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Abstract

As for pushdown automata, we consider labelled Turing machines with e-rules. With
any Turing machine M and with a rational set C of configurations, we associate the
restriction to C of the e-closure of the transition set of M. We get the same family
of graphs by using the labelled word rewriting systems. We show that this family is
the set of graphs obtained from the binary tree by applying an inverse mapping into
F followed by a rational restriction, where F' is any family of recursively enumerable
languages containing the rational closure of all linear languages. We show also that
this family is obtained from the rational graphs by inverse rational mappings. Finally
we show that this family is also the set of graphs recognized by (unlabelled) Turing
machines with labelled final states, and even if we restrict to deterministic Turing
machines.

1 Introduction

The transition graphs of some classes of machines have already been investigat-
ed. First, Muller and Schupp have considered rational restrictions of the transition
graphs of pushdown automata: these graphs are the graphs of bounded degree hav-
ing a finite number of non isomorphic connected components when decomposed by
distance from any vertex; these graphs have a decidable monadic theory [MS 85].
This graph family is also the set of rational restrictions of the prefix transition graphs
of finite labelled word rewriting systems [Ca 90]. Extending to recognizable labelled
rewriting systems, the rational restrictions of their prefix transition graphs define a
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larger family of graphs having a decidable monadic theory [Ca 96]. To extend this
last family, Morvan has defined the family of rational graphs, which are the graphs
recognized by transducers with labelled final states [Mo 00]. This family is general:
it contains for instance the transition graphs of Petri nets, the transition graphs of
congruential systems [Ur 00], and the transition graphs of labelled word rewriting
systems. Although the rational graphs are recursive, there exists a rational graph
with an undecidable first order theory.

There is a simple and uniform way to present all the previous families of graphs from
families of languages. Take a family F' of languages, a set 71" of labels and a mapping
h : T—F associating to each label a language in F. The inverse image h~'(G) of a
graph G by h has an arc s -%» ¢ when there is a path s == ¢ in G for some word u in

h(a). A family F' of languages induces a family REC). of graphs obtained from the
infinite binary tree by marking rationally some vertices (with a special letter) and
then applying an inverse mapping. Then the family of rational restrictions of the
transition graphs of pushdown automata is the family RECE;, of graphs induced
by the family Fin of finite languages. Furthermore, the family of rational restric-
tions of the prefix transition graphs of recognizable rewriting systems is the family
REC g of graphs induced by the family Rat of rational languages [Ca 96]. Finally,
the family of rational graphs is the family RECT,, of graphs induced by a subfamily
Lin of linear languages [Mo 00].

Thus small families of languages induce large families of graphs. Conversely, a family
of graphs yields a family of languages. A trace of a graph is the language of path
labels from and to given finite vertex sets. The traces of finite graphs are the rational
languages. The traces of graphs in RECp;, are the context-free languages which are
also the traces of graphs in RECg, . Finally, the traces of rational graphs are the
context-sensitive languages [MoS 01].

Following the Chomsky hierarchy, we present a general family of graphs, the traces of
which are the recursively enumerable languages. We consider the off-line Turing ma-
chines [MS 97] with a read only one way input tape and a unique two ways working
tape. These machines are particular labelled word rewriting systems allowing rules
labelled by . Following [Pay 00] and as for prefix transition graphs of word rewrit-
ing systems, we consider rational restrictions of the s-closure of transition graphs of
these off-line Turing machines. We show that this family of graphs coincides with the
family of rational restrictions of the e-closure of the transition graphs of word rewrit-
ing systems. We also show that this graph family is equal to REC’fm(Rat) = RECRg
meaning that it is induced by any language family between the rational closure of
Lin and the family RE of recursively enumerable languages. Furthermore, we show
that this graph family is obtained by inverse rational mappings of rational graph-
s. Finally and as for the rational graphs recognized by transducers with labelled
final states, we show that our family is the set of graphs recognized by (usual) non-
deterministic Turing machines with labelled final states, and this result remains true
if we restrict to deterministic Turing machines.



2 Preliminaries on graphs

Let P be a subset of a monoid M, and Idp = { (u,u) | u € P } the identity
relation on P. A (simple oriented labelled) P-graph G is a subset of VxPxV where
V' is an arbitrary set. Any (s,a,t) of G is a labelled arc of source s, of target t,
with label a, and is identified with the labelled transition s % t or directly s -4 ¢

if G is understood. We denote by Vg == { s | Ja3Jt, s St VvV t % s} the
vertez set of G. The set 2V*F"*V of P*_graphs with vertices in V is a monoid for the
composition GoH := { r by | ds, 7 %) s N s %) t } for any G, H C VxP*xV,

where { s 2 5| s € V } is its neutral element. The submonoid {G}* of 2V6*F"*Va

generated by any graph G gives by union the graph G* := J{G}*. The relation
— denoted by :1;> or simply by == if G is understood, is the existence of a path
G* B

in GG labelled v € P*. For every () C P*, we write s =%, ¢ if there is some u € Q

such that s == t. The restriction G\|c of a P-graph G' to an arbitrary set C is
Gic == GN(CxPxC). The labels L(G, E, F') of paths of G from a set £ to a set F
is the set (G, B, F):={uweM |3Is€E FteF, s=1t} A traceof a graph
G is the language £(G, E, F') of path labels from a finite set E to a finite set F.
Given an alphabet T and a relation h C T'xP, the inverse h™'(G) by h of any P-
graph G is the following 7-graph:

hiG) = {s S tlaecT A EIuEh(a),s%t}

An example is given Figure 2.3.

A relation h C T'x P can be seen as a mapping from 7 into 27 associating the image
h(a) of any a € T. When P = S* for some alphabet S, such a mapping is extended
by morphism to a substitution from T* into S* i.e. a mapping h from T* into 2%
such that h(s) = {} and h(uv) = h(u)h(v) for every u,v € T*. The composition
of functions is the composition of their relations: (¢ « h)(a) = h(g(a)). Let us give
basic properties of inverse mappings.

Lemma 2.1 Let O, P,Q be alphabets and G be a Q-graph.

Let h C PxQ* and g C OxP* eztended by substitution. We have

a) s = t <+ si;ugt for any uwe Pt and s, t € Vg

b) Lh {(G),E.F) = hNLIG. B, F)) forany E.F C Vi)

VNG = (g0 W) NGy,
and g (NG = (g h) N (G) i e ¢ g0).

Proof.



i) We prove (a) by induction on the length of any word u € P*.
u=a€P:Vs,te€Vyg s = t <= 5 — t s M9 4

(@) (@) €

u = vw with v,w € P*: for any s,t € Vg, we have

s = t < dr, s = 1 =t

r=H(@) (R (€)
<~ dn s %; T h(:(wg t by induction hypothesis
<= s h(v)::;(>w) t GG is a (Q-graph
= s h%u) t h is a substitution.

ii) Let us prove (b). By restricting (a) to vertices of h~'(G), we can extend it for

u=c:
s = t s%ﬁt for any u € P* and s, € Vj-1( (1)
G

Taking vertex sets E and F of h™'(G), we have

LhYG),E,F) = {ueP*|E =% F}
= 1(@)
= {uepr |EXFy by (1)

= {UEP*|h(u)€L(GaEaF>}

— (LGB, F))

iii) Let us prove (¢). Let a € O and s,t € V.
Assume that = ¢ g(O) V s,t € Vj-14). We have

s 4y by definition

(@)
S h(_g_gg) ¢ by (i) if e € g(a) or by (1) if s,t € Vi1 (q

Ny

G

a
s — 1
g~ (TG

1110

a

s —— t by definition
(goh) (@)

[l

Note that the vertex restriction of Lemma 2.1 (c¢) is necessary. It is sufficient to take
G={1-%1,2-% 2} and the partial morphisms h(a) = a and g(a) = £ in such a
way that A '(G) = ¢ ' (h"Y(G)) ={1 -5 1} and (g.h) '(G)={1 51,252}
Another basic property is the commutation between the inverse mapping and the

restriction to particular sets. A set C' is stable in a graph G when any path between
vertices in C' contains only vertices in C':



S0 —* S1..Sn-1 —* 5n A sg,8, €C = 51,...,8, 1 €C

The restriction to any stable set commutes with any inverse mapping.

Lemma 2.2 For any stable set C' in a P-graph and any mapping h into 2°,
we have h'(Gie) = (h'(G))e

Proof.
We have hil(G‘C) = (hil(G‘C))‘C - (hil(G))‘C .
Let us verify the inverse inclusion.

Let s — t. So s — t with s,teC.
(=GN e (e

By definition of 47'(G), thereis w € h(a) such that s = t.

As s,t € C and C is stable in G, we have s ?—u—> t. Hence s —— t.
flo h1(Go)
]

Another way to express a restriction of an inverse mapping of a graph is to use a
marking of the graph. The marking #C(G) on a vertex set C of a graph G by a
symbol # is the graph:

#(G) = GU{ss|seC)

obtained from G by adding # to any vertex in C'. Let us give an example.

G
#_o o g a _a g
~ "~~~ T T
a a a a
h(a) = #aa h(b) = #a h(c) = a#a
h=H(@)
a a a a

Figure 2.3 An inverse mapping of a marked graph.

Any restriction of an inverse of a graph is an inverse of a marking of the graph.

Lemma 2.4 We have (b '(G))c = g '(#,(G)) with gla) = #h(a)z

Proof.

Assuming # is a new symbol and by definition of ¢!

, we have



g (# (G) = {5 %t|3u € hla), s ﬁt}

#0(G)
= {s-5t|Fu € h(a),s?t A s,iteC}

= (hH(@)c
[

For ¢ the neutral element of the free monoid 7* generated by an alphabet 7', the
e-closure G of any T U {e}-graph G is obtained by removing the s-transitions and
by adding T-transitions as follows:

G = (Id,)YG) = {s S t|laeT A s:Z>t}

Let us give a simple example.

G G -
a b
a £ e b Za E f f E b
o o 0 =i O o Q  ——p O
P q r ] t P q T s t

Figure 2.5 =-closure of a graph

We compare graphs by isomorphism. A partial isomorphism from a graph G into
a graph H is an injective function such that s — t <= h(s) —> h(t). An
isomorphism is a partial isomorphism such that Vi; € Dom(h) and Vi C Im(h). A
partial isomorphism on 7'U {e}-graphs considers the ¢ label as a new letter. To take
an e-transition as an internal (silent) move, we compare 7' U {z}-graphs by partial
weak isomorphism. A partial weak isomorphism from a graph G into a graph H is
an injective function such that s :> t < h(s) :a> h(t). A weak isomorphism is

a partial weak isomorphism such that Vo C Dom(h) and Vi C I'm(h). Note that
h is a (resp. partial) weak isomorphism from G into H if and only if & is a (resp.
partial) isomorphism from G into H. In particular, the identity Id is a weak

isomorphism between a graph G and G. Let us give a simple example.

(€ H : G
0 0o 0
a‘ a‘ a‘
1 1o 1o a
N N /
2 3 20 2 3

Figure 2.6 IdVH 18 a partial weak isomorphism between G and H which are not
(total) weak isomorphic.



3 Classes of graphs

A general way to define a family RECF of graphs from a family F' of languages is
to take the set of graphs obtained from the binary tree (with inverse transitions)
by applying an inverse F-mapping followed by a rational restriction [Ca 96]. An
equivalent way is to take the set of graphs obtained from the binary tree by mark-
ing a rational vertex set followed by an inverse F-mapping (Proposition 3.5). We
deduce known results on the family RECp;, (Theorem 3.6), on the family RECg,,
(Theorem 3.7), on the family RECT,; where Lin is a subfamily of linear languages
(Theorem 3.10). We deduce also closure properties by inverse mappings.

Let N be an alphabet containing at least two letters. We take a new alphabet
N:={@|a€ N} in bijection with N. We define the following Dyck graph:

Ay = {u-Suwa|lueNNaeN}yU {ue-Su|ueN*ANaeN}

where a representation for N = {a, b} is the following:

N,

— — —MNo
—_ — —PMo
— — —Jo

When L is rational, we say that #L(AN) is a rational marking of Ay . Note that

U

r = - wr == wy
#u—170(AN) #1,(AN)

We denote L(# (An)) := L(#,(An),s, N*) the language of path labels of Ay from &
to all the vertices. When L is rational, L(# (An))is a context-free language. Precisely
and from a deterministic and complete minimal automaton (G, ¢, F') recognizing L,
the language L(# (Ay)) is generated from axiom ¢ by the following context-free
grammar:

{ (p.agap) [ p—a} U{(pag) |p—a}tU{(pe)lpeVatU{(p#p)|perF}
The binary relation
J={(a@c)|aec N} U {(2)}

has a canonical rewriting, and we write wul.J the irreducible word (normal form)



that derives from u according to J. We have for any word u € L(# (An)),
wlJ e N* AN & = ulJ
#1,(An)

The reduction to the set of normal forms preserves the rationality.

Lemma 3.1 Let L € Rat(N*) and M € Rat((N U N U {#})*).
We have in an effective way (L(# (An)) N M) € Rat(N™).

Proof.

Let M = (L(#,(An)) N M)LJ.

Let (G,i,F) be a finite (N U N U {#})-automaton recognizing M.

We color any vertex u € N* of Ay by the set c¢(u) of states p such that (p,u)
is a vertex of the product G x# (Ay) accessible from (i,¢):

c(u) = {p| LG, i,p)N L#, (An),e,u) #0 }
So M = {ue N | c(u)NF#0 ).

We have to show that M is rational by proving that ¢ is a regular coloring of #L(AN) .
We consider the following equivalence = on N* :

u=v if clu)=clv) AN u'L=v"L

As I'm(c) is finite and L is rational, the equivalence = is of finite index.
This equivalence is right regular: let v« = v and a € N. We have to show that

ua = va.

As usual (wa) 'L = aY(u'L) = a (v 'L) = (va) 'L
By symetry of w and v, it remains to verify that c(ua) C c(va).
Let p € c(ua). There is w € (NUN U {#})* such that

-w w
t1=p N & = ua
G

# (AN
Let 2y =w such that ¢ =% u =% wa and |z| is maximal.
#r(AN) #r(AN)
By maximality of ||, we have ¢ =% a.
#uflL(AN)
As w'L=v""L, we have ¢ =% ¢« hence v =% va.
#.UflL(AN) #L(AN)

There is ¢ such that i :i> q :f> p. So q € c(u) = c(v).
By definition of ¢(v), there is z € (N UN U {#})* such that
1 ——zj> g N & = v

#.(AN)
So i=%p A = =% wa. Hence p € c(va).
G #1(An)

So H = {[|u] = [ua] |u € N* A a€ N} is finite.
Furthermore M = L(H,[e],{[u] | c(u) N F # (0}) is rational.

Let us see that H can be constructed from (G,i, F) and a finite N-automaton



(G,1, F) recognizing L. We may assume that (G,7,F) is deterministic, complete
and minimal. This automaton is isomorphic to the complete (left) residual automa-
ton of L:

{uw'lL % (wa) 'L]ueN*ANaeN}, L, {u'L|ceu'l})

We denote by 7-u the unique state accessible from 7 by the path labelled by u i.e.
2 :2> Tu.So ulL=v"'L <= Tu=71wv.

[t remains to show that c¢(u) can be constructed for any u € N*.

Note that L(# (An).c,€) is the context-free language D). More generally, we
will verify that L(# (An),s,u) is an effective context-free language, hence c(u)
is computable because the intersection of a rational language with a context-free
language is (in an effective way) a context-free language, and the emptyness of a
context-free language is decidable (see for instance [Ber 79]).

We define the following context-free grammar:

K = {(paqap) |p—a} U{@e)|preVgt U{#)|peF}

Ehen L(#, (An),e,u) = LK, Tu(1)[Tu(1)] .. ulu])[7-u]).

Lemma 3.1 with L = () means that any rational language M € Rat((N U N)*) to
mark Ay, can be transformed into the following rational language over N :

(£(#,(AN)) N M)LT = MUION®

where I = { (a@,z) | a € N }. It is a ‘half form’ of the standard Benois’ lem-
ma [Ben 69].
We denote @ the mirror of any word u: & = ¢ and au = ua for any letter a. The
mapping ~ associating to any a € N its barred letter @ € N is extended by mor-
phism to any word in (N U N U {#})* by defining = # and @ = a for any a € N.
In this way, we have

s = t — = s

#r(AN) #r(AN)

Note also that @ =u and (%)l = ul.J forany u € (NUN U {#})*.
Any inverse mapping of any marked Ay can be expressed in a suffix way.

Proposition 3.2 For any mapping h C Tx(NUNU{#})* and any language
L C N*, the T-graph h~'(# (An)) is equal to

{ w(w:J) L w(vlJ) | uv € h(a) A W€ L(# ., (AN)) N weN"}

Proof.
Let G be { (uiJ) — w(vlJ) | uv €
We have to show that h~'(% ( N)) =

(a) AN uve L, (Ay)) AN we N}



i) Proof of h™'(# (Ay)) C G.Let s 5
o R # L (AN))

There is 2 € h(a) such that s = f.

#L(AN)
Let w € N* of minimal length such that s == w =% ¢ with uwv =z meaning
#r(AN) #r(AN)
that w 1is the vertex of the path s #:Z> t closest to e. Note that we can have
LAN)

several choices of (u,v). We have wv € h(a).

There are x,y € N* such that s = wx and t = wy with + = ¢ =
#wflL(AN) #wflL(AN)

So e =% @ hence we L(# , (Ay)) and z = (u)|J = ulJ.

#w*IL(AN)

Similarly v € L(# , (Ay)) and y=vlJ.

Thus s = wa = wwlj and t = wy = w(vlJ). Finally s %Hf.
ii) Proofof G C h™'(# (Ay)). Let s — t. There are wv € h(a) and w € N*

such that u,v € L(# ., (AN)), s= w(w:J) , t=w(vlJ).

We have to show that s LN t.
h N (# L (AN))

As T € L(# ,,(Ax)), we have = = ulJ = zﬁj]

w1 L(AN)
So ulJ = h = wulJ) = w.
o ul #MlL(AN)s ence s w(ud )#L(AN)U)
As ve L(#, , (Ay)), wehave ¢ = wlJ hence w = w(vlJ) = t.

'L w-11(AN) #(AN)

h )
Thus s == t hence s gg t 1.e s LN t.
0 #1(AN) #1.(AN) R (# (AN)

To give a simple form of Proposition 3.2 for any rational marking, we introduce
some notations. The right concatenation of a graph G C N*xT'xN* by a language
L C N* is the following graph:

G.L = {uwimjw\u%)v/\weL}

Similarly, we define the left concatenation L.G of a graph G by a language L. A
usual and simple fact is that for any L € Rat(N*) and any v € N*, the language
[u] :={wv|v'L=u'L} € Rat(N*) and the family [L]:= {[u] |u € N*}
is finite. Note that for any W € [L] and any w € W, W 'L = w'L.

From Proposition 3.2, it follows that any inverse mapping of any rational marked
Ay is a finite union of graphs W.H with W € Rat(N*).

Corollary 3.3 Forany h C Tx(NUNU{#})* and L € Rat(N*),

hil(#L(AN)) = Uwen W A wlJ % vlJ [ uv € h(a) A T,v € L(#WAL(AN))}

10



To get a prefix form of Corollary 3.3, we take the mirror Ay of Ay where

G={u1-%7|u —> v } is the mirror of graph G C N*xTxN*
By applying Corollary 3.3 to #L(/~\N) = (#Z(AN))’ we have for every mapping
h C Tx(NUN U{#})* and for every L € Rat(N*),

B () = U L alT 5 ol [uo € h(a) A Fove L, (An)}. W

,11’
We[L]

Proposition 3.2 has also a simple form when we do not use marking.

Corollary 3.4 For any mapping h C Tx(N UN)*, we have the T-graph
htAy) = N du-Sov|aveh(a)dl N u,ve N AN a€T}

Let Dyck, = [Ay] where [G] is the set of all graphs isomorphic to a graph G, that
we extend by union to any class of graphs. We restrict here a language family F' to be
a subset of 20VUNU#D” A family of languages defines a set of mappings: a mapping
h is rational (resp linear, ...) if for any letter a, the language h(a) is rational (resp
linear, ...). Precisely, a language family F' and an alphabet T produce the set Fip of
mappings defined for every a € T by a language h(a) € F. By inverse of a class ®
of (N U N U {#})-graphs, we get the following class of T-graphs:

F ' (®) = {hYG)|Ged A heFr}
Starting from Dyck , we have two ways to get classes of graphs. Either we apply
inverse F-mappings followed by rational restrictions [Ca 96] :
Er'(Dycky) == [{ h""(Ax);r | h € Fr A L € Rat(N*) }]
or we apply rational markings followed by inverse F-mappings:
Ffl(#(DyckN)) = [{ h’l(#L(AN)) ' he Fr N L€ Rat(N*) }]

Henceforth £ will be one of the following language families: the family F'in of finite
languages; the family Rat of rational languages; the family Lin of linear languages;
the family RE of recursively enumerable languages; the subfamily Lin of linear
languages generated by linear grammars such that each right hand side is € or of
the form uBv where B is a non-terminal with u € N* and v € N*; and the rational
closure Lin(Rat) of Lin. Each of these families is an internal family meaning that
it satisfies the two following conditions:

11



(i) LeF = #L#eF
(ii) Le F = h(LJNNN'€F

for any finite substitution & from (N U N U {#})* into itself such that

h(#)}.J C {e} and for any a € N, h(a) = h(a) and h(a)l.J C N*.

Note that any family closed by every rational binary relation and called a rational
cone [Ber 79|, is an internal family. For these families, the two previous classes of
graphs coincide and we can also restrict /N to have only two letters.

Proposition 3.5 For any distinct letters a,b € N and for any internal famaily
F', we have

FI:I(D?/C]{:N)\ = FZTI(Dka{a,b})\ = FZTI(#(Dka{a,b}» = Ffl(#(DkaN»
This class 1s denoted RECFT or RECEr when T 1is undertood.

Proof.

i) Let us show that Fp'(Dyck,, ) C Fp'(Dycky) . Let G € Fp'(Dyck
So G isisomorphic to h '(Ay.py);, with h e Fp and L € Rat(N*).

We have Aggpp = ¢ '(An)j{apyr where = Id, a5 -

Note that {a,b}* is stable for :~*(Ay). Henceforth G is isomorphic to

hfl(Lfl(AN)‘{a,b}*)‘L = (hfl(Lfl(AN))‘{a,b}*)‘L by Lemma 2.2
= (ho L)fl(AN)\Vfl(AN)m{a,b}*mL by Lemma 2.1 (¢)
= (hot) YAN)|fab} N1

By condition (7i) of an internal family F' (restricted to partial morphism), we have
hot € Fr hence G € Fr'(Dycky),.

ii) Let us show that F;'(Dyck,) C F;'(#(Dyck,)). Let G € F;'(Dyck,), .
So G is isomorphic to h '(Ay);, with h € Fr and L € Rat(N*).

By Lemma 2.4, h™'(Ay), = g '(#,(An)) with g(a) = #h(a)# for any a € T.
By condition (i) of an internal family F', we have g € Fr hence G € F; ' (#(Dyck )).
iii) Let usshow that Fy'(#(Dyck,)) C FT’I(Dyck{a’b})‘ .Let G € Fp ' (#(Dyck ).
So G is isomorphic to h~'(# (Ay)) with h € Fr and L € Rat(N*).

Let (A,i, F) be a finite deterministic and complete automaton recognizing L and

{a,b}>\ :

such that p —z> qg N p % g = ¢ = d. By duplication of states, it is easy
to satisfy this condition. However this condition is not necessary but it permits to
simplify the notations.

Let @ = V4 be the state set of A and let P be the language of words obtained from i
by suffix derivation according to the relation { (p,pq) |Ja p %) q }. From [Bii 64],

P € Rat(N*).

12



So # (An) isisomorphic to f~'(Ag)p where f is the following finite mapping:
fla) = {ppap at: f@ ={applp a}t: f#) ={Dplper}

By definition, P is the vertex set of the connected component of f~*(Ag) contain-
ing 7, hence P is stable for f~!(Ag). Note that @ may have more than two letters.
As for (i), we denote @ = {ay,...,a,} and we have

g(a;) = abi~' and g(@;) = b '@fori € [n]

M = g({ay,...,a,}*) = {a,...,ab" '}
Note that M is stable for g~'(Agapy). Henceforth # (Ay) is 1som0rphic to

glf "(AQ)ipl = glf M (AQ)]

gLAQJ = gfl(A{ayb}MM with

9 (M ga)m) g (p)

I
T TS

71(971(/\{(1,1)}) |MNg(P) by Lemma 2.2

—~

)

[ o g)*l(A{a,b})\vg,l(A{a’b})mMng(p) by Lemma 2.1 (¢)

= (/2 9) 7 (Aasy) ()

Note that g(P) is stable for (f o g) '(Agepy). By Lemma 2.2, G is isomorphic to
(o g) T A ) igry) = (o fog)  (Nappigry = ((ho f o gl T) ™ (A gap)io(p)

where for any x € T, (ho fog)lJ(x) = ((f o g)(h(x)))]J.

As fog: (NUN U {#})* — 20eb@b" ig 5 finite substitution, and by condition
(17) of an internal family F', we have (h o f o g)dJ € Fp hence G belongs to
Fr (Dyck g, ) -

iv) By (i), (ii), (iii), we have

Fp'(Dycky,,y) S Fp'(Dycky), C Fp'(# (D?/Ck N) S Er'(Dyckg, )
Hence FT*I(Dyck{a’b})‘ = F.'(Dycky) = Fp'(#(Dycky)).
For N = {a, b}, the last equation is Ffl(Dyck{a b})‘ = Ffl(#(Dyck{a b})).

The class RECp;, is the set of reqular graphs (see [MuS 85], [Co 90], [Ca 90]) of
bounded degree, and we present again two sets of representatives.

Theorem 3.6 [Ca 95] [Ca 96] Given an alphabet N of at least two letters, the
following properties are equivalent:

a) G € RECF,mT
b) G s isomorphic to (H.N*) for some finite H C N*xTxN* and
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L € Rat(N*)

c) G s isomorphic to U, (u; 25 v;).W; for some n >0, ay,...,a, €T,
UL, V1 ey Uy Uy € N*, Who oo W, € Rat(N¥)

d) G is a regular T-graph of bounded degree.

The traces of the graphs in RECr;, are all the context-free languages.

Proof.
We have G isomorphic to h~'(Ay), for some h € Finy and L € Rat(N*).
Taking the finite graph H = {u v |a € T A w0 € h(a)lI } and by
Corollary 3.4, we have h™'(Ay) = H.N*.
ii) (b) = (a): Let a finite graph H C N*xT'xN* and L € Rat(N*).
By Corollary 3.4, H = h '(Ay) such that h(a) = { a0 | u % viVaeT.
iii) (a) = (¢): Let G € RECpin_.
So G is isomorphic to hfl(#L(/N\N)) with h € Finy and L € Rat(N*).
It remains to apply the equation (2) which is the prefix form of Corollary 3.3.
iv) (¢) = (a):Let n>0, ay,...,a, €T, uy,vy,...,up, v, € N*, Wy,... . W, €
Rat(N*). Let us show that G = U, (u; — v;).W; is in RECkin,. -
Taking the following rational language L and the following finite mapping h:

L = U,aW; and h(a) = { wja#a;0; | a; =a } forevery a €T

we have G = hil(#L(f\NUT)) in RECg, .
Ol

Recall that a graph G C N*xT'xN* is recognizable if G is a finite union of elementary
graphs of the form U % V where a € T and U,V € Rat(N*). The class RECpy
has been studied in [Ca 96] and we present again two sets of representatives.

Theorem 3.7 [Ca 96] Given an alphabet N of at least two letters, the following
properties are equivalent:

a) G € RECpa,

b) G s isomorphic to (H.N*), for some recognizable H C N*xTxN*
and L € Rat(N*)

c) G isisomorphic to U, (U; =5 V;).W; for some n >0, ay,...,a, €T,
Uy, Vi, Wy, ..., Uy, Vi, Wy, € Rat(N*).

The traces of the graphs in RECgry are all the context-free languages.

Proof.
The implications (b)) = (a) and (¢) = (a) are as in the proof of Theorem 3.6.
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i) (a) = (b): as in the proof of Theorem 3.6, it remains to verify that for any
L € Rat((NUN)*), LLI N N*N* is a finite union of sets of the form A.B where
A € Rat(N*) and B € Rat(N*).

Let (A,i, F') be a finite automaton recognizing L and let () = V, be the state set
of A. We have

LUNNN = Upeo(£0G7.0) 0 BAN)L T (£(G. 0, F) 1 £(Ax))L 1
and the rationality follows from Lemma 3.1.
ii) (a) = (c): Let G € RECRq, .
So G is isomorphic to hil(#L(INXN)) with h € Raty and L € Rat(N*).
For every a € T, let (A,.i,, F,) be a finite automaton recognizing h(a) and let
Q. = Va4, be the state set of A,. N
By applying the equation (2) which is the prefix form of Corollary 3.3, hil(#L(AN))
is equal to

~——

Uwero (LG ) N L, (AT % (LGar g Fa) 0 L, (AN))LT) . W
9€Qua

and the rationality follows from Lemma 3.1.

[l

Several characterizations of REC'p;, inside REC g, have been given [Ba 98], [CaK 01].
A major question is the closure of RECy by inverse F-mappings. We denote by

F(E) == {h(L)|LEE A he Fymuu }

the family obtained by applying F' substitutions to a family F. In particular Fin(Fin) =
Fin and Fin(Rat) = Rat(Fin) = Rat(Rat) = Rat.

Lemma 3.8 Let F' be the internal family Fin or Rat. Let E be any family such
that F(FE) is internal. We have E}l(RECFN) C RECkn), -

Proof.
i) Let G € E}l(REC’FN): G =g '(H) forsome g€ Er and H € RECy, .
So H is isomorphic to h~'(# (A,)) with h € Fy and L € Rat(N*).
Hence G is isomorphic to g~ '(h~"(# (Ay))).

. . . 71
By Lemma 2.1 (¢), G is isomorphic to (g o h) (#L(AN))‘VFI(#L(AN)).
For any a € T, (g o h)(a) = h(g(a)) € F(E) hence (g.oh) '(#,(Ay) €
RECp(p), .
So (g h)"'(#,(Ay)) is isomorphic to k~'(Ax)y with & € F(E)r and M €
Rat(N*).
Finally G is isomorphic to kil(AN)‘Mthfl(#L(AN))'

ii) It remains to show that Vj-1.4 (A ) is rational. By union, it is sufficient to
L
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assume that h(a) € Rat for some a € T and h(b) =0 forany be T — {a}.

So h(a) =L(A,i,Qf) 1is recognized by some finite automaton (A,7, Q). Let
Q =V, be the state set of the automaton. By Corollary 3.3, we have

Vit (A )

= Uwey W(IL(G1,0)ULG.,Qp)] N L(#, _, (An))) 4T
qeC(Q)

e ~——

where C(Q) is the set ¢ € @ such that the languages L(G,i,q) N L(# ., (An))
and  L(G.q.Qp) N L(# ., (Ay)) are non empty. The rationality follows from
Lemma 3.1.

[

We deduce closure properties for RECr;, and REC gy .

Proposition 3.9 We have Fin}l(RECFmN) = RECpin,
and  Rat;' (RECry, ) = Raty' (REChay,) = RECga,

Proof.
As #(Dyck, ) € RECpip,, we have

RECFlnT = Fin}l(#(Dyck{a’b})) - Fm}l(RECFmN)

As Fin(Fin) = Fin and by Lemma 3.8, we have Fin}l(RECFmN) C RECE, .
Similarly, we deduce the two other equalities.

[

Note that the closure of RECR,; by any inverse rational mapping has been obtained
in [Ca 96] with a long proof.

[t remains to recall the family of rational graphs [Mo 00]. We consider a graph as
a subset of N*xT'xN* i.e. a T-graph with vertices in N*. We extend the monoid
N*xN* to the partial semigroup N*xT'x N* defined by (u, a,v).(z,a,y) = (ux,a,vy)
for every w,v,x,y € N* and a € T. The extension by union of . to subsets is the
usual synchronization product for graphs [AN 82]:

G.H = {uxiwjy\u%wj /\x%y} for any G, H C N*xT'xN*

To this operation is associated the rational family Rat(N*xT'xN*) of graphs: it is
the smallest subset of 2V *7*N" containing the finite graphs and closed by U, ., +.
A rational graph is a graph isomorphic to a graph in Rat(N*xT'xN*); we denote by
RATT the family of rational T-graphs. The rational graphs are the graphs recognized
by the labelled transducers. Precisely, a T-labelled transducer is a finite (N*xN*)-
automaton A = (G, 1, (F,),.,) with a set F, of final states for each a € T; such an
automaton recognizes the graph:
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L(A) = {ULU\EISGFQ,Z'%S}

The family Lin defines by inverse mappings the class of rational graphs.

Theorem 3.10 [Mo 00],[MoS 01] We have
RAT = RECf;,, C RECL,,
The traces of the graphs in RAT are the context-sensitive languages.

A particular rational graph is an automatic graph [BG 00] which is a graph iso-
morphic to a graph recognized by a labelled left-synchronized (or by a labelled
right-synchronized) transducer [EM 65|, [F'S 93]. The traces of the automatic graphs
remain the context-sensitive languages [Ri 01]. Note that we can have non recursive
traces for graphs in RECy,, . From the closure by composition of rational relations,
the rational graphs are closed by inverse finite mappings.

Proposition 3.11 We have Fin'(RAT ) = RAT .

We will now use Turing machines to define a general class of graphs whose the traces
are the recursively enumerable languages.

4 Graphs of rewriting systems and of Turing machines

We consider the rational restrictions of the e-closure for the set of transitions of the
labelled Turing machines. We show that this family is the same that for the labelled
word rewriting systems (Theorem 4.5). We show also that this family is REC} for
any family F' of recursively enumerable languages containing the rational closure of
the linear languages (Theorem 4.6). Furthermore, we show that this family is the
set of the inverse rational mappings of the rational graphs (Theorem 4.7). Finally,
we show that this family is also the set of graphs recognized by (unlabelled) Turing
machines with labelled final states (Theorem 4.8), and even if we restrict to deter-
ministic Turing machines (Theorem 4.9).

The notion of a word-rewriting system is well-known (see for instance the survey
[DJ 90] and [BO 93]): it is just a finite set of rules between words. As for the transi-
tions of a pushdown automaton, we allow labelled rules, and to any system, we as-
sociate a rational language of admissible words, usually called configurations, which
are the words where the rules can be applied. The words are over an alphabet (finite
set of symbols) N of non-terminals, and the rules are labelled by symbols in an
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alphabet T of terminals, plus the empty word .

Definition 4.1 A finite labelled rewriting system (R, C') over words is a couple
of a finite relation R C N*x(T'U{ec})xN* and a rational language C' C N*
of configurations. We write shortly R instead of (R, N*).

The set of transitions of R is the following (7" U {c})-graph:
T(R) := { 2zuy - zvy | (u,a,v) € R N z,y € N* }
The unlabelled transitions of T'(R) form the usual rewriting — of R:
Tuy — avy for some (u,a,v) € R with z,y € N*

Its reflexive and transitive closure ?* by composition is the derivation of R. To

any system (R, ('), we associate its transition graph:

G(R.C)=T(R), = {uimj\u%v ANuveC ANaeT}

which is the restriction to C' of the e-closure of T(R). In particular G(R) = T(R).
For instance, the transition relation of a pushdown automaton over a set () of states
and over a disjoint set P of stack letters, can be seen as a labelled rewriting system
(R,C) over N = PUQ where R is a finite subset of Q.Px(T U {¢})xQ.P* and C'is
a rational subset of Q.P*. The closure by isomorphism [G(R, C')] of their transition
graphs form the family RECg,; .

Proposition 4.2 We have
G € RECry <= G isomorphic to R.N* ¢ for some system (R,C).

Proof.
<= : by Theorem 3.6 and Proposition 3.9.

— : Let G € RECR, . By Theorem 3.7, GG is isomorphic to the following graph:
H = (U (U “5 V;).N*)  with LU, Vi,..., Uy, Vi, € Rat(N*)

L
For every 1 < i < n, let (Gy,r;,E;) and (H;, s;, F;) be finite N-automata
recognizing respectively U; and V;. We may assume that Vg, , Vi, ..., Vi, , Vi,

are pairwise disjoint. Let $ be a new symbol. We define the following rewriting
system (R,C):
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r;  forany 1<i<mn

q foranyp%q with 1 <i<n

sA for any s%t with 1 <i<n

a;i
BN
15
=

R p = t forany p€EE; , t€ F; with 1<i<n
=
=

s $ forany 1<i<n

and C'=8$L.So R.N*c = $.H.
Ol

Another particular labelled rewriting systems are the Turing machines with a read
only input tape and a working tape [MS 97], [Pay 00]. More exactly and given an
alphabet () of states, a disjoint alphabet T of input tape letters, and a disjoint
alphabet Pn = PU{O} of working tape letters, a (non deterministic) labelled Turing
machine (M, C') is a finite set M of rules of the form:

pA - ¢B6 where p,qe Q,ae TU{c}, A,B€ Py, 6 € {+,-}

with a rational set C' € Rat((Q U Pn)*) of configurations.

However we are only interested to configurations upv where p € @ and u,v € Py”*
with u(1),v(|v|) # O. Precisely a configuration is of the form |u|p [v] where for any
word u € Pg” [u[ (vesp. Ju]) is the greatest prefix (resp. suffix) of u having its last
(resp. first) letter distinct of O i.e. by induction,

wh[=[u[ A Ju[=u ifu(lu])# 0 and |Ou] =Ju] A Ju]=u if u(l) # 0O
The set of transitions of M is the following (7' U {c})-graph:
T(M) = { Jul p [Ae] > JuB] g [o] | pA 5 ¢B+ A w0 € Po* )
U { JuC]plAv] = Ju] ¢[CBv| | pA % ¢B-NC € Py AN uve Pa*}
Hence the transition graph of any labelled Turing machine (M, C) is the T-graph:
G(M.C) = T(),,

The transition graph of any labelled Turing machine is the transition graph of a
stable labelled rewriting system (R, C') meaning that C' is stable in T'(R):

ST)*TT)*t ANs,teC —= redC

Lemma 4.3 We can transform any labelled Turing machine M into a stable
labelled rewriting system (R, C') such that T(R)|c is isomorphic to T(M).

Proof.
We take a new symbol $ and the following rational language:
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C = {Supv$ |pe@ N u,ve Pa" A u(l),v(|v]) #0 }
We transform any rule pA % ¢B+ of M into the following rules:
CpA = CBq if CB# $0
Cp$ % CB¢$ if A=0 A OB #$0
$pA S 3¢ if B=0O
$p$ 5 $¢8 if A=B=0

We transform any rule pA %5 ¢B— of M into the following rules:
CpAD % ¢CBD if C#$ AN BD #0$%
CpA$ — ¢C$ if B=0O A C#0,%
OpA$ % ¢$ if B=0O

Cp$ - ¢CB$ if A=0#B A C#$
Op$ % ¢C$ if A=B=0O AN C#0,$
Op$ - ¢$ if A=B=0

$pAD % $qOBD if BD + O3

$pAS 5 $¢8 if B=0O
$p$ - $4OB$ if A=O#B
$p$ - $¢8 it A=B=0

In this way, we obtain a labelled rewriting system R such that

C'is closed by —  hence (R, C) is stable
UT(i>M)V = $U$%$V$ N SUS,$V§ e C

Thus $T(M)$ = T(R)c.
[

Conversely and up to the e-transitions, any labelled rewriting system can be simu-
lated by a labelled Turing machine.

Lemma 4.4 We can transform any labelled rewriting system R into a labelled
Turing machine (M, C') such that T(M), is isomorphic to T(R).

Proof.
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We denote by m; (resp. my) the maximum length of the left (resp. right) hand
sides of the rules of R 1i.e.

my = max{|U||3FaV, (UaV) €R}
and my = max{|V||3Ua, (UaV) €ER}

We take two new symbols « and $, and we define the following state set @ of the
labelled Turing machine to be constructed:

Q = {} U N="u(N=m2 U {$})«(TU{e})
We take the following set M’ of Turing rules:
A S WA for A€ Ng
A S WA for A€ Ng
A = (U V,a)A+ for A€ Ny and (U,a,V)€R

(AU,BV,a)A — (U,V,a)B+

(,BV,a)A — (5,VA,a)B+ for Ae N
(,BV,a)0 — (g,V,a)B+

(AU,z,a)A = (UB,e,a)B+ for Be N
(AU, e,a)A = (U, $,a)0+
(AU, $,a)A = (U,$,a)0+

(6,$,0)0 = (g,6,a)0+

In this way, we obtain a labelled Turing machine M’ such that for every a € TU{e}
and U,V € N*,

U%V = WU —(——>)X(€€a)Y AN [XY[=V

We complete M' to M by adding the following rules:
(e,6,a)A % A+ for Ae Ny

The relation h = { (U,.U) | U € N* } is a partial weak isomorphism from T'(R)
into T'(M). More precisely and for every a € T'U {=}, we have

T(R) T(M)
=V — U=V
T(M) T(R)
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So h is a partial isomorphism from 7T(R) into T(M).

Thus h is a partial isomorphism from T(R) into T'(M), where C =Im(h)=
N*

zl%s Vi SN = Dom(h), the graphs T'(R) and T(M), are isomorphic.

The rewriting systems and the Turing machines have the same transition graphs.

Theorem 4.5 The labelled Turing machines and the labelled rewriting systems
define up to isomorphism, the same family of transition graphs, and their traces
are the recursively enumerable languages.

Proof.

i) Let (M, D) be a labelled Turing machine.

By Lemma 4.3, we can construct a stable labelled rewriting system (R,C') and an
isomorphism h from T'(M) to T'(R)|c .

By restriction, h defines an isomorphism from 7'(M) to T'(R)|c .

By Equation (2.2), T(R)jc = T(R); = G(R,C). Thus G(M, D) = T(M),, is iso-
morphic (by a restriction of h) to W‘thw) =G(R,CNh(D)).

ii) Let (R,C) be a labelled rewriting system.

By Lemma 4.4, we can construct a labelled Turing machine (M, D) and an iso-
morphism A from T'(R) to T(M),. Thus G(R.C) = T(R),. is isomorphic (by a
Estriction of h) to W‘h(c)m} = G(M,h(C)N D).

We denote by TURINGy the family of T-graphs isomorphic to the transition
graphs of labelled Turing machines (or of labelled rewriting systems). As for the
previous graph families (investigated in the previous section), we characterize the
family TU RI NGy by inverse mappings of the binary tree. The images of these map-
pings can be the class of recursively enumerable languages, or can be only the class
of the rational closure Lin(Rat) of Lin.

Theorem 4.6 We have TUR]NGT = RECZm(Rat)T = REC’RET
Proof.
i) Let us show that TURING, C RECT,, pa -
T

Let (R,C) be a labelled rewriting system: R is a finite subset of N*x(T'U {=})xN*
and C' is a rational subset of N*.
We replace in R the label £ by a new letter $:

S = {(v,a,v)eR|aeT} U{(u,$,0v)] (u,z,v)€ R}

So T'(S) = h™'(A,) where h is the following linear mapping:
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h(a) = {Tuvaz | (u,a,v) €S A o€ N*} forevery a€TUJ{$}

Furthermore T(R) = ¢ '(T(S)) where g is the following rational mapping:
g(a) = $*a$* for every a €T

By (2.1), we have T(R) = (g o h)"'(A,) where g o & is the following mapping:
(goh)(a) = h(g(a)) = h($*a$*) = h($)*h(a)h($)* € Lin(Rat)

Finally and by Proposition 3.5, G(R,C) = T(R) € RECZm(Rat)T :
ii) RECE;, gy © RECRE because Lin(Rat) C RE.
iii) Let us show that RECgrr C TURING. .
T _ T
Let a mapping h : T — RE({a,b,@,b}*). By Proposition 3.5, it is sufficient to
construct a rewriting system (R, C') such that A~'(A

(0 b}) is isomorphic to T(R) .

For every ¢ € T, there is a Turing machine M, : a finite set of rules of the form:

pA % ¢BS where p,q€ Q.. v €{s,a,b,a, b}, A, Be P.u{0d},6¢c{+, }

plus an initial configuration i, and a set F. C Q. of final states recognizing:
h(c) = L(T(Me), ic, {Julqlv[ | ¢ € Fo A uw,v e (P.UD)"})

Up to renaming, we may assume that the sets (P.).er, (Q.)cer are pairwise disjoints,
and we define the following Turing machine:

M = {pA-qgBb €M, | ceT}
U {pA -S> ¢@BS|3ceT, pA -2 qBS € M, N v #¢}

We take three new symbols $, &, and we construct a rewriting system R. First, we
take the following rules:

‘ $$ = $i.$ forevery ce T

to describe the moves between two $ of the Turing machines defining h. We transform
(as in Lemma 4.3) any rule pA — ¢B+ of M into the following rules:

CpA = (CBg it OB # $0

Cp$ = CBg$ if A=0 A CB+#$0
$pA = $q if B=0

$p$ —  $¢% if A=B=0

In a same way (and as in the proof of Lemma 4.3), we transform any rule pA — ¢B-
of M into new rules of R.

Foreveryc€ T ,q€ Q. ,Aec P,u{0},y € {a,bab},x e {ab} wetake the
rules:
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@y — &
Aq;j =5 q?’JA
8¢ = %7
$¢. = 2%q
7gA = Ag
& — q

For the acceptance and for every ¢ € T and A € (U, P.) U {0}, we define

g — . if ¢q€F,
€

A = .
Ae = .
$.$ — $%

For every ¢ € T and u,v € {a,b}*, we have

o -5 v = u$$ = v$$
h*l(/\{a’b}) T(R)

Soh = { (u,u$$) | u € {a,b}* } is a partial weak isomorphism from h~(A

into T(R). Thus h is a partial isomorphism from A~1(A, ) = h (A

{a,b} {a,b})

) into T(R),, where C' = I'm(h) =

{a:b})
into
T(R). Hence h is an isomorphism from h~ (A
{a,b}*$$.

[

{a,b}

The class TURING is the closure of RAT by inverse rational mapping.

Theorem 4.7 We have Rat;'(RATy) = TURING.

Proof.
i) TURINGy C Rat}l(RATN).

Let G € TURINGy : G is isomorphic to (R>\c for some labelled rewriting system
(R,C). Let #,%$ be two new symbols. We have

T(R) = h'(1(9))

where h is the rational mapping defined by h(a) = $*a$* for every a € T,
and S is the system obtained from R by replacing the label € by $:

S = {(w,a,v)eR|aeT} U{(u$,0)] (u,e,v)€ER}
By Equations (2.4) and (2.1), we have
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T DY - #
TR, = hz'(T(S)u{u % uluecy)
where hy(a) = #$*a$*# for every a € T.

Obviously T'(S) is a rational graph and {u s | u € C} is also a rational graph
because C'is a rational language. Hence G' € Rat,'(RATY).

ii) Rat;'(RATy) € TURINGYy.

Let G € Rat;'(RATy): there is a rational N-graph H and a mapping h : T — Rat(N*)
such that G = h=Y(H).

By definition of a rational graph, there is an alphabet X and a N-labelled transducer
A= (K,i, (FE,;),.,) where K is a finite (X*xX*)-automaton, i is the initial state,
and for each © € N, F, is a set of final states, and such that the automaton A
recognizes the graph L(A)={uv v |ds€E,, i u:}/} s } which is isomorphic to
H.

Furthermore and for each a € T, there is a finite N-automaton (K, i,, Fy,) recog-
nizing the rational language h(a).

We may assume that the automata (K,),., have pairwise disjoint state sets: Vi, N
Vi, = 0 for a # b. We denote by K = Uuer K, and we take a new state 7 € V.
We take a new symbol $ and we denote by C' = $7.X*$ the (rational) configuration
set of the following rewriting system R:

T i, for each a €T
$s — $(i,s) foreach se€ Vi
$s - $7 if sel,
R u/v

(p,s)u = w(q,s) if p = and s e Vg

(p,s)$ = t$ if p €E, and s>t for some z € N
As = sA for each A€ X and s € Vg

Thus m\c = { $w$ = $w$ | $w$ ;Ta?) $w$ }

= {$w$ S $w$ | IseF, $i,u$ ?E;) $sv$ }

= { $w$ % $w$ | 3w e h(a) u%...w%)v}
= {$‘w$i>$_w$\u%v}
= $1h"Y(L(A))$ isomorphic to h1(H)=G.

[

In particular RAT is not closed by inverse rational mapping. We also deduce that
the transition graphs of labelled Turing machines are the rational restrictions of the
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e-closure of rational graphs (with s-arcs).

An equivalent way to get the family TURINGp is to consider the computable
relations of single tape non deterministic Turing machines. Precisely and given an
alphabet @ of states and a disjoint alphabet Py = P U {0} of working tape letters,
a (single tape non deterministic) Turing machine M is a finite set of rules of the
form:

pA — qBb6 where p,q€ Q, A,B€ Py, 6€{+, }

The set of transitions of M is the previous graph 7'(M) which is unlabelled. For
a T-labelling and as for the labelled transducers recognizing the rational graphs,
we take a subset F, C @ of final states for each letter a € T. Furthermore and as
usual, we take an initial state ¢y € Q. In this way, a Turing machine M defines the
following T-computation graph:

RM) = {u-" vw |[ueP* ANaeT A 3JqeF, pguT(:M)vqw}

where ¥ is the greatest suffix in P* of v, and w is the greatest prefix in P* of w.
The transition graphs of labelled Turing machines are the computation graphs of
unlabelled Turing machines.

Theorem 4.8 The family TURING s the set of T-graphs isomorphic to the
computation graphs of Turing machines.

Proof.
C : Let (M,C) be a labelled Turing machine.
Let T be its label alphabet, @) be its state alphabet and P be its tape set.
We have to construct a (unlabelled non deterministic) Turing machine N such that
its computable graph R(N) is isomorphic to G(M, C').
Such an isomorphism is given by the mapping which associates to any configuration
upv where p € Q and u,v € P with u(1), u(|u]) # O, the word &up7$ with P in
a new alphabet @ in bijection with Q, 7 (resp. T) are obtained from u (resp. v) by
replacing O by a new symbol ﬁ, and &, $ are also new symbols.
So we have to construct a Turing machine N such that
u % v = &u$ = &u$

G(M,C) R(N)
For pg the initial state of NV and f, the unique final state for each label a € T', we
will construct N in such a way that

= 5 =0 <= p&u$= &vf,$ forany u,vecC
T(M) T(M) T (M) T(N)

As C'is a rational set of configurations, there is a finite (QU Py )-automaton (G, i, F)
recognizing C': L(G,i, F) = C.
First, the Turing machine N checks that the input word (between & and $) belongs
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to C':

po&  — &+

SA — tA+ it 525t and AeP

sO —— tO+ if s%)t

sp — 1P+ 1fs%>tand pEQ

s$ — $O—  if seF

AB — BA— if AePyU{$} and B e P5
Ap — pA if Ae PLU{$} and pe @

The last rule without 4+ and — means that we do not move the tape head.
Now the machine N simulates any path == of M :

pA — B} if pA = ¢B6 isaruleof M
pA — q,Bo if pA - ¢BS isarule of M
PeA  — ¢, Bb if pA - ¢B6 isarule of M

Furthermore N must push the endmarkers & and $ when they are accessible: for
any  p € QUUuer Qa

p$ — PO+
PO — p$—
p& — p'O—
p'0 — p&+

Then N removes the useless O (on the right of & and on the left of $) and add the
label a € T after the right endmarker $:
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PA  — A+ forany pe @ and A€ P,U{$}
A,B — B,A+ for any A, B € P5U{$}
$,0 — $,0-—

$,A — $ A+ forany Ae PU{&}uUuQ@
$0 — d$+

adld — la—

(A — [(A— forany A€ PoUQ

& — 'O+

o — 'O+

'A — ("A— forany Ae PU{$}UQ
"o — &+

At this step, N reaches a configuration of the form &vpw$a with (1), w(|w|) # O
with a state ¢’ (i is the initial state of the finite automaton G recognizing C') reading

the first letter of vp. It remains to test whether vw € C, to replace O by E, to
remove a and to reach f,:

SA — A+ if s%ﬂfand AePuQ
§O0 — 'O+ if s %) t

§$ — &8+ if seF

sa —  f,0- if seF and aeT

D : Let N be a (unlabelled non deterministic) Turing machine.
Let P be its tape alphabet and pgy be its initial state.
We have to construct a labelled Turing machine (M,C) such that its transition
graph G(M, C') is isomorphic to the computable graph R(N) of N.
We take the rational language C' = i&P*$ where i,&,$ are new symbols. For
the isomorphism, we take the bijection which associates to any u € P* the word
i&u$ € C. So we have to construct a labelled Turing machine M such that

v <+ i&u$ = i&v$

R(N) G(M, C)
or equivalently for any u, v, w € P*,
Potl == TVqWyY for some ¢ € F, , x € (P*0)* y € (OP*)*
= i&u$ = - = i&ow$
T(M) T(M) T(M)

First, the machine M simulates N :

28



i& S pe&+

pA = ¢Bé if pA — ¢B6 isaruleof N

p$ = PO+

PO = p$—

p& = 'O
"0 = p&+

Then M does a transition by a when N has reached a final state for a. And M
removes the useless right part (beginning by a 0) of its configuration:

pA L (A+ if peF, and A€ P

5 L m$— if peF,

pd0 5 04 if peF,

(A = (A+ if AeP

5 = m$—

o = 0+

jJA = 40O+ if Ae Pa

3¢ = kKO-

kO % kO

kA = m'A+ if Ae PU{&}
m'D0 — m$—

Finally M removes the useless left part (ending by a 0O) of its configuration, and
reads the marker & at state i. We do not give this simple part which is similar to
the previous one.

[

As for languages, the family of computation graphs does not change if we restrict to
deterministic Turing machines (the set of rules is functional: there is no two rules
with the same left hand side).

Theorem 4.9 The family TURINGy is the set of T-graphs isomorphic to the
computation graphs of deterministic Turing machines.
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The transformation of a (non deterministic) Turing machine to a deterministic Tur-
ing machine with the same computation graph is similar to the usual transformation
preserving the recognized language.

5 Conclusion

We have presented a hierarchy of graph families and essentially the family TU RING
of transition graphs of labelled Turing machines with e-rules. In particular REC gy,
is the family of transition graphs of pushdown automata with e-rules. Between the
lowest family F'IN of finite graphs and the greatest family TURING , we can show
that the two families RECpr, and RAT are natural, by considering the Cayley
graphs of the word rewriting systems [CK 98], [Ca 00] and [CaK 02]. Finally and
using traces, the hierarchy FIN , RECRy , RAT , TURING yields a Chomsky
hierarchy. Another point is to find a subclass of word rewriting systems such that
their transition graphs are the graphs of RECT;, .
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