
On Cayley graphs of algebraic structures

Didier Caucal
1

1 CNRS, LIGM, University Paris-East, France

didier.caucal@univ-mlv.fr

Abstract

We present simple graph-theoretic characterizations of Cayley graphs for left-cancellative monoids,

groups, left-quasigroups and quasigroups. We show that these characterizations are effective for

the end-regular graphs of finite degree.

1 Introduction

To describe the structure of a group, Cayley introduced in 1878 [7] the concept of graph

for any group (G, ·) according to any generating subset S. This is simply the set of labeled

oriented edges g
s
−→ g·s for every g of G and s of S. Such a graph, called Cayley

graph, is directed and labeled in S (or an encoding of S by symbols called letters or

colors). The study of groups by their Cayley graphs is a main topic of algebraic graph

theory [3, 8, 2]. A characterization of unlabeled and undirected Cayley graphs was given by

Sabidussi in 1958 [15] : an unlabeled and undirected graph is a Cayley graph if and only if

we can find a group with a free and transitive action on the graph. However, this algebraic

characterization is not well suited for deciding whether a possibly infinite graph is a Cayley

graph. It is pertinent to look for characterizations by graph-theoretic conditions. This

approach was clearly stated by Hamkins in 2010: Which graphs are Cayley graphs? [10]. In

this paper, we present simple graph-theoretic characterizations of Cayley graphs for firstly

left-cancellative and cancellative monoids, and then for groups. These characterizations are

then extended to any subset S of left-cancellative magmas, left-quasigroups, quasigroups,

and groups. Finally, we show that these characterizations are effective for the end-regular

graphs of finite degree [13] which are the graphs finitely decomposable by distance from

a(ny) vertex or equivalently are isomorphic to the suffix transition graphs of labeled word

rewriting systems.

Let us present the main structural characterizations starting with the Cayley graphs of

left-cancellative monoids. Among many properties of these graphs, we retain only three

basic ones. First and by definition, any Cayley graph is deterministic: there are no two

arcs of the same source and label. Furthermore, the left-cancellative condition implies that

any Cayley graph is simple: there are no two arcs of the same source and goal. Finally,

any Cayley graph is rooted: there is a path from the identity element to any vertex. To

these three necessary basic conditions is added a structural property, called forward vertex-

transitive: all the vertices are accessible-isomorphic i.e. the induced subgraphs by vertex

accessibility are isomorphic. These four properties characterize the Cayley graphs of left-

cancellative monoids. To describe exactly the Cayley graphs of cancellative monoids, we just

have to add the co-determinism: there are no two arcs of the same target and label. This

characterization is strengthened for the Cayley graphs of groups using the same properties

but expressed in both arc directions: these are the graphs that are connected, deterministic,

co-deterministic, and vertex-transitive: all the vertices are isomorphic.

We also consider the Cayley graph of a magma G according to any subset S and

that we called generalized. The characterizations obtained require the assumption of the

axiom of choice. First, a graph is a generalized Cayley graph of a left-cancellative magma
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if and only if it is deterministic, simple, source-complete: for any label of the graph and

from any vertex, there is at least one edge. This equivalence does not require the axiom

of choice for finitely labeled graphs, and in this case, these graphs are also the generalized

Cayley graphs of left-quasigroups. Moreover, a finitely labeled graph is a generalized Cayley

graph of a quasigroup if and only if it is also co-deterministic and target-complete: for any

label of the graph and to any vertex, there is at least one edge. We also characterize all

the generalized Cayley graphs of left-quasigroups, and of quasigroups. Finally, a graph is a

generalized Cayley graph of a group if anf only if it is simple, vertex-transitive, deterministic

and co-deterministic.

2 Directed labeled graphs

We consider directed labeled graphs without isolated vertex. We recall some basic concepts

such as determinism, completeness and vertex-transitivity. We introduce the notions of

accessible-isomorphic vertices and forward vertex-transitive graph.

Let A be an arbitrary (finite or infinite) set. A directed A-graph (V, G) is defined by

a set V of vertices and a subset G ⊆ V ×A×V of edges. Any edge (s, a, t) ∈ G is from

the source s to the target t with label a, and is also written by the transition s
a
−→G t or

directly s
a
−→ t if G is clear from the context. The sources and targets of edges form the

set VG of non-isolated vertices of G and we denote by AG the set of edge labels:

VG = { s | ∃ a, t (s
a
−→ t ∨ t

a
−→ s) } and AG = { a | ∃ s, t (s

a
−→ t) }.

Thus V − VG is the set of isolated vertices. From now on, we assume that any graph (V, G)

is without isolated vertex (i.e. V = VG), hence the graph can be identified with its edge

set G. We also exclude the empty graph ∅ : every graph is a non-empty set of labeled edges.

For instance Υ = { s
n
−→ s+n | s ∈ R ∧ n ∈ Z } is a graph of vertex set R and of label set

Z. As any graph G is a set, there are no two edges with the same source, target and label.

We say that a graph is simple if there are no two edges with the same source and target:

(s
a
−→ t ∧ s

b
−→ t) =⇒ a = b. We say that G is finitely labeled if AG is finite. We denote

by G−1 = { (t, a, s) | (s, a, t) ∈ G } the inverse of G. A graph is deterministic if there are

no two edges with the same source and label: (r
a
−→ s ∧ r

a
−→ t) =⇒ s = t. A graph is co-

deterministic if its inverse is deterministic: there are no two edges with the same target and

label: (s
a
−→ r ∧ t

a
−→ r) =⇒ s = t. For instance, the graph Υ is simple, not finitely labeled,

deterministic and co-deterministic. A graph G is complete if there is an edge between any

couple of vertices: ∀ s, t ∈ VG ∃ a ∈ AG (s
a
−→G t). A graph G is source-complete if for

all vertex s and label a, there is an a-edge from s : ∀ s ∈ VG ∀ a ∈ AG ∃ t (s
a
−→G t). A

graph is target-complete if its inverse is source-complete: ∀ t ∈ VG ∀ a ∈ AG ∃ s (s
a
−→G t).

For instance, Υ is source-complete, target-complete but not complete. Another example is

given by the graph Even = {(p, a, q) , (p, b, p) , (q, a, p) , (q, b, q)} represented as follows:

q

a

bb

p

It is simple, deterministic, co-deterministic, complete, source-complete and target-complete.

The vertex-restriction G|P of G to a set P is the induced subgraph of G by P ∩ VG :

G|P = { (s, a, t) ∈ G | s, t ∈ P }.

The label-restriction G|P of G to a set P is the subset of all its edges labeled in P :

G|P = { (s, a, t) ∈ G | a ∈ P }.
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Let −→G be the unlabeled edge relation i.e. s −→G t if s
a
−→G t for some a ∈ A. We

denote by −→G(s) = { t | s −→G t } the set of successors of s ∈ VG . We write s /−→G t

if there is no edge in G from s to t i.e. G ∩ {s}×A×{t} = ∅. The accessibility relation

−→∗
G =

⋃
n≥0 −→

n
G is the reflexive and transitive closure under composition of −→G . A

graph G is accessible from P ⊆ VG if for any s ∈ VG , there is r ∈ P such that r −→∗
G s.

We denote by G↓P the induced subgraph of G to the vertices accessible from P which is the

greatest subgraph of G accessible from P . For instance Υ↓{0} = { m
n
−→m+n | m, n ∈ Z }

is a complete subgraph of Υ. A root r is a vertex from which G is accessible i.e. G↓{r}

also denoted by G↓r is equal to G. A graph G is strongly connected if every vertex is a

root: s −→∗
G t for all s, t ∈ VG . A graph G is co-accessible from P ⊆ VG if G−1 is

accessible from P . We denote by dG(s, t) = min{ n | s −→n
G ∪ G−1 t } the distance between

s, t ∈ VG with min(∅) = ω. A graph G is connected if G ∪ G−1 is strongly connected

i.e. dG(s, t) ∈ N for any s, t ∈ VG . Recall that a connected component of a graph G is a

maximal connected subset of G ; we denote by Comp(G) the set of connected components

of G. A representative set of Comp(G) is a vertex subset P ⊆ VG having exactly one

vertex in each connected component: |P ∩ VC | = 1 for any C ∈ Comp(G) ; it induces the

canonical mapping πP : VG −→ P associating with each vertex s the vertex of P in the

same connected component: s −→∗
G ∪ G−1 πP (s) for any s ∈ VG . For instance, [0, 1[ is a

representative set of Comp(Υ) and its canonical mapping is defined by π[0,1[(x) = x − ⌊x⌋

for any x ∈ R.

A path (s0, a1, s1, . . . , an, sn) of length n ≥ 0 in a graph G is a sequence s0
a1−→ s1 . . .

an−→ sn

of n consecutive edges, and we write s0
a1...an−→ sn for indicating the source s0 , the target

sn and the label word a1. . .an ∈ A∗
G of the path where A∗

G is the set of words over AG

(the free monoid generated by AG) and ε is the empty word (the identity element).

Recall that a morphism from a graph G into a graph H is a mapping h from VG into

VH such that s
a
−→G t =⇒ h(s)

a
−→H h(t). If, in addition h is bijective and h−1 is

a morphism, h is called an isomorphism from G to H ; we write G ≡h H or directly

G ≡ H if we do not specify an isomorphism, and we say that G and H are isomorphic.

An automorphism of G is an isomorphism from G to G. Two vertices s, t of a graph G

are isomorphic and we write s ≃G t if t = h(s) for some automorphism h of G.

A graph G is vertex-transitive if all its vertices are isomorphic: s ≃G t for every s, t ∈ VG .

For instance, the previous graphs Υ and Even are vertex-transitive.

Two vertices s, t of a graph G are accessible-isomorphic and we write s ↓G t if t = h(s)

for some isomorphism h from G↓s to G↓t . A graph G is forward vertex-transitive if all

its vertices are accessible-isomorphic: s ↓G t for every s, t ∈ VG .

◮ Fact 1. Any vertex-transitive graph is forward vertex-transitive which is source-complete.

For instance Υ
|{1}
|IN = { n

1
−→ n + 1 | n ∈ N } is forward vertex-transitive but not

vertex-transitive. On the other hand Υ
|{−1}
|IN = { n

−1
−→ n − 1 | n ∈ N } is not forward

vertex-transitive: two distinct vertices are not accessible-isomorphic.

3 Cayley graphs of left-cancellative and cancellative monoids

We present graph-theoretic characterizations for the Cayley graphs of left-cancellative monoids

(Theorem 7), of cancellative monoids (Theorem 8), of cancellative semigroups (Theorem 10).

A magma (or groupoid) is a set M equipped with a binary operation · : M×M −→ M

that sends any two elements p, q ∈ M to the element p · q.
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Given a subset Q ⊆ M and an injective mapping [[ ]] : Q −→ A, we define the graph

C[[M, Q]] = { p
[[q]]
−→ p · q | p ∈ M ∧ q ∈ Q }

which is called a generalized Cayley graph of M . It is of vertex set M and of label set

[[Q]] = { [[q]] | q ∈ Q }. We denote C[[M, Q]] by C(M, Q) when [[ ]] is the identity. For

instance Υ = C(R,Z) for the magma (R, +). We also write C[[M ]] instead of C[[M, M ]]

and C(M) = C(M, M) = { p
q
−→ p · q | p, q ∈ M }.

◮ Fact 2. Any generalized Cayley graph is deterministic and source-complete.

For instance taking the magma (Z, −) and [[−1]] = a, C[[Z, {−1}]] = { n
a
−→ n+1 | n ∈ Z }.

By adding [[1]] = b, C[[Z, {1, −1}]] = { n
a
−→ n + 1 | n ∈ Z } ∪ { n

b
−→ n − 1 | n ∈ Z }.

We say that a magma (M, ·) is left-cancellative if r ·p = r ·q =⇒ p = q for any p, q, r ∈ M .

Similarly (M, ·) is right-cancellative if p · r = q · r =⇒ p = q for any p, q, r ∈ M .

A magma is cancellative if it is both left-cancellative and right-cancellative.

◮ Fact 3. Any generalized Cayley graph of a left-cancellative magma is simple.

Any generalized Cayley graph of a right-cancellative magma is co-deterministic.

Recall also that (M, ·) is a semigroup if · is associative: (p · q) · r = p · (q · r) for any

p, q, r ∈ M . A monoid (M, ·) is a semigroup with an identity element 1 : 1·p = p·1 = p for

all p ∈ M . The submonoid generated by Q ⊆ M is the least submonoid Q∗ = { q1· . . . ·qn |

n ≥ 0 ∧ q1, . . . , qn ∈ Q } containing Q.

When a monoid is left-cancellative, its generalized Cayley graphs are forward vertex-transitive.

◮ Proposition 4. Any generalized Cayley graph of a left-cancellative monoid

is forward vertex-transitive.

Proof.

Let G = C[[M, Q]] for some left-cancellative monoid (M, ·) and some Q ⊆ M .

Let r ∈ M . We have to check that 1 ↓G r.

By induction on n ≥ 0 and for any q1, . . . , qn ∈ Q and s ∈ M , we have

r
[[q1]]...[[qn]]
−→ G s ⇐⇒ s = (. . .(r·q1). . .)·qn .

As · is associative, we get VG↓r
= { s | r −→∗

G s } = r·Q∗. In particular VG↓1
= Q∗.

We consider the mapping fr : M −→ M defined by fr(p) = r·p for any p ∈ M .

As · is left-cancellative, fr is injective.

Furthermore fr is an isomorphism on its image: for any p, q, p′ ∈ M ,

p
[[q]]
−→G p′ ⇐⇒ fr(p)

[[q]]
−→G fr(p′).

The associativity of · gives the necessary condition.

The associativity and the left-cancellative property of · gives the sufficient condition.

Thus fr restricted to Q∗ is an isomorphism from G↓1 to G↓r hence 1 ↓G r. ◭

We can not generalize Proposition 4 to the left-cancellative semigroups. For instance the

semigroup M = {a, b} with x·y = y for any x, y ∈ M is left-cancellative but the graph

C(M) represented below is not forward vertex-transitive.

a

a b

ba

b

A monoid Cayley graph is a generalized Cayley graph C[[M, Q]] of a monoid M generated

by Q which means that the identity element 1 is a root of C[[M, Q]].
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◮ Fact 5. A monoid M is generated by Q ⇐⇒ 1 is a root of C[[M, Q]].

Under additional simple conditions, let us establish the converse of Proposition 4.

For any graph G and any vertex r, we introduce the path-relation PathG(r) as the ternary

relation on VG defined by

(s, t, x) ∈ PathG(r) if there exists u ∈ A∗
G such that r

u
−→G t and s

u
−→G x.

If for any s, t ∈ VG there exists a unique x such that (s, t, x) ∈ PathG(r), we denote by

∗r : VG×VG −→ VG the binary path-operation on VG defined by (s, t, s ∗r t) ∈ PathG(r) for

any s, t ∈ VG . This is illustrated as follows:

r t s s ∗r t

uu

and we also write G∗r when we need to specify G. Let us give conditions so that this

path-operation exists and is associative and left-cancellative.

◮ Proposition 6. Let r be a root of a deterministic and forward vertex-transitive graph G.

Then (VG, ∗r) is a left-cancellative monoid of identity r and generated by −→G(r).

If G is co-deterministic then ∗r is cancellative.

If G is simple then G = C[[VG,−→G(r)]] with [[s]] = a for any r
a
−→G s.

Proof.

i) Let s, t ∈ VG . Let us check that there is a unique x such that (s, t, x) ∈ PathG(r).

As r is a root, there exists u such that r
u
−→G t.

As G is source-complete, there exists x such that s
u
−→G x. Hence (s, t, x) ∈ PathG(r).

Let (s, t, y) ∈ PathG(r). There exists v ∈ A∗
G such that r

v
−→G t and s

v
−→G y.

As G is forward vertex-transitive, we have r ↓G s.

As G is deterministic, we get s
v
−→G x hence x = y.

Thus ∗r exists and is denoted by · in the rest of this proof.

Let us show that (VG, ·) is a left-cancellative monoid.

ii) Let us show that · is associative.

Let x, y, z ∈ VG . We have to check that (x·y)·z = x·(y·z).

As r is a root, there exists v, w ∈ A∗
G such that r

v
−→ y and r

w
−→ z.

By (i), x
v
−→ x·y

w
−→ (x·y)·z and y

w
−→ y·z

So r
vw
−→ y·z hence x

vw
−→ x·(y·z).

As G is deterministic, we get (x·y)·z = x·(y·z).

iii) Let us check that r is an identity element.

Let s ∈ VG . As r
ε
−→ r, we get s

ε
−→ s·r i.e. s·r = s.

For r
u
−→ s, we have r

u
−→ r·s. As G is deterministic, we get r·s = s.

iv) Let us check that · is left-cancellative. Let s, t, t′ ∈ VG such that s·t = s·t′.

There exists u, v ∈ A∗
G such that r

u
−→ t and r

v
−→ t′.

So s
u
−→ s·t and s

v
−→ s·t′. As s·t = s·t′ and r ↓G s, we get r

v
−→ t.

As G is deterministic, we have t = t′.

v) Let us check that Q = −→G(r) is a generating subset of VG . Let s ∈ VG .

There exists n ≥ 0, a1, . . . , an ∈ AG and s0, . . . , sn such that r = s0
a1−→ s1. . .sn−1

an−→ sn = s.

By Fact 1, there exists r1, . . . , rn such that r
a1−→ r1, . . . , r

an−→ rn .

For every 1 ≤ i ≤ n, si = si−1·ri hence s = r·r1 · . . . ·rn = r1 · . . . ·rn ∈ Q∗.

vi) Assume that G is co-deterministic. Let us check that · is right-cancellative.

Let s, s′, t ∈ VG such that s·t = s′·t.
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There exists u ∈ A∗
G such that r

u
−→ t. So s

u
−→ s·t and s′ u

−→ s′·t = s·t.

As G is co-deterministic, we get s = s′.

vii) Assume that G is simple. Let Q = { s | r −→G s }.

As G is simple and deterministic, we define the following injection [[ ]] from Q into AG by

[[s]] = a for r
a
−→G s.

Let K = C[[VG, Q]]. Let us show that G = K.

⊆ : Let s
a
−→G t. As r ↓G s, there exists r′ such that r

a
−→G r′.

So s
a
−→G s·r′. As G is deterministic, s·r′ = t.

Furthermore r′ ∈ Q and [[r′]] = a. So s
a
−→K s·r′ = t.

⊇ : Let s
a
−→K t. So a = [[r′]] for some r′ ∈ Q.

Thus t = s·r′ and r
a
−→G r′. So s

a
−→G s·r′ = t. ◭

For instance let us consider a graph G of the following representation:

b b

a

b

a

b b

a

b

a

It is a skeleton of the graph of ω2 where a is the successor and b goes to the next limit

ordinal: (VG,−→∗
G) is isomorphic to (ω2, ≤). By Proposition 6, it is a Cayley graph of a

left-cancellative monoid. Precisely to each word u ∈ b∗a∗, we associate the unique vertex

<u> ∈ VG accessible from the root by the path labeled by u. Thus

G = { <bman>
a
−→ <bman+1> | m, n ≥ 0 } ∪ { <bman>

b
−→ <bm+1> | m, n ≥ 0 }.

By Proposition 6, (VG, ∗<ε>) is a left-cancellative monoid where for any m, n, p, q ≥ 0,

<bman> ∗<ε> <bpaq> =

{
<bman+q> if p = 0

<bm+paq> if p 6= 0

and we have G = C[[VG, {<a>, <b>}]] with [[<a>]] = a and [[<b>]] = b.

Propositions 4 and 6 give a graph-theoretic characterization of the Cayley graphs of left-

cancellative monoids.

◮ Theorem 7. A graph is a Cayley graph of a left-cancellative monoid if and only if

it is rooted, simple, deterministic and forward vertex-transitive.

Proof.

We obtain the necessary condition by Proposition 4 with Facts 2, 3, 5.

The sufficient condition is given by Proposition 6. ◭

We can restrict Theorem 7 to cancellative monoids.

◮ Theorem 8. A graph is a Cayley graph of a cancellative monoid if and only if

it is rooted, simple, deterministic, co-deterministic, forward vertex-transitive.

Proof.

=⇒ : By Theorem 7 and Fact 3.
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⇐= : By Proposition 6. ◭

The previous graph is not co-deterministic hence, by Theorem 8 or Fact 3, is not a Cayley

graph of a cancellative monoid. On the other hand and according to Proposition 6, a

quater-grid G of the following representation:
a a

b

b b

bb

b

a a

a a

is a Cayley graph of a cancellative monoid. Precisely and as for the previous graph, we

associate to each word u ∈ b∗a∗ the unique vertex <u> accessible from the root by the

path labeled by u. By Proposition 6, (VG, ∗<ε>) is a cancellative monoid where

<bman> ∗<ε> <bpaq> = <bm+pan+q> for any m, n, p, q ≥ 0

and we have G = C[[VG, {<a>, <b>}]] with [[<a>]] = a and [[<b>]] = b.

Recall that a Cayley graph of a semigroup M is a generalized Cayley graph C[[M, Q]] such

that M = Q+ whose Q+ = { q1· . . . ·qn | n > 0 ∧ q1, . . . , qn ∈ Q } is the subsemigroup

generated by Q. Theorem 8 can be easily extended into a characterization of the Cayley

graphs of cancellative semigroups. Indeed, a semigroup without an identity is turned into a

monoid by just adding an identity. Precisely a monoid-completion M of a semigroup M is

defined by M = M if M has an identity element, otherwise M = M ∪ {1} whose 1 is

an identity element of M : p·1 = 1·p = p for any p ∈ M . This natural completion does

not preserve the left-cancellative property but it preserves the cancellative property.

◮ Lemma 9. Any monoid-completion of a cancellative semigroup is a cancellative monoid.

Proof.

Let M = M ∪ {1} be a monoid-completion of a cancellative semigroup M without an

identity element.

i) Suppose there are m, e ∈ M such that m·e = m.

In this case, let us check that e is an identity element.

We have m·(e·e) = (m·e)·e = m·e. As · is left-cancellative, we get e·e = e.

Let n ∈ M . So (n·e)·e = n·(e·e) = n·e. As · is right-cancellative, we get n·e = n.

Finally e·(e·n) = (e·e)·n = e·n. As · is left-cancellative, we get e·n = n.

ii) By hypothesis M has no identity element. By (i), there are no m, e ∈ M such that

m·e = m. Let us show that M is left-cancellative.

Let m·p = m·q for some m, p, q ∈ M . Let us check that p = q.

As M is left-cancellative, we only have to consider the case where 1 ∈ {m, p, q}.

If m = 1 then p = 1·p = 1·q = q.

Otherwise m ∈ M and 1 ∈ {p, q}. By (i), we get p = q = 1.

iii) Similarly there are no m, e ∈ M such that e·m = m hence M remains also right-

cancellative. ◭

Let us translate the monoid-completion of cancellative semigroups into their Cayley graphs.
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A root-completion of a graph G is a graph G defined by G = G if G is rooted, otherwise

G ⊂ G ⊆ G ∪ {r}×AG×VG and r is the root of G ; we say that G is rootable into G.

For instance the following non connected graph:

b b

b

aa a a a

b b

b b

b

aa a a a

b b

is forward vertex-transitive but is not rootable into an forward vertex-transitive graph. On

the other hand, a graph consisting of two (isomorphic) deterministic and source-complete

trees over {a, b} is rootable into a deterministic source-complete tree over {a, b}. Finally

the following graph:

a

a

a

a

a

a

b b b

is also rootable into a simple, deterministic, co-deterministic, forward vertex-transitive

graph. We can apply Theorem 8.

◮ Theorem 10. A graph is a Cayley graph of a cancellative semigroup if and only if

it is rootable into a simple, deterministic, co-deterministic, forward vertex-transitive graph.

Proof.

=⇒ : Let G = C[[M, Q]] for some cancellative semigroup M and some generating subset Q

of M i.e. Q+ = M . We have the following two complementary cases.

Case 1 : M has an identity element. By Theorem 8, G is rooted, simple, forward vertex-

transitive, deterministic and co-deterministic. As G has a root, it is rootable into itself.

Case 2 : M is not a monoid. Let M = M ∪ {1} be a monoid-completion of M .

By Lemma 9, M remains cancellative. Furthermore Q∗ = M . Let

G = C[[M, Q]] = G ∪ { 1
[[q]]
−→ q | q ∈ Q }.

By Theorem 8, G is rooted, simple, forward vertex-transitive, deterministic and co-deterministic.

Moreover G is rootable into G.

⇐= : Let a graph G rootable into a simple, deterministic, co-deterministic, forward vertex-

transitive graph G. We have the following two complementary cases.

Case 1 : G is rooted. By Theorem 8 (or Proposition 6), G is a Cayley graph of a cancella-

tive monoid.

Case 2 : G has no root. Let r be the root of G and Q = −→G(r).

So Q ⊆ VG and VG = VG − {r}.

By Proposition 6, G = C[[VG, Q]] for the associative and cancellative path-operation ∗r on

VG of identity element r with VG generated by Q.

As r is not the target of an edge of G and by definition, ∗r remains an internal operation

on VG i.e. p ∗r q 6= r for any p, q ∈ VG .

Finally G = C[[VG , Q]] and (VG , ∗r) is a cancellative semigroup. ◭
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For instance by Theorem 10, the previous graph is a Cayley graph of a cancellative semi-

group. It is isomorphic to

G = { n
a
−→ n + 1 | n > 0 } ∪ { n

a
−→ n− 1 | n < 0 }

∪ { n
b
−→ − n− 1 | n > 0 } ∪ { n

b
−→ − n + 1 | n < 0 }.

We have G = C[[Z − {0} , {−1, 1}]] with [[1]] = a and [[−1]] = b for the following associative

and cancellative path-operation ∗ defined by

m ∗ n = sign(m×n) (|m| + |n|) for any m, n ∈ Z − {0}.

We can now restrict Theorem 8 to the Cayley graphs of groups.

4 Cayley graphs of groups

We present a graph-theoretic characterization for the Cayley graphs of groups: they are

the deterministic, co-deterministic, vertex-transitive, simple and connected graphs (Theo-

rem 17). By removing the connectivity condition and under the assumption of the axiom

of choice, we get a characterization for the generalized Cayley graphs of groups (Theorem 20).

Recall that a group (M, ·) is a monoid whose each element p ∈ M has an inverse p−1 :

p·p−1 = 1 = p−1·p. So C(M) is strongly connected hence by Proposition 4 is vertex-

transitive.

◮ Fact 11. Any generalized Cayley graph of a group is vertex-transitive.

Proof.

Let (M, ·) be a group and [[ ]] : M −→ A be an injective mapping.

By Proposition 4, C[[M ]] is forward vertex-transitive.

As C[[M ]] is strongly connected, C[[M ]] is vertex-transitive.

For any Q ⊆ M , C[[M, Q]] = C[[M ]]
|[[Q]]

remains vertex-transitive. ◭

We start by considering the monoid Cayley graphs of a group M which are the generalized

Cayley graph C[[M, Q]] with Q∗ = M .

◮ Fact 12. Any monoid Cayley graph of a group is strongly connected.

Proof.

Let G = C[[M, Q]] for some group M and some Q ⊆ M with Q∗ = M .

Let p ∈ M . We have to check that 1 −→∗
G p −→∗

G 1.

There exists n ≥ 0 and q1, . . . , qn ∈ Q such that p = q1· . . . ·qn . So 1
[[q1]]...[[qn]]
−→ G p.

For any 1 ≤ i ≤ n, we have q−1
i = qi,1· . . . ·qi,mi

for some mi ≥ 0 and qi,1, . . . , qi,mi
∈ Q.

Thus p
u
−→G 1 for u = [[qn,1]]. . .[[qn,mn

]] . . . [[q1,1]]. . .[[q1,m1
]]. ◭

Let us complete Proposition 6 in the case where the graph is vertex-transitive. In this case,

the path-operation is also invertible.

◮ Proposition 13. For any root r of a deterministic and vertex-transitive graph G,

(VG, ∗r) is a group.

Proof.

It suffices to complete the proof of Proposition 6 when G is in addition vertex-transitive.

Let s ∈ VG . Let us show that s has an inverse.

There exists u ∈ A∗
G such that r

u
−→ s.

As r ≃G s, s is also a root hence there exists v such that s
v
−→ r.
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Let s be the vertex such that r
v
−→ s. So

s
u
−→ s·s and s

v
−→ s·s.

As G is deterministic, we get s·s = r.

As r ≃G s and s
vu
−→ s, we get r

vu
−→ r.

As G is deterministic, we get s
u
−→ r hence s·s = r. ◭

We describe the monoid Cayley graphs of groups from the characterization of the Cay-

ley graphs of left-cancellative monoids (Theorem 7) just by replacing the forward vertex-

transitivity by the vertex-transitivity.

◮ Theorem 14. A graph is a monoid Cayley graph of a group if and only if

it is rooted, simple, deterministic and vertex-transitive.

Proof.

=⇒ : By Theorem 7 and Fact 11.

⇐= : By Propositions 6 and 13. ◭

For instance by Theorem 14, a graph of the following representation:

b
b b

a

a

b
b b

a

a

b
b b

a

a

is a monoid Cayley graph of a group: it is isomorphic to C[[Z, {2, −1}]] for the group (Z, +)

with [[2]] = a and [[−1]] = b.

From Fact 12, we can replace in Theorem 14 the rooted condition by the fact to be strongly

connected. By Fact 3, we can also add the co-determinism condition.

◮ Corollary 15. Any rooted, simple, deterministic and vertex-transitive graph

is strongly connected and co-deterministic.

We can now consider a group Cayley graph as a generalized Cayley graph C[[M, Q]] such that

M is a group equal to the subgroup generated by Q which is the least subgroup (Q ∪ Q−1)∗

containing Q where Q−1 = { q−1 | q ∈ Q } is the set of inverses of the elements in Q.

For instance, the a-line { n
a
−→ n + 1 | n ∈ Z } is the Cayley graph C[[Z, {1}]] of the group

(Z, +) with [[1]] = a. This unrooted graph is not a monoid Cayley graph.

Let us generalize Theorem 14 to these well-known Cayley graphs. We need to be able to

circulate in a graph in the direct and inverse direction of the arrows. Let G be a graph and

let — : AG −→ A − AG be an injective mapping of image AG = { a | a ∈ AG }. A chain

s
u
−→G t is a path labeled by u ∈ (AG ∪ AG)∗ where for any a ∈ AG , we have s

a
−→G t for

t
a
−→G s. Given a vertex r, the path-relation PathG(r) is extended into the chain-relation

ChainG(r) as the ternary relation on VG defined by

(s, t, x) ∈ ChainG(r) if there exists u ∈ (AG ∪ AG)∗ such that r
u
−→G t and s

u
−→G x.

Thus PathG(r) ⊆ ChainG(r) = PathG(r) for G = G ∪ { t
a
−→ s | s

a
−→G t }.

If for any s, t ∈ VG there exists a unique x such that (s, t, x) ∈ ChainG(r), we denote by

∗r : VG×VG −→ VG the binary chain-operation on VG defined by (s, t, s ∗r t) ∈ ChainG(r)

for any s, t ∈ VG ; we also write G∗r when we need to specify G.

Let us adapt Propositions 6 and 13 to this chain-operation.
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◮ Proposition 16. Let r be a vertex of a connected, vertex-transitive, deterministic and

co-deterministic graph G.

Then (VG, ∗r) is a group of identity r generated by −→G(r).

If G is simple then G = C[[VG,−→G(r)]] with [[s]] = a for any r
a
−→G s.

Proof.

i) The graph G remains vertex-transitive. As G is deterministic and co-deterministic, G

is deterministic. As G is connected, G is strongly connected. By applying Propositions 6

and 13 to G, we get that (VG , ∗r) is a group of identity r and VG = VG = (−→G(r))∗

with −→G(r) = −→G(r) ∪ −→G−1(r).

ii) Let us check that −→G−1(r) = (−→G(r))−1.

⊆ : Let s ∈ −→G−1(r) i.e. r −→G−1 s. So s
a
−→G r for some a ∈ A.

As G is source-complete, there exists t such that r
a
−→G t. Thus s

a
−→G s ∗r t.

As G is deterministic, s ∗r t = r hence s = t−1 ∈ (−→G(r))−1.

⊇ : Let s ∈ (−→G(r))−1 i.e. r
a
−→G s−1 for some a ∈ A.

So s
a
−→G s ∗r s−1 = r i.e. s ∈ −→G−1(r).

iii) Suppose that in addition G is simple. Note that G can be not simple. So we define

the graph

Ĝ = G ∪ { t
a
−→ s | s

a
−→G t /−→G s }.

Thus Ĝ remains simple, vertex-transitive, deterministic, and is strongly connected.

Let us check that
Ĝ

∗r = G∗r .

As Ĝ ⊆ G, we get
Ĝ

∗r ⊆ G∗r = G∗r . Let us show the inverse inclusion.

We consider the mapping π : AG ∪ AG −→ A
Ĝ

defined for any a ∈ A
Ĝ

by π(a) = a, and

for any a ∈ AG −A
Ĝ

, π(a) is the unique letter in A
Ĝ

such that t
π(a)
−→G s for any s

a
−→G t.

This makes sense because G is deterministic, co-deterministic and vertex-transitive. Thus

s
a
−→G t =⇒ s

π(a)
−→

Ĝ
t for any a ∈ AG ∪ AG .

By extending π by morphism on (AG ∪ AG)∗, we get

s
u
−→G t =⇒ s

π(u)
−→

Ĝ
t for any u ∈ (AG ∪ AG)∗ .

This implies that G∗r ⊆
Ĝ

∗r .

By Proposition 6, Ĝ = C[[VG,−→
Ĝ

(r)]] with [[s]] = a for any r
a
−→

Ĝ
s.

Precisely for any s ∈ −→
Ĝ

(r), we have

[[s]] =

{
a if r

a
−→G s

a if s
a
−→G r /−→G s.

Finally G = Ĝ|AG = C[[VG,−→G(r)]]. ◭

For instance by Proposition 16, a graph of the following representation:

b b

a

a

b b

a

a

b b

a

a

is a Cayley graph of a group: it is isomorphic to C[[Z×{0, 1}, {(1, 0), (0, 1)}]] with [[(1, 0)]] = a,

[[(0, 1)]] = b and for the chain-operation (m, i) ∗(0,0) (n, j) = (m + n, i + j (mod2)). It is also

isomorphic to the Cayley graph of the group of finite presentation <a, b | ab = ba, b2 = 1>.
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Let us adapt Theorem 14 to simply describe the Cayley graphs of groups.

◮ Theorem 17. A graph is a Cayley graph of a group if and only if

it is connected, simple, deterministic, co-deterministic and vertex-transitive.

Proof.

=⇒ : Let G = C[[M, Q]] for some group M and Q ⊆ M with (Q ∪ Q−1)∗ = M .

By Facts 2, 3, 11, G is simple, vertex-transitive, deterministic and co-deterministic.

By Fact 12, the monoid Cayley graph C[[M, Q ∪ Q−1]] is strongly connected.

Thus G = C[[M, Q ∪ Q−1]]
|[[Q]]

is connected.

⇐= : By Proposition 16. ◭

Theorems 14 and 17 give respectively a characterization of the monoid Cayley graphs of

groups, and the group Cayley graphs. We can now deduce a characterization of the gener-

alized Cayley graphs of groups. First, let us apply Corollary 15 and Theorem 17.

◮ Corollary 18. The connected (resp. strongly connected) components of generalized Cayley

graphs of groups are the (resp. monoid) Cayley graphs of groups.

Let us extend Proposition 16 for non connected graphs.

Let a magma (P, ·) for P a representative set of Comp(G).

We define the extended chain-relation ChainG(P ) as the ternary relation on VG defined by

(s, t, x) ∈ ChainG(P ) if there exists u, v ∈ (AG ∪ AG)∗ such that

πP (s)
u
−→G s and πP (t)

v
−→G t and πP (s) · πP (t)

uv
−→G x.

For any connected and deterministic graph G and any vertex r, ChainG({r}) = ChainG(r).

If for any s, t ∈ VG there exists a unique x such that (s, t, x) ∈ ChainG(P ), we denote by

∗P : VG×VG −→ VG the binary extended chain-operation on VG defined for any s, t ∈ VG

by (s, t, s ∗P t) ∈ ChainG(P ) ; we also write G∗P when we need to specify G.

We can extend Proposition 16.

◮ Proposition 19. Let G be a vertex-transitive, deterministic and co-deterministic graph.

Let a group on a representative set P of Comp(G) generated by P0 and of identity r.

Then (VG, ∗P ) is a group of identity r generated by P0 ∪ −→G(r).

If G is simple then G = C[[VG,−→G(r)]] with [[s]] = a for any r
a
−→G s.

Proof.

i) Let C ∈ Comp(G) with r ∈ VC .

By Proposition 16, (VC , ∗r) is a group of identity r and is generated by −→G(r).

We take the group product (P ×VC , ·) with (p, x) · (q, y) = (p · q, x ∗r y) for any p, q ∈ P

and x, y ∈ VC . This group is of identity (r, r) and is generated by P0×{r} ∪ {r}×−→G(r).

As G is vertex-transitive, deterministic and co-deterministic, we can define the mapping

f : P ×VC −→ VG such that r
u
−→G x =⇒ p

u
−→G f(p, x) for (any) u ∈ (AG ∪ AG)∗.

Thus f is a bijection hence (VG, ·) is a group where f(p, x) · f(q, y) = f(p · q, x ∗r y) for

any p, q ∈ P and x, y ∈ VC . This group (VG, ·) is of identity f(r, r) = r and is generated

by f(P0×{r}) ∪ f({r}×−→G(r)) = P0 ∪ −→G(r).

ii) Let us show that the operation · on VG is equal to ∗P .

Let p, q ∈ P and x, y ∈ VC . We have to check that f(p, x) ∗P f(q, y) = f(p, x) · f(q, y).

Let u, v ∈ (AG ∪ AG)∗ such that r
u
−→G x and r

v
−→G y.

By definition of ∗P , we have x
v
−→G x ∗r y hence r

uv
−→G x ∗r y.

By definition of f , we get p · q
uv
−→G f(p · q, x ∗r y), p

u
−→G f(p, x) and q

v
−→G f(q, y).
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By definition of ∗P , we have p · q
uv
−→G f(p, x) ∗P f(q, y).

As G is deterministic, we get f(p, x) ∗P f(q, y) = f(p · q, x ∗r y) = f(p, x) · f(q, y).

iii) Suppose that in addition G is simple. Let [[y]] = a for any r
a
−→G y. Thus

C[[VG,−→G(r)]] = { s
a
−→ s · y | s ∈ VG ∧ r

a
−→ y }

= { s
a
−→ s ∗P y | s ∈ VG ∧ r

a
−→ y } = G.

◭

In ZF set theory, the axiom of choice is equivalent to the property that any non-empty set

has a group structure [9]. Under the assumption of the axiom of choice, we can characterize

the generalized Cayley graphs of groups.

◮ Theorem 20. In ZFC set theory, a graph is a generalized Cayley graph of a group

if and only if it is simple, deterministic, co-deterministic, vertex-transitive.

Proof.

By Facts 2, 3, 11, any generalized Cayley graph of a group is simple, vertex-transitive, de-

terministic and co-deterministic.

Conversely let G be a simple, deterministic, co-deterministic, vertex-transitive graph.

Using ZFC set theory, there exists a representative set P of Comp(G) and a binary

operation · such that (P, ·) is a group. By Proposition 19, (VG, ∗P ) is a group and

G = C[[VG,−→G(r)]] with [[s]] = a for any r
a
−→G s. ◭

For instance let us consider the following graph:

G = { (m, i, p)
a
−→ (m + 1, i, p) | m, p ∈ Z ∧ i ∈ {0, 1} }

∪ { (m, i, p)
b
−→ (m, 1− i, p) | m, p ∈ Z ∧ i ∈ {0, 1} }

of representation the countable repetition of the preceding one.

By Theorem 20, G = C[[Z×{0, 1}×Z, {(1, 0, 0), (0, 1, 0)}]] with [[(1, 0, 0)]] = a, [[(0, 1, 0)]] = b

and for the group operation (m, i, p) · (n, j, q) = (m + n, i + j (mod2), p + q).

Let us summarize the characterizations obtained for the Cayley graphs.

Cancellative monoids+ co-deterministic (8)

Groups

Left-cancellative monoids

+ vertex-transitive (14)

rooted + simple + deterministic + forward vertex-transitive (7)

By relaxing the condition of being rooted by that of connectivity, we have obtained a graph-

theoretic characterization for the Cayley graphs of groups (Theorem 17).

5 Generalized Cayley graphs of left-cancellative magmas

Under ZFC set theory, we will give a fully graph-theoretic characterization for generalized

Cayley graphs of left-cancellative magmas (Theorem 25), and then when they have an iden-

tity (Theorem 27).

Recall that an element e of a magma (M, ·) is a left identity (resp. right identity) if

e·p = p (resp. p·e = p) for any p ∈ M . If M has a left identity e and a right identity e′

then e = e′ which is an identity (or neutral element) of M .

In order to characterize the Cayley graphs of left-cancellative magmas with or without an

identity, we need to restrict the path-relation. For any graph G and any vertex r, we define
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the edge-relation EdgeG(r) as the ternary relation on VG defined by

(s, t, x) ∈ EdgeG(r) if there exists a ∈ AG such that r
a
−→G t and s

a
−→G x.

So EdgeG(r) ⊆ PathG(r). If for any s, t ∈ VG there exists a unique x such that (s, t, x) ∈

EdgeG(r), we denote by ×r : VG×VG −→ VG the binary edge-operation on VG defined by

(s, t, s ×r t) ∈ EdgeG(r) for any s, t ∈ VG ; we also write G×r when we need to specify G.

Let us give conditions for the existence of this edge-operation. We need to introduce two

basic graph notions. We say that a vertex r of a graph G is an 1-root if r −→G s for any

vertex s of G. Thus a graph is complete if and only if all its vertices are 1-roots.

◮ Fact 21. Any left identity of a magma M is an 1-root of C(M).

Moreover we say that a graph is loop-complete if one vertex has an a-loop then all the

vertices have an a-loop:

∃ r ∈ VG (r
a
−→G r) =⇒ ∀ s ∈ VG (s

a
−→G s).

◮ Fact 22. Any generalized Cayley graph of a left-cancellative magma with a right identity

is loop-complete.

Proof.

Let M be a left-cancellative magma with a right-identity e.

Let G = C[[M, Q]] be a generalized Cayley graph of M .

Let p
[[q]]
−→G p for some p ∈ M and q ∈ Q. So p·q = p = p·e.

As M is left-cancellative, q = e. Thus r
[[q]]
−→G r·q = r·e = r for any r ∈ M . ◭

Let us adapt Propositions 6 to the edge-operation.

◮ Proposition 23. Let r be an 1-root of a deterministic source-complete simple graph G.

Then (VG, ×r) is a left-cancellative magma of left-identity r and

G = C[[VG]] with [[s]] = a for any r
a
−→G s.

If G is loop-complete then r is an identity.

Proof.

i) Let s, t ∈ VG . Let us check that there is a unique x such that (s, t, x) ∈ EdgeG(r).

As r is an 1-root and G is simple, there exists a unique a ∈ AG such that r
a
−→G t.

As G is source-complete and deterministic, there exists a unique vertex x such that

s
a
−→G x. Thus ×r exists and is denoted by · in the rest of this proof.

ii) Let us check that (VG, ·) is left-cancellative. Assume that s·t = s·t′.

As r is an 1-root, there exists a, a′ ∈ AG such that r
a
−→G t and r

a′

−→G t′.

By definition of · we get s
a
−→G s · t and s

a′

−→G s·t′ = s·t.

As G is simple, we have a = a′. As G is deterministic, it follows that t = t′.

iii) Let us check that r is a left identity of (VG, ·).

Let s ∈ VG . As r is an 1-root, there exists a ∈ AG such that r
a
−→G s.

By definition of · we have r
a
−→G r·s. As G is deterministic, we get r·s = s.

iv) As r is an 1-root and G is simple, we can define the mapping [[ ]] : VG −→AG by

[[s]] = a for r
a
−→G s.

As G is deterministic, [[ ]] is an injection. As G is source-complete, [[ ]] is a bijection.

Let us show that G = C[[VG]].

⊆ : Let s
a
−→G t. As G is source-complete, there exists r′ such that r

a
−→G r′.

So s
a
−→G s·r′. As G is deterministic, s·r′ = t. We have [[r′]] = a hence s

a
−→C[[VG]] s·r′ = t.
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⊇ : Let s
a
−→C[[VG]] t. There exists (a unique) r′ ∈ VG such that [[r′]] = a.

Thus t = s·r′ and r
a
−→G r′. So s

a
−→G s·r′ = t.

v) Assume that G is loop-complete. Let us check that r is also a right identity.

As r is an 1-root, there is (a unique) a ∈ AG such that r
a
−→G r.

Let s ∈ VG . As G is loop-complete, we get s
a
−→G s. By definition of · we have s

a
−→ s·r.

As G is deterministic, s = s·r. Thus r is a right identity. ◭

We get a fully graph-theoretic characterization of the Cayley graphs C[[M ]] for any left-

cancellative magma M with a left identity.

◮ Proposition 24. A graph is equal to C[[M ]] for some left-cancellative magma M with a

left identity if and only if it is simple, deterministic, source-complete and 1-rooted.

Proof.

=⇒ : let G = C[[M ]] for some left-cancellative magma (M, ·) with a left identity r, and

some injective mapping [[ ]]. By Facts 2 and 3, G is deterministic, source-complete and

simple. By Fact 21, r is an 1-root of G.

⇐= : By Proposition 23. ◭

Under the assumption of the axiom of choice, we can characterize the generalized Cayley

graphs of left-cancellative magmas.

◮ Theorem 25. In ZFC set theory, the following graphs define the same family :

a) the generalized Cayley graphs of left-cancellative magmas,

b) the generalized Cayley graphs of left-cancellative magmas with a left identity,

c) the simple, deterministic, source-complete graphs.

Proof.

b) =⇒ a) : immediate.

a) =⇒ c) : by Facts 2 and 3.

c) =⇒ b) : let G be a simple, deterministic and source-complete graph.

Assume the axiom of choice. Let r be a vertex of G with

VG − −→G(r) = { s ∈ VG | r /−→G s } of minimal cardinality.

For each vertex s, we take an injection fs from VG −−→G(r) to VG −−→G(s) and whose

fr is the identity. We define the graph

<G> = { s
p
−→ t | ∃ a (s

a
−→G t ∧ r

a
−→G p) } ∪ { s

t
−→ fs(t) | s ∈ VG ∧ t ∈ Dom(fs) }.

Thus <G> remains simple, deterministic, source-complete with V<G> = VG = A<G> .

Furthermore r
s
−→<G> s for any s ∈ VG hence r is an 1-root of <G>.

By Proposition 23, <G> = C(VG) for (VG, ×r) left-cancellative, of left identity r with

s
t
−→<G> s ×r t for any s, t ∈ VG .

Finally G = C[[VG , −→G(r)]] with [[s]] = a for any r
a
−→G s. ◭

For instance, let G = { m
0
−→ 0 | m ≥ 0 } ∪ { m

1
−→ m + 1 | m ≥ 0 } represented by

0 0

1 1

It is simple, deterministic, source-complete but without 1-root. By Theorem 25, this graph

is a generalized Cayley graph of a left-cancellative magma with a left identity. Precisely we

complete G into the graph
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<G> = { m
0
−→ 0 | m ≥ 0 } ∪ { m

n
−→ m + n | m ≥ 0 ∧ n > 0 }

having 0 as 1-root, and which remains simple, deterministic, source-complete.

By Proposition 23, the magma (N, ×0) with the edge-operation ×0 of <G> i.e.

m ×0 0 = 0 and m ×0 n = m + n for any m ≥ 0 and n > 0

is left-cancellative and 0 is a left identity. Furthermore G = C(N, {0, 1}).

We can now characterize the generalized Cayley graphs of the left-cancellative magmas with

an identity. We just have to add the loop-complete property to restrict Proposition 24 to

left-cancellative magmas with an identity element.

◮ Proposition 26. A graph is equal to C[[M ]] for some left-cancellative magma M with

an identity if and only if it is simple, deterministic, source-complete, loop-complete and

1-rooted.

Proof.

=⇒ : By Proposition 24 and Fact 22.

⇐= : By Proposition 23. ◭

We restrict Theorem 25 to left-cancellative magmas having a right identity.

◮ Theorem 27. In ZFC set theory, the following graphs define the same family :

a) the generalized Cayley graphs of left-cancellative magmas with a right identity,

b) the generalized Cayley graphs of left-cancellative magmas with an identity,

c) the simple, deterministic, source-complete and loop-complete graphs.

Proof.

b) =⇒ a) : immediate.

a) =⇒ c) : By Facts 2, 3, 22.

c) =⇒ b) : Let G be a graph which is simple, deterministic, source and loop-complete.

Let us apply the construction given in the proof of Theorem 25. As G is loop-complete and

if r /−→G r, we can add the condition that fs(r) = s for any s ∈ VG . Thus <G> remains

loop-complete and by Proposition 23, r is an identity for ×r . ◭

For instance, we denote by N+ = N − {0} and we consider the graph

G = { 0n 0
−→ 0n+1 | n ≥ 0 } ∪ { ui

0
−→ u | u ∈ 0∗

N+
∗ ∧ i ∈ N+ }.

of vertex set VG = 0∗
N+

∗ and represented as follows:

0 0 0

0 0 0 0 00 0

It is simple, deterministic, source-complete and loop-complete (and forward vertex-transitive).

By Theorem 27, this graph is a generalized Cayley graph of a left-cancellative magma having

an identity. For instance, we complete G into the graph

<G> = G ∪ { 0mu
0nv
−→ 0m+nuv | m, n ≥ 0 ∧ u, v ∈ N+

∗ ∧ 0nv 6= 0 }

which remains simple, deterministic, source-complete, loop-complete, with the 1-root ε.
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By Proposition 23, G = C(VG, {0}) for the left-cancellative magma (VG, ×ε) of identity ε

with the edge-operation ×ε of <G> defined for any m, n ≥ 0, u, v ∈ N+
∗ and i ∈ N+ by

0mui ×ε 0 = 0mu otherwise 0mu ×ε 0nv = 0m+nuv.

We will see that we can define <G> so that in addition, any vertex is an 1-root i.e. <G>

is complete (see Theorem 33).

6 Generalized Cayley graphs of left-quasigroups

We can now refine the previous characterization of generalized Cayley graphs from left-

cancellative magmas to left-quasigroups (Theorem 32). These algebraic structures define

the same family of finitely labeled generalized Cayley graphs (Theorem 33).

A magma (M, ·) is a left-quasigroup if for each p, q ∈ M, there is a unique r ∈ M such

that p·r = q denoted by r = p\q the left quotient of q by p.

This property ensures that each element of M occurs exactly once in each row of the Cayley

table for · . For instance {a, b, c} is a left-quasigroup for · defined by the following Cayley

table:

· a b c

a a b c

b b a c

c c b a

Note that · is not associative since c · (b · c) = a and (c · b) · c = c, and is not right-

cancellative since a·b = c·b. The first figure in Section 3 is a representation of C(M) for

the semigroup M = {a, b} with x·y = y for any x, y ∈ M . This semigroup is also a

left-quasigroup which is not right-cancellative.

Any left-quasigroup M is left-cancellative. The converse is true for M finite but is false in

general: (N, +) is cancellative but is not a left-quasigroup. Indeed,

M is a left-quasigroup ⇐⇒ M is left-cancellative and p·M = M for any p ∈ M .

Let us refine Proposition 23 in the case where the graph is also complete.

◮ Proposition 28. Let G be a simple, deterministic, complete and source-complete graph.

For any vertex r, (VG, ×r) is a left-quasigroup.

Proof.

Let r be a vertex of G. As G is complete, r is an 1-root.

By Proposition 23, (VG, ×r) is a left-cancellative magma.

Let s ∈ VG . It remains to check that VG ⊆ s ×r VG . Let t ∈ VG .

As G is complete, there exists a ∈ AG such that s
a
−→G t.

As G is source-complete, there exists t′ ∈ VG such that r
a
−→G t′.

By definition of ×r we have s
a
−→G s ×r t′. As G is deterministic, we get t = s ×r t′. ◭

Let us give a simple characterization of the generalized Cayley graphs for the left-quasigroups.

For the previous left-quasigroup M , its graph C(M) is the following:
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a

b

c

aa

b c

aa

b c

We begin by characterizing these graphs.

◮ Proposition 29. We have the following equivalences :

a) a graph is equal to C[[M ]] for some left-quasigroup M (resp. with a right identity),

b) a graph is equal to C[[M ]] for some left-quasigroup M with a left identity (resp. identity),

c) a graph is simple, deterministic, complete, source-complete (resp. and loop-complete).

Proof.

b) =⇒ a) : immediate.

a) =⇒ c) : let G = C[[M ]] for some left-quasigroup (M, ·) and injective mapping [[ ]].

By Facts 2 and 3, G is deterministic, source-complete and simple.

For any p, q ∈ M , we have p
[[p\q]]
−→G q hence G is complete.

If in addition M has a right identity then, by Fact 22, G is loop-complete.

c) =⇒ b) : by Propositions 23 and 28. ◭

For instance the magma M = {0, 1} with i · j = 1 − j for any i, j ∈ {0, 1}, is a left-

quasigroup without left and right identity element. By Propositions 23 and 28, the magma

N = {0, 1} with the edge-operation ×0 of C(M) defined by i ×0 j = j for any i, j ∈ {0, 1}

is a left-quasigroup with 0 and 1 are left identities, and C(M) = C[[N ]] where [[0]] = 1 and

[[1]] = 0.

We now extend Proposition 29 to the generalized Cayley graphs of left-quasigroups. To do

this, we must recall and define basic graph notions.

Let G be a graph. For any vertex s, its out-degree δ+
G(s) = |G ∩ {s}×A×VG| is the number

of edges of source s. The out-degree of G is the cardinal ∆+
G = sup{ δ+

G(s) | s ∈ VG }.

We say that G is of bounded out-degree when ∆+
G is finite.

We have ∆+
G = |AG| for G deterministic and source-complete.

◮ Fact 30. For any vertex s of a graph G, we have

δ+
G(s) ≤ |AG| for G deterministic, and |AG| ≤ δ+

G(s) for G source-complete.

In particular by Fact 2 and for any generalized Cayley graph G,

G is of bounded out-degree ⇐⇒ G is finitely labeled.

By removing the labeling of a graph G, we get the binary unlabeled edge relation on VG :

−→G = { (s, t) | ∃ a ∈ AG (s, a, t) ∈ G }.

Let R ⊆ V ×V be a binary relation on a set V i.e. is an unlabeled graph.

The image of P ⊆ V by R is the set R(P ) = { t | ∃ s ∈ P (s, t) ∈ R }.

So the out-degree of s ∈ V is δ+
R(s) = |R(s)| and ∆+

R = sup{ δ+
R(s) | s ∈ V } is the

out-degree of R. For any graph G and any vertex s, we have δ+
→G

(s) ≤ δ+
G(s) hence

∆+
→G

≤ ∆+
G, and we have equalities for G simple.

A relation R is an out-regular relation if all the elements of V have the same out-degree:

|R(s)| = |R(t)| for any s, t ∈ V .

Let us give simple conditions on R so that its complement V ×V − R is out-regular.
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◮ Lemma 31. Let R ⊆ V ×V and S = V ×V − R the complement of R w.r.t. V ×V .

If R is out-regular and ∆+
R < ω then S is out-regular.

If R is infinite and ∆+
R < |V | then S is out-regular.

Proof.

i) When ∆+
R is finite, we have S(s) = |V | − |R(s)| for any s ∈ V .

In addition for R out-regular and for any s, t ∈ V , |R(s)| = |R(t)| hence |S(s)| = |S(t)|.

ii) When R is infinite with ∆+
R < |V |, we have |S(s)| = |V | for any s ∈ V .

Hence S is out-regular on V with ∆+
S = |V |. ◭

We say that a graph G is out-regular if −→G is out-regular i.e. all the vertices have the

same number of targets. For instance G = {s
a
−→ t , t

a
−→ s , t

b
−→ s} is out-regular since

−→G(s) = {t} and −→G(t) = {s} while δ+
G(s) = 1 and δ+

G(t) = 2.

We also say that G is co-out-regular if its unlabeled complement is out-regular i.e.

(VG×VG − −→G) = /−→G is an out-regular relation on VG .

Under the assumption of the axiom of choice, we can characterize the generalized Cayley

graphs of left-quasigroups.

◮ Theorem 32. In ZFC set theory, the following graphs define the same family :

a) the generalized Cayley graphs of left-quasigroups (resp. with a right identity),

b) the generalized Cayley graphs of left-quasigroups with a left identity (resp. an identity),

c) the simple, deterministic, source-complete (resp. and loop-complete) co-out regular graphs.

Proof.

b) =⇒ a) : immediate.

a) =⇒ c) : let G = C[[M, Q]] for some left-quasigroup M and Q ⊆ M .

By Proposition 29, G = C[[M ]]
| [[Q]]

remains simple, deterministic and source-complete.

For any s ∈ M , δ+
→/ G

(s) = |M − Q| hence G is co-out-regular.

If in addition M has a right identity then, by Fact 22, G is loop-complete.

c) =⇒ b) : let G be a graph which is simple, deterministic, co-out-regular, source-complete

(resp. and loop-complete). The co-out-regularity of G means that |VG − −→G(s)| =

|VG −−→G(t)| for any s, t ∈ VG . Let r be a vertex of G. Assume the axiom of choice. Let

us apply the construction given in the proof of Theorem 25. As G is co-out-regular, we can

now take for each vertex s a bijection fs from VG −−→G(r) to VG −−→G(s) and whose fr

is the identity. As for the proof of Theorem 27, if G is loop-complete and r /−→G r, we add

the condition that fs(r) = s for any s ∈ VG . The graph obtained <G> remains simple,

deterministic, source-complete (resp. loop-complete) and is in addition a complete graph.

By Proposition 28, (VG, ×r) is a left-quasigroup. By Proposition 23, r is a left-identity

(resp. is an identity) and G = C[[VG , −→G(r)]] with [[s]] = a for any r
a
−→G s. ◭

For instance, let G = { m
0
−→ 0 | m ≥ 0 } ∪ { m

1
−→ m + 1 | m ≥ 0 } be the graph that

we had considered after Theorem 25 and represented by

0 0

1 1

By adding edges, we transform G into the following complete graph:

<G> = G ∪ { m
n
−→ n − 1 | 2 ≤ n ≤ m + 1 } ∪ { m

n
−→ n | m ≥ 0 ∧ n > m + 1 }

which remains simple, deterministic and source-complete.
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By Propositions 23 and 29, G = C(N, {0, 1}) for the left-quasigroup (N, ×0) of left-

identity 0 with the edge-operation ×0 of <G> defined for any m ≥ 0 by

m ×0 0 = 0 ; m ×0 n = n− 1 ∀ 2 ≤ n ≤ m + 1

m ×0 1 = m + 1 ; m ×0 n = n ∀ n > m + 1.

Another example is given by a graph G of the following representation:

a

b b

a a a a

b b

It is simple, deterministic, co-out-regular, source-complete and loop-complete.

By Theorem 32, this graph is a generalized Cayley graph of a left-quasigroup with an identity.

Indeed, by replacing a by 0 and b by 1, G is isomorphic to the following graph:

H = { m
0
−→ m | m ≥ 0 } ∪ { 1

1
−→ 0 } ∪ { m

1
−→ 1 | m ≥ 0 ∧ m 6= 1 }.

We complete H into the graph:

<H> = { m
0
−→ m | m ≥ 0 } ∪ { m

m
−→ 0 | m ≥ 0 }

∪ { m
n
−→ n | m ≥ 0 ∧ n > 0 ∧ m 6= n }.

So <H> remains simple, deterministic, source-complete and loop-complete.

Furthermore <H> is complete i.e. any vertex is an 1-root.

By Proposition 23, the magma (N, ×0) with the edge-operation ×0 of <H> i.e.

m ×0 0 = m ; m ×0 m = 0 ; m ×0 n = n for any m, n ≥ 0 with m 6= n and n > 0

is a left-quasigroup of identity element 0.

Furthermore G is isomorphic to C[[N, {0, 1}]] with [[0]] = a and [[1]] = b.

The co-out-regularity in Theorem 32 can not be removed. For instance, consider the monoid

(N, +) which is is not a left-quasigroup. Its graph C(N) = { m
n
−→ m + n | m, n ≥ 0 } is

simple, deterministic and source-complete. Furthermore we have 0
n
−→C(N) n for any n ≥ 0

while there is no edge from 1 to 0. By Proposition 29, this graph is not a generalized

Cayley graph of a left-quasigroup.

By Lemma 31, the co-out-regularity in Theorem 32 can be removed for the graphs of bounded

out-degree which coincides with the characterization of Theorem 25. In this case, we can

also remove the assumption of the axiom of choice.

◮ Theorem 33. For any finitely labeled graph G, the following properties are equivalent :

a) G is a generalized Cayley graph of a left-cancellative magma (resp. with a right identity),

b) G is a gen. Cayley graph of a left-quasigroups with a left identity (resp. an identity),

c) G is simple, deterministic, source-complete (resp. and loop-complete).

Proof.

b) =⇒ a) : immediate.

a) =⇒ c) : by Facts 2, 3, 22.

c) =⇒ b) : let G be a simple, deterministic and source-complete graph of finite label set.

By Fact 30, G is of bounded out-degree. To each injective function ℓ : AG −→ AG , we

associate a permutation ℓ on AG extending ℓ i.e. ℓ(a) = ℓ(a) for every a ∈ Dom(ℓ).

Let r be a vertex of G. For each vertex s, we associate the injective function:

ℓs = { (a, b) | ∃ t (r
a
−→G t ∧ s

b
−→G t) }.

We define the following graph:
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≪G≫ = { s
p
−→ t | ∃ a (r

a
−→G p ∧ s

a
−→G t) }

∪ { s
p
−→ t | ∃ a ∈ AG −Dom(ℓs) (r

a
−→G t ∧ s

ℓs(a)
−→G p) }

∪ { s
t
−→ t | t ∈ VG − (−→G(r) ∪ −→G(s)) }.

For G of vertex set VG = {p, q, r, s, t, x} with the following edges from r and s :

b

s

a

t

q

p

x

a

b

r

the graph ≪G≫ has the following edges from s :

s t

q

p

x

qr

s

x
p

t

r

Thus ≪G≫ remains simple, deterministic, source complete with V≪G≫ = VG = A≪G≫ .

Furthermore ≪G≫ is complete with r
s
−→≪G≫ s for any s ∈ VG . By Proposition 23, we

have ≪G≫ = C(VG) for the left-cancellative magma (VG, ×r) of left identity r with

s
t
−→≪G≫ s ×r t for any s, t ∈ VG .

Finally G = C[[VG , −→G(r)]] with [[s]] = a for any r
a
−→G s.

Now suppose that G is loop-complete. We distinguish the two complementary cases below.

Case 1 : all the vertices of G have a loop of the same label.

Then ≪G≫ remains loop-complete and by Proposition 23, r is an identity of ×r .

Case 2 : G has no loop.

We take a new label a ∈ A − AG and we redefine ≪G≫ as being ≪G′≫ for

G′ = G ∪ { s
a
−→ s | s ∈ VG }. We conclude by Case 1. ◭

For the previous example, we have ≪H≫ = <H>.

For the penultimate example, we have

≪G≫ = { m
1
−→ m + 1 | m ≥ 0 } ∪ { m

m+1
−→ 1 | m ≥ 0 }

∪ { m
n
−→ n | m, n ≥ 0 ∧ n 6= 1 ∧ n 6= m + 1 }.

For the last example of the previous section (after Theorem 27), we have

≪G≫ = { 0m ε
−→ 0m | m ≥ 0 } ∪ { 0m 0

−→ 0m+1 | m ≥ 0 }

∪ { 0m 0m

−→ ε | m > 0 } ∪ { 0m 0m+1

−→ 0 | m > 1 } ∪ { 0
00
−→ ε }

∪ { 0m u
−→ u | u ∈ 0∗

N+
∗ − {ε, 0, 0m, 0m+1} }

∪ { ui
ε
−→ ui | u ∈ 0∗

N+
∗ ∧ i ∈ N+ } ∪ { ui

0
−→ u | u ∈ 0∗

N+
∗ ∧ i ∈ N+ }

∪ { ui
ui
−→ ε | u ∈ 0∗

N+
∗ − {ε} ∧ i ∈ N+ } ∪ { ui

u
−→ 0 | u ∈ 0∗

N+
∗ ∧ i ∈ N+ }

∪ { i
i
−→ 0 | i ∈ N+ } ∪ { ui

v
−→ v | u, v ∈ 0∗

N+
∗ ∧ i ∈ N+ ∧ v 6∈ {ε, 0, u, ui} }.
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7 Generalized Cayley graphs of quasigroups

We can now refine the previous characterization of generalized Cayley graphs from left-

quasigroups (Theorem 32) to quasigroups (Theorem 41).

A magma (M, ·) is a quasigroup if · obeys the Latin square property: for each p, q ∈ M,

there is a unique r ∈ M such that p·r = q denoted by r = p\q the left quotient of q by p,

there is a unique s ∈ M such that s·p = q denoted by s = q/p the right quotient of q by p.

This property ensures that each element of M occurs exactly once in each row and exactly

once in each column of the Cayley table for · . The previous finite left-quasigroup is not a

quasigroup. On the other hand, ({a, b, c}, ·) is a quasigroup with · defined by the Cayley

table:

· a b c

a a c b

b c b a

c b a c

Its Cayley graph C({a, b, c}) is represented as follows:
a

aa

b c

b c

c b

a

Note that · is not associative: a · (b · c) = a and (a · b) · c = c. Furthermore,

M is a quasigroup ⇐⇒ M is cancellative and p · M = M = M · p for any p ∈ M .

Let us refine Proposition 28 in the case where the graph is also co-deterministic and target-

complete.

◮ Proposition 34. Let G be a graph which is simple, deterministic and co-deterministic,

complete, source-complete and target-complete. For any vertex r, (VG, ×r) is a quasigroup.

Proof.

Let r be a vertex of G and · be the edge-operation ×r .

By Proposition 28, (VG, ·) is a left-quasigroup.

i) Let us check that (VG, ·) is right-cancellative. Assume that s · t = s′ · t.

As G is complete, there exists a such that r
a
−→G t.

By definition of · we have s
a
−→G s · t and s′ a

−→G s′ · t = s · t.

As G is co-deterministic, we get s = s′.

ii) Let t ∈ VG . Let us check that VG ⊆ VG · t . Let s ∈ VG .

As G is complete, there exists a ∈ AG such that r
a
−→G t.

As G is target-complete, there exists s′ ∈ VG such that s′ a
−→G s.

By definition of · we have s′ a
−→G s′ · t. As G is deterministic, we get s = s′ · t. ◭

Let us restrict Proposition 29 to the quasigroups.

◮ Proposition 35. We have the following equivalences :

a) a graph is equal to C[[M ]] for some quasigroup M (resp. with a right identity),

b) a graph is equal to C[[M ]] for some quasigroup M with a left identity (resp. an identity),
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c) a graph is simple, deterministic, co-deterministic, complete, source-complete,

target-complete (resp. and loop-complete).

Proof.

b) =⇒ a) : immediate.

a) =⇒ c) : let G = C[[M ]] for some quasigroup (M, ·) and injective mapping [[ ]].

By Proposition 29, G is simple, deterministic, complete and source-complete.

By Fact 3, G is co-deterministic.

For any p, q ∈ M , we have p/q
[[q]]
−→G p hence G is target-complete.

If in addition M has a right identity then, by Fact 22, G is loop-complete.

c) =⇒ b) : By Propositions 23 and 34. ◭

For instance let us consider the division ÷ on R+ = ]0, +∞[. So (R+, ÷) is a quasigroup

of right identity 1. Furthermore ×1 is the multiplication on R+. Thus C(R+) for the

quasigroup (R+, ÷) is equal to C[[R+]] for the group (R+, ×1) with [[x]] = 1
x for any x > 0.

We now adapt Theorem 32 to the quasigroups. This will require a more extensive develop-

ment than what has been done with Theorem 32.

For any vertex s of a graph G, its in-degree δ−
G(s) = |G ∩ VG×A×{s}| = δ+

G−1(s) is the

number of edges of target s, and δG(s) = δ+
G(s) + δ−

G(s) is the degree of s.

The in-out-degree of G is the cardinal

∆G = sup
(
{ δ+

G(s) | s ∈ VG } ∪ { δ−
G(s) | s ∈ VG }

)
.

We say that a graph G is of bounded degree when ∆G is finite.

Let R ⊆ V ×V be a binary relation on a set V . The in-degree of s ∈ V is δ−
R(s) = |R−1(s)|

for R−1 = { (t, s) | (s, t) ∈ R } the inverse of R. The in-out-degree of R is

∆R = sup
(
{ δ+

R(s) | s ∈ V } ∪ { δ−
R(s) | s ∈ V }

)
.

A relation R is a regular relation on V if |R(s)| = |R−1(s)| = ∆R for any s ∈ V .

Let us apply Lemma 31 to R and R−1.

◮ Corollary 36. Let R ⊆ V ×V and S = V ×V − R the complement of R w.r.t. V ×V .

If R is regular and ∆R < ω then S is regular.

If R is infinite and ∆R < |V | then S is regular.

An edge-labeling of R is a mapping c : R −→ A defining the respective graph and color set

Rc = { (s, c(s, t), t) | (s, t) ∈ R } and c(R) = { c(s, t) | (s, t) ∈ R } = ARc .

An edge-coloring of R is an edge-labeling c of R such that Rc is a deterministic and

co-deterministic graph. In that case, we say that R is |c(R)|-edge-colorable and we have

|c(R)| ≥ ∆R . We will give general conditions for a relation R to be ∆R-edge-colorable.

An undirected edge-coloring of R is an edge-labeling c of R such that two adjacent couples

of R have distinct colors: for any (s, t) , (s′, t′) ∈ R,

if (s, t) 6= (s′, t′) and {s, t} ∩ {s′, t′} 6= ∅ then c(s, t) 6= c(s′, t′).

Any undirected edge-coloring is an edge-coloring.

Let V ′ = { s′ | s ∈ V } be a disjoint copy of V i.e. ′ is a bijection from V to a disjoint

set V ′. We transform any relation R ⊆ V ×V into the relation

R′ = { (s, t′) | (s, t) ∈ R } ⊆ V ×V ′

and any edge-labeling c of R into the edge-labeling c′ of R′ defined by

c′(s, t′) = c(s, t) for any (s, t) ∈ R.

So ∆R = ∆R′ and for any edge-labeling c of R,
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c is an edge-coloring of R ⇐⇒ c′ is an edge-coloring of R′

⇐⇒ c′ is an undirected edge-coloring of R′.

As R′ ⊆ V ×V ′ with V ∩ V ′ = ∅, R′ is a bipartite relation hence for R′ finite, and by

König’s theorem [11], R′ has an undirected ∆R′ -edge-coloring. This implies that we have

an edge-coloring of any finite relation R using ∆R colors.

◮ Lemma 37. Any finite binary relation R is ∆R-edge-colorable.

Proof.

Instead of applying König’s theorem to R′, we will adapt its standard proof directly to R.

Let n ≥ 0, R = {(s1, t1), . . . , (sn, tn)} and k = ∆R .

By induction on 0 ≤ i ≤ n, let us construct an edge-coloring ci of Ri = {(s1, t1), . . . , (si, ti)}

in [k] = {1, . . . , k}.

For i = 0, the empty function c0 is an edge-coloring of R0 = ∅.

Let 0 ≤ i < n and ci be an edge-coloring of Ri in [k]. We denote by s = si+1 , t = ti+1 ,

Os = { ci(s, q) | (s, q) ∈ Dom(ci) } and It = { ci(p, t) | (p, t) ∈ Dom(ci) }.

We distinguish the two complementary cases below.

Case 1 : Os ∪ It ⊂ {1, . . . , k}. We extend ci to the edge-coloring ci+1 of Ri+1 by defining

ci+1(s, t) = min{ j | j 6∈ Os ∪ It }.

Case 2 : Os ∪ It = {1, . . . , k}.

As (s, t) 6∈ Dom(ci), we have |Os| < k and |It| < k. So ¬(Os ⊆ It) and ¬(It ⊆ Os).

Thus there exists a ∈ Os − It and b ∈ It − Os . In particular a 6= b.

As Rci is deterministic and co-deterministic, there are unique s′ and t′ such that ci(s, t′) =

a and ci(s
′, t) = b. This is illustrated as follows:

t′ a
←− s −→ t

b
←− s′

where the labeled relation
x
−→ for any x ∈ {1, . . . , k} is defined by

x
−→ = { (p, q) ∈ Dom(ci) | ci(p, q) = x }.

Let us consider the chain in Rci of maximal length and of the form

s
a
−→

b
←−

a
−→

b
←− . . .

As b 6∈ Os and Rci is deterministic and co-deterministic, this chain is finite.

As a 6∈ It , s′ b
−→ t is not an edge of this chain.

We define another edge-labeling c of Ri by exchanging the labels a and b for the edges

of the chain: for any (p, q) ∈ Dom(ci),

c(p, q) =





b if p
a
−→ q is an edge of the chain

a if p
b
−→ q is an edge of the chain

ci(p, q) otherwise.

Thus Rc
i remains deterministic and co-deterministic i.e. c is an edge-coloring of Ri with

c(s, t′) = c(s′, t) = b. It remains to add c(s, t) = a to get an edge-coloring of Ri+1 in [k]. ◭

Under the assumption of the axiom of choice (actually under the weaker assumption of the

ultrafilter axiom), let us generalize Lemma 37. For this we use a coloring on the vertices

instead on the edges. A vertex-coloring of R ⊆ V ×V is a mapping c : V −→ A such that

c(s) 6= c(t) for any (s, t) ∈ R, and in that case, we say that R is |c(V )|-vertex-colorable.

Note that a relation with a reflexive pair has no vertex-coloring.

The dual of R is the binary relation D(R) on R defined by

D(R) = { ((r, s) , (r, t)) | (r, s) , (r, t) ∈ R ∧ s 6= t }

∪ { ((s, r) , (t, r)) | (s, r) , (t, r) ∈ R ∧ s 6= t }.
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For any edge-labeling c of R,

c is an edge-coloring of R ⇐⇒ c is a vertex-coloring of D(R).

Thus by Lemma 37 and for any finite relation R, D(R) has a ∆R-vertex-coloring. We can

apply the compactness theorem [4] to extend Lemma 37 to any relation of bounded degree.

◮ Proposition 38. In ZFC set theory, any bounded degree relation R has a ∆R-edge-

coloring.

Proof.

Let k be a positive integer and R be a binary relation on a set V with ∆R = k.

It is equivalent to show that D(R) is k-vertex-colorable, or that D(R) is vertex-colorable

using at most k colors.

By de Bruijn-Erdös theorem [4], it is equivalent to check that any finite subset of D(R) is

vertex-colorable with at most k colors. Let S ⊆ D(R) with S finite. Let

P = { s ∈ V | ∃ t (s, t) ∈ VS ∧ (t, s) ∈ VS }

and R|P = R ∩ P ×P the induced relation of R by P . So S ⊆ D(R|P ) which is finite.

By Lemma 37, R|P is edge-colorable using ∆R|P
≤ ∆R = k colors.

Finally D(R|P ) hence S are vertex-colorable using at most k colors. ◭

We now want to color a regular relation in a complete way. First we present a general way

to extend an injection into a bijection avoiding given sets.

◮ Lemma 39. Let X, Y be equipotent well orderable infinite sets.

Let an injection p : P −→ Y for some subset P of X with |P | < |X|.

Let a sequence (Px)x∈X−P of subsets of Y with |Px| < |Y | and such that

|{ x ∈ X − P | y ∈ Px }| < |X| for every y ∈ Y − p(P ).

We can extend p into a bijection X −→ Y such that p(x) 6∈ Px for every x ∈ X − P .

Proof.

Let <X be an initial well-ordering of X : ∀ x ∈ X, |{ x′ ∈ X | x′ < x }| < |X|.

Let <Y be an initial well-ordering of Y .

We define p on X − P by transfinite induction. Let x ∈ X − P .

Let us define p(x) knowing p(x′) for any x′ <X x.

As |Px| , |P | < |X| = |Y | with X infinite, the following subset of Y

Qx = p(P ) ∪ Px ∪ { p(x′) | x′ <X x }

is of cardinal |Qx| < |Y |. So we can define

p(x) = min<Y
(Y − Qx).

Thus p is injective and p(x) 6∈ Px for every x ∈ X − P .

Let us check that p is surjective. Assume that Im(p) 6= Y . Let

β = min<Y
(Y − Im(p)).

As |{ x ∈ X − P | β ∈ Px }| < |X|, we can define

α = min{ x ∈ X − P | β 6∈ Px ∧ β <Y p(x) }.

So α ∈ X − P and β <Y p(α).

As β 6∈ Im(p) and β 6∈ Pα , we have β 6∈ Qα hence p(α) ≤Y β which is a contradiction. ◭

A complete edge-coloring of a regular relation R is an edge-coloring c of R such that Rc

is source-complete and target-complete. Under the assumption of the axiom of choice, we

can color in a complete way any regular relation.
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◮ Proposition 40. In ZFC set theory, any regular relation R has a complete ∆R-edge-

coloring.

Proof.

Let R be a regular relation on a set V .

We distinguish the two complementary cases below.

Case 1 : ∆R < ℵ0.

By Proposition 38, R has a ∆R-edge-coloring c.

So Rc is a deterministic and co-deterministic graph with |ARc | = ∆R = ∆Rc .

Thus Rc is source-complete and target-complete i.e. c is a complete edge-coloring.

Case 2 : ∆R ≥ ℵ0.

Under AC, it suffices to show the existence of a complete ∆R-edge-coloring for R connected.

Under AC and having R connected, we have |VR| = |∆R|.

Thanks to AC, let us consider an initial well-ordering < of VR.

By transfinite induction, let us define a complete ∆R-edge-coloring c of R. Let λ ∈ VR.

Let us define c on { (λ, µ) ∈ R | λ ≤ µ } ∪ { (µ, λ) ∈ R | λ ≤ µ }

knowing c on { (µ, ν) | µ < λ ∨ ν < λ }.

First, we define c(λ, µ) for any (λ, µ) ∈ R with λ ≤ µ.

This is illustrated below for ρ < λ ≤ µ.

?
λρ µ

c(λ, ρ)

c(ρ, µ)

As R is regular, R(λ) = { µ | (λ, µ) ∈ R } has cardinality |R(λ)| = ∆R . Let

P = { ρ ∈ R(λ) | ρ < λ } and p : P −→ ∆R with p(ρ) = c(λ, ρ) for any ρ ∈ P .

For any µ ∈ R(λ) − P , we define

Pµ = { c(ρ, µ) | (ρ, µ) ∈ R ∧ ρ < λ }.

By Lemma 39, we can extend p into a bijection R(λ) −→ ∆R such that p(µ) 6∈ Pµ for

any µ ∈ R(λ) − P . It remains to define

c(λ, µ) = p(µ) for any (λ, µ) ∈ R and λ ≤ µ.

Similarly, we define c(µ, λ) for any (µ, λ) ∈ R with λ < µ.

This is illustrated below for ρ < λ < µ.

?
λρ µ

c(ρ, λ)

c(µ, ρ)

◭

We say that a graph G is regular if −→G is regular. For instance {s
a
−→ t , t

a
−→ s , t

b
−→ s}

is a regular graph. We also say that G is co-regular if its unlabeled complement is regular:

/−→G is a regular relation on VG .

Under the assumption of the axiom of choice, we can restrict Theorem 32 to obtain a

characterization of the generalized Cayley graphs of quasigroups.

◮ Theorem 41. In ZFC set theory, the following graphs define the same family :

a) the generalized Cayley graphs of quasigroups (resp. with a right identity),

b) the generalized Cayley graphs of quasigroups with a left identity (resp. an identity),

c) the simple, deterministic, co-deterministic, co-regular, source-complete, target-complete

(resp. and loop-complete) graphs.
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Proof.

b) =⇒ a) : immediate.

a) =⇒ c) : let G = C[[M, Q]] for some quasigroup M and Q ⊆ M .

By Proposition 35, G = C[[M ]]
| [[Q]]

remains simple, deterministic and co-deterministic,

source and target-complete.

For any s ∈ M , δ+
→/ G

(s) = δ−
→/ G

(s) = |M − Q| hence G is co-regular.

If in addition M has a right identity then, by Fact 22, G is loop-complete.

c) =⇒ b) : let G be a graph which is simple, deterministic and co-deterministic, source

and target-complete. So G is regular with ∆G = |AG|.

If G is without loop (hence G is loop-complete) then we take a new label a ∈ A − AG and

we define G′ = G ∪ { s
a
−→ s | s ∈ VG }. If G has at least one loop, we put G′ = G.

Moreover, suppose also that G is co-regular. By definition, the complement relation of G′

S = { (s, t) | s, t ∈ VG ∧ {s}×AG×{t} ∩ G′ = ∅ }

is a regular relation on VG .

By Proposition 40, S has a complete ∆S-edge-coloring c i.e. Sc is a deterministic, co-

deterministic, source and target-complete graph. By definition, Sc is also simple.

Furthermore we can assume that AG ∩ ASc = ∅.

Let H = G′ ∪ Sc. Thus H is source and target-complete. It is also complete, simple,

deterministic and co-deterministic. Furthermore for G loop-complete, H is loop-complete.

Let r be a vertex of G. By Proposition 34, (VG, ×r) is a quasigroup for the edge-

operation ×r of H. By Proposition 23, r is a left-identity (resp. is an identity) and

H = C[[VG , −→H(r)]] with [[s]] = a for any r
a
−→H s. By label restriction to AG ,

G = C[[VG ,−→G(r) ]] is a generalized Cayley graph of (VG, ×r). ◭

The co-regularity in Theorem 41 can not be removed. For instance, the following graph:

PlusMinus = { i + 2mj
j
−→ i + (2m + 1)j | m ≥ 0 ∧ 0 ≤ i < j } ∪ { i

0
−→ i | i ≥ 0 }

∪ { i + (2m + 1)j
j
−→ i + 2mj | m ≥ 0 ∧ 0 ≤ i < j }

is deterministic, co-deterministic, simple, source-complete and target-complete. Further-

more it is not complete: there is no edge between 1 and 2 and more generally between

i + (2m + 1)j and i + (2m + 2)j for any m ≥ 0 and 0 ≤ i < j. Finally it is 0-complete:

0
j
−→ j for any j ≥ 0. By Proposition 35, PlusMinus is not a generalized Cayley graph of

a quasigroup.

By Corollary 36, the co-regularity in Theorem 41 can be removed for the graphs of bounded

degree which corresponds by Fact 30 to the finitely labeled graphs G when G and G−1

are deterministic and source-complete.

◮ Corollary 42. In ZFC set theory, a finitely labeled graph is a generalized Cayley graph of

a quasigroup iff it is deterministic, co-deterministic, simple, source and target-complete.

For instance the following graph of all the cycles:

Cycles = { (m, n)
a
−→ (m, n + 1 (mod m)) | m > n ≥ 0 }

is by Corollary 42 a generalized Cayley graph of a quasigroup.

Let us summarize the characterizations obtained in ZFC theory for the finitely labeled gen-

eralized Cayley graphs.
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Left-quasigroups

Left-cancellative magmas

Quasigroups+ co-deterministic + target-complete (41)

Groups

simple + deterministic + source-complete (33)

+ vertex-transitive (20)

For all the generalized Cayley graphs (not necessarily finitely labeled), we need the co-out-

regularity for the left-quasigroups, and the co-regularity for the quasigroups.

8 Decidability results

We have given graph-theoretic characterizations of generalized Cayley graphs of various

basic algebraic structures. These characterizations are adapted to decide whether a graph

G is a generalized Cayley graph, and if so, we got

G = C[[VG , −→G(r)]] with [[s]] = a for any r
a
−→G s

for the operation on VG which is either the path-operation ∗r with r a root, or the chain-

operation ∗r , or the extended chain-operation ∗P with P a representative set of Comp(G),

or the edge-operation <G>×r for some completion <G> of G and for any vertex r.

We will show the effectiveness of these characterizations and their associated operations for

a general family of infinite graphs. We restrict to the family of end-regular graphs of finite

degree [13] which admits an external characterization by finite decomposition by distance

which allows to decide the isomorphism problem, and an internal characterization as suffix

graphs of word rewriting systems which have a decidable monadic second-order theory.

8.1 End-regular graphs

A marked graph is a couple (G, P ) of a graph G with a vertex subset P ⊆ VG . We extend

the graph isomorphism to the marked graphs: (G, P ) ≡ (G′, P ′) if G ≡g G′ for some

isomorphism g such that g(P ) = P ′, and we also write (G, P ) ≡g (G′, P ′).

Let G be a graph. The frontier FrG(H) of H ⊆ G is the set of vertices common to H

and G − H :

FrG(H) = VH ∩ VG−H

and we denote by EndG(H) the set of ends obtained by removing H in G :

EndG(H) = { (C, FrG(C)) | C ∈ Comp(G − H) }.

We say that G is end-regular if there exists an increasing sequence H0 ⊆ . . . ⊆ Hn ⊆ . . .

of finite subgraphs Hn of G such that

G =
⋃

n≥0 Hn and
⋃

n≥0 EndG(Hn) is of finite index for ≡

and two isomorphic ends with nonempty frontiers have the same decomposition:

for any m, n ≥ 0 and any (C, P ) ∈ EndG(Hm) and (D, Q) ∈ EndG(Hn) with P, Q 6= ∅,

if (C, P ) ≡g (D, Q) then C ∩ Hm+p ≡g′ D ∩ Hn+p for every p ≥ 0

with g′ the restriction of g to the vertices of C ∩ Hm+p . This is illustrated as follows:
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G

C

D

Hm Hm+p Hn+pHn

Note that any end-regular graph is finitely labeled and of finite or countable vertex set.

Furthermore any end-regular graph of finite degree is of bounded degree. Moreover, every

end-regular graph has only a finite number of non-isomorphic connected components.

Any end-regular graph can be finitely presented by a deterministic graph grammar [6].

Any finite graph is end-regular. Any regular tree (having a finite number of non isomorphic

subtrees) is end-regular. Except for the quater-grid and the graph Cycles, all other graphs

in this article are end-regular. The following infinite graph:

Ξ = { ui
x
−→ uxi | u ∈ {a, b}∗ ∧ x ∈ {a, b} ∧ i ∈ {0, 1} }

∪ { ui
c
−→ u(1− i) | u ∈ {a, b}∗ ∧ i ∈ {0, 1} }

of vertex set {a, b}∗.{0, 1} is represented below.

ba

ba

a b

a b

a b

a b

c

c c

This graph is formed by two disjoint source-complete {a, b}-trees whose every node of a

tree is connected by a c-edge to the corresponding node of the other tree. The graph Ξ is

end-regular since it is generated by the graph grammar [6] reduced to this unique rule:

a

a

c

b

b

A A A

1

2

1

2

Note that Ξ is rooted and of bounded degree, simple, deterministic and co-deterministic,

source-complete but not target-complete, forward vertex-transitive but not vertex-transitive.

By Theorem 8, Ξ is a Cayley graph of a cancellative monoid. Precisely Ξ = C[[VΞ, {a0, b0, 1}]]

with [[a0]] = a, [[b0]] = b, [[1]] = c for the cancellative monoid (VΞ, ∗0) with the path-operation

∗0 defined for any u, v ∈ {a, b}∗ and i, j ∈ {0, 1} by

ui ∗0 vj = uvk with k = i + j (mod 2).

By Theorem 33, Ξ is also a generalized Cayley graph of a left-quasigroup with an identity,

namely ({a, b}∗.{0, 1}, ·) for · the edge-operation ×0 of a completion ≪Ξ≫ that we can

define for any u ∈ {a, b}∗, x ∈ {a, b}, i ∈ {0, 1} by

ui · x0 = uxi ; ui · uxi = x0 for ui 6= x0 ; x0 · xx0 = 0
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ui · 0 = ui ; ui · 1 = u(1 − i) ; ui · u(1 − i) = 1

ui · v = v otherwise.

The end-regularity of a graph can also be expressed on the vertices. A graph G is vertex-

end-regular if VG =
⋃

n≥0 Vn with

V0 ⊆ . . . ⊆ Vn ⊆ . . . finite and
⋃

n≥0 EndG(G|Vn
) is of finite index for ≡ .

This notion of vertex-end-regularity corresponds to the (edge-)end-regularity.

◮ Lemma 43. A graph is end-regular if and only if it is vertex-end-regular.

Proof.

⇐= : Gn = G|Vn
suits.

=⇒ : Vn = VGn
suits since G − G|Vn

= G −
(
Gn ∪

⋃
K∈Comp(G−Gn) G|FrG(K)

)
. ◭

We say that a graph G is end-regular by distance from a vertex r if it is vertex-end-regular

for the sequence defined by Vn = { s | dG(r, s) ≤ n } for any n ≥ 0. In that case, G is

connected and of finite degree. Furthermore the sequence (Hn)n≥0 defined by

Hn = G|Vn
= { (s, a, t) ∈ G | dG(r, s) ≤ n ∧ dG(r, t) ≤ n }

is a finite decomposition of G. The regularity by distance is a normal form for the connected

end-regular graphs of finite degree [6].

◮ Proposition 44. For any connected graph G of finite degree,
G is end-regular ⇐⇒ G is end-regular by distance from some vertex

⇐⇒ G is end-regular by distance from any vertex.

This normalization of the regularity by distance implies that for any end-regular graph G

of finite degree, the isomorphism problem is decidable: from any finite decomposition of G,

we can decide whether s ≃G t by comparing by distance G from s with G from t [6].

◮ Corollary 45. For any end-regular graph G of finite degree, ≃G is decidable.

The representation of an end-regular graph G by a graph grammar is an external repre-

sentation of G, namely which is up to isomorphism: the vertices of G are not taken into

account. To recall decidable logical properties on end-regular graphs, we present an internal

representation of these graphs by naming their vertices by words.

8.2 Suffix recognizable graphs

Another way to describe the end-regular graphs of finite degree is through rewriting systems.

A labeled word rewriting system R over an alphabet N is a finite A-graph of vertex set

VR ⊂ N∗ i.e. R ⊂ N∗
×A×N∗ and R is finite. Each edge u

a
−→R v is a rule labeled by a,

of left hand side u and right hand side v. The suffix graph of R is the graph

N∗.R = { wu
a
−→ wv | (u, a, v) ∈ R ∧ w ∈ N∗ }.

For instance let us consider the rewriting system R over N = {a, b, 0, 1} defined by

0
a
−→ a0 1

a
−→ a1 0

b
−→ b0 1

b
−→ b1 0

c
−→ 1 1

c
−→ 0

The connected component of the suffix graph N∗.R of vertex 0 is equal to the graph Ξ.

These suffix graphs give an internal representation of the end-regular graphs of finite de-

gree [6].

◮ Proposition 46. A connected graph of finite degree is end-regular if and only if it is

isomorphic to a connected component of a suffix graph.
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Any suffix graph N∗.R can be obtained by a first order interpretation in the source-complete

N -tree TN = { u
a
−→ ua | u ∈ N∗ ∧ a ∈ N } i.e.

N∗.R = { u
a
−→ v | TN |= φa(u, v) }

where for any a ∈ AR , φa is the following first order formula

φa(x, y) :
∨

(u,a,v)∈R ∃ z (z
u
−→ x ∧ z

v
−→ y)

and the path relation x
a1...an−→ y for n ≥ 0 and a1, . . . , an ∈ AR can be expressed by the

first order formula

∃ z0, . . . , zn (z0
a1−→ z1 ∧ . . . ∧ zn−1

an−→ zn ∧ z0 = x ∧ zn = y).

As the existence of a chain between two vertices can be expressed by a monadic (second

order) formula, any connected component of N∗.R can be obtained by a monadic inter-

pretation in TN . As TN has a decidable monadic theory [14] and by Proposition 46, any

connected end-regular graph has a decidable monadic theory. This is generalized [1, 12] to

the suffix recognizable graphs over N which are the graphs of the form
⋃n

i=1 Wi(Ui
ai−→ Vi) where n ≥ 0 and U1, V1, W1, . . . , Un, Vn, Wn ∈ Rec(N∗)

for Rec(N∗) the family of recognizable (regular) languages over N . These graphs are

exactly the ones we obtain by monadic interpretations in the N -tree [1, 12].

◮ Proposition 47. The suffix recognizable graphs over N are the graphs obtained by monadic

interpretations in TN hence have a decidable monadic second order theory.

In particular, we can decide whether a suffix recognizable graph G is rooted or is connected.

For any vertex u of G, the subset of vertices connected to u is an effective regular lan-

guage [6]. It follows that we can extract a regular set of representents of the connected

components. Precisely let <
ll

be the length-lexicographic order extending a linear order on

N .

◮ Lemma 48. For any suffix recognizable graph G over N ,

the set { min<
ll

(VC) | C ∈ Comp(G) } is an effective regular language.

We can also decide first order properties like the simplicity which can be expressed by the

following first order formula:

∀ x, y
∧

a

(
x

a
−→ y =⇒ ¬

∨
b 6=a x

b
−→ y

)

and this the same for the properties of being deterministic, co-deterministic, source-complete,

target-complete, and loop-complete.

We still have to consider the decidability of the forward vertex-transitivity and the vertex-

transitivity of end-regular graphs of finite degree. The suffix recognizable graphs form a

strict extension of end-regular graphs that coincide for graphs of finite degree [6].

◮ Proposition 49. Any end-regular graph is isomorphic to a suffix recognizable graph.

Any suffix recognizable graph of finite degree is end-regular.

Note that a suffix recognizable graph over N of finite degree is of the form
⋃n

i=1 Wi(ui
ai−→ vi) where n ≥ 0, u1, v1, . . . , un, vn ∈ N∗ and W1, . . . , Wn ∈ Rec(N∗).

By Proposition 49, these graphs constitute an internal representation of end-regular graphs

of finite degree. Note also that { Am a
−→ Am+n | m, n ≥ 0 } = A∗(ε

a
−→ A∗) is a suffix

recognizable graph which is not an end-regular graph.

By monadic interpretation (or by a simple saturation method on graph grammars), the

family of end-regular graphs is closed under accessibility.

◮ Corollary 50. For any end-regular graph G and any vertex r, G↓r is end-regular.
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By Corollaries 45 and 50, we can decide whether s ↓G t for G end-regular of finite degree.

◮ Corollary 51. For any end-regular graph G of finite degree, ↓G is decidable.

The forward vertex-transitivity of rooted graphs can be reduced to the accessible-isomorphism

of a root with its successors.

◮ Lemma 52. A graph G of root r is forward vertex-transitive iff r ↓G s for any r −→G s.

Proof.

Let G be a graph with a root r such that r ↓G s for any r −→G s.

Let us check that G is forward vertex-transitive i.e. r ↓G s for any r −→∗
G s.

The proof is done by induction on n ≥ 0 for r −→n
G s.

For n = 0, we have r = s. For n > 0, let t be a vertex such that r −→n−1
G t −→G s.

By induction hypothesis, we have r ↓G t i.e. f(r) = t for some isomorphism f from G↓r

to G↓t . As t −→G s, there exists r′ such that r −→G r′ and f(r′) = s. So r′ ↓G s.

By hypothesis r ↓G r′. By transitivity of ↓G , we get r ↓G s. ◭

Let us transpose Lemma 52 to the vertex-transitive graphs. The forward vertex-transitivity

of connected graphs can be reduced to the isomorphism of a vertex with its adjacent vertices.

◮ Lemma 53. A connected graph with a vertex r is vertex-transitive if and only if

r ≃G s for any r −→G ∪ G−1 s.

Let us apply Lemma 52 and 53 with Corollaries 45 and 51.

◮ Corollary 54. We can decide whether a rooted (resp. any) end-regular graph of finite

degree is forward vertex-transitive (resp. vertex-transitive).

In this corollary, we do not need the connected condition for the vertex-transitivity since

any end-regular graph has only a finite number of non-isomorphic connected components.

We can establish the effectiveness of previous Cayley graph characterizations for the regular

graphs of finite degree. This decidability result does not require the assumption of the axiom

of choice.

◮ Theorem 55. We can decide whether a suffix recognizable graph G of finite degree is a

Cayley graph of a left-cancellative monoid, of a cancellative monoid, of a group, and whether

G is a generalized Cayley graph of a left-quasigroup, of a quasigroup, of a group.

In the affirmative, G = C[[VG , −→G(r)]] where [[s]] = a for any r
a
−→G s and with a

computable suitable binary operation on VG and vertex r.

Proof.

i) Cayley graph of a left-cancellative or cancellative monoid.

By Proposition 47 and Corollary 54, we can decide whether G is rooted, simple, forward

vertex-transitive, deterministic (resp. and co-deterministic) i.e. by Theorem 7 (resp. The-

orem 8) whether G is a Cayley graph of a left-cancellative monoid (resp. cancellative

monoid).

In the affirmative and by Proposition 6, (VG, ∗r) is a left-cancellative (resp. cancellative)

monoid where r is a root of G, and G = C[[VG , −→G(r)]] where [[s]] = a for any r
a
−→G s.

It remains to check that the path-operation ∗r is computable.

We just need that G is deterministic and forward vertex-transitive.

Let s, t ∈ VG . By Proposition 6, s ∗r t is a vertex that we can determine. The label set

LG(r, t) = { u ∈ A∗
G | r

u
−→G t } of the paths from r to t is an effective non empty

context-free language [6] : we can construct a pushdown automaton recognizing LG(r, t)
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hence we can compute a word u ∈ LG(r, t).

Thus s ∗r t is the target of the path from s labeled by u i.e. s
u
−→G s ∗r t.

ii) Cayley graph of a group.

By Proposition 47 and Corollary 54, we can decide whether G is connected, vertex-transitive,

deterministic and co-deterministic i.e. by Theorem 17, whether G is a Cayley graph of a

group. In the affirmative and by Proposition 16, it remains to check that the chain-operation

∗r is computable where r is any vertex of G. We have seen that G∗r = G∗r . As r is a

root of G which is deterministic and forward vertex-transitive and by (i), ∗r is computable.

iii) Generalized Cayley graph of a left-quasigroup.

As G has a decidable first order theory, we can decide whether G is simple, deterministic,

source-complete i.e. by Theorem 33, whether G is a generalized Cayley graph of a left-

quasigroup. In the affirmative and by Propositions 23 and 28, it remains to check that the

edge-operation ≪G≫×r is computable where r is any vertex and ≪G≫ is the completion

of G defined in the proof of Theorem 33. This edge-operation that we denote by · has been

defined for any s, t ∈ VG by

s
a
−→G s · t for r

a
−→G t

r
a
−→G s · t for s

b
−→G t and (a, b) ∈ ℓs − ℓs

s · t = t for t ∈ VG − (−→G(r) ∪ −→G(s))

where ℓs = { (a, b) | ∃ t (r
a
−→G t ∧ s

b
−→G t) } and to each injective function ℓ : AG −→ AG ,

we have associated a permutation ℓ on AG extending ℓ. Thus · is computable.

Moreover we can check that · is an effective ternary suffix-recognizable relation.

iv) Generalized Cayley graph of a quasigroup.

As G has a decidable first order theory, we can decide whether G is simple, deterministic,

co-deterministic, source and target-complete i.e. by Corollary 42 and under the assumption

of the axiom of choice, whether G is a generalized Cayley graph of a quasigroup.

Assume that G is simple, deterministic, co-deterministic, source and target-complete.

We do not need the assumption of the axiom of choice: we will define a computable quasi-

group operation on VG .

Let r be any vertex of G. By Proposition 34 (and as for the proof of Theorem 41), it is

sufficient to define a complete graph H ⊇ G of vertex set VG with the same properties

as G such that H ×r is computable.

When VG is finite and by Lemma 37, such a completion H is effective hence H ×r is com-

putable. We have to deal with the case where VG is infinite.

The set VG is a regular language over some finite alphabet that we order totally.

For any integer i ≥ 0, we can compute the i-th vertex vi by length-lexicographic order.

We can assume that the finite label set AG is disjoint of N. Let us define a mapping T

from N×N into AG ∪ N such that the completion of G is H = { vi
T (i,j)
−→ vj | i, j ≥ 0 }.

By Lemma 39 and Proposition 40, T is defined for any i, j ≥ 0 by

T (i, j) =

{
a if (vi, a, vj) ∈ G

min
(
N− {T (i, 0), . . . , T (i, j − 1), T (0, j), . . . , T (i− 1, j)}

)
otherwise.

Thus T is a Latin square: for each i ∈ N and a ∈ AG ∪N, there are unique j, k ∈ N such

that T (i, j) = a = T (k, i). Therefore T is computable hence also H ×r .

v) Generalized Cayley graph of a group.

As G has a decidable first order theory and by Corollary 54, we can decide whether G is

simple, vertex-transitive, deterministic and co-deterministic i.e. by Theorem 20 and under

the assumption of the axiom of choice, whether G is a generalized Cayley graph of a group.
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Assume that G is simple, vertex-transitive, deterministic and co-deterministic.

We do not need the hypothesis of the axiom of choice: we will define a computable extended

chain-operation.

Let N be the alphabet of the words of G. We take a linear order on N . By Lemma 48,

P = { min<
ll

(VC) | C ∈ Comp(G) }

is an effective regular language.

Let Rk(u) = |{ v ∈ P | v <
ll

u }| be the rank of u ∈ P according to <
ll

i.e. u is the

Rk(u)-word in P by <
ll

. We have a group (P, +) for u + v defined for any u, v ∈ P by

Rk(u + v) = Rk(u) + Rk(v) (mod |P |) for P finite,

and for P countable, we consider the bijection ‖ ‖ : P −→ Z defined for any u ∈ P by

‖ u ‖ =

{
Rk(u)

2
if Rk(u) is even,

−Rk(u)+1
2

if Rk(u) is odd

and we define u + v ∈ P by ‖ u + v ‖ = ‖ u ‖ + ‖ v ‖.

Let x ∈ VG . It is connected to vx = min<
ll

(VC) for C ∈ Comp(G) and x ∈ VC .

The label set Lx = { u ∈ (AG ∪ AG)∗ | vx
u
−→G x } of the chains between vx and x is

an effective context-free language.

As G is vertex-transitive, the extended chain-operation x · y has been defined by

vx+y
ℓxℓy
−→G x · y with ℓx ∈ Lx and ℓy ∈ Ly .

Thus · is an effective group operation. ◭

We can consider the generalization of Theorem 55 to all the suffix-recognizable graphs (al-

lowing vertices of infinite degree) which form the first level of a stack hierarchy for which

any graph has a decidable monadic theory [5]. To extend Theorem 55 to any graph of this

hierarchy, we have to decide on the forward vertex-transitivity (resp. vertex-transitivity)

when these graphs are deterministic (resp. and co-deterministic).

The decidability result given by Theorem 55 is a first application of the Cayley graph

characterizations presented in this paper. Another application is to describe differently a

generalized Cayley graph by defining another operation on its vertex set. A trivial example

is given by the quasigroup (Z, −) of right identity 0. Its Cayley graph C(Z) is strongly

connected, vertex-transitive, deterministic and co-deterministic. Its path-operation from 0

is ∗0 = + hence by Theorem 14, it is equal to C[[Z]] for the group (Z, +) with [[n]] = −n

for any n ∈ Z. In particular for any P ⊆ Z, the generalized Cayley graph C[[Z, P ]] of

the quasigroup (Z, −) is equal to the generalized Cayley graph C[[Z, −P ]]
′

of the group

(Z, +) with [[−n]]
′

= [[n]] for any n ∈ P . Similarly by Theorem 33, any finitely labeled

generalized Cayley graph G of a left-cancellative magma is a generalized Cayley graph of a

left-quasigroup and its operation is computable for G end-regular.

9 Conclusion

We obtained simple graph-theoretic characterizations for Cayley graphs of elementary al-

gebraic structures. We have shown the effectiveness of these characterizations for infinite

graphs having a structural regularity. This is only a first approach in the structural descrip-

tion and its effectiveness of Cayley graphs of algebraic structures.

This paper is archived in arXiv:1803.08518.
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