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Abstract. For all natural numbers a, b and d > 0, we consider the
function fa,b,d which associates n/d with any integer n when it is a
multiple of d, and an + b otherwise; in particular f3,1,2 is the Collatz
function. To realize these functions by transducers (automata labelled by
pairs of words), the coding in reverse base d is generally used. For the
Collatz function, it gives a simple 5-state transducer but it is not suitable
for the composition and so far, no one has been able to specify, for all
integers p, a generic transducer computing its composition p times.
Coding in direct base ad with b < a, we realize the functions fa,b,d by
synchronous sequential transducers. This particular form makes explicit
the composition of such a transducer p times to compute fp

a,b,d in terms
of p and a, b, d. We even give an explicit construction of an infinite
transducer realizing the closure under composition of fa,b,d.

1 Introduction

Many functions on integers have been described by automata (transducers) as
word functions using an integer base. In general, the properties of sequences
produced by transducers are studied [2] but, in this work, we adress mainly
properties of the realized functions themselves.
In this paper, we are interested in the family of functions fa,b : N −→ N defined
for all natural numbers a, b and any integer n ≥ 0 by

fa,b(n) =

{ n
2 if n is even,

an+ b otherwise.

In particular, f3,1 is the Collatz function [5]. The Collatz conjecture states that,
for any integer n, there exists p ≥ 0 such that the composition of the Collatz
function p times applied to n equals 1 : fp

3,1(n) = 1. This conjecture remains
open despite recent progress [12]. A new conjecture on this function has been
proposed [3]. In this paper, our aim is to give an explicit deterministic transducer
realizing the p-th power fp

a,b in terms of p.
Basic arithmetic operations have already been described by transducers [7].

To realize the function fa,b , the transducer must compute the operations of
division by 2, multiplication by a and addition of b. A first natural approach
is to take the base 2 with the least significant digit to the left to see right away
if the input is even in which case the first digit is 0 which is removed at the
output, and if the input is odd, we realize multiplication by a and addition of b
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from the left. Thus, the Collatz function can be realized by a 5-state sequential
transducer. Introduced by Ginsburg, sequential transducers compute functions
deterministically. Their transitions are labelled by a letter in input and a word
in ouput with the input-determinism condition: no two transitions of the same
input letter from the same source. Furthermore, there is only one initial state and
each final state is associated with an output word [8]. The sequential transducer
in reverse base 2 for the Collatz function can be composed a few times to realize
f2
3,1, f

3
3,1 and so on, but so far, no one has been able to specify, for all integers p,

a generic transducer computing its composition p times.

To solve this problem, we chose the direct base 2a. When b < a, which is
the case of the Collatz function, we obtain a 2-state deterministic sequential
transducer realizing fa,b. This new transducer, which in addition is letter-to-
letter, can be composed to get an explicit transducer realizing fp

a,b in terms
of p. The difficulty in defining its terminal function has been overcome using a
key lemma given in [1].

For all natural integers b < a and d > 0, we generalize the previous trans-
ducers for the functions fa,b,d : N −→ N defined for any integer n ≥ 0 by

fa,b,d(n) =

{ n
d if n is a mutiple of d,

an+ b otherwise.

Using the base ad, and for all integer p, we obtain a generic transducer compu-
ting fp

a,b,d in terms of p. Finally, for any natural numbers a, b, d with b < a 6= 1
and d 6= 0, we give an explicit construction of a transducer realizing the closure
under composition of fa,b,d .

2 Transducers in reverse base 2

In this section, we first recall basic definitions. Then, we look at transducers real-
izing the functions fa,b using the reverse base 2. Although this approach seems
natural, we notice that those transducers are not appropriate for composition.

Let N be a finite alphabet. We denote by N∗ the set of words over letters
of N , and we write ε for the empty word.

A transducer T = (T, I, F ) is a graph defined by a finite edge subset T of
Q×N∗

×N∗
×Q, called transitions, where Q is a finite set of states, plus a set

I ⊆ Q of initial states and a set F ⊆ Q of final states. So a transducer is a
finite automaton labelled by pairs of words. Any transition (p, u, v, q) ∈ T can

be also denoted by p
u/v
−→T q or by p

u/v
−→ q when T is understood; u and v

are respectively the input and the output of the transition.

A path p0
u1/v1
−→ p1 . . . pn−1

un/vn
−→ pn with u = u1...un and v = v1...vn

is labelled by u/v and is denoted by p0
u/v
=⇒T pn. A path is successful if it

leads from an initial state to a final one. A pair (u, v) ∈ N∗
×N∗ is recognized

by a transducer if there exists a successful path labelled by u/v. The set of
recognized pairs is the relation 〈T 〉 realized by T and called a rational relation.
For instance, the following transducer:
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0/1
1/00

1/00
    

with a unique initial state on the left and a unique final state on the right realizes
the relation { (0m1n , 1m02n) | m ≥ 0, n > 0 }.
Note that the inverse R−1 of a rational relation R is rational, and the image
R(L) by R of a regular language L is regular since R(L) = π2(R ∩ L×N∗).

To realize the functions fa,b in reverse base 2, we only need synchronized and
deterministic transducers.
A transducer T = (T, I, F ) is synchronized if T is letter-to-word in the fol-
lowing sense: T ⊂ Q×N×N∗

×Q i.e. the inputs are only letters.
Given synchronized transducers T = (T, I, F ) and T ′ = (T ′, I ′, F ′), their
composition is the following synchronized transducer:

T o T ′ = (T oT ′, I×I ′, F×F ′)

where T oT ′ = { (p, p′)
a/v
−→ (q, q′) | ∃ u (p

a/u
−→T q ∧ p′

u/v
=⇒T ′ q′) }

realizing the composition of the relation realized by T with that by T ′ :

〈T o T ′〉 = 〈T 〉 o 〈T ′〉 = { (u,w) | ∃ v (u, v) ∈ 〈T 〉 ∧ (v, w) ∈ 〈T ′〉 }.

A synchronized transducer T = (T, I, F ) is deterministic if it has a unique
state i.e. |I| = 1, and its graph T is input-deterministic in the following sense:

(p
a/u
−→ q ∧ p

a/v
−→ r) =⇒ (u = v ∧ q = r).

