangent functions are exactly the multitangent functions
T es with symmetric sequence s ∈ S?b,e ∩ seq

(
{1; 2}

)
, of odd weight and of

length greater than 1 .

We mentionned that this conjecture is true for length 3 (see [3])

Let us remark that even (resp. odd) components of an odd (resp. even)
multitangent function are naturaly null. The following question is then
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an interesting one: “ If s ∈ S?b,e (or seq(N∗)) , is there any component

T ek, k ∈ [[ 2 ; max(s1; · · · ; sr) ]]which does not appear in the reduction into
monotangent functions of T es ?”

It seems that the answer might be no, except when the multitangent
function which does not have this component is an odd or even function.

An other question is also: “ If T es is an odd or even function, have we
necessary got

←
s = s ?” This time, it seems to be yes. The converse is

already acquired, according to the property of parity.

All of this discussion can be summed up in the following conjecture
(which obviously implies the previous one) :

Conjecture 13. (Caracterisation of odd or even multitangent functions)
Let s ∈ S?b,e.
1. If the component T ek, k ∈ [[ 2 ; max(s1; · · · ; sr) ]], does not appear in the
reduction into monotangent functions of T es , then T es will be of opposite
parity of k (and thus may be the null function) .
2. The multitangent function T es is an odd or even function if and only if
←
s = s .

8.4. Explicit calculation of some multitangent functions

The reduction into monotangent functions allows us to do some explicit
calculations of multitangent functions. We will give a few examples in the
convergent case.

In order to apply this reduction simply, here are a few elementary re-
marks:

1. Only the indexes i satisfying si ≥ 2 give a contribution to the expres-
sion of the reduction into monotangent functions.

2. If s ∈ S?b,e ∩ seq({1; 2; 3}) is a symmetric sequence (ie
←
s = s) of even

weight, only the monotangent function T e2 has to be considered; this
means that only the indexes k = 2 give a contribution to the reduction.

3. If s ∈ S?b,e ∩ seq({1; 2; 3}) is a symmetric sequence of odd weight, only
the monotangent function T e3 has to be considered; this means that
only the indexes k = 3 give a contribution to the reduction.

Applying these remarks, a simple calculation gives us the results of the
table 9.
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9. Conclusion

In this article, we have thoroughly investigated the algebra MTGFCV
of multitangent functions, spanned as a Q-vector space by the functions:

T es : C− Z −→ C

z 7−→
∑

−∞<nr<···<n1<+∞

1

(n1 + z)s1 · · · (nr + z)sr
,

for sequences in S?b,e =
{
s ∈ seq(N∗); s1 ≥ 2 and sl(s) ≥ 2

}
.

The first properties we have proved are elementary ones and concern the
symmetrelity of the mould T e•, the differentiation property and the parity
property. Another seemingly easy property is in fact a deep one, namely
the reduction into monotangent functions:

Theorem 7. (Reduction into monotangent functions)
For all sequences s = (s1; · · · ; sr) ∈ seq(N∗), there exists an explicit family

(zsk)k∈[[ 0 ;M ]] ∈MZV M+1
CV , with M = max

i∈[[ 1 ; r ]]
si, such that:

∀z ∈ C− Z , T es(z) = zs0 +

max(s1;··· ;sr)∑
k=1

zskT e
k(z) .

Moreover, if s ∈ S?b,e, then zs0 = zs1 = 0 .

We have then immediately derived that for all p ≥ 2, we have:

MTGFCV,p ⊆
p−2⊕
k=0

MZVCV,p−k · T ek .

Then, we have explained why the reduction into monotangent functions
is such an important operation. The reason is that this process has in a
certain sense a converse, namely the projection onto multitangent functions.
According to Conjectures 2 , 3 and 4 and Properties 4 and 5, we have proved
the following:

Theorem 8. (Projection onto multitangent functions)
The following assertions are equivalent:
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1. For all non negative integer p , MTGFCV,p =

p−2⊕
k=0

MZVCV,p−k · T ek .

