
ON THE TRANSITION GRAPHS OFTURING MACHINESDidier Caucal �IRISA{CNRS, Campus de Beaulieu, 35042 Rennes, FranceAbstractAs for pushdown automata, we consider labelled Turing machines with �-rules. Withany Turing machineM and with a rational set C of con�gurations, we associate therestriction to C of the "-closure of the transition set of M . We get the same familyof graphs by using the labelled word rewriting systems. We show that this family isthe set of graphs obtained from the binary tree by applying an inverse mapping intoF followed by a rational restriction, where F is any family of recursively enumerablelanguages containing the rational closure of all linear languages. We show also thatthis family is obtained from the rational graphs by inverse rational mappings. Finallywe show that this family is also the set of graphs recognized by (unlabelled) Turingmachines with labelled �nal states, and even if we restrict to deterministic Turingmachines.
1 IntroductionThe transition graphs of some classes of machines have already been investigat-ed. First, Muller and Schupp have considered rational restrictions of the transitiongraphs of pushdown automata: these graphs are the graphs of bounded degree hav-ing a �nite number of non isomorphic connected components when decomposed bydistance from any vertex ; these graphs have a decidable monadic theory [MS 85].This graph family is also the set of rational restrictions of the pre�x transition graphsof �nite labelled word rewriting systems [Ca 90]. Extending to recognizable labelledrewriting systems, the rational restrictions of their pre�x transition graphs de�ne a� caucal@irisa.fr http://www.irisa.fr/prive/caucal/Preprint submitted to Elsevier Preprint

larger family of graphs having a decidable monadic theory [Ca 96]. To extend thislast family, Morvan has de�ned the family of rational graphs, which are the graphsrecognized by transducers with labelled �nal states [Mo 00]. This family is general:it contains for instance the transition graphs of Petri nets, the transition graphs ofcongruential systems [Ur 00], and the transition graphs of labelled word rewritingsystems. Although the rational graphs are recursive, there exists a rational graphwith an undecidable �rst order theory.There is a simple and uniform way to present all the previous families of graphs fromfamilies of languages. Take a family F of languages, a set T of labels and a mappingh : T�!F associating to each label a language in F . The inverse image h�1(G) of agraph G by h has an arc s a�! t when there is a path s u=) t in G for some word u inh(a). A family F of languages induces a family RECF of graphs obtained from thein�nite binary tree by marking rationally some vertices (with a special letter) andthen applying an inverse mapping. Then the family of rational restrictions of thetransition graphs of pushdown automata is the family RECFin of graphs inducedby the family Fin of �nite languages. Furthermore, the family of rational restric-tions of the pre�x transition graphs of recognizable rewriting systems is the familyRECRat of graphs induced by the family Rat of rational languages [Ca 96]. Finally,the family of rational graphs is the family RECLin of graphs induced by a subfamilyLin of linear languages [Mo 00].Thus small families of languages induce large families of graphs. Conversely, a familyof graphs yields a family of languages. A trace of a graph is the language of pathlabels from and to given �nite vertex sets. The traces of �nite graphs are the rationallanguages. The traces of graphs in RECFin are the context-free languages which arealso the traces of graphs in RECRat . Finally, the traces of rational graphs are thecontext-sensitive languages [MoS 01].Following the Chomsky hierarchy, we present a general family of graphs, the traces ofwhich are the recursively enumerable languages. We consider the o�-line Turing ma-chines [MS 97] with a read only one way input tape and a unique two ways workingtape. These machines are particular labelled word rewriting systems allowing ruleslabelled by ". Following [Pay 00] and as for pre�x transition graphs of word rewrit-ing systems, we consider rational restrictions of the "-closure of transition graphs ofthese o�-line Turing machines. We show that this family of graphs coincides with thefamily of rational restrictions of the "-closure of the transition graphs of word rewrit-ing systems. We also show that this graph family is equal to RECLin(Rat) = RECREmeaning that it is induced by any language family between the rational closure ofLin and the family RE of recursively enumerable languages. Furthermore, we showthat this graph family is obtained by inverse rational mappings of rational graph-s. Finally and as for the rational graphs recognized by transducers with labelled�nal states, we show that our family is the set of graphs recognized by (usual) non-deterministic Turing machines with labelled �nal states, and this result remains trueif we restrict to deterministic Turing machines.2

2 Preliminaries on graphsLet P be a subset of a monoid M , and IdP = f (u; u) j u 2 P g the identityrelation on P . A (simple oriented labelled) P -graph G is a subset of V �P�V whereV is an arbitrary set. Any (s; a; t) of G is a labelled arc of source s, of target t,with label a, and is identi�ed with the labelled transition s a�!G t or directly s a�! tif G is understood. We denote by VG := f s j 9 a 9 t; s a�! t _ t a�! s g thevertex set of G. The set 2V�P ��V of P �-graphs with vertices in V is a monoid for thecomposition G oH := f r a�b�! t j 9 s; r a�!G s ^ s b�!H t g for any G;H � V �P ��V ,where f s 1�! s j s 2 V g is its neutral element. The submonoid fGg� of 2VG�P ��VGgenerated by any graph G gives by union the graph G� := SfGg�. The relationu�!G� denoted by u=)G or simply by u=) if G is understood, is the existence of a pathin G labelled u 2 P �. For every Q � P �, we write s Q=) t if there is some u 2 Qsuch that s u=) t. The restriction GjC of a P -graph G to an arbitrary set C isGjC := G \ (C�P�C). The labels L(G;E; F) of paths of G from a set E to a set Fis the set L(G;E; F) := f u 2 M j 9 s 2 E; 9 t 2 F; s u=)G t g. A trace of a graphG is the language L(G;E; F) of path labels from a �nite set E to a �nite set F .Given an alphabet T and a relation h � T�P , the inverse h�1(G) by h of any P -graph G is the following T -graph:h�1(G) := f s a�! t j a 2 T ^ 9 u 2 h(a); s u=)G t gAn example is given Figure 2.3.A relation h � T�P can be seen as a mapping from T into 2P associating the imageh(a) of any a 2 T . When P = S� for some alphabet S, such a mapping is extendedby morphism to a substitution from T � into S� i.e. a mapping h from T � into 2S�such that h(") = f"g and h(uv) = h(u)h(v) for every u; v 2 T �. The compositionof functions is the composition of their relations: (g o h)(a) = h(g(a)). Let us givebasic properties of inverse mappings.Lemma 2.1 Let O;P;Q be alphabets and G be a Q-graph.Let h � P�Q� and g � O�P � extended by substitution. We havea) s u=)h�1(G) t () s h(u)=)G t for any u 2 P+ and s; t 2 VGb) L(h�1(G); E; F) = h�1(L(G;E; F)) for any E; F � Vh�1(G)c) g�1(h�1(G)) = ((g o h)�1(G))jVh�1(G)and g�1(h�1(G)) = (g o h)�1(G) if " 62 g(O).Proof. 3

i) We prove (a) by induction on the length of any word u 2 P+.u = a 2 P : 8 s; t 2 VG s a=)h�1(G) t () s a�!h�1(G) t () s h(a)=)G t.u = vw with v; w 2 P+ : for any s; t 2 VG , we haves vw=)h�1(G) t () 9 r; s v=)h�1(G) r w=)h�1(G) t() 9 r; s h(v)=)G r h(w)=)G t by induction hypothesis() s h(v)h(w)=)G t G is a Q-graph() s h(vw)=)G t h is a substitution.ii) Let us prove (b). By restricting (a) to vertices of h�1(G), we can extend it foru = " : s u=)h�1(G) t () s h(u)=)G t for any u 2 P � and s; t 2 Vh�1(G) (1)Taking vertex sets E and F of h�1(G), we haveL(h�1(G); E; F) = f u 2 P � j E u=)h�1(G) F g= f u 2 P � j E h(u)=)G F g by (1)= f u 2 P � j h(u) 2 L(G;E; F) g= h�1(L(G;E; F))iii) Let us prove (c). Let a 2 O and s; t 2 VG .Assume that " 62 g(O) _ s; t 2 Vh�1(G) . We haves a�!g�1(h�1(G)) t () s g(a)=)h�1(G) t by de�nition() s h(g(a))=)G t by (i) if " 62 g(a) or by (1) if s; t 2 Vh�1(G)() s (goh)(a)=)G t() s a�!(goh)�1(G) t by de�nition2Note that the vertex restriction of Lemma 2.1 (c) is necessary. It is su�cient to takeG = f1 a�! 1 ; 2 b�! 2g and the partial morphisms h(a) = a and g(a) = " in such away that h�1(G) = g�1(h�1(G)) = f1 a�! 1g and (g o h)�1(G) = f1 a�! 1 ; 2 a�! 2g.Another basic property is the commutation between the inverse mapping and therestriction to particular sets. A set C is stable in a graph G when any path betweenvertices in C contains only vertices in C :4

