
Random Generation of Deterministic Acyclic
Automata using the Recursive Method?

Sven De Felice1 and Cyril Nicaud1

LIGM, Université Paris-Est, 77454 Marne-la-Vallée Cedex 2, France
defelic@univ-mlv.fr, nicaud@univ-mlv.fr

Abstract. In this article, we propose a uniform random generator for
accessible deterministic acyclic automata with n states, which is based
on the recursive method. The generator has a preprocessing that re-
quires O(n3) arithmetic operations, and, once it is done, can generate
acyclic automata using O(n) arithmetic operations for each sample. We
also propose a lazy version of the algorithm that takes advantage of the
typical shape of random acyclic automata to reduce experimentally the
preprocessing. Using this algorithm, we provide some statistics on acyclic
automata with up to 1000 states.

1 Introduction

The field of random generation has been very active in the last two decades, de-
veloping general techniques based on combinatorics and probabilities to produce
efficient random samplers for combinatorial structures that appear in computer
science. The main focus is to build an algorithm for a given combinatorial set
E, i.e. a set together with a size function, which takes an integer n as input
and produces an element of E of size n uniformly at random. The interest in
random generators comes from both practice and theory: they are commonly
used as an alternative to benchmarks, in order to test the efficiency of imple-
mentations; they are also widely used by theorists in their works on describing
the typical properties of large random objects, which is a cornerstone in average
case analysis of algorithms [7].

This article deals with the random generation of acyclic deterministic au-
tomata with n states on a fixed finite alphabet. Acyclic automata are automata
recognizing finite languages, and, as such, form an important subclass of au-
tomata. They are especially used in applications such as in linguistics where the
languages of interest are essentially finite. A better understanding of their com-
binatorics, of their typical behavior and the average cases analysis of algorithms
that handle that kind of structures is a long term goal of our work.

In random generation standards, we aim at designing algorithms that can
produce experimental statistics on objects of size at least 1000, in a reasonable

? This work is supported by the French National Agency (ANR) through ANR-10-
LABX-58, through ANR-2010-BLAN-0204 and through ANR-JCJC-12-JS02-012-01

amount of time: though probabilistic and combinatorial in nature, random gen-
erator are above all algorithms and the main concern when designing them is to
optimize their complexity, in order to allow the generation of objects that are
large enough.

In the sequel, we present how deterministic acyclic automata can be gener-
ated using a technique known as the recursive method. It is based on an inductive
specification of the objects of interest and consists in two steps: a preprocess-
ing which is costly but need to be done only once, and the random generation
itself. This method originates in [10] and was systematized in [8] to classes of
combinatorial structures that can be described using the symbolic method [7,
Ch. I]. Acyclic automata cannot be described in such a way, and the aim of this
article is to show that the technique applies anyway, though not automatically.
Our algorithm has a preprocessing step using O(n3) arithmetic operations, and
can then generate deterministic acyclic automata with n states using a linear
number of arithmetic operations. We also propose an improved version that is
very efficient in practice to lower the complexity of the preprocessing. This effi-
ciency relies on the typical shape of a random acyclic automaton: we formulate
its complexity as a function of a parameter of its output (its width, defined in
Section 4.5) which seems to grow very slowly in practice. Though requiring a
detailed probabilistic analysis for this observation to be mathematically estab-
lished, we were able to compute some statistics on automata with up to 1000
states within a few minutes using our improved algorithm. This is an example
where information on typical structures helps in designing better algorithms.

One of our motivation for studying acyclic automata comes from the theory
of automaton groups. Consider a letter-by-letter deterministic transducer, and
the different functions from A∗ to A∗ it realizes when taking all the possibili-
ties for the initial state. Assume that some conditions ensure that this functions
are permutations of A∗ and consider the group they generate. That kind of
groups are especially rich and have been studied by both mathematicians and
computer scientists (see [1] for more details). In particular, Antonenko [3] gave
some conditions on the shape of the transducer that ensure that the generated
group is finite, and these conditions make use of acyclic automata. The quan-
titative study of Antonenko automata therefore requires more knowledge on
deterministic acyclic automata, and could be a first step toward understanding
the combinatorics behind that kind of groups.