A deterministic synchronized transducer realizes a function.
A synchronized transducer T = (T, I, F ) is complete if its graph of vertex
set Q is input-complete in the following sense:

∀ p ∈ Q, ∀ a ∈ N , ∃ u ∈ N∗, ∃ q ∈ Q p
a/u
−→ q.

A deterministic and complete synchronized transducer realizes an application.

Let β > 1 be an integer and β̂ = {0, . . . , β − 1} be the alphabet of its digits.

Any word u ∈ β̂∗ is a (respectively reverse) representation in base β of the
integer [u]β (respectively β[u]) defined by [ε]β = 0 = β[ε] and

[cp. . .c0]β =
∑p

i=0 ciβ
i = β[c0. . .cp]

for any p ≥ 0 and c0, . . . , cp ∈ β̂ ; the position of the index β is that of the
least significant digit c0 . Representations of integers are extended to relations.
A relation R ⊆ β̂∗

×β̂∗ is a (resp. reverse) representation in base β of the fol-
lowing binary relation [R]β (respectively β[R]) on N :

[R]β = { ([u]β , [v]β) | (u, v) ∈ R } and β[R] = { (β[u] , β[v]) | (u, v) ∈ R }.

The functions fa,b on integers can be seen as relations on words and defined
by transducers. First, let us see what transducers can be obtained for the func-
tions fa,b using a coding in reverse base 2. For some simple functions such
as f1,1, we get a transducer for the composition p times using a shortcut. This
is not possible in the general case. Consider the function f1,1 : N −→ N defined
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for any integer n ≥ 0 by

f1,1(n) =

{ n
2 if n is even,

n+ 1 otherwise.

The first natural approach is to take the base 2 with the least significant digit
to the left. In reverse base 2, f1,1 is represented by the following word function:

0u −→ u for any binary word u

1u −→ 0(u+ 1)

This word function is realized by the deterministic synchronized 3-state trans-
ducer:

    

    

0/ε

0/0 1/1

0/11/0

1/0

0110

1101

110

110

0011

001

Fig. 1. Transducer realizing f1,1 in reverse base 2.

Taking the product p times with itself, we can construct an automaton for fp
1,1

having 3p states but we do not know how to define it in terms of p. To solve
this problem, for any natural integers a, b of same parity, we consider the short-
cut f ′

a,b defined for any natural number n by

f ′
a,b(n) =

{
n
2 if n is even,
an+b

2 otherwise.

In the particular case of f ′
1,1, we get the property below.

Lemma 1. For all n, p ≥ 0, f ′ p
1,1(n) =

⌈
n
2p

⌉
.

Proof. By induction on p ≥ 0.
p = 0 : For all n ≥ 0, f ′ 0

1,1(n) = n =
⌈

n
20

⌉
.

p > 0 : If n is even then f ′ p
1,1(n) = f ′ p−1

1,1 (n2 ) =
⌈

n
2p

⌉
by induction hypothesis.

Otherwise n is odd i.e. n = 2pk + r for some k ≥ 0 and 0 < r < 2p odd. So

f ′ p
1,1(n) = f ′ p−1

1,1 (n+1
2 ) =

⌈
n+1
2p

⌉
= k +

⌈
r+1
2p

⌉
= k + 1 = k +

⌈
r
2p

⌉
=

⌈
n
2p

⌉
. ◭

So for any n, p ≥ 0,

f ′ p
1,1(n) =

{ n
2p if n is a multiple of 2p,⌊
n
2p

⌋
+ 1 otherwise.

In reverse base 2, we get the function

0pu −→ u for any u ∈ {0, 1}∗

vu −→ u+ 1 for |v| = p and v 6= 0p

which is realized by the following transducer:
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0/ε 0/ε 0/ε

0/0 1/1

0/11/ε1/ε1/ε

0,1/ε 0,1/ε
1/0

p  edges

Fig. 2. Transducer realizing f ′ p
1,1 in reverse base 2.

In this case, the shortcut breaks the exponential number 3p of states into the
linear number 2p+ 1. Let us try to do this for the Collatz function:

f3,1(n) =

{ n
2 if n is even,

3n+ 1 otherwise.

Using the reverse base 2, we get the following deterministic and complete syn-
chronized transducer C among others [6, 10].

 0/ε  1/0  0/0

 1/0

 0/1

 1/1

    
 1/1  0/0 0/0  1/1

1 02αβ

Fig. 3. A transducer realizing the Collatz function in reverse base 2.

The states 0, 1, 2 manage the carry of the multiplication by 3.

From such a transducer, it follows a property to describe the behaviour of the
Collatz function by automata [9].

Precisely, and for any integer n, we denote by

λ(n) = |{ p | fp
3,1(n) odd and fq

3,1(n) 6= 1 for 0 ≤ q < p }|

the total of odd numbers (rises) of the orbit of f3,1 from n until 1 is possibly
reached. In particular λ−1(0) is the set of powers of 2. For any i ≥ 0, let

Li = { u ∈ {0, 1}∗1 ∪ {ε} | λ(2[u]) = i }

be the set of reverse binary representations of λ−1(i) with non null rightmost
digit. In particular

L0 = 0∗1 ∪ {ε} is a regular language.

This regularity remains true for all languages.

Lemma 2. For any i ≥ 0, Li is a regular language.

Proof.

Let f : {0, 1, 2}∗ −→ {0, 1, 2}∗ be the application realized by the transducer of
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Figure 3 :

f3,1(2[u]) = 2[f(u)] for any u ∈ {0, 1, 2}∗.

The proof is done by induction on i ≥ 0. We have

u ∈ Li+1

⇐⇒ u ∈ {0, 1}∗1 and λ(2[u]) = i+ 1

⇐⇒ u ∈ {0, 1}∗1 and ∃ p, q ≥ 0 (2[u] = 2pq ∧ q odd ∧ λ(f3,1(q)) = i)

⇐⇒ ∃ v ∈ {1} ∪ 1{0, 1}∗1
(
u ∈ 0∗v ∧ λ(2[f(v)]) = i

)

⇐⇒ ∃ v ∈ (1∗0)∗1+
(
u ∈ 0∗v ∧ f(v) ∈ Li 0

∗
)

⇐⇒ u ∈ 0∗
(
f−1(Li 0

∗) ∩ (1∗0)∗1+
)
.

For Li regular, Li+1 = 0∗
(
f−1(Li 0

∗) ∩ (1∗0)∗1+
)
is a regular language. ◭

By Lemma 2, the reverse { u ∈ 1{0, 1}∗ ∪ {ε} | λ([u]2) = i } of Li is a regular
language [9]. For all i, a regular expression defining Li can be constructed in
exponential in i [11].