s0 �!G s1 : : : sn�1 �!G sn ^ s0; sn 2 C =) s1; : : : ; sn�1 2 CThe restriction to any stable set commutes with any inverse mapping.Lemma 2.2 For any stable set C in a P -graph and any mapping h into 2P ,we have h�1(GjC) = (h�1(G))jCProof.We have h�1(GjC) = (h�1(GjC))jC � (h�1(G))jC .Let us verify the inverse inclusion.Let s a�!(h�1(G))jC t. So s a�!h�1(G) t with s; t 2 C.By de�nition of h�1(G), there is u 2 h(a) such that s u=)G t.As s; t 2 C and C is stable in G, we have s u=)GjC t . Hence s a�!h�1(GjC) t.2Another way to express a restriction of an inverse mapping of a graph is to use amarking of the graph. The marking #C(G) on a vertex set C of a graph G by asymbol # is the graph:#C(G) := G [f s #�! s j s 2 C gobtained from G by adding # to any vertex in C. Let us give an example.G :h(a) = #aa h(b) = #ah�1(G) :
#a a a a

b b bb c c ca aa bca
a aaa h(c) = a#a

Figure 2.3 An inverse mapping of a marked graph.Any restriction of an inverse of a graph is an inverse of a marking of the graph.Lemma 2.4 We have (h�1(G))jC = g�1(#C(G)) with g(a) = #h(a)#.Proof.Assuming # is a new symbol and by de�nition of g�1, we have5

g�1(#C(G)) = f s a�! t j 9 u 2 h(a); s #u#=)#C(G) t g= f s a�! t j 9 u 2 h(a); s u=)G t ^ s; t 2 C g= (h�1(G))jC2For " the neutral element of the free monoid T � generated by an alphabet T , the"-closure G of any T [f"g-graph G is obtained by removing the "-transitions andby adding T -transitions as follows:G := (IdT)�1(G) = f s a�! t j a 2 T ^ s a=)G t gLet us give a simple example.a " " bp q r s t p q r s ta bG :G : ba baFigure 2.5 "-closure of a graphWe compare graphs by isomorphism. A partial isomorphism from a graph G intoa graph H is an injective function such that s a�!G t () h(s) a�!H h(t). Anisomorphism is a partial isomorphism such that VG � Dom(h) and VH � Im(h). Apartial isomorphism on T [f"g-graphs considers the " label as a new letter. To takean "-transition as an internal (silent) move, we compare T [f"g-graphs by partialweak isomorphism. A partial weak isomorphism from a graph G into a graph H isan injective function such that s a=)G t () h(s) a=)H h(t). A weak isomorphism isa partial weak isomorphism such that VG � Dom(h) and VH � Im(h). Note thath is a (resp. partial) weak isomorphism from G into H if and only if h is a (resp.partial) isomorphism from G into H. In particular, the identity IdVG is a weakisomorphism between a graph G and G. Let us give a simple example.012
H :

4 012 34c
G :G :012 34c bb b" c acaaa

Figure 2.6 IdVH is a partial weak isomorphism between G and H which are not(total) weak isomorphic.6

3 Classes of graphsA general way to de�ne a family RECF of graphs from a family F of languages isto take the set of graphs obtained from the binary tree (with inverse transitions)by applying an inverse F -mapping followed by a rational restriction [Ca 96]. Anequivalent way is to take the set of graphs obtained from the binary tree by mark-ing a rational vertex set followed by an inverse F -mapping (Proposition 3.5). Wededuce known results on the family RECFin (Theorem 3.6), on the family RECRat(Theorem 3.7), on the family RECLin where Lin is a subfamily of linear languages(Theorem 3.10). We deduce also closure properties by inverse mappings.Let N be an alphabet containing at least two letters. We take a new alphabetN :=f a j a 2 N g in bijection with N . We de�ne the following Dyck graph :�N := f u a�! ua j u 2 N� ^ a 2 N g [f ua a�! u j u 2 N� ^ a 2 N gwhere a representation for N = fa; bg is the following:a ba ba ba b a ba b
"a baa ab ba bbWhen L is rational, we say that #L(�N) is a rational marking of �N . Note thatx u=)#w�1L(�N) y =) wx u=)#L(�N) wyWe denote L(#L(�N)) := L(#L(�N); "; N�) the language of path labels of �N from "to all the vertices. When L is rational, L(#L(�N)) is a context-free language. Preciselyand from a deterministic and complete minimal automaton (G; �; F) recognizing L,the language L(#L(�N)) is generated from axiom � by the following context-freegrammar:f (p; aqap) j p a�!G q g [f (p; aq) j p a�!G q g [f (p; ") j p 2 VG g [f (p;#p) j p 2 F gThe binary relation J := f (aa; ") j a 2 N g [f(#; ")ghas a canonical rewriting, and we write u#J the irreducible word (normal form)7

that derives from u according to J . We have for any word u 2 L(#L(�N)),u#J 2 N� ^ " u=)#L(�N) u#JThe reduction to the set of normal forms preserves the rationality.Lemma 3.1 Let L 2 Rat(N�) and M 2 Rat((N [N [f#g)�).We have in an e�ective way (L(#L(�N)) \M)#J 2 Rat(N�).Proof.Let M = (L(#L(�N)) \M)#J .Let (G; i; F) be a �nite (N [N [f#g)-automaton recognizing M .We color any vertex u 2 N� of �N by the set c(u) of states p such that (p; u)is a vertex of the product G �#L(�N) accessible from (i; ") :c(u) := f p j L(G; i; p)\ L(#L(�N); "; u) 6= ; gSo M = f u 2 N� j c(u) \ F 6= ; g.We have to show thatM is rational by proving that c is a regular coloring of #L(�N) .We consider the following equivalence � on N� :u � v if c(u) = c(v) ^ u�1L = v�1LAs Im(c) is �nite and L is rational, the equivalence � is of �nite index.This equivalence is right regular: let u � v and a 2 N . We have to show thatua � va.As usual (ua)�1L = a�1(u�1L) = a�1(v�1L) = (va)�1L.By symetry of u and v, it remains to verify that c(ua) � c(va).Let p 2 c(ua). There is w 2 (N [N [f#g)� such thati w=)G p ^ " w=)#L(�N) uaLet xy = w such that " x=)#L(�N) u y=)#L(�N) ua and jxj is maximal.By maximality of jxj, we have " y=)#u�1L(�N) a.As u�1L = v�1L, we have " y=)#v�1L(�N) a hence v y=)#L(�N) va.There is q such that i x=)G q y=)G p. So q 2 c(u) = c(v).By de�nition of c(v), there is z 2 (N [N [f#g)� such thati z=)G q ^ " z=)#L(�N) vSo i zy=)G p ^ " zy=)#L(�N) va. Hence p 2 c(va).So H = f [u] a�! [ua] j u 2 N� ^ a 2 N g is �nite.Furthermore M = L(H; ["]; f[u] j c(u) \ F 6= ;g) is rational.Let us see that H can be constructed from (G; i; F) and a �nite N -automaton8