2. MTGFCV is a MZVCV -module.

3. For all sequence σσσ ∈ S?e , ZeσσσT e2 ∈MTGFCV,||σσσ||+2 .

By an argument of linear algebra, we have explained that the largest p
is, the stronger are the reasons to believe in the previous assertions. We
have verified them up to weight 18 .

The third important fact, which was used during the regularization pro-
cess of divergent multitangent functions, is the trifactorisation of the multi-
tangent functions: all multitangents can be expressed as a finite product of
Hurwitz multizeta functions in such a way as to preserve the exponentially
flat character of multitangent functions.

Finally, the links between the algebra of multizeta values and the algebra
of multitangent functions are summed up by these three properties and the
following diagram:

MZVCV

projection

��

HMZF+,CV
evaluation at 0oo

� _

��
MTGFCV

reduction

OO

� � trifactorization //HMZF±,CV

As an example of the “duality” multizeta values/multitangent functions,
we have explained that if the hypotheticalMZVCV -module structure holds,
then we have a conjecture concerning the dimension ofMTGFCV,p which is
actually equivalent to Zagier’s conjecture on multizeta values. This justified
the following table of conjectural dimensions:

If these dimensions looks reasonable, this is because of the existence of
many Q-linear relations between multitangent functions. For instance,

4T e3,1,3 − 2T e3,1,1,2 + T e2,1,2,2 = 0 .

is an interesting relation because it implies a relation between multizeta
values, discussed at the end of Section 5.
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p 0 1 2 3 4 5 6 7 8 9 10 11 12

dim MZVCV,p 1 0 1 1 1 2 2 3 4 5 7 9 12

dim MTGFCV,p+2 1 1 2 3 4 6 8 11 15 20 27 36 48

Figure 5: The first hypothetical dimensions of multitangent vector space of weight
p+ 2.

Now, the remaining question is to find a new method to prove that there
is no non-trivial Q-linear relations between the multitangent functions which
are supposed to spanMTGFCV,p. To illustrate this, if we were able to prove
the absence of non-trivial Q-linear relations between T e5 , T e3,2 , T e2,3 and
T e2, this would imply a well-known fact: ζ(3) = Ze3 6∈ Q . Such a partial
result would already be an important breakthrough, because such a method
would certainly be generalisable to other weights, while Apery’s method is
not. Nevertheless, such a method would probably not give an upper bound
of the irrationality measure, while Apery’s method can.

Probably, the new method would come from the study of the Hurwitz
multizeta functions, and more precisely from the study of algebraic relations
in the algebra HMZV±,CV .

A. Introduction to mould notations and calculus

For all this annex, references can be found in many text of Jean Ecalle.
See for instance [15] or [17] ; see also for other presentation than these of
Jean Ecalle : [12] or [31].

A.1. Notion of moulds

A mould is a function defined over a free monoid seq(Ω) (or sometimes
over a subset of seq(Ω)), valued in an algebra A. Concretely, this means
that “a mould is a function with a variable number of variables”.

Thus, moulds depend of sequences w = (w1; · · · ;wr) of any length r.
The variables wi are elements of Ω. We will often identify sequences of
seq(Ω) and non-commutative polynomials over the alphabet Ω.
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In a general way, we will use the mould notations:

1. Sequences will always be written in bold and underlined, with an
upper indexation if necessary. We call length of w and denote l(w)
the number of elements of w. Without more precisions, we will use
the letter r to indicate the length of any sequences. We also define
the weight of w, when Ω has a semi-group structure, by:

||w|| = w1 + · · ·+ wr .

2. For a given mould, traditionally denoted by M as a map from seq(Ω)
to A, we will prefer the notation Mωωω which indicate the evaluation of
the mould M• on the sequence ωωω of seq(Ω) .

3. We shall use the notation M•
A(Ω) to refer us to the set of all the

moulds constructed over the alphabet Ω and valued in the algebra A .

A.2. Mould operations

Moulds can be, among other operations, added, multiplied by a scalar
as well as multiplied, composed, and so on. In this article, among the
operations we will use, only the multiplication needs to be defined: if
(A•;B•) ∈ (M•

A(Ω))2, then, the mould multiplication M• = A• × B• is
defined for all sequences ωωω ∈ seq(Ω) by:

Mωωω =
∑

(ωωω1;ωωω2)∈(Ω?)2

ωωω1·ωωω2=ωωω

Aωωω
1

Bωωω2

=

l(ωωω)∑
i=0

Aωωω
≤i
Bωωω>i .

There are a few explanations relative to notations. For a sequence
ωωω = (ω1; · · · ;ωr) ∈ seq(Ω) and an integer k ∈ [[ 0 ; r ]], we write:

ωωω≤k =


∅ , if k = 0

(ω1; · · · ;ωk) , if k > 0

and ωωω>k =


(ωk+1; · · · ;ωr) , if k < r .

∅ , if k = r .

Let us remark that the two deconcatenations ∅ · ω and ω · ∅ intervene
in the definition of the mould multiplication and refer respectively to the
index i = 0 and i = l(ω). We will denote such a product by:

(A• ×B•)ω =
∑

ω1·ω2=ω

Aω
1

Bω2

.
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Finally, (M•
A(Ω),+, · · · ,×) is an associative but non-commutative A-

algebra with unit, whose invertible are easily characterised:

(M•
A(Ω))× = {M• ∈M•

A(Ω) ; M∅ ∈ A×} .

We will denote by (M•)×−1 the multiplicative inverse of a mould M•, when
it exists.

A.3. Symmetrality

Let us first remind that the shuffle product of two words P = p1 · · · pr
and Q = q1 · · · qs constructed over the alphabet Ω is denoted by � and
defined recursively by:

P � ε = ε� P = P ,

P �Q = p1

(
p2 · · · pr �Q

)
+ q1

(
P � q2 · · · qr

)
,

where ε is the empty word. As an example, if P = a · b and Q = c, we have
P �Q = abc+ acb+ cab .

In order to have a better understanding of the shuffle, one can have a
visual representation of it. One can see a word as a desk of card, then the
shuffle of two words becomes the set of all the result one can obtained by
inserting classically one desk of cards in another one.

The multiset sha(ααα;βββ), where ααα and βββ are sequences of seq(Ω), is de-
fined to be the set of all monomials that appears in the non-commutative
polynomial ααα� βββ, counted with its multiplicity.

When A an algebra, we define a symmetral mould Ma• to be a mould

of M•
A(Ω) which satisfies for all (ααα;βββ) ∈

(
seq(Ω)

)2
:

MaαααMaβββ =
∑

γγγ∈sha(ααα;βββ)

′ Maγγγ .

Here, the sum
∑

γγγ∈sha(ααα;βββ)

′ Maγγγ is a shorthand for
∑

γγγ∈seq(Ω)

mult

(
ααα ; βββ

γγγ

)
Maγγγ,

where mult
(
ααα ;βββ
γγγ

)
is the coefficient of the monomial γγγ in the product ααα� βββ

and is equal to 〈ααα� βββ|γγγ〉 . From now on, we shall omit the prime on the
sum:
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MaαααMaβββ =
∑

γγγ∈seq(Ω)

〈ααα� βββ|γγγ〉Maγγγ =
∑

γ∈sha(ααα,βββ)

Maγγγ .

The symmetrality imposes, through a multitude of relations, a strong
rigidity. For example, if (x; y) ∈ Ω2 and Ma• denote a symmetral mould,
then we have necessarily:

MaxMay = Max,y +May,x

Max,yMay = May,x,y + 2Max,y,y .

A.4. Symmetrelity

Let (Ω, ·) be an alphabet with an semi-group structure. Let us first
remind that the stuffle product of two words P = p1 · · · pr and Q = q1 · · · qs
constructed over the alphabet Ω is denoted by ? and defined recursively by:
P ? ε = ε ? P = P .

P ? Q = p1

(
p2 · · · pr ? Q

)
+ q1

(
P ? q2 · · · qs

)
+ (p1 · q1)

(
p2 · · · pr ? q2 · · · qs

)
,

where ε is again the empty word. As an example, in seq(N), if P = 1 · 2
and Q = 3, then: P ? Q = 1 · 2 · 3 + 1 · 3 · 2 + 3 · 1 · 2 + 1 · 5 + 4 · 2 .

As well as for the shuffle product, one can imagine a visual representa-
tion of the stuffle product. Seeing one more time a word as a desk of card,
then the stuffle of two words becomes the set of all the result one can obtain
by inserting magically one desk of blue cards in a desk of red cards. By
magically, we mean that some new cards may happen: these new ones are
hydrid cards, that is, one of its sides is blue while the other is red. Such
a hybrid card can only be obtained when two cards of different colors are
situated side by side in a classic shuffle of the two desks of cards. In the
previous example, the hybrid cards are 5, coming from the shuffling 1 · 5,
and 4, from 4 · 2 .

The multiset sha(ααα;βββ), where ααα and βββ are sequences of seq(Ω), is de-
fined to be the set of all monomials that appears in the non-commutative
polynomial ααα� βββ, counted with its multiplicity.

96



The multiset she(ααα;βββ), where ααα and βββ are sequences in seq(Ω), is de-
fined to be the set of all monomials that appears in the non-commutative
polynomial ααα ? βββ, counting with its multiplicity.

When Ω is an alphabet, which is also an additive semigroup and A an
algebra, we define a symmetrel mould Me• to be a mould ofM•

A(Ω) which

satisfies for all (ααα;βββ) ∈
(
seq(Ω)

)2
:

MeαααMeβββ =
∑

γγγ∈she(ααα ;βββ)

′ Meγγγ .

Here, the sum
∑

γγγ∈she(ααα ;βββ)

′ Meγγγ is a shorthand for
∑

γγγ∈seq(Ω)

mult

(
ααα ; βββ

γγγ

)
Meγγγ,

where mult
(
ααα;βββ
γγγ

)
is the coefficient of the monomial γγγ in the product ααα ? βββ

and is equal to 〈ααα ? βββ|γγγ〉 . From now on, we also omit the prime:

MeαααMeβββ =
∑

γγγ∈seq(Ω)

〈ααα ? βββ|γγγ〉Meγγγ =
∑

γ∈she(ααα,βββ)

Meγγγ .

As well as the symmetrality, the symmetrelity imposes a strong rigidity.
For example, if (x; y) ∈ Ω2 and Me• denote a symmetrel mould, then we
have necessarily:

MexMey = Mex,y +Mey,x +Mex+y.

Mex,yMey = Mey,x,y + 2Mex,y,y +Mex+y,y +Mex,2y .

A.5. Symmetrility

If Me• is a symmetrel mould over seq(N∗) , valued in a commutative
algebra A, then its generating functions, denoted by Mig•, is defined by:

Mig∅ = 1 .

Migv1,··· ,vr =
∑

s1,··· ,sr≥1

Mes1,··· ,srv1
s1−1 · · · vrsr−1 ∈ A[[v1; · · · ; vr]] .

The mould Mig• is then automatically a symmetril mould, that is to
say that it satisfies the relation:

MigvMigw =
∑

x∈shi(v;w)

Migx .
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The multiset shi(v; w) is also a quasi-shuffle product as defined in [22],
as the stuffle. If v and w are sequences over an alphabet of indeterminates,
this set is defined exactly in the same way as she(v; w), but, here, the
contraction of the quasi-shuffle product is an abstract contraction defined
over (N∗)2. The evaluation of a mould Mig• on a sequence which has such
contraction is then done by induction and given by the formula:

Migv·(x~y)·w =
Migv·x·w −Migv·y·w

x− y
.

A.6. Some examples of rules

Envisaged as a simple system of notations, the mould language already
leads us to concise formulas as well as the economy of long sequences of
indexes. But its real utility resids in the different mould operations and the
rules which indicate how these affect (preserve or transform) basic symme-
tries.

For example: 1. alterna l ◦ alterna l = alterna l .

2. symmetre l ◦ symmetre l = symmetre l .

3. alterna/e l conjugated by symmetra/e l = alterna/e l .

4. exponential (alterna/e l) = symtra/e l .

A.7. Some notations

We will always write in bold, italic and underlined the vowel which
indicates not only a symmetry of the considered moulds, but also the nature
of the products of sequences which will appear. Using this, it will become
simpler to distinguish symmetral , symmetrel and symmetril moulds as well
as to distinguish the set sha(ααα;βββ), she(ααα;βββ) and shi(ααα;βββ).

The moulds that we consider will carry in their name the vowelic alter-
ation whose immediately indicates their symmetry type. For example, the
mould T e•(z) is a symmetrel mould (see p 91), while Zig• is symmetril
(see p. 70). The absence of this vowel will also indicate that the mould
verifies no symmetry.

Finally, if ααα = (α1; · · · ;αn) is a sequence constructed over an alphabet

Ω, we respectively denote by
←
ααα and ααα[k], the opposite sequence ααα and the
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sequence ααα repeated k times:

←
ααα = (αn; · · · ;α1) , , ααα[k] = ααα · · ·ααα︸ ︷︷ ︸

k times

.
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||s|| = 4 Ze2T e2 =
1

2
T e2,2 .

||s|| = 5
Ze3T e2 =

1

6
T e3,2 − 1

6
T e2,3 .

Ze2,1T e2 =
1

6
T e3,2 − 1

6
T e2,3 .

||s|| = 6

Ze4T e2 = −1

6
T e3,3 .

Ze2,2T e2 = −1

8
T e3,3 .

Ze3,1T e2 = − 1

24
T e3,3 .

Ze2,1,1T e2 = −1

6
T e3,3 .

||s|| = 7

Ze5T e2 = − 1

30
T e5,2 − 1

15
T e4,3 +

1

15
T e3,4 +

1

30
T e2,5 .

Ze4,1T e2 =
1

12
T e2,2,3 − 1

12
T e3,2,2 − 1

40
T e5,2 − 1

20
T e4,3 +

1

20
T e3,4 +

1

40
T e2,5 .

Ze3,2T e2 =
1

4
T e3,2,2 − 1

4
T e2,2,3 +

7

120
T e5,2 +

7

60
T e4,3 − 7

60
T e3,4 − 7

120
T e2,5 .

Ze2,3T e2 =
1

6
T e2,2,3 − 1

6
T e3,2,2 − 1

15
T e5,2 − 2

15
T e4,3 +

2

15
T e3,4 +

1

15
T e2,5 .

Ze3,1,1T e2 =
1

12
T e2,2,3 − 1

12
T e3,2,2 − 1

40
T e5,2 − 1

20
T e4,3 +

1

20
T e3,4 +

1

40
T e2,5 .

Ze2,2,1T e2 =
1

4
T e3,2,2 − 1

4
T e2,2,3 +

7

120
T e5,2 +

7

60
T e4,3 − 7

60
T e3,4 − 7

120
T e2,5 .

Ze2,1,2T e2 =
1

6
T e2,2,3 − 1

6
T e3,2,2 − 1

15
T e5,2 − 2

15
T e4,3 +

2

15
T e3,4 +

1

15
T e2,5 .

Ze2,1,1,1T e2 = − 1

30
T e5,2 − 1

15
T e4,3 +

1

15
T e3,4 +

1

30
T e2,5 .

Table 2. Some examples of projection onto multitangent functions.
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p = 4 : p = 5 : p = 6 : p = 7 :



8

5

−
12

5

8

5

8

5





− 5 0

10 0

−10 0

5 0

15

2
−6

−
15

2
6





48

35
0

−
24

7
0

32

7
0

−
24

7
0

48

35
0

352

105
−6

−
88

35

9

2

16

105
3

−
88

35

9

2

16

7
−9

16

105
3

24

35
0





−7 0 0

21 0 0

−35 0 0

35 0 0

−21 0 0

7 0 0

0 0 0

14 −20
16

5

−14 20
16

5

21 −10
16

5

−14 20
16

5

0 0 0

−28 0
48

5

14 −20
16

5

28 0 −
48

5

−21 10
16

5

−
441

16
15 0

441

16
−15 0

−
189

16
15 −

24

5

189

16
−15

24

5



Table 3. Obtained matrix, for the weight p ∈ [[ 4 ; 7 ]], applying the explained
method relatively to the unit-cleansing for multitangent functions.
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||s|| = 5 T e2,1,2 = 0 .

||s|| = 6

T e3,1,2 =
1

6
T e3,3 +

1

4
T e2,4 − 1

4
T e4,2 .

T e2,1,3 =
1

6
T e3,3 − 1

4
T e2,4 +

1

4
T e4,2 .

T 2,1,1,2 = −1

3
T e3,3 .

||s|| = 7

T e4,1,2 =
1

6
T e2,2,3 − 1

6
T e3,2,2 − 1

3
T e5,2 +

7

48
T e4,3 +

23

48
T e3,4 +

1

3
T e2,5 .

T e3,1,3 =
1

5
T e2,3,2 .

T e2,1,4 =
1

3
T e3,2,2 +

1

3
T e5,2 +

13

24
T e4,3 +

5

24
T e3,4 − 1

3
T e2,5 .

T e2,1,1,3 =
1

3
T e3,2,2 +

1

12
T e5,2 − 1

48
T e4,3 − 17

48
T e3,4 − 1

12
T e2,5 .

T e2,1,2,2 =
2

3
T e3,2,2 − 1

6
T e5,2 − 5

24
T e4,3 +

11

24
T e3,4 +

1

6
T e2,5 .

T e2,2,1,2 =
2

3
T e3,2,2 +

1

6
T e5,2 +

11

24
T e4,3 − 5

24
T e3,4 − 1

6
T e2,5 .

T e3,1,1,2 = −1

3
T e3,2,2 − 1

12
T e5,2 − 23

48
T e4,3 − 7

48
T e3,4 +

1

12
T e2,5 .

T e2,1,1,1,2 = 0 .

Table 4. Some examples of unit cleansing for multitangent functions of
weight 5, 6 and 7.
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Relations in MTGF6 Equivalent relations in MZV

Relations Origin

T e3,1,2 + T e2,1,3 + T e2,1,1,2 = 0 . Ze2,1,1 = Ze3,1 + Ze2,2 . Double-shuffle

2T e3,1,2 + T e2,2,2 + 2T e2,1,3 = 0 .
(
Ze2

)2
= 4Ze3,1 + 2Ze2,2 . Shuffle

T e2,4 − T e4,2 + 2T e2,1,3 − 2T e3,1,2 = 0 .


Ze3Ze2

Ze3

=

=

6Ze4,1 + 3Ze3,2 + Ze2,3 .

Ze2,1 .

Shuffle

Double-shuffle

3T e3,1,2 + 3T e2,1,3 − T e3,3 = 0 . Ze4 = Ze3,1 + Ze2,2 Double-shuffle

Table 5. The four independent Q-linear relations between multitangent
functions of weight 6.
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Relations in MTGF7

T e2,1,1,1,2 = 0 .

−4T e3,1,3 + T e3,1,1,2 + T e2,1,1,3 = 0 .

4T e3,1,3 − 2T e3,1,1,2 + T e2,1,2,2 = 0 .

−4T e3,1,3 + 2T e3,1,1,2 + T e2,2,1,2 = 0 .

T e4,1,2 + 5T e3,1,3 + T e2,1,4 = 0 .

−T e4,3 + T e4,1,2 + 5T e3,1,3 + T e2,2,3 − 4T e3,1,1,2 = 0 .

−5T e3,1,3 + T e2,3,2 = 0 .

T e4,3 − T e4,1,2 + T e3,2,2 − 8T e3,1,3 + 4T e3,1,1,2 = 0 .

−T e5,2 + T e2,5 − 4T e4,1,2 − 18T e3,1,3 + 4T e3,1,1,2 = 0 .

T e4,3 + T e3,4 + 8T e3,1,3 = 0 .

Table 6. The ten independent Q-linear relations between multitangent
functions of weight 7.
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Weight Multitangent functions

2 Te1,1 = −3 ζ(2) .

3

Te1,2 = 0 .

Te2,1 = 0 .

Te1,1,1 = −ζ(2)Te1 .

4

Te1,3 = −ζ(2)Te2 .

Te3,1 = −ζ(2)Te2 .

Te1,1,2 = −1

2
ζ(2)Te2 .

Te1,2,1 = 0 .

Te2,1,1 = −1

2
ζ(2)Te2 .

Te1,1,1,1 =
3

2
ζ(2)2 .

Weight Multitangent functions

5

Te1,4 = ζ(3)Te2 − ζ(2)Te3 .

Te4,1 = −ζ(3)Te2 − ζ(2)Te3 .

Te1,1,3 = ζ(3)Te2 − 1

2
ζ(2)Te3 .

Te1,2,2 = −2 ζ(3)Te2 .

Te1,3,1 = 0 .

Te2,2,1 = 2 ζ(3)Te2 .

Te3,1,1 = −ζ(3)Te2 − 1

2
ζ(2)Te3 .

Te1,1,1,2 =
1

3
ζ(3)Te2 .

Te1,1,2,1 = 0 .

Te1,2,1,1 = 0 .

Te2,1,1,1 = −1

3
ζ(3)Te2 .

Te1,1,1,1,1 =
3

10
ζ(2)2Te1 .

Table 7. Tabulation of the divergent multitangent functions of weight 2 , 3 , 4 and 5.
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Te1[2k]

=
(−1)kπ2k

(2k)!
.

Te1[2k+1]
=

(−1)kπ2k

(2k + 1)!
Te1 .

Te2[k]

=
22k−1π2(k−1)

(2k)!
Te2 .


Te3[2k]

=
3(−1)k26k−2π6k−2

(6k)!
Te2 .

Te3[2k+1]

=
3(−1)k26k+1π6k

(6k + 3)!
Te3 .

Te4[k]

=
24k−1π4(k−1)

(4k)!

((
2(−1)k + 22k−1

)(
Te2
)2 − 3(−1)kTe4

)
.


Te5[2k]

=
5

16

(−1)k29kπ10k−4

(10k)!

((
2k · 3 + αk + ᾱk

)(
Te2
)2 − 2k+1 · 3Te4

)
,

Te5[2k+1]

=
5(−1)k29kπ10k

(10k + 5)!

(
2k+3 · 3Te5 + αnTe1

(
Te2
)2
)
,

where αn = 11
(
αk + ᾱk − 2k+1

)
+ 5
√

5
(
αk − ᾱk

)
and


α = 123 + 5

√
5 .

ᾱ = 123− 5
√

5 .

Te6[k]

=
26k−5π6(k−1)

(6k)!

(
360Te6 − 18unTe2Te4 − vn

(
Te2
)3
)
,

where


un = 26 + (−27)k .

vn = 30− 6(−27)k − 3 · 2k .

Table 8. Examples of calculations of multitangent functions with repeated argument.
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Multiple Polylogarithms, Transactions of the American Mathematical Society, vol.
353, 2001, 3, p. 907-941.

[3] O. Bouillot : Invariants analytiques des difféomorphismes et multizêtas, Ph.D.
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