Let us return to the transducer C of Figure 3. Its composition twice C o C is

ε 0/ ε 1/
 1/1

 0/0

 1/0

 0/1

 1/1

 0/0

 1/1

 0/0

 0/ε

 1/0

Fig. 4. A transducer realizing the power of 2 of the Collatz function.

where the states (2, β) and (β, 2) are identified since they are equivalent : C
realizes the same function from each one. This last transducer realizes

f 2
3,1(n) =





n
4 if n ∈ 4N

3n+2
2 if n ∈ 4N + 2

3n+1
2 if n is odd.

By identifying equivalent vertices of the composition 3 times of C, we get the
following transducer:
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 0/0

 1/0

 0/0

 1/1

 0/0

ε 0/ εε 1/
 0/ε

ε 1/

 1/1

 0/0  1/0

 1/1  0/0

 1/0
 1/1

 0/0

 1/1
 1/0

 0/1

 0/1

 1/1

 1/1

 0/1

 0/1

 0/0

 1/0 0/0

 0/1

 0/

 0/ε

 1/1

ε 1/

ε 1/

Fig. 5. A transducer realizing the power of 3 of the Collatz function.

The heaviness of this transducer comes from the fact that it performs each of
the cases of the function

f 3
3,1(n) =





n
8 if n ∈ 8N

3n+1
4 if n ∈ 8N+ 1 or n ∈ 8N+ 5

3n+2
4 if n ∈ 8N+ 2 or n ∈ 8N+ 6

9n+5
2 if n ∈ 8N+ 3 or n ∈ 8N+ 7

3n+4
4 if n ∈ 8N+ 4

Thus and contrary to the function f1,1 , we cannot get a transducer in reverse
base 2 for fp

3,1 in terms of p, not even for its shortcut f ′p
3,1 .
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3 Transducers for the Euclidean division

Before giving other transducers to realize the functions fa,b , we recall how to
realize an Euclidean division by a transducer.

We only need transducers that are both synchronous and deterministic.
A transducer T = (T, I, F ) is synchronous if T is letter-to-letter in the fol-
lowing sense: T ⊆ Q×N×N×Q i.e. the inputs and outputs are only letters.
Note that for synchronous transducers T = (T, I, F ) and T ′ = (T ′, I ′, F ′),
the composition T oT ′ can be expressed more simply as follows:

T oT ′ = { (p, p′)
a/c
−→ (q, q′) | ∃ b (p

a/b
−→T q ∧ p′

b/c
−→T ′ q′) }.

We realize the division by d > 0 in base a > 1 with remainder r < d by the
following standard deterministic synchronous transducer:

/a,d,r = (d̂ , :a,d , {0}, {r})

where

i
b/c
−→:a,d

j if ia+ b = cd+ j for all i, j ∈ d̂ and b, c ∈ â.

The division :a,d by d in base a is illustrated below.

b

i
     

dia + b

     
c

j

j c

carry:

input:

output:

Fig. 6. Division by d in base a for a digit b with a carry i.

This illustration is extended from digits to numbers.

carry:

input:

output:

d

     
j |u| = |v|[v] a

a
|u|i a     + [u]

      

     
j

u

v

i

Fig. 7. Division by d in base a for a number [u]a with a carry i.

We thus extend the transitions of the division to its paths.

Lemma 3. For all i, j ∈ d̂ and u, v ∈ â∗ , we have

i
u/v
=⇒:a,d

j ⇐⇒ i a|u| + [u]a = [v]ad+ j and |u| = |v|.

Proof. Each implication can be checked easily by induction on |u| ≥ 0.

=⇒ : As :a,d is a subset of d̂×â×â×d̂ , |u| = |v|.
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Let us check the equality by induction on |u| ≥ 0.
|u| = 0 : We have u = ε = v and i = j hence the equality.

Let i
ub/vc
=⇒ j with b, c ∈ â and the implication true for u. There exists k such

that i
u/v
=⇒ k

b/c
−→ j. Thus i a|u| + [u]a = [v]ad+ k and ka+ b = cd+ j. Hence

i a|ub| + [ub]a = b+ (i a|u| + [u]a)a = b+ ([v]ad+ k)a = [v]ada+ (ka+ b)

= [v]ada+ cd+ j = [vc]ad+ j .

⇐= : by induction on |u| ≥ 0.

|u| = 0 : We have u = ε = v and i = j hence i
u/v
=⇒ j.

Suppose the implication true for |u| and i a|ub|+[ub]a = [vc]ad+j with |u| = |v|

and 0 ≤ b, c < a. So, we have (i a|u| + [u]a)a+ b = [v]aad+ cd+ j.

By Euclidean division of cd+ j by a, we have cd+ j = ka+ b′ with b′ < a.

As b < a, we have b = b′ hence i a|u| + [u]a = [v]ad+ k.

As |u| = |v| and by induction hypothesis, i
u/v
=⇒ k.

As cd+ j = ka+ b, we get k
b/c
−→ j hence i

ub/vc
=⇒ j. ◭

Thus /a,d,r realizes the binary relation

{ (u, v) | u, v ∈ â∗ ∧ |u| = |v| ∧ [u]a = [v]ad+ r }.

Here is a representation of /3,2,0 .

0 1

1/2

1/0
0/1

2/22/1

0/0
     

Fig. 8. Division by 2 in base 3 with remainder 0.

For a same base a, the composition :a,d o :a,d′ is in bijection with the rela-
tion :a,dd′ by coding any vertex (i, i′) where 0 ≤ i < d and 0 ≤ i′ < d′ by the
integer d[(i, i

′)] = i+ i′d.

Lemma 4. For all a > 1 and d, d′ > 0, d[ :a,d o :a,d′ ] is equal to :a,dd′ .

Proof. For all 0 ≤ i, j < d and 0 ≤ i′, j′ < d′, we have

(i, i′)
b/c
−→:a,d o :a,d′

(j, j′)

⇐⇒ ∃ 0 ≤ e < a such that i
b/e
−→:a,d

j and i′
e/c
=⇒:a,d′

j′

⇐⇒ ∃ 0 ≤ e < a such that ia+ b = ed+ j and i′a+ e = cd′ + j′

⇐⇒ ia+ b = (cd′ + j′ − i′a)d+ j

⇐⇒ (i+ i′d)a+ b = cdd′ + j + j′d

⇐⇒ d[(i, i
′)]

b/c
−→:a,dd′ d[(j, j

′)] . ◭
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Let us propose a way to visualize these transducers to highlight basic symmetries.
The d integers of the vertex set d̂ = {0, . . . , d − 1} of :a,d are equidistant on
a counterclockwise circle in a way that the diameter between 0 and d − 1 is
horizontal with 0 at the top right. Here is a representation of the transducer in
base a = 2 for respectively d = 1, 2, 3, 4 :

:2,2:2,1

:2,4:2,3

0

0

1

0

1

2

0

3
2

1

 0/0

 0/0

 1/0

1/1

0/0

1/0

1/1

0/0

0/1

1/1

0/0

1/1

0/1
1/0

 0/1

 1/1

    

1/0

1/1

 0/1

    

 0/0

Fig. 9. Visualization of the division.

By associating a color with each digit, any transition
b/c
−→ is replaced by an

unlabeled two-colored arrow: the start of the arrow is with the color of input b,
and the end of the arrow is with the color of output c.
In base 3, we color 0, 1, 2 with blue, green and red respectively. This gives the
representation below of division by 8 in base 3.
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Fig. 10. Division by 8 in base 3.

We can then notice that
the horizontal diameter is axe of symmetry where we exchange 0 with 2 in

input and output, leaving 1 unchanged,
the vertical diameter is axe of symmetry where we exchange in input 0 with 2,

in north output 0 with 1, and in south output 1 with 2,
the center of the circle is center of symmetry where the input remains the

same and for the output, we exchange 0 north with 1 south, 1 north with 2
south, 2 north with 0 south.

Let us point out that we do not know how to characterize powers of 2 in base 3.
In particular, there is the Erdös conjecture [4] stating that these powers from 9
have at least a 2 in base 3:

u /∈ {0, 1}∗ for [u]3 = 2n with n > 8

which translates for the Euclidean division :3,2n by 2n in base 3 that the ele-
mentary cycle in 0 with output in 0∗1 has its input having at least one 2:

u /∈ {0, 1}∗ for 0
u/0...01
=⇒ :3,2n 0 with n > 8.

Thus, we consider the composition closure of the division by d in base a to be

: ∗a,d =
⋃

n≥0 :na,d
the reflexive and transitive closure under composition of :a,d .

This infinite relation, of vertex set d̂∗, can be described by the paths of a finite
relation.

Let T ⊆ M×N×N×M be a letter-to-letter transition set whose vertices are let-
ters in an alphabet M . The dual of T is the transition set T̃ ⊆ N×M×M×N
defined by

b
p/q
−→T̃ c ⇐⇒ p

b/c
−→T q for any p, q ∈ M and b, c ∈ N .
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Here is a representation of the dual of :3,2 .

0/0 0

0/1

1
1/0

1/12
1/1

0/0

    

   

Fig. 11. Dual of the division by 2 in base 3.

The composition closure of T is the transition set

T ∗ =
⋃

n≥0 T
n ⊆ M∗

×N×N×M∗.

This infinite set is described by the paths of the finite set T̃ .

Lemma 5. For any T ⊆ M×N×N×M over alphabets M and N , we have

x
b/c
−→T∗ y ⇐⇒ b

x/y
=⇒T̃ c for any x, y ∈ M∗ and b, c ∈ N .

Proof. It suffices to check by induction on n ≥ 0 that

x
b/c
−→Tn y ⇐⇒ b

x/y
=⇒T̃ c for any x, y ∈ Mn and b, c ∈ N .

n = 0 : x = y = ε. Thus ε
b/c
−→T 0 ε ⇐⇒ b = c ⇐⇒ b

ε/ε
=⇒T̃ c.

n =⇒ n+ 1 : For any x, y ∈ Mn and p, q ∈ M , we have

xp
b/c
−→Tn+1 yq ⇐⇒ ∃ e ∈ N x

b/e
−→Tn y and p

e/c
−→T q

⇐⇒ ∃ e ∈ N b
x/y
=⇒T̃ e

p/q
−→T̃ c

⇐⇒ b
xp/yq
=⇒ T̃ c. ◭

We can extend Lemma 5 to the composition closure of the dual.

Lemma 6. For any T ⊆ M×N×N×M over alphabets M and N , we have

u
x/y
=⇒T̃∗ v ⇐⇒ x

u/v
=⇒T∗ y for any x, y ∈ M∗ and u, v ∈ N∗.

Proof. It suffices to check by induction on n ≥ 0 that

u
x/y
=⇒T̃n v ⇐⇒ x

u/v
=⇒T∗ y for any x, y ∈ M∗ and u, v ∈ Nn.

n = 0 : u = v = ε. Thus ε
x/y
=⇒T̃ 0 ε ⇐⇒ x = y ⇐⇒ x

ε/ε
=⇒T∗ y.

n =⇒ n+ 1 : For any x, y ∈ M∗ and u, v ∈ Nn and b, c ∈ N , we have

ub
x/y
=⇒T̃n+1 vc ⇐⇒ ∃ z ∈ M∗ u

x/z
=⇒T̃n v and b

z/y
=⇒T̃ c

⇐⇒ ∃ z ∈ M∗ x
u/v
=⇒T∗ z and z

b/c
−→T∗ y by Lemma 5

⇐⇒ x
ub/vc
=⇒ T∗ y. ◭

We will now see that the dual of a division is a multiplication.
Let us recall how to realize a multiplication by a transducer.
The set ∗a,d of transitions for the multiplication by d in reverse base a is
defined by

i
b/c
−→∗a,d

j if bd+ i = ja+ c for all i, j ∈ d̂ and b, c ∈ â

which is illustrated below.
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b

     

     
c

carry:

input:

output:

bd + i a

jc

ij

Fig. 12. Multiplication by d in reverse base a for a digit b with a carry i.

Thus, we have

i
b/c
−→∗a,d

j ⇐⇒ j
c/b
−→:a,d

i for any i, j ∈ d̂ and b, c ∈ â.

The paths of ∗a,d are deduced from Lemma 3.

Corollary 1. For all i, j ∈ d̂ and u, v ∈ â∗ , we have

i
u/v
=⇒∗a,d

j ⇐⇒ j
ṽ/ũ
=⇒:a,d

i ⇐⇒ a[u] d+ i = a[v] + j a|v| and |u| = |v|.

In particular, we have

0
u/v
=⇒∗a,d

0 ⇐⇒ a[u] d = a[v] and |u| = |v|.

The multiplication by d in reverse base a is then realized by the following syn-
chronous sequential transducer:

×a,d = (d̂ , ∗a,d , {0}, {0})

From Figure 8, we obtain the following representation of ×3,2

0 1
2/2

0/0
     

1/2

2/1

0/1

1/0

Fig. 13. Multiplication by 2 in reverse base 3.

e.g. this transducer realizes (02120, 01021) which in reverse base 3 gives (69, 138).
The dual of the division by d in base a is the multiplication by a in reverse
base d.

Lemma 7. We have :̃a,d = ∗d,a for any a, d > 1.

Proof. For any b, c ∈ â and i, j ∈ d̂, we have

b
i/j
−→:̃a,d

c ⇐⇒ i
b/c
−→:a,d

j

⇐⇒ ia+ b = cd+ j

⇐⇒ b
i/j
−→∗d,a

c. ◭

Thus, Figure 11 is also the transition set of the multiplication by 3 in reverse
base 2. We can now realize the Collatz function and its powers with simple
transducers.
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4 Transducer for fa,b in base 2a

For any 0 ≤ b < a of same parity, we give a transducer in base a realizing the
shortcut f ′

a,b. Since fa,b = f ′
2a,2b, we obtain a transducer in base 2a for fa,b.

We will realize these functions by deterministic synchronous transducers
where each final state is associated with an output word.
A sequential transducer [8] is a deterministic synchronized transducer T =
(T, i, ω) whose the set of final states is extended to a partial terminal function

ω : Q → N∗ : its domain dom(ω) is the set of final states.
We denote by q

w
−→ when q is a final state such that ω(q) = w.

Such a transducer realizes the binary relation

〈T 〉 = { (u, vw) | ∃ i ∈ I, q ∈ dom(ω) (i
u/v
=⇒T q

w
−→ ) }.

For instance, the following synchronous sequential transducer T2,1 :

0/0
1/0

1/1

0/1
11

0 1

Fig. 14. Transducer realizing f2,1 in base 2.

realizes the following word function 〈T2,1〉:
ε −→ ε

u0 −→ 0u for any u ∈ {0, 1}∗

u1 −→ 0u11

which is, in direct base 2, a representation of f2,1 i.e. f2,1 = [〈T2,1〉]2 .

Given two synchronous sequential transducers T = (T, i, ω) and T ′ = (T ′, i′, ω′),
their composition is the following synchronous sequential transducer:

T o T ′ = (T oT ′, (i, i′), ω oω′) where

ω oω′((p, p′)) = v.ω′(q′) for any p ∈ dom(ω), q′ ∈ dom(ω′), p′
ω(p)/v
=⇒T ′ q′.

For instance, the transducer T 2
2,1 is represented as follows:
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11

00 10

01

}

}

ε

ε ε

1111/11

11

ε
ε

1111

}11/01

11

11
0111

}
ε

ε ε 11
11

1/1

1/0

0/1

0/0
1/0

0/1

0/0

1/1

0

0 0

1

1 1

00

11

0111

11 1111

/

1

0 1
10

0

1 1
01/

Fig. 15. The composition twice of the previous synchronous sequential transducer.

and realizes the function

f 2
2,1(n) =





n
4 if n ∈ 4N

n+ 1 if n ∈ 4N + 2

4n+ 3 if n is odd.

For any 0 ≤ b < a of same parity, we can realize the shortcut f ′
a,b by adding a

terminal function to the transducer of the division by 2 in base a.

Proposition 1. For all 0 ≤ b < a with a > 1 and a, b of same parity,

T ′
a,b = (:a,2, 0, ω

′
a,b) with ω′

a,b(0) = ε and ω′
a,b(1) =

a+b
2

is a synchronous sequential transducer for a representation in base a of f ′
a,b .

Proof. The relation :a,2 is input-deterministic and input-complete: for all p ∈
{0, 1} and b ∈ â, there exists a unique transition starting from p of input b.
Thus for all u ∈ â∗, there exists a unique v ∈ â∗ and j ∈ {0, 1} such that

0
u/v
=⇒:a,2

j. By Lemma 3, we have [u]a = 2 [v]a + j.

For j = 0, [u]a is even and [v]a =
[u]a
2 = f ′

a,b([u]a).

For j = 1, [u]a is odd and since a+b
2 < a, we have

[vω′
a,b(1)]a = a[v]a +

a+b
2 = a

[u]a−1

2 + a+b
2 =

a[u]a+b

2 = f ′
a,b([u]a). ◭

Thus T ′
3,1 = (:3,2, 0, ω

′
3,1) with ω′

3,1(0) = ǫ and ω′
3,1(1) = 2 realizes in base 3

the shortcut f ′
3,1 of the Collatz function. A representation of T ′

3,1 is then ob-
tained from that of /3,2,0 given in Figure 8 by adding output 2 to vertex 1.
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0 1

2
1/2

1/0
0/1

2/22/1

0/0
     

Fig. 16. Shortcut of the Collatz function in base 3.

Translating this transducer in a word rewriting system, we get a variant of the
system defined by [13]. Finally, the transducer T ′

6,2 realizes in base 6 the Collatz
function f3,1 = f ′

6,2 :

0 1

4
5/5

3/4

1/3

5/2

3/1

1/0

0/3

2/4

4/5

0/0

2/1

4/2

     

     

Fig. 17. The Collatz function in base 6.

More generally for any 0 ≤ b < a, the function fa,b = f ′
2a,2b is represented in

base 2a by the synchronous sequential transducer T ′
2a,2b .

5 Transducer for f
′p

a,b in base a

By composition p times of the previous transducer in base a realizing the short-
cut f ′

a,b, we obtain a synchronous sequential transducer realizing f ′p
a,b.

By Lemma 4, the graph of T ′ p
a,b is isomorphic to the division :a,2p by 2p in

base a : each vertex x ∈ {0, 1}p is in bijection with 2[x] ∈ {0, . . . , 2p−1}. So such
a transducer realizes the function f ′ p

a,b , first by doing division by 2p and then
by performing the numerator with a terminal function ωa,b,p : {0, 1}p −→ â∗ to
be specified in terms of a, b, p.
For example, below is the 3 times composition of T ′

3,1 given in Figure 16; it is
the transducer of Figure 10 completed with the terminal function ω3,1,3, and
which can be compared with that of Figure 5.
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110 000

101 011

111001

010 100

    

   

   

1

ε

02

11

2222

2 22

Fig. 18. Another transducer realizing the power of 3 of the Collatz function.

So ω3,1,3(100) = 02. It remains to express ω3,1,p(x) in terms of p and x.

Lemma 8. For all p ≥ 0 and 0 ≤ b < a 6= 1 with a, b of same parity,

[ωa,b,p(x)]a = f ′ p
a,b(2[x])

a|ωa,b,p(x)| = f ′ p
a,b(2

p + 2[x])− f ′ p
a,b(2[x]) for any x ∈ {0, 1}p.

Proof.

i) Let us check the first equality.
Let u ∈ â∗ such that [u]a = 2[x].

As [u]a < 2p, we have 0p
u/0|u|

=⇒ :a,2p
x

ωa,b,p(x)
−→ .

Thus f ′ p
a,b(2[x]) = f ′ p

a,b([u]a) = [0|u|ωa,b,p(x)]a = [ωa,b,p(x)]a.

ii) Let us check the second equality.

Let y ∈ {0, 1}p and b ∈ â such that y
b/1
−→:a,2p

x. Thus 2[y] a+ b = 2p +2[x].
As in (i), let u ∈ â∗ such that [u]a = 2[y].

Hence 0p
u/0|u|

=⇒ :a,2p
y and [ub]a = a [u]a + b = 2p + 2[x]. Therefore and by (i),

f ′ p
a,b(2

p + 2[x]) = [1ωa,b,p(x)]a = f ′ p
a,b(2[x]) + a|ωa,b,p(x)|. ◭

To determine ωa,b,p(x), we compute [ωa,b,p(x)]a but also |ωa,b,p(x)| because
possible zeros on the left are significant for a terminal function.
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Using the property below [1], we will express this length as ηa,b,p(2[x]) where

ηa,b,p(n) = |{ 0 ≤ i < p | f ′ i
a,b(n) odd }|

is the number of odd integers (rises) among the first p powers of f ′
a,b applied

from n. For instance η3,1,3(1) = 2 since the first three powers of f ′
3,1 starting

from 1 are given by the cycle 1 −→ 2 −→ 1.
Note that for any integers q and r,

f ′
a,b(2q + r) =

{
q + r

2 if r is even

a q + ar+b
2 otherwise

hence f ′
a,b(2q + r) = q aηa,b,1(r) + f ′

a,b(r).
This equality has been extended to powers of f ′

a,b [1].

Lemma 9. For all natural numbers a, b, p, q, r with a, b of same parity,

f ′ p
a,b(q2

p + r) = q aηa,b,p(r) + f ′ p
a,b(r) and ηa,b,p(q2

p + r) = ηa,b,p(r).

Proof. By induction on p ≥ 0.
p = 0 : ηa,b,0 is the constant mapping 0 and f ′ 0

a,b is the identity.
p =⇒ p+ 1 : For r even, we have

f ′ p+1
a,b (q2p+1 + r) = f ′ p

a,b(f
′
a,b(q2

p+1 + r)) = f ′ p
a,b(q2

p + r
2 )

= q aηa,b,p(
r
2
) + f ′ p

a,b(
r
2 ) = q aηa,b,p+1(r) + f ′ p+1

a,b (r)

and ηa,b,p+1(q2
p+1 + r) = ηa,b,p(q2

p + r
2 ) = ηa,b,p(

r
2 ) = ηa,b,p+1(r).

For r odd, we have

f ′ p+1
a,b (q2p+1 + r) = f ′ p

a,b(f
′
a,b(q2

p+1 + r)) = f ′ p
a,b(aq2

p + ar+b
2 )

= f ′ p
a,b(aq2

p + f ′
a,b(r)) = q a1+ηa,b,p(f

′
a,b(r)) + f ′ p

a,b(f
′
a,b(r))

= q aηa,b,p+1(r) + f ′ p+1
a,b (r)

and

ηa,b,p+1(q2
p+1 + r) = 1 + ηa,b,p(f

′
a,b(q2

p+1 + r)) = 1 + ηa,b,p(aq2
p + f ′

a,b(r))

= 1 + ηa,b,p(f
′
a,b(r)) = ηa,b,p+1(r). ◭

From Lemmas 8 and 9, it follows that

|ωa,b,p(x)| = ηa,b,p(2[x]) for any x ∈ {0, 1}p.

Lemma 9 is illustrated below for an accepting path of T ′ p
a,b .

w

input:

output:

u [u] p + r=  q 2

and=  qv [w]     a

a

=  f ’a,b (r)

a,b,p (r)η

p[v] a

Fig. 19. Terminal function of T
′ p

a,b.

We denote by 2[T
′ p
a,b] the transducer where each vertex x ∈ {0, 1}p is replaced
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by the integer 2[x]. Then 2[T
′ p
a,b] is the transducer of division by 2p in base a

with a terminal function defined by the 2p first values of f ′ p
a,b . For any vertex,

the length of its final word is the number of odd numbers among the first p
values of its orbit.

Theorem 1. For all p ≥ 0 and 0 ≤ b < a 6= 1 with a, b of same parity, the

function f ′ p
a,b is recognized by the transducer

2[T
′ p
a,b] = (:a,2p , 0, ω

′
a,b,p)

of division by 2p in base a with for any 0 ≤ i < dp, ωp(i) ∈ â∗ is defined by

[ω′
a,b,p(i)]a = f ′ p

a,b(i) and |ω′
a,b,p(i)| = ηa,b,p(i).

Proof. Let us give another proof of this theorem which will be useful later.
By induction on p ≥ 0. We denote ω′

a,b,p by ω′
p .

p = 0 : T ′ 0
a,b = ({ ε

c/c
−→ ε | c ∈ â }, ε, ω) with ω(ε) = ε.

p =⇒ p+ 1 : we have T ′ p+1
a,b = T ′

a,b o T ′ p
a,b.

By Lemma 4, the relation 2[ :a,2 o :a,2p ] is equal to :a,2p+1 .

We have to show that ω′
p+1 is the terminal function of 2[T

′ p+1
a,b ].

As ω′
a,b(0) = ε, we get ω′

p+1(2[0u]) = ω′
p(2[u]) for any u ∈ {0, 1}p hence

ω′
p+1(2i) = ω′

p(i) for all 0 ≤ i < 2p. (1)

By induction hypothesis, we get

[ω′
p+1(2i)]a = [ω′

p(i)]a = f ′ p
a,b(i) = f ′ p+1

a,b (2i) and

|ω′
p+1(2i)| = |ω′

p(i)| = ηa,b,p(i) = ηa,b,p+1(2i).

Similarly ω′
a,b(1) = a+b

2 and for any 0 ≤ i < 2p, there exists unique j and c

such that i
a+b
2

/c
−→:a,2p

j thus

ω′
p+1(2i+1) = c.ω′

p(j) for all 0 ≤ i < 2p with a i+ a+b
2 = c 2p+j. (2)

Moreover f ′
a,b(2i+ 1) = ia+ a+b

2 = c2p + j.
By Lemma 9 and induction hypothesis,

[ω′
p+1(2i+ 1)]a = [c.ω′

p(j)]a = c a|ω
′
p(j)| + [ω′

p(j)]a
= c aηa,b,p(j) + f ′ p

a,b(j) = f ′ p
a,b(c2

p + j)

= f ′ p+1
a,b (2i+ 1)

and
|ω′

p+1(2i+ 1)| = 1 + |ω′
p(j)| = 1 + ηa,b,p(j)

= 1 + ηa,b,p(c2
p + j) = 1 + ηa,b,p(f

′
a,b(2i+ 1))

= ηa,b,p+1(2i+ 1). ◭

Thus the terminal function ω′
a,b,p(i) of any vertex 0 ≤ i < 2p is fully determined

by the prefix of length p of its orbit:

i −→ f ′
a,b(i) −→ . . .−→ f ′ p−1

a,b (i)
︸ ︷︷ ︸
|ω′

a,b,p
(i)| = number of odd integers

−→ f ′ p
a,b(i) = [ω′

a,b,p(i)]a

Here is a representation in base 5 of f ′ 3
5,1 by the transducer T ′ 3

5,1 :
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110 000

101 011

111001

010 100

ε

0413

2

3

313 4

43

    

0/0

4/4

 4/1 0/1

 4/2

 0/2

 4/3 0/3

3/1

 1/0

 2/22/0

 3/2
1/1

4/1  0/3
 1/2

 3/0

 2/3

 2/1

2/4

2/0
 3/43/1

0/4

 1/3

 4/3

4/0

1/0

0/1

 3/2

 1/4
0/0  4/4

1/2

 3/3

1/3
3/4

2/4  2/2

Fig. 20. Transducer realising f ′3

5,1 in base 5.

Finally, the function fp
a,b is realized in base 2a by the synchronous sequential

transducer T p
a,b = T ′p

2a,2b .
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6 Transducer for f
p

a,b,d in base ad

For all natural numbers a, b, d with d 6= 0, we consider the functions fa,b,d :
N −→ N defined for any integer n ≥ 0 by

fa,b,d(n) =

{ n
d if n is a mutiple of d,

an+ b otherwise.

So fa,b = fa,b,2 . For b < a, we generalize the previous transducers realizing fa,b .
We define a synchronous sequential transducer realizing fa,b,d from the trans-
ducer computing division by d in base ad.

Proposition 2. For all 0 ≤ b < a 6= 1 and d > 0, the synchronous sequential

transducer
Ta,b,d = (:ad,d, 0, ωa,b)

with ωa,b(0) = ε and ∀ 0 < j < d, ωa,b(j) = aj + b

realizes a representation in base ad of fa,b,d .

Proof.

If an initial path ends to the state j, the input represents an integer n multiple
of d plus j and the output represents n−j

d . The final digit in j 6= 0 is aj + b

since ad n−j
d + aj + b = an+ b = fa,b,d(n). ◭

For all integers a, b, d, p, n ≥ 0 with d 6= 0, ηa,b,p(n) is generalized to the number

µa,b,d,p(n) = |{ 0 ≤ i < p | f i
a,b,d(n) not multiple of d }|

of integers that are not multiples of d among the first p numbers of the orbit
from n of fa,b,d . Let us adapt Lemma 9 to the powers of fa,b,d .

Lemma 10. For all natural numbers a, b, d, p, q, r with d 6= 0, we have

f p
a,b,d(qd

p + r) = q (ad)µa,b,d,p(r) + f p
a,b,d(r) and µa,b,d,p(qd

p + r) = µa,b,d,p(r).

Proof. By induction on p ≥ 0.
p = 0 : immediate because µa,b,d,0 is the constant mapping 0 and f0

a,b,d is the
identity.
p =⇒ p+ 1 : For r multiple of d, we have

f p+1
a,b,d(qd

p+1 + r) = f p
a,b,d(fa,b,d(qd

p+1 + r)) = f p
a,b,d(qd

p + r
d )

= q (ad)µa,b,d,p(
r
d
) + f p

a,b,d(
r
d ) = q (ad)µa,b,d,p+1(r) + f p+1

a,b,d(r)

and

µa,b,d,p+1(qd
p+1 + r) = µa,b,d,p(qd

p + r
d ) = µa,b,d,p(

r
d ) = µa,b,d,p+1(r).

For r not multiple of d, we have

f p+1
a,b,d(qd

p+1 + r) = f p
a,b,d(fa,b,d(qd

p+1 + r))

= f p
a,b,d(aqd

p+1 + ar + b)

= f p
a,b,d((qad)d

p + fa,b,d(r))

= qad (ad)µa,b,d,p(fa,b,d(r)) + f p
a,b,d(fa,b,d(r))

= q (ad)µa,b,d,p+1(r) + f p+1
a,b,d(r)



On the powers of the Collatz function 22

and
µa,b,d,p+1(qd

p+1 + r) = 1 + µa,b,d,p(aqd
p+1 + ar + b)

= 1 + µa,b,d,p((qad)d
p + fa,b,d(r))

= 1 + µa,b,d,p(fa,b,d(r))

= µa,b,d,p+1(r). ◭

Similarly to Theorem 1, we get an explicit description of the transducer T p
a,b,d

realizing f p
a,b,d for all p.

Theorem 2. For all integers p ≥ 0 and 0 ≤ b < a 6= 1 and d > 0, the

function f p
a,b,d is realized by the synchronous sequential transducer

d[T
p

a,b,d] = (:ad,dp , 0, ωa,b,d,p)

with for any 0 ≤ i < dp, the word ωp(i) over {0, . . . , ad− 1} is defined by

[ωa,b,d,p(i)]ad = fp
a,b,d(i) and |ωa,b,d,p(i)| = µa,b,d,p(i).

Proof. By induction on p ≥ 0. We denote ωa,b,d,p by ωp .

p = 0 : T 0
a,b,d = ({ ε

c/c
−→ ε | c ∈ âd }, ε, ω) with ω(ε) = ε.

p =⇒ p+ 1 : we have T p+1
a,b,d = Ta,b,d o T p

a,b,d .

By Lemma 4, the transition relation d[ :ad,d o :ad,dp ] is equal to :ad,dp+1 .

We have to show that ωp+1 is the terminal function of d[T
p+1

a,b,d ].

As ωa,b(0) = ε, we get ωp+1(d[0u]) = ωp(d[u]) for any u ∈ d̂p i.e.

ωp+1(di) = ωp(i) for all 0 ≤ i < dp.

By induction hypothesis, we get

[ωp+1(di)]ad = [ωp(i)]ad = f p
a,b,d(i) = f p+1

a,b,d(di)

and |ωp+1(di)| = |ωp(i)| = µa,b,d,p(i) = µa,b,d,p+1(di).

Let 0 ≤ i < dp and 0 < j < d. So ωa,b(j) = aj + b ≤ a(d− 1) + b < ad.

There exists unique k and c such that i
aj+b/c
−→:ad,dp

k thus ωp+1(di+j) = c.ωp(k).

Moreover fa,b,d(di+ j) = iad+ aj + b = cdp + k.
By Lemma 10 and induction hypothesis,

[ωp+1(di+ j)]ad = [c.ωp(k)]ad
= c (ad)|ωp(k)| + [ωp(k)]ad
= c (ad)µa,b,d,p(k) + f p

a,b,d(k)

= f p
a,b,d(cd

p + k)

= f p+1
a,b,d(di+ j)

and
|ωp+1(di+ j)| = 1 + |ωp(k)|

= 1 + µa,b,d,p(k)

= 1 + µa,b,d,p(cd
p + k)

= 1 + µa,b,d,p(fa,b,d(di+ j))

= µa,b,d,p+1(di+ j). ◭
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7 Transducer for f ∗

a,b,d

We present a simple infinite synchronous sequential transducer realizing the
composition closure f ∗

a,b,d =
⋃

p≥0 f
p
a,b,d of fa,b,d for b < a 6= 1 and d > 0.

We start by defining a transducer to realize f ′ ∗
a,b with b < a. We just have to

add to the composition closure : ∗a,2 of the division by 2 in base a, the set 0∗ of
initial states and a terminal function defined according to b by length induction
that is from the vertex set d̂ p of : pa,2 into the vertex set d̂ p−1 of : p−1

a,2 .

Proposition 3. For all 0 ≤ b < a with a > 1 and a, b of the same parity,

the relation f ′ ∗
a,b is realized by the transducer

T ′ ∗
a,b = (: ∗a,2 , 0

∗, ω′
a,b) where for all u ∈ {0, 1}∗,

ω′
a,b(0u) = ω′

a,b(u) and ω′
a,b(1u) = c.ω′

a,b(v) for 1u
b/c
−→: ∗a,2

0v.

Proof.

Equations 1 and 2 in the proof of Theorem 1 stipulate that for all p ≥ 0, the
terminal function ω′

p+1 of T ′ p+1
a,b is defined recursively for all 0 ≤ i < 2p by

ω′
p+1(2i) = ω′

p(i)

ω′
p+1(2i+ 1) = c.ω′

p(j) for i
a+b
2

/c
−→:a,2p

j

and we have

i
a+b
2

/c
−→:a,2p

j ⇐⇒ ia+ a+b
2 = c2p + j

⇐⇒ (2i+ 1)a+ b = c2p+1 + 2j

⇐⇒ 2i+ 1
b/c
−→:

a,2p+1
2j. ◭

We visualize T ′ ∗
a,b by a cone with ε at the tip and circular sections.

ε

ε
0v

b/c

1u

0u

u

v

c

P0

0P+1

ε

Fig. 21. The composition closure f ′∗

a,b in base a.
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The p-th section is the previously given representation of the Euclidean divi-
sion : pa,2 of initial state 0p. The terminal function ω′

a,b is represented as follows:

with a transition 0u
ε

−→ u from any node starting by 0, and a transition 1u
c

−→ v

from any node starting by 1 for the transition 1u
b/c
−→ 0v of the division by 2|u|+1

in base a. Note that these transitions of the terminal function can only be used
at the end of an accepting path.
Similarly to Proposition 3, we get an explicit description of a transducer realizing
f ∗
a,b,d for b < a.

Theorem 3. For all integers 0 ≤ b < a 6= 1 and d > 0, the relation f ∗
a,b,d is

realized by the transducer

T ∗
a,b,d = (: ∗ad,d , 0

∗, ωa,b,d) with for all u ∈ d̂ ∗ and 0 < i < d,

ωa,b,d(0u) = ωa,b,d(u) and ωa,b,d(iu) = c.ωa,b,d(v) for iu
bd/c
−→: ∗

ad,d
0v.

Theorem 3 states that under the condition b < a 6= 1, we realize the composi-
tion closure of fa,b,d by taking the union : ∗ad,d of the divisions : pad,d of initial
states 0p, plus a recurrent terminal function.

8 Conclusion

This work focuses on the description of functions on integers and their powers
by deterministic transducers. This has been possible for the functions fa,b,d
by the choice of the base ad but only under the restriction that b < a. The
generalization to any integers a and b requires a new approach.

For any natural numbers a, b, d with b < a 6= 1 and d 6= 0, we have given
an explicit construction of a transducer realizing the closure under composition
of fa,b,d. In its geometric representation, the disposition of the vertices is well
appropriate for both the transitions of the Euclidean divisions and those of the
terminal function. It might be a new approach to consider the circularity of

the functions fa,b,d namely the existence of paths 0p
uv/0|v|u
=⇒ x where v is

the terminal word of the vertex x in the transducer of the division by dp in
base ad. However, the circularity of the Collatz function is already considered
as a difficult subproblem of the Collatz conjecture.
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