(G; �; F) recognizing L. We may assume that (G; �; F) is deterministic, completeand minimal. This automaton is isomorphic to the complete (left) residual automa-ton of L :(f u�1L a�! (ua)�1L j u 2 N� ^ a 2 N g ; L ; f u�1L j " 2 u�1L g)We denote by ��u the unique state accessible from � by the path labelled by u i.e.� u=)G ��u. So u�1L = v�1L () ��u = ��v.It remains to show that c(u) can be constructed for any u 2 N�.Note that L(#;(�N); "; ") is the context-free language D0N �. More generally, wewill verify that L(#L(�N); "; u) is an e�ective context-free language, hence c(u)is computable because the intersection of a rational language with a context-freelanguage is (in an e�ective way) a context-free language, and the emptyness of acontext-free language is decidable (see for instance [Ber 79]).We de�ne the following context-free grammar:K := f (p; aqap) j p a�!G q g [f (p; ") j p 2 VG g [f (p;#p) j p 2 F gThen L(#L(�N); "; u) = L(K; �u(1)[��u(1)] : : : u(juj)[��u]).2Lemma 3.1 with L = ; means that any rational language M 2 Rat((N [N)�) tomark �N , can be transformed into the following rational language over N :(L(#;(�N)) \M)#J = M#I \N�where I = f (aa; ") j a 2 N g. It is a `half form' of the standard Benois' lem-ma [Ben 69].We denote eu the mirror of any word u : e" = " and fau = eua for any letter a. Themapping associating to any a 2 N its barred letter a 2 N is extended by mor-phism to any word in (N [N [f#g)� by de�ning # = # and a = a for any a 2 N .In this way, we have s u=)#L(�N) t () t eu=)#L(�N) sNote also that eu = eu and (eu)#J = gu#J for any u 2 (N [N [f#g)�.Any inverse mapping of any marked �N can be expressed in a su�x way.Proposition 3.2 For any mapping h � T�(N [N [f#g)� and any languageL � N�, the T -graph h�1(#L(�N)) is equal tof w(gu#J) a�! w(v#J) j uv 2 h(a) ^ eu; v 2 L(#w�1L(�N)) ^ w 2 N� gProof.Let G be f w(gu#J) a�! w(v#J) j uv 2 h(a) ^ eu; v 2 L(#w�1L(�N)) ^ w 2 N� g.We have to show that h�1(#L(�N)) = G.9

i) Proof of h�1(#L(�N)) � G. Let s a�!h�1(#L(�N)) t.There is z 2 h(a) such that s z=)#L(�N) t.Let w 2 N� of minimal length such that s u=)#L(�N) w v=)#L(�N) t with uv = z meaningthat w is the vertex of the path s z=)#L(�N) t closest to ". Note that we can haveseveral choices of (u; v). We have uv 2 h(a).There are x; y 2 N� such that s = wx and t = wy with x u=)#w�1L(�N) " v=)#w�1L(�N) y.So " eu=)#w�1L(�N) x hence eu 2 L(#w�1L(�N)) and x = (eu)#J = gu#J .Similarly v 2 L(#w�1L(�N)) and y = v#J .Thus s = wx = wgu#J and t = wy = w(v#J). Finally s a�!G t.ii) Proof of G � h�1(#L(�N)). Let s a�!G t. There are uv 2 h(a) and w 2 N�such that eu; v 2 L(#w�1L(�N)) ; s = w(gu#J) ; t = w(v#J).We have to show that s a�!h�1(#L(�N)) t.As eu 2 L(#w�1L(�N)), we have " eu=)#w�1L(�N) eu#J = gu#J .So gu#J u=)#w�1L(�N) " hence s = w(gu#J) u=)#L(�N) w.As v 2 L(#w�1L(�N)), we have " v=)#w�1L(�N) v#J hence w v=)#L(�N) w(v#J) = t.Thus s uv=)#L(�N) t hence s h(a)=)#L(�N) t i.e. s a�!h�1(#L(�N)) t.2To give a simple form of Proposition 3.2 for any rational marking, we introducesome notations. The right concatenation of a graph G � N��T�N� by a languageL � N� is the following graph:G:L := f uw a�! vw j u a�!G v ^ w 2 L gSimilarly, we de�ne the left concatenation L:G of a graph G by a language L. Ausual and simple fact is that for any L 2 Rat(N�) and any u 2 N�, the language[u]L := f v j v�1L = u�1L g 2 Rat(N�) and the family [L] := f [u]L j u 2 N� gis �nite. Note that for any W 2 [L] and any w 2 W , W�1L = w�1L.From Proposition 3.2, it follows that any inverse mapping of any rational marked�N is a �nite union of graphs W:H with W 2 Rat(N�).Corollary 3.3 For any h � T�(N [N [f#g)� and L 2 Rat(N�),h�1(#L(�N)) = SW2[L]W : f gu#J a�! v#J j uv 2 h(a) ^ eu; v 2 L(#W�1L(�N))g10

To get a pre�x form of Corollary 3.3 , we take the mirror e�N of �N whereeG = f eu a�! ev j u a�!G v g is the mirror of graph G � N��T�N�By applying Corollary 3.3 to #L(e�N) = ^(#eL(�N)), we have for every mappingh � T�(N [N [f#g)� and for every L 2 Rat(N�),h�1(#L(e�N)) = [W2[L]f u#J a�! gv#J j uv 2 h(a) ^ eu; v 2 L(#W�1eL(�N))g : fW (2)
Proposition 3.2 has also a simple form when we do not use marking.Corollary 3.4 For any mapping h � T�(N [N)�, we have the T -graphh�1(�N) = N� : f u a�! v j euv 2 h(a)#I ^ u; v 2 N� ^ a 2 T gLet DyckN = [�N] where [G] is the set of all graphs isomorphic to a graph G, thatwe extend by union to any class of graphs. We restrict here a language family F to bea subset of 2(N[N[f#g)� . A family of languages de�nes a set of mappings: a mappingh is rational (resp linear, : : :) if for any letter a, the language h(a) is rational (resplinear, : : :). Precisely, a language family F and an alphabet T produce the set FT ofmappings de�ned for every a 2 T by a language h(a) 2 F . By inverse of a class �of (N [N [f#g)-graphs, we get the following class of T -graphs:F�1T (�) := f h�1(G) j G 2 � ^ h 2 FT gStarting from DyckN , we have two ways to get classes of graphs. Either we applyinverse F -mappings followed by rational restrictions [Ca 96] :F�1T (DyckN)j := [f h�1(�N)jL j h 2 FT ^ L 2 Rat(N�) g]or we apply rational markings followed by inverse F -mappings:F�1T (#(DyckN)) := [f h�1(#L(�N)) j h 2 FT ^ L 2 Rat(N�) g]Henceforth F will be one of the following language families: the family Fin of �nitelanguages; the family Rat of rational languages; the family Lin of linear languages;the family RE of recursively enumerable languages; the subfamily Lin of linearlanguages generated by linear grammars such that each right hand side is " or ofthe form uBv where B is a non-terminal with u 2 N � and v 2 N�; and the rationalclosure Lin(Rat) of Lin . Each of these families is an internal family meaning thatit satis�es the two following conditions: 11

(i) L 2 F =) #L# 2 F(ii) L 2 F =) h(L)#J \ N�N� 2 Ffor any �nite substitution h from (N [N [f#g)� into itself such thath(#)# eJ � f"g and for any a 2 N , h(a) = gh(a) and h(a)# eJ � N�.Note that any family closed by every rational binary relation and called a rationalcone [Ber 79], is an internal family. For these families, the two previous classes ofgraphs coincide and we can also restrict N to have only two letters.Proposition 3.5 For any distinct letters a; b 2 N and for any internal familyF , we haveF�1T (DyckN)j = F�1T (Dyckfa,bg)j = F�1T (#(Dyckfa,bg)) = F�1T (#(DyckN))This class is denoted RECFT or RECF when T is undertood.Proof.i) Let us show that F�1T (Dyckfa,bg)j � F�1T (DyckN)j . Let G 2 F�1T (Dyckfa,bg)j .So G is isomorphic to h�1(�fa;bg)jL with h 2 FT and L 2 Rat(N�).We have �fa;bg = ��1(�N)jfa;bg� where � = Idfa;b;a;bg .Note that fa; bg� is stable for ��1(�N). Henceforth G is isomorphic toh�1(��1(�N)jfa;bg�)jL = (h�1(��1(�N))jfa;bg�)jL by Lemma 2.2= (h o �)�1(�N)jV��1(�N) \fa;bg� \L by Lemma 2.1 (c)= (h o �)�1(�N)jfa;bg� \LBy condition (ii) of an internal family F (restricted to partial morphism), we haveh o � 2 FT hence G 2 F�1T (DyckN)j .ii) Let us show that F�1T (DyckN)j � F�1T (#(DyckN)). Let G 2 F�1T (DyckN)j .So G is isomorphic to h�1(�N)jL with h 2 FT and L 2 Rat(N�).By Lemma 2.4, h�1(�N)jL = g�1(#L(�N)) with g(a) = #h(a)# for any a 2 T .By condition (i) of an internal family F , we have g 2 FT hence G 2 F�1T (#(DyckN)).iii) Let us show that F�1T (#(DyckN)) � F�1T (Dyckfa,bg)j . Let G 2 F�1T (#(DyckN)).So G is isomorphic to h�1(#L(�N)) with h 2 FT and L 2 Rat(N�).Let (A; i; F) be a �nite deterministic and complete automaton recognizing L andsuch that p c�!A q ^ p d�!A q =) c = d. By duplication of states, it is easyto satisfy this condition. However this condition is not necessary but it permits tosimplify the notations.Let Q = VA be the state set of A and let P be the language of words obtained from iby su�x derivation according to the relation f (p; pq) j 9 a p a�!A q g. From [B�u 64],P 2 Rat(N�). 12

So #L(�N) is isomorphic to f�1(�Q)jP where f is the following �nite mapping:f(a) = f ppq j p a�!A q g ; f(a) = f q pp j p a�!A q g ; f(#) = f pp j p 2 F gBy de�nition, P is the vertex set of the connected component of f�1(�Q) contain-ing i, hence P is stable for f�1(�Q). Note that Q may have more than two letters.As for (i), we denote Q = fa1; : : : ; ang and we havegb�Qc = g�1(�fa;bg)jM with g(ai) = abi�1 and g(ai) = bi�1a for i 2 [n]M = g(fa1; : : : ; ang�) = fa; : : : ; abn�1g�Note that M is stable for g�1(�fa;bg). Henceforth #L(�N) is isomorphic togbf�1(�Q)jPc = gbf�1(�Q)cjg(P)= f�1(gb�Qc)jg(P)= f�1(g�1(�fa;bg)jM)jg(P)= f�1(g�1(�fa;bg))jM\g(P) by Lemma 2.2= (f o g)�1(�fa;bg)jVg�1(�fa;bg) \M \ g(P) by Lemma 2.1 (c)= (f o g)�1(�fa;bg)jg(P)Note that g(P) is stable for (f o g)�1(�fa;bg). By Lemma 2.2, G is isomorphic toh�1((f o g)�1(�fa;bg)jg(P)) = (h o f o g)�1(�fa;bg)jg(P) = ((h o f o g)#J)�1(�fa;bg)jg(P)where for any x 2 T; (h o f o g)#J(x) = ((f o g)(h(x)))#J .As f o g : (N [N [f#g)� �! 2fa;b;a;bg� is a �nite substitution, and by condition(ii) of an internal family F , we have (h o f o g)#J 2 FT hence G belongs toF�1T (Dyckfa,bg)j .iv) By (i), (ii), (iii), we haveF�1T (Dyckfa,bg)j � F�1T (DyckN)j � F�1T (#(DyckN)) � F�1T (Dyckfa,bg)jHence F�1T (Dyckfa,bg)j = F�1T (DyckN)j = F�1T (#(DyckN)).For N = fa; bg, the last equation is F�1T (Dyckfa,bg)j = F�1T (#(Dyckfa,bg)).2The class RECFin is the set of regular graphs (see [MuS 85], [Co 90], [Ca 90]) ofbounded degree, and we present again two sets of representatives.Theorem 3.6 [Ca 95] [Ca 96] Given an alphabet N of at least two letters, thefollowing properties are equivalent:a) G 2 RECFinTb) G is isomorphic to (H:N�)jL for some �nite H � N��T�N� and13

L 2 Rat(N�)c) G is isomorphic to Sni=1(ui ai�! vi):Wi for some n � 0, a1; : : :; an 2 T ,u1; v1; : : :; un; vn 2 N�, W1; : : :;Wn 2 Rat(N�)d) G is a regular T -graph of bounded degree.The traces of the graphs in RECFin are all the context-free languages.Proof.i) (a) =) (b): Let G 2 RECFinT .We have G isomorphic to h�1(e�N)jL for some h 2 FinT and L 2 Rat(N�).Taking the �nite graph H = f u a�! v j a 2 T ^ uev 2 h(a)#I g and byCorollary 3.4, we have h�1(e�N) = H:N�.ii) (b) =) (a): Let a �nite graph H � N��T�N� and L 2 Rat(N�).By Corollary 3.4, H = h�1(e�N) such that h(a) = f �uev j u a�!H v g 8 a 2 T .iii) (a) =) (c): Let G 2 RECFinT .So G is isomorphic to h�1(#L(e�N)) with h 2 FinT and L 2 Rat(N�).It remains to apply the equation (2) which is the pre�x form of Corollary 3.3 .iv) (c) =) (a): Let n � 0; a1; : : : ; an 2 T; u1; v1; : : : ; un; vn 2 N�; W1; : : : ;Wn 2Rat(N�). Let us show that G = Sni=1(ui ai�! vi):Wi is in RECFinT .Taking the following rational language L and the following �nite mapping h :L = Sni=1 aiWi and h(a) = f �uiai# �ai evi j ai = a g for every a 2 Twe have G = h�1(#L(e�N [T)) in RECFin .2Recall that a graph G � N��T�N� is recognizable if G is a �nite union of elementarygraphs of the form U a�! V where a 2 T and U; V 2 Rat(N�). The class RECRathas been studied in [Ca 96] and we present again two sets of representatives.Theorem 3.7 [Ca 96] Given an alphabet N of at least two letters, the followingproperties are equivalent:a) G 2 RECRatTb) G is isomorphic to (H:N�)jL for some recognizable H � N��T�N�and L 2 Rat(N�)c) G is isomorphic to Sni=1(Ui ai�! Vi):Wi for some n � 0, a1; : : :; an 2 T ,U1; V1;W1; : : :; Un; Vn;Wn 2 Rat(N�).The traces of the graphs in RECRat are all the context-free languages.Proof.The implications (b) =) (a) and (c) =) (a) are as in the proof of Theorem 3.6 .14

i) (a) =) (b): as in the proof of Theorem 3.6, it remains to verify that for anyL 2 Rat((N [�N)�); L#I \ �N�N� is a �nite union of sets of the form A:B whereA 2 Rat(�N�) and B 2 Rat(N�).Let (A; i; F) be a �nite automaton recognizing L and let Q = VA be the state setof A. We haveL#I \ �N�N� = Sq2Q(L(G; i; q) \ L(�N))# I : (L^(G; q; F) \ L(�N))# Iand the rationality follows from Lemma 3.1 .ii) (a) =) (c): Let G 2 RECRatT .So G is isomorphic to h�1(#L(e�N)) with h 2 RatT and L 2 Rat(N�).For every a 2 T , let (Aa; ia; Fa) be a �nite automaton recognizing h(a) and letQa = VAa be the state set of Aa.By applying the equation (2) which is the pre�x form of Corollary 3.3 , h�1(#L(e�N))is equal toSW2[L]a2Tq2Qa ((L(Ga; ia; q) \ L(#W�1eL(�N)))#J a�! (L ^(Ga; q; Fa) \ L(#W�1eL(�N)))#J) : fWand the rationality follows from Lemma 3.1 .2Several characterizations ofRECFin inside RECRat have been given [Ba 98], [CaK 01].A major question is the closure of RECF by inverse F -mappings. We denote byF (E) := f h(L) j L 2 E ^ h 2 FN[N[f#g gthe family obtained by applying F substitutions to a family E. In particular Fin(Fin) =Fin and Fin(Rat) = Rat(Fin) = Rat(Rat) = Rat.Lemma 3.8 Let F be the internal family Fin or Rat. Let E be any family suchthat F (E) is internal. We have E�1T (RECFN) � RECF (E)T .Proof.i) Let G 2 E�1T (RECFN) : G = g�1(H) for some g 2 ET and H 2 RECFN .So H is isomorphic to h�1(#L(�N)) with h 2 FN and L 2 Rat(N�).Hence G is isomorphic to g�1(h�1(#L(�N))).By Lemma 2.1 (c), G is isomorphic to (g o h)�1(#L(�N))jVh�1(#L(�N)).For any a 2 T , (g o h)(a) = h(g(a)) 2 F (E) hence (g o h)�1(#L(�N)) 2RECF (E)T .So (g o h)�1(#L(�N)) is isomorphic to k�1(�N)jM with k 2 F (E)T and M 2Rat(N�).Finally G is isomorphic to k�1(�N)jM \Vh�1(#L(�N)) .ii) It remains to show that Vh�1(#L(�N)) is rational. By union, it is su�cient to15