Related works. In [4], the first author and Carnino proposed a solution to the
same problem based on Markov chain techniques. This yields an elegant and
easily adaptable algorithm1, that produces an acyclic automaton with almost
uniform distribution. The major drawback of this method is that there is no
estimation of the bias induced when halting the algorithm after a given number
of iterations, making the design of the algorithm difficult when uniformity is
important2.

1 For instance, they described a Markov chain on minimal acyclic automata only.
2 Using Markov chain terminology: the mixing time of the chain is not known and

seems to be difficult to estimate.

The recursive method is based on the combinatorial properties of the objects
to be generated. In [9], Liskovets presented inclusion-exclusion results on the
number of deterministic acyclic automata and on some related quantities. We
will use his work at several stages of the design of our algorithm. Prior to this
work, Domaratzki, Kisman and Shallit proposed lower and upper bounds on the
number of acyclic automata in [5, 6].

In [2], Almeida, Moreira and Reis gave a solution to a related problem: they
proposed an algorithm that generate exhaustively all minimal automata with
a given number of states. Because the number of minimal acyclic automata
grows very fast, such an exhaustive generator is limited to small number of
states (there are more than 7 · 1014 minimal acyclic automata with 15 states
on a two-letter alphabet), but it has the virtue of checking every object unlike
a random generator. Both solutions are relevant, in different manners, when
testing conjectures.

2 Definition and Notations

For any integer n ≥ 1, let [n] = {1, . . . , n} be the set of integer from 1 to n. If
n and m are two non-negative integers, we denote by Surj(n,m) the number of
surjections from [n] onto [m]. The value of Surj(n,m) can be computed recur-
sively using the formula: Surj(n,m) = m ·Surj(n−1,m−1) +m ·Surj(n−1,m),
with initial conditions Surj(n, 1) = 1 and Surj(n,m) = 0 if m > n.

Let A be a finite alphabet, a deterministic automaton (or automaton for
short) on A is a tuple (Q, δ, q0), where Q is a finite set of states, δ is the transition
function, a possibly partial mapping from Q×A to Q, and q0 ∈ Q is the initial
state. If p, q ∈ Q and a ∈ A are such that δ(p, a) = q, then (p, a, q) is the
transition from p to q labelled by a, and is denoted by p

a−→ q. An automaton
A = (A,Q, δ) is classically seen as a labelled directed graph whose set of vertices
is Q and whose edges are the transitions of A.

An automaton is accessible (or initially connected) when for every state p
there exists a path starting from the initial state that ends at p. The transition
function is extended to Q×A∗ by morphism, setting δ(p, ε) = p for every p ∈ Q
and δ(p, ua) = δ(δ(p, u), a) when everything is defined, and undefined otherwise.

An automaton is acyclic when its graph is acyclic. A source of an automaton
A is a state with no incoming transition. An acyclic automaton always has
at least one source, and accessible acyclic automata are acyclic automata with
exactly one source.

In the sequel, the set of states of an automaton with n states will almost
always be [n]. If A is an automaton of set of states [n] and X is a set of n
positive integers, the relabelling of A using X is the automaton obtained from
A when changing the states labels by elements of X, while respecting their
relative order: if p < q in A then the new label of p is smaller than the one of q.
Notice that there is only one way to do so.

Important : We are not interested in final states except in the experimental
section of this article (Section 5). We will therefore call “automaton” a determin-

istic automaton without final states throughout the article, and denote classical
deterministic automata by “automata with final states”.