assume that h(a) 2 Rat for some a 2 T and h(b) = ; for any b 2 T � fag.So h(a) =L(A; i; Qf) is recognized by some �nite automaton (A; i; Qf). LetQ = VA be the state set of the automaton. By Corollary 3.3, we haveVh�1(#L(�N)) = S W2[L]q2C(Q)W:([L^(G; i; q)[L(G; q;Qf)] \ L(#W�1L(�N)))#Jwhere C(Q) is the set q 2 Q such that the languages L^(G; i; q) \ L(#W�1L(�N))and L(G; q;Qf) \ L(#W�1L(�N)) are non empty. The rationality follows fromLemma 3.1 .2We deduce closure properties for RECFin and RECRat .Proposition 3.9 We have Fin�1T (RECFinN) = RECFinTand Rat�1T (RECFinN) = Rat�1T (RECRatN) = RECRatTProof.As #(Dyckfa,bg) 2 RECFinN, we haveRECFinT = Fin�1T (#(Dyckfa,bg)) � Fin�1T (RECFinN).As Fin(Fin) = Fin and by Lemma 3.8, we have Fin�1T (RECFinN) � RECFinT .Similarly, we deduce the two other equalities.2Note that the closure of RECRat by any inverse rational mapping has been obtainedin [Ca 96] with a long proof.It remains to recall the family of rational graphs [Mo 00]. We consider a graph asa subset of N��T�N� i.e. a T -graph with vertices in N�. We extend the monoidN��N� to the partial semigroupN��T�N� de�ned by (u; a; v):(x; a; y) = (ux; a; vy)for every u; v; x; y 2 N� and a 2 T . The extension by union of : to subsets is theusual synchronization product for graphs [AN 82]:G:H = f ux a�! vy j u a�!G v ^ x a�!H y g for any G;H � N��T�N�To this operation is associated the rational family Rat(N��T�N�) of graphs: it isthe smallest subset of 2N��T�N� containing the �nite graphs and closed by [; : ; + .A rational graph is a graph isomorphic to a graph in Rat(N��T�N�) ; we denote byRATT the family of rational T -graphs. The rational graphs are the graphs recognizedby the labelled transducers. Precisely, a T -labelled transducer is a �nite (N��N�)-automaton A = (G; i; (Fa)a2T) with a set Fa of �nal states for each a 2 T ; such anautomaton recognizes the graph: 16

L(A) := f u a�! v j 9 s 2 Fa; i u=v=)G s gThe family Lin de�nes by inverse mappings the class of rational graphs.Theorem 3.10 [Mo 00],[MoS 01] We haveRATT = RECLinT � RECLinTThe traces of the graphs in RAT are the context-sensitive languages.A particular rational graph is an automatic graph [BG 00] which is a graph iso-morphic to a graph recognized by a labelled left-synchronized (or by a labelledright-synchronized) transducer [EM 65], [FS 93]. The traces of the automatic graphsremain the context-sensitive languages [Ri 01]. Note that we can have non recursivetraces for graphs in RECLin . From the closure by composition of rational relations,the rational graphs are closed by inverse �nite mappings.Proposition 3.11 We have Fin�1T (RATN) = RATT .We will now use Turing machines to de�ne a general class of graphs whose the tracesare the recursively enumerable languages.4 Graphs of rewriting systems and of Turing machinesWe consider the rational restrictions of the "-closure for the set of transitions of thelabelled Turing machines. We show that this family is the same that for the labelledword rewriting systems (Theorem 4.5). We show also that this family is RECF forany family F of recursively enumerable languages containing the rational closure ofthe linear languages (Theorem 4.6). Furthermore, we show that this family is theset of the inverse rational mappings of the rational graphs (Theorem 4.7). Finally,we show that this family is also the set of graphs recognized by (unlabelled) Turingmachines with labelled �nal states (Theorem 4.8), and even if we restrict to deter-ministic Turing machines (Theorem 4.9).The notion of a word-rewriting system is well-known (see for instance the survey[DJ 90] and [BO 93]): it is just a �nite set of rules between words. As for the transi-tions of a pushdown automaton, we allow labelled rules, and to any system, we as-sociate a rational language of admissible words, usually called con�gurations, whichare the words where the rules can be applied. The words are over an alphabet (�niteset of symbols) N of non-terminals, and the rules are labelled by symbols in an17

alphabet T of terminals, plus the empty word ".
De�nition 4.1 A �nite labelled rewriting system (R;C) over words is a coupleof a �nite relation R � N��(T [f"g)�N� and a rational language C � N�of con�gurations. We write shortly R instead of (R;N�).

The set of transitions of R is the following (T [f"g)-graph:T (R) := f xuy a�! xvy j (u; a; v) 2 R ^ x; y 2 N� gThe unlabelled transitions of T (R) form the usual rewriting �!R of R :xuy �!R xvy for some (u; a; v) 2 R with x; y 2 N�Its re
exive and transitive closure �!R � by composition is the derivation of R. Toany system (R;C), we associate its transition graph :G(R;C) := T (R)jC = f u a�! v j u a=)T (R) v ^ u; v 2 C ^ a 2 T gwhich is the restriction to C of the "-closure of T (R). In particular G(R) = T (R).For instance, the transition relation of a pushdown automaton over a set Q of statesand over a disjoint set P of stack letters, can be seen as a labelled rewriting system(R;C) over N = P [Q where R is a �nite subset of Q:P�(T [f"g)�Q:P � and C isa rational subset of Q:P �. The closure by isomorphism [G(R;C)] of their transitiongraphs form the family RECRat .Proposition 4.2 We haveG 2 RECRat () G isomorphic to R:N�jC for some system (R;C).Proof.(= : by Theorem 3.6 and Proposition 3.9.=) : Let G 2 RECRat . By Theorem 3.7 , G is isomorphic to the following graph:H := (Sni=1(Ui ai�! Vi):N�)jL with L; U1; V1; : : : ; Un; Vn 2 Rat(N�)For every 1 � i � n, let (Gi; ri; Ei) and (Hi; si; Fi) be �nite N -automatarecognizing respectively Ui and Vi . We may assume that VG1 ; VH1 ; : : : ; VGn ; VHnare pairwise disjoint. Let $ be a new symbol. We de�ne the following rewritingsystem (R;C) : 18

R ������������������
$ ai�! ri for any 1 � i � npA "�! q for any p A�!Gi q with 1 � i � np "�! t for any p 2 Ei , t 2 Fi with 1 � i � nt "�! sA for any s A�!Hi t with 1 � i � nsi "�! $ for any 1 � i � nand C = $L. So R:N�jC = $:H .2Another particular labelled rewriting systems are the Turing machines with a readonly input tape and a working tape [MS 97], [Pay 00]. More exactly and given analphabet Q of states, a disjoint alphabet T of input tape letters, and a disjointalphabet P2 = P [f2g of working tape letters, a (non deterministic) labelled Turingmachine (M;C) is a �nite set M of rules of the form:pA a�! qB� where p; q 2 Q, a 2 T [f"g, A;B 2 P2 , � 2 f+,{gwith a rational set C 2 Rat((Q [P2)�) of con�gurations.However we are only interested to con�gurations upv where p 2 Q and u; v 2 P2*with u(1); v(jvj) 6= 2 . Precisely a con�guration is of the form]u] p [v[where for anyword u 2 P2*, [u[(resp.]u]) is the greatest pre�x (resp. su�x) of u having its last(resp. �rst) letter distinct of 2 i.e. by induction,[u2[= [u[^ [u[= u if u(juj) 6= 2 and]2u] =]u] ^]u] = u if u(1) 6= 2The set of transitions of M is the following (T [f"g)-graph:T (M) := f]u] p [Av[a�!]uB] q [v[j pA a�!M qB+ ^ u; v 2 P2* g[f]uC] p [Av[a�!]u] q [CBv[j pA a�!M qB{ ^ C 2 P2 ^ u; v 2 P2* gHence the transition graph of any labelled Turing machine (M;C) is the T -graph:G(M;C) := T (M)jCThe transition graph of any labelled Turing machine is the transition graph of astable labelled rewriting system (R;C) meaning that C is stable in T (R) :s �!R * r �!R * t ^ s; t 2 C =) r 2 CLemma 4.3 We can transform any labelled Turing machine M into a stablelabelled rewriting system (R;C) such that T (R)jC is isomorphic to T (M).Proof.We take a new symbol $ and the following rational language:19

C = f upv j p 2 Q ^ u; v 2 P2* ^ u(1); v(jvj) 6= 2 gWe transform any rule pA a�! qB+ of M into the following rules:��������������
CpA a�! CBq if CB 6= $2Cp$ a�! CBq$ if A = 2 ^ CB 6= 2pA a�! $q if B = 2$p$ a�! q if A = B = 2We transform any rule pA a�! qB{ of M into the following rules:����������� CpAD a�! qCBD if C 6= $ ^ BD 6= 2CpA a�! qC$ if B = 2 ^ C 6= 2; $2pA$ a�! q$ if B = 2����������� Cp$ a�! qCB$ if A = 2 6= B ^ C 6= Cp a�! qC$ if A = B = 2 ^ C 6= 2; $2p$ a�! q$ if A = B = 2��������������
$pAD a�! $q2BD if BD 6= 2$$pA$ a�! q if B = 2p a�! $q2B$ if A = 2 6= Bp a�! q if A = B = 2In this way, we obtain a labelled rewriting system R such thatC is closed by �!R hence (R;C) is stableU a�!T (M) V () U a�!T (R) $V $ ^ U; $V $ 2 CThus $T (M)$ = T (R)jC .2Conversely and up to the "-transitions, any labelled rewriting system can be simu-lated by a labelled Turing machine.Lemma 4.4 We can transform any labelled rewriting system R into a labelledTuring machine (M;C) such that T (M)jC is isomorphic to T (R).Proof. 20

We denote by m1 (resp. m2) the maximum length of the left (resp. right) handsides of the rules of R i.e.m1 = maxf jU j j 9 a; V; (U; a; V) 2 R gand m2 = maxf jV j j 9 U; a; (U; a; V) 2 R gWe take two new symbols � and $, and we de�ne the following state set Q of thelabelled Turing machine to be constructed:Q = f�g [N�m1�(N�m2 [f$g)�(T [f"g)We take the following set M 0 of Turing rules:����������� �A "�! �A+ for A 2 N2�A "�! �A{ for A 2 N2�A "�! (U; V; a)A+ for A 2 N2 and (U; a; V) 2 R������������ (AU;BV; a)A "�! (U; V; a)B+("; BV; a)A "�! ("; V A; a)B+ for A 2 N("; BV; a)2 "�! ("; V; a)B+��������������
(AU; "; a)A "�! (UB; "; a)B+ for B 2 N(AU; "; a)A "�! (U; $; a)2+(AU; $; a)A "�! (U; $; a)2+("; $; a)2 "�! ("; "; a)2+In this way, we obtain a labelled Turing machine M 0 such that for every a 2 T [f"gand U; V 2 N�,U a�!T (R) V () �U "=)T (M0) X("; "; a)Y ^ [XY [= VWe complete M 0 to M by adding the following rules:���� ("; "; a)A a�! �A+ for A 2 N2The relation h = f (U; �U) j U 2 N� g is a partial weak isomorphism from T (R)into T (M). More precisely and for every a 2 T [f"g, we haveU a�!T (R) V =) �U a=)T (M) �V�U a=)T (M) �V =) U a=)T (R) V21

So h is a partial isomorphism from T (R) into T (M) .Thus h is a partial isomorphism from T (R) into T (M)jC where C = Im(h) =�N�.As VT (R) � N� = Dom(h), the graphs T (R) and T (M)jC are isomorphic.2The rewriting systems and the Turing machines have the same transition graphs.Theorem 4.5 The labelled Turing machines and the labelled rewriting systemsde�ne up to isomorphism, the same family of transition graphs, and their tracesare the recursively enumerable languages.Proof.i) Let (M;D) be a labelled Turing machine.By Lemma 4.3 , we can construct a stable labelled rewriting system (R;C) and anisomorphism h from T (M) to T (R)jC .By restriction, h de�nes an isomorphism from T (M) to T (R)jC .By Equation (2:2), T (R)jC = T (R)jC = G(R;C). Thus G(M;D) = T (M)jD is iso-morphic (by a restriction of h) to T (R)jC\h(D) = G(R;C \ h(D)).ii) Let (R;C) be a labelled rewriting system.By Lemma 4.4 , we can construct a labelled Turing machine (M;D) and an iso-morphism h from T (R) to T (M)jD . Thus G(R;C) = T (R)jC is isomorphic (by arestriction of h) to T (M)jh(C)\D = G(M;h(C) \D).2We denote by TURINGT the family of T -graphs isomorphic to the transitiongraphs of labelled Turing machines (or of labelled rewriting systems). As for theprevious graph families (investigated in the previous section), we characterize thefamily TURINGT by inverse mappings of the binary tree. The images of these map-pings can be the class of recursively enumerable languages, or can be only the classof the rational closure Lin(Rat) of Lin.Theorem 4.6 We have TURINGT = RECLin(Rat)T = RECRETProof.i) Let us show that TURINGT � RECLin(Rat)T .Let (R;C) be a labelled rewriting system: R is a �nite subset of N��(T [f"g)�N�and C is a rational subset of N�.We replace in R the label " by a new letter $:S := f (u; a; v) 2 R j a 2 T g [f (u; $; v) j (u; "; v) 2 R gSo T (S) = h�1(�N) where h is the following linear mapping:22

h(a) = f ex eu v x j (u; a; v) 2 S ^ x 2 N� g for every a 2 T [f$gFurthermore T (R) = g�1(T (S)) where g is the following rational mapping:g(a) = $�a$� for every a 2 TBy (2:1), we have T (R) = (g o h)�1(�N) where g o h is the following mapping:(g o h)(a) = h(g(a)) = h($�a$�) = h($)�h(a)h($)� 2 Lin(Rat)Finally and by Proposition 3.5, G(R;C) = T (R)jC 2 RECLin(Rat)T .ii) RECLin(Rat) � RECRE because Lin(Rat) � RE.iii) Let us show that RECRET � TURINGT .Let a mapping h : T �! RE(fa; b; a; bg�). By Proposition 3.5 , it is su�cient toconstruct a rewriting system (R;C) such that h�1(�fa,bg) is isomorphic to T (R)jC .For every c 2 T , there is a Turing machine Mc : a �nite set of rules of the form:pA x�! qB� where p; q 2 Qc , x 2 f"; a; b; a; bg , A;B 2 Pc [f2g , � 2 f+,{gplus an initial con�guration ic and a set Fc � Qc of �nal states recognizing:h(c) = L(T (Mc); ic; f]u]q[v[j q 2 Fc ^ u; v 2 (Pc [2)* g)Up to renaming, we may assume that the sets (Pc)c2T ; (Qc)c2T are pairwise disjoints,and we de�ne the following Turing machine:M = f pA "�! qB� 2Mc j c 2 T g[f pA "�! qxB� j 9 c 2 T; pA x�! qB� 2Mc ^ x 6= " gWe take three new symbols $;&; � and we construct a rewriting system R. First, wetake the following rules:��� $$ "�! ic for every c 2 Tto describe the moves between two $ of the Turing machines de�ning h. We transform(as in Lemma 4.3) any rule pA "�! qB+ of M into the following rules:��������������
CpA "�! CBq if CB 6= $2Cp$ "�! CBq$ if A = 2 ^ CB 6= 2pA "�! $q if B = 2$p$ "�! q if A = B = 2In a same way (and as in the proof of Lemma 4.3), we transform any rule pA "�! qB{of M into new rules of R.For every c 2 T , q 2 Qc , A 2 Pc [f2g , y 2 fa; b; a; bg , x 2 fa; bg, we take therules:

23

���������������������
qy "�! q0y&Aq0y "�! q0yAx$q0x "�! qq0x "�! x$qqA "�! Aqq& "�! qFor the acceptance and for every c 2 T and A 2 (Sc Pc) [f2g , we de�ne��������������
q c�! � if q 2 Fc�A "�! �A� "�! �$�$ "�! $$For every c 2 T and u; v 2 fa; bg�, we haveu c�!h�1(�fa,bg) v () u$$ c=)T (R) v$$So h = f (u; u$$) j u 2 fa; bg� g is a partial weak isomorphism from h�1(�fa,bg)into T (R). Thus h is a partial isomorphism from h�1(�fa,bg) = h�1(�fa,bg) intoT (R). Hence h is an isomorphism from h�1(�fa,bg) into T (R)jC where C = Im(h) =fa; bg�$$.2The class TURING is the closure of RAT by inverse rational mapping.Theorem 4.7 We have Rat�1T (RATN) = TURINGT .Proof.i) TURINGT � Rat�1T (RATN).Let G 2 TURINGT : G is isomorphic to T (R)jC for some labelled rewriting system(R;C). Let #; $ be two new symbols. We haveT (R) = h�1(T (S))where h is the rational mapping de�ned by h(a) = $�a$� for every a 2 T ,and S is the system obtained from R by replacing the label " by $:S := f (u; a; v) 2 R j a 2 T g [f (u; $; v) j (u; "; v) 2 R gBy Equations (2:4) and (2:1), we have 24

T (R)jC = h�1# (T (S) [fu #�! u j u 2 Cg)where h#(a) = #$�a$�# for every a 2 T .Obviously T (S) is a rational graph and fu #�! u j u 2 Cg is also a rational graphbecause C is a rational language. Hence G 2 Rat�1T (RATN).ii) Rat�1T (RATN) � TURINGT .LetG 2 Rat�1T (RATN) : there is a rationalN -graphH and a mapping h : T �!Rat(N�)such that G = h�1(H).By de�nition of a rational graph, there is an alphabet X and a N -labelled transducerA = (K; i; (Ex)x2N) where K is a �nite (X��X�)-automaton, i is the initial state,and for each x 2 N , Ex is a set of �nal states, and such that the automaton Arecognizes the graph L(A) = f u x�! v j 9 s 2 Ex ; i u=v=)K s g which is isomorphic toH.Furthermore and for each a 2 T , there is a �nite N -automaton (Ka; ia; Fa) recog-nizing the rational language h(a).We may assume that the automata (Ka)a2T have pairwise disjoint state sets: VKa \VKb = ; for a 6= b. We denote by K = Sa2T Ka and we take a new state � 62 VK .We take a new symbol $ and we denote by C = $�X�$ the (rational) con�gurationset of the following rewriting system R :
R
����������������������

� "�! ia for each a 2 T$s "�! $(i; s) for each s 2 VK$s a�! $� if s 2 Fa(p; s)u "�! v(q; s) if p u=v�!K q and s 2 VK(p; s)$ "�! t$ if p 2 Ex and s x�!K t for some x 2 NAs "�! sA for each A 2 X and s 2 VKThus T (R)jC = f $�u$ a�! $�v$ j $�u$ a=)T (R) $�v$ g= f $�u$ a�! $�v$ j 9 s 2 Fa iau "=)T (R) sv g= f $�u$ a�! $�v$ j 9 w 2 h(a) u w(1)�!L(A) : : : w(jwj)�!L(A) v g= f $�u$ a�! $�v$ j u h(a)=)L(A) v g= $�h�1(L(A))$ isomorphic to h�1(H) = G .2In particular RAT is not closed by inverse rational mapping. We also deduce thatthe transition graphs of labelled Turing machines are the rational restrictions of the25

"-closure of rational graphs (with "-arcs).An equivalent way to get the family TURINGT is to consider the computablerelations of single tape non deterministic Turing machines. Precisely and given analphabet Q of states and a disjoint alphabet P2 = P [f2g of working tape letters,a (single tape non deterministic) Turing machine M is a �nite set of rules of theform: pA �! qB� where p; q 2 Q, A;B 2 P2 , � 2 f+,{gThe set of transitions of M is the previous graph T (M) which is unlabelled. Fora T -labelling and as for the labelled transducers recognizing the rational graphs,we take a subset Fa � Q of �nal states for each letter a 2 T . Furthermore and asusual, we take an initial state q0 2 Q. In this way, a Turing machine M de�nes thefollowing T -computation graph:R(M) := f u a�! v!w j u 2 P � ^ a 2 T ^ 9 q 2 Fa p0u =)T (M) vqw gwhere v is the greatest su�x in P � of v, and !w is the greatest pre�x in P � of w.The transition graphs of labelled Turing machines are the computation graphs ofunlabelled Turing machines.Theorem 4.8 The family TURINGT is the set of T -graphs isomorphic to thecomputation graphs of Turing machines.Proof.� : Let (M;C) be a labelled Turing machine.Let T be its label alphabet, Q be its state alphabet and P be its tape set.We have to construct a (unlabelled non deterministic) Turing machine N such thatits computable graph R(N) is isomorphic to G(M;C).Such an isomorphism is given by the mapping which associates to any con�gurationupv where p 2 Q and u; v 2 P �2 with u(1); u(juj) 6= 2, the word &u p v$ with p ina new alphabet Q in bijection with Q, u (resp. v) are obtained from u (resp. v) byreplacing 2 by a new symbol {2, and &; $ are also new symbols.So we have to construct a Turing machine N such thatu a�!G(M;C) v () &u$ a�!R(N) &v$For p0 the initial state of N and fa the unique �nal state for each label a 2 T , wewill construct N in such a way thatu "=)T (M) a�!T (M) "=)T (M) v () p0&u$ =)T (N) &vfa$ for any u; v 2 CAs C is a rational set of con�gurations, there is a �nite (Q[P2)-automaton (G; i; F)recognizing C : L(G; i; F) = C.First, the Turing machine N checks that the input word (between & and $) belongs26

to C : �������������������������
p0& �! i&+sA �! tA+ if s A�!G t and A 2 Ps {2 �! t2+ if s 2�!G tsp �! tp+ if s p�!G t and p 2 Qs$ �! $̂2� if s 2 FÂB �! B̂A� if A 2 P2 [f$g and B 2 P2Âp �! pA if A 2 P2 [f$g and p 2 QThe last rule without + and � means that we do not move the tape head.Now the machine N simulates any path a=) of M :����������� pA �! qB� if pA "�! qB� is a rule of MpA �! qaB� if pA a�! qB� is a rule of MpaA �! qaB� if pA "�! qB� is a rule of MFurthermore N must push the endmarkers & and $ when they are accessible: forany p 2 Q [Sa2T Qa��������������
p$ �! p02+p02 �! p$�p& �! p002�p002 �! p&+Then N removes the useless 2 (on the right of & and on the left of $) and add thelabel a 2 T after the right endmarker $:

27

��

paA �! Aap+ for any p 2 Q and A 2 P2 [f$gAaB �! BaA+ for any A;B 2 P2 [fga2 �! $a2�$aA �! $0aA+ for any A 2 P [f&g [Q$0a2 �! a0$+a02 �! `a�`A �! `A� for any A 2 P2 [Q`& �! `02+`02 �! `02+`0A �! `00A� for any A 2 P [f$g [Q`002 �! i0&+At this step, N reaches a con�guration of the form &vpw$a with v(1); w(jwj) 6= 2with a state i0 (i is the initial state of the �nite automaton G recognizing C) readingthe �rst letter of vp. It remains to test whether vw 2 C, to replace 2 by {2 , toremove a and to reach fa :��������������
s0A �! t0A+ if s A�!G t and A 2 P [Qs02 �! t0{2+ if s 2�!G ts0$ �! s0$+ if s 2 Fs0a �! fa2� if s 2 F and a 2 T� : Let N be a (unlabelled non deterministic) Turing machine.Let P be its tape alphabet and p0 be its initial state.We have to construct a labelled Turing machine (M;C) such that its transitiongraph G(M;C) is isomorphic to the computable graph R(N) of N .We take the rational language C = i&P �$ where i;&; $ are new symbols. Forthe isomorphism, we take the bijection which associates to any u 2 P � the wordi&u$ 2 C. So we have to construct a labelled Turing machine M such thatu a�!R(N) v () i&u$ a�!G(M;C) i&v$or equivalently for any u; v; w 2 P �,p0u =)T (N) xvqwy for some q 2 Fa , x 2 (P �2)� y 2 (2P �)�() i&u$ "=)T (M) a�!T (M) "=)T (M) i&vw$First, the machine M simulates N : 28

���������������������
i& "�! p0&+pA "�! qB� if pA �! qB� is a rule of Np$ "�! p02+p02 "�! p$�p& "�! p002�p002 "�! p&+Then M does a transition by a when N has reached a �nal state for a. And Mremoves the useless right part (beginning by a 2) of its con�guration:��

pA a�! `A+ if p 2 Fa and A 2 Pp$ a�! m$� if p 2 Fap2 a�! j2+ if p 2 Fa`A "�! `A+ if A 2 P`$ "�! m$�`2 "�! j2+jA "�! j2+ if A 2 P2j$ "�! k2�k2 "�! k2�kA "�! m0A+ if A 2 P [f&gm02 "�! m$�Finally M removes the useless left part (ending by a 2) of its con�guration, andreads the marker & at state i. We do not give this simple part which is similar tothe previous one.2As for languages, the family of computation graphs does not change if we restrict todeterministic Turing machines (the set of rules is functional: there is no two ruleswith the same left hand side).
Theorem 4.9 The family TURINGT is the set of T -graphs isomorphic to thecomputation graphs of deterministic Turing machines.29

The transformation of a (non deterministic) Turing machine to a deterministic Tur-ing machine with the same computation graph is similar to the usual transformationpreserving the recognized language.
5 ConclusionWe have presented a hierarchy of graph families and essentially the family TURINGof transition graphs of labelled Turing machines with "-rules. In particular RECRatis the family of transition graphs of pushdown automata with "-rules. Between thelowest family FIN of �nite graphs and the greatest family TURING , we can showthat the two families RECRat and RAT are natural, by considering the Cayleygraphs of the word rewriting systems [CK 98], [Ca 00] and [CaK 02]. Finally andusing traces, the hierarchy FIN , RECRat , RAT , TURING yields a Chomskyhierarchy. Another point is to �nd a subclass of word rewriting systems such thattheir transition graphs are the graphs of RECLin .References[AN 82] A. Arnold andM. Nivat Comportements de processus, Colloque AFCET`Les math�ematiques de l'informatique', 35{68 (1982).[Ba 98] K. Barthelmann When can an equational simple graph be generated byhyperedge replacement, 23rd MFCS, LNCS 1450, L. Brim, J. Gruska, J. Zlatuska(Eds.), 543{552 (1998).[Ben 69] M. Benois Parties rationnelles du groupe libre, C.R. Acad�emie desSciences, Paris, S�erie A 269, 1188{1190 (1969).[Ber 79] J. Berstel Transductions and context-free languages, Teubner (Ed.),Stuttgart (1979).[BG 00] A. Blumensath and E. Gr�adel Automatic structures, 15th LICS, 51{62(2000).[BO 93] R. Book and F. Otto String-rewriting systems, Texts and monographsin computer science, P. Gries (Ed.), Springer-Verlag (1993).[B�u 64] R. B�uchi Regular canonical systems, Archiv f�ur Mathematische Logik undGrundlagenforschung 6, 91{111 (1964) [reprinted in The collected works of J.Richard B�uchi, S. Mac Lane, D. Siefkes (Eds.), Springer-Verlag, New York, 317{337 (1990)].[CK 98] H. Calbrix and T. Knapik A string-rewriting characterization ofMuller and Schupp's context-free graphs, 18th FSTTCS, LNCS 1530, V. Arvind,R. Ramanujam (Eds.), 331{342 (1998).30

[Ca 90] D. Caucal On the regular structure of pre�x rewriting, 15th CAAP, LNC-S 431, A. Arnold (Ed.), 87{102 (1990) [a full version is in Theoretical ComputerScience 106, 61{86 (1992)].[Ca 95] D. Caucal Bisimulation of context-free grammars and of pushdown au-tomata, CSLI volume 53 \Modal logic and process algebra", A. Ponse, M. de Rijke,Y. Venema (Eds.), Stanford, 85{106 (1995).[Ca 96] D. Caucal On in�nite transition graphs having a decidable monadic the-ory, 23rd ICALP, LNCS 1099, F. Meyer auf der Heide, B. Monien (Eds.), 194{205(1996) [a full version will appear in Theoretical Computer Science].[Ca 00] D. Caucal On word rewriting systems having a rational derivation,3rd FOSSACS, LNCS 1784, J. Tiuryn (Ed.), 48{62 (2000).[CaK 01] D. Caucal and T. Knapik An internal presentation of regular graphsby pre�x-recognizable ones, Theory of Computing Systems 34-4 (2001).[CaK 02] D. Caucal and T. Knapik On a Chomsky-like hierarchy of in�nitegraphs, 27th MFCS, K. Diks, W. Rytter (Eds.), to appear in LNCS (2002).[Co 90] B. Courcelle Graph rewriting: an algebraic and logic approach,Handbook of Theoretical Computer Science Vol. B, J. Leeuwen (Ed.), Elsevier,193{242 (1990).[DJ 90] N. Dershowitz and J.-P. Jouannaud Rewrite systems, Handbook ofTheoretical Computer Science Vol. B, J. Leeuwen (Ed.), Elsevier, 243{320 (1990).[EM 65] C. Elgot and J. Mezei On relations de�ned by generalized �nite au-tomata, IBM J. Res. Dev. 9, 47{68 (1965).[FS 93] C. Frougny and J. Sakarovitch Synchronized rational relations of�nite and in�nite words, Theoretical Computer Science 108, 45{82 (1993).[MS 97] A. Mateescu and A. Salomaa Aspects of classical language theory,Handbook of Formal Languages Vol. 1, G. Rozenberg, A. Salomaa (Eds.), Springer-Verlag, 175{251 (1997).[MuS 85] D. Muller and P. Schupp The theory of ends, pushdown automata,and second-order logic, TCS 37, 51{75 (1985).[Mo 00] C. Morvan On rational graphs, 3rd FOSSACS, LNCS 1784, J. Tiuryn (Ed.),252{266 (2000).[MoS 01] C. Morvan and C. Stirling Rational graphs trace context-sensitivelanguages, 26th MFCS, P. Kolman, A. Pultr and J. Sgall (Eds.), LNCS 2136, 548{559 (2001).[MS 85] D. Muller and P. Schupp The theory of ends, pushdown automata, andsecond-order logic, Theoretical Computer Science 37, 51{75 (1985).[Pay 00] E. Payet Produit synchronis�e pour quelques classes de graphes in�nis,PhD Thesis, University of La R�eunion (2000).[Ri 01] C. Rispal The synchronized graphs trace the context-sensitive languages,DEA report, University of Rennes (2001).[Ur 00] T. Urvoy Regularity of congruential graphs, 25th MFCS, LNCS 1893, M.Nielsen and B. Rovan (Eds.), 680{689 (2000).
31