3 Combinatorics of Acyclic Automata

3.1 Liskovet’s formula

In [9], Liskovets establishes formulas to count the number of acyclic automata.
These results relies on the inclusion-exclusion method [11], which is a classical
and elegant technique yielding formulas with alternating sums. One such result
is the following (set r = 1 in Eq. (3) of [9]): if ak(n) denote the number of
labelled acyclic automata with n states on a k-letter alphabet, then

ak(n) =
n−1∑
t=0

(
n

t

)
(−1)n−t−1(t+ 1)k(n−t)ak(t). (1)

Let αk(n, s) denote the number of labelled acyclic automata with n states
on a k-letter alphabet that have exactly s sources. Using almost the same proof
as Liskovets’ one can obtain the following formula:

αk(n, s) =
(
n

s

) n−s∑
i=0

(
n− s
i

)
(−1)iak(n− s− i) · (n− s− i+ 1)k(s+i). (2)

Lemma 1. The values of ak(m) for every m ∈ [n] can be computed using O(n2)
arithmetic operations and storing O(n2) integers. The values of αk(m, t) for
every m ∈ [n] and t ∈ [s], with s ≤ n, can be computed using O(sn2) arithmetic
operations and storing O(n2) integers.

Though originating from a combinatorial description, inclusion-exclusion for-
mulas are not always very useful when designing efficient random generators3,
because of the complications inherent to the exclusions of subsets, which corre-
spond to the minus signs in the formulas.

We will however use Liskovets’ formulas later in our algorithms, as a short-
cut to compute the required values more efficiently. For now, we need a more
straightforward combinatorial decomposition that is amenable to the recursive
method; this is the purpose of next section.

3.2 Decomposition using sources and secondary sources

Our decomposition consists intuitively in repeatedly pruning the automaton by
removing its sources. This is a classical idea coming from the enumeration of
acyclic directed graphs. If A is an acyclic automaton, a state of A is a secondary
source if it is not a source and if all its incoming transitions come from sources.
3 There is a noticeable exception when rejection techniques can be applied, but it does

not appear to be the case for acyclic automata.

In other words, p is a secondary source if it has no more incoming transition
when the sources of A are removed.

Let A be an acyclic automaton with n states and s sources on a k-letter
alphabet; when the s sources and their outgoing transitions are removed from
A, what remains is an acyclic automaton B with n−s states. We obtain a formula
by partitioning the possibilities according to the number u of sources of B, that
is, the number of secondary sources of A. Thinking backward, for any given B
with n− s states and u sources, one can reconstruct an automaton A by doing
the following:

1. Choose the set of labels Y ⊆ [n] for the s sources of A and relabel B following
[n] \ Y .

2. For every transition starting from one of the s sources, choose whether it is
undefined or not, and if it is not, where it ends amongst the n−s possibilities.
This must be done in such a way that every secondary source has at least
one incoming transition.

There are
(
n
s

)
ways to choose the set of labels. Let βk(n, s, u) be the number of

possibilities for the second item. We count the number of valid configurations
for the ks transitions starting from a source using the number i of transitions
that end in a secondary source as a parameter: at fixed i, a valid configuration is
obtained by choosing the i transitions amongst the ks possibilities, how they are
mapped to their u possible ending states in a surjective way (since each secondary
source must have an incoming transition from a source) and the ending state of
each of the ks − i remaining transitions, which can be either undefined or one
of the n− s− u states that are neither a source nor a secondary source. Hence,
the number of valid configurations is given by:

βk(n, s, u) =
ks∑
i=u

(
ks

i

)
· Surj(i, u) · (n− s− u+ 1)ks−i. (3)

This yields the following formula for the number of acyclic automata with s < n
sources:

αk(n, s) =
min(ks,n−s)∑

u=1

(
n

s

)
· βk(n, s, u) · αk(n− s, u), (4)

since there are αk(n−s, u) ways to choose B. Of course, we also have αk(n, n) = 1.
Remark that for computational purposes, Eq. (4) is not as good as Liskovet’s

formula, which can be computed in time O(n2) according to Lemma 1. The
gain is the combinatorial description that can be directly turned into a random
generator, provided all the required quantities are already computed.

3.3 Another description for βk(n, s, u)

For T , U and R three finite sets such that U and R are disjoint, consider the
family G(T ,U ,R) of partial functions from T to U ∪ R such that every q ∈ U

p1

p2

p3

q1

q2

r1

r2

r3

r4

r5

s sources u secondary
sources

automaton B
automaton A Fig. 1. Main decomposition on an au-

tomaton with n = 10 states on a two-
letter alphabet: To build an acyclic au-
tomaton A with s = 3 sources and
u = 2 secondary sources, one has to
choose B, an acyclic automaton with
2 sources, and to set the transitions
starting from the sources of A: they
can either be defined or undefined,
cannot end in a source of A, and must
cover all the sources of B. The num-
ber of ways to do so is β2(10, 3, 2) =
γ(6, 2, 5).

has at least one preimage. Let γ(t, u, r) be the cardinality of G(T ,U ,R) when
|T | = t, |U| = u and |R| = r.

Recall that βk(n, s, u) counts the number of ways to define the transitions
starting from the s sources such that each of the u secondary sources has at least
one incoming transition, with a total of n states. Let T denote the pairs (s, a)
where s is a source and a is a letter, let U denote the set of secondary sources, and
let R denote the set of states that are neither a source nor a secondary source.
The function that maps each (s, a) to its ending state, when it exists, is a partial
function from T to U ∪R such that every q ∈ U has at least one preimage: it is
therefore an element of G(T ,U ,R). Conversely, every such function corresponds
to a valid choice for the transitions starting from a source. Hence we have the
identity βk(n, s, u) = γ(ks, u, n− s− u).

The inductive description of G(T ,U ,R) is the following. Let x be any element
of T . The functions in G(T ,U ,R) fall in two categories: those such that x is the
unique preimage of an element of U and the other ones. A function of the first
category restricted to T \{x} is exactly an element of G(T \{x},U\{q},R): there
are u · γ(t − 1, u − 1, r) such possibilities. Otherwise, the restriction to T \ {x}
is exactly an element of G(T \ {x},U ,R) and there are (u+ r + 1)γ(t− 1, u, r)
possibilities, u + r − 1 being the number of different ways to choose the image
of x including the case when it is undefined. We therefore obtained that:

γ(t, u, r) = u · γ(t− 1, u− 1, r) + (r + u+ 1) · γ(t− 1, u, r). (5)

Moreover this formula has a combinatorial meaning, since it is a discussion on
the different possibilities for the image of a given element of T . The boundary
conditions are: γ(t, 0, r) = (r + 1)t and γ(t, u, r) = 0 for t < u.

3.4 Remark on labelled combinatorial structures

The combinatorial study of labelled structures, i.e. when the n vertices are la-
belled with the elements of [n], is often easier than the one of unlabelled struc-
tures, since symmetries that can appear in the unlabelled case usually make the
counting more complicated.

The situation is different for structures that are rigid, that is, structures
with no symmetry4, since the number of labelled structures is exactly n! times
the number of unlabelled ones. Fortunately, this is the case for deterministic
automata when they are accessible, as explained in [9]. In particular, the number
of unlabelled accessible acyclic automata is 1

n!αk(n, 1) and they can be randomly
generated as labelled structures and still being uniform as unlabelled automata.

4 Random Generator

4.1 The recursive method

As stated in the introduction, acyclic automata cannot not be directly described
using the symbolic method [7, Ch. I]. Therefore, we cannot use the automatic
translation into a random generator proposed in [8]. The purpose of this section
is to adapt the method to our specific formulas of Section 3 in order to get
such a generator. Remark informally that our formulas are always of the form
λn =

∑
i λn,i, where parameter i has a combinatorial meaning. Assume that λn

and all the λn,i have already been computed, it is then easy to generate the value
of parameter i for a uniform object of size n, since Pn(parameter = i) = λn,i

λn
. The

idea is to choose i with correct probability, reducing the problem to the uniform
random generation of smaller objects. Some additional constructions can be
required to finally build the result, depending on the combinatorial construction
that leads to the formula for λn.

4.2 Application to acyclic automata

The method described above can directly be applied to generate uniformly at
random accessible acyclic automata. The first unoptimized version of the algo-
rithm for an acyclic automaton with s sources is the following:

1. Compute all the values of ak(m), αk(m, s), βk(m, s, u) and also of
(
ks
i

)
and

Surj(i, u) for every m ∈ [n], every s ∈ [m], every u ∈ [m − s] and every
i ∈ [m].

2. Use Eq. (4) with s sources to generate the value of u with correct probability:
The number of secondary sources takes value u with probability(

n
s

)
· βk(n, s, u) · αk(n− s, u)

αk(n, s)
. (6)

3. Recursively generate an acyclic automaton B of size n− s having u sources.
4. Choose the set of source labels X, and relabel B following [n] \X.
5. Use Eq. (3) to generate the number of transitions starting from a source and

ending in a secondary source. The number of such transitions takes value i
with probability (

ks
i

)
· Surj(i, u) · (n− s− u+ 1)ks−i

βk(n, s, u)
. (7)

4 Formally, the group of structure automorphisms is trivial.

6. Generate the transitions starting from sources with correct probability, by
choosing the i transitions ending in a secondary source, the surjective way
they are associated to secondary sources, and by choosing the ending state
of the other ones (or whether they are undefined).

Lemma 2. The method above produces a random acyclic automaton with n
states and s sources uniformly at random.

The proof is done by induction on n and follows from the unicity of our decom-
position. A direct computation of the probabilities using Eq. (6), Eq. (7), the
induction hypothesis and the probability associated with step 6 yields that A is
produced with uniform probability.

This straightforward way to turn the formulas of Section 3 into a random
generator is constitutive of the recursive method. Notice that a random generator
for accessible acyclic automata of size n is obtained by setting s = 1.

Also remark that the first step is the main limitation of this method, since it
requires quite some time and space to compute and store all the needed results.
Using Eq. (3) and Eq. (4) to perform the computations require O(n4) arithmetic
operations. However, it is important to notice that this preprocessing must be
done only once. Thereafter, as will be explained in Section 4.4, the random
generation of an acyclic automaton with n states is done in time O(n).

In the sequel we will show how to improve the complexity of the algorithm.

4.3 Using γ instead of β

In Section 3.3 is explained that βk(n, s, u) = γ(ks, u, r), where both quantities
describe how to link the sources to the secondary sources, in two different ways.
The formula for γ(ks, u, r) is more advantageous in terms of time complexity,
since one can compute all the O(n3) needed values for γ using O(n3) arithmetic
operations with Eq. (5). Using γ instead of βk, we also do not need to compute
the values of Surj(i, u) anymore, since the combinatorial decomposition that
leads to Eq. (5) can be directly turned into an algorithm: in order to generate
a random element f of G(T ,U ,R), start from any x ∈ T then pick a random
number d in [γ(t, u, r)]. If d ≤ u·γ(t−1, u−1, r), choose uniformly an element q of
U and set that x is the unique preimage of q by f ; it remains to recursively draw
the restriction of f to T \{x} in G(T \{x},U \{q},R). If d > u ·γ(t−1, u−1, r),
choose uniformly the image of x by f in U ∪ R ∪ {⊥}, where f(x) = ⊥ means
that f(x) is undefined, and recursively draw the restriction of f to T \ {x}
in G(T \ {x},U ,R). The complexity of generating an element of G(T ,U ,R) is
therefore linear in |T |, using adapted data structures.

4.4 Algorithms and complexity

Our main algorithms are given in Fig. 2, page 9. As explain before, one must
first compute the values for αk, γ and the binomial coefficients that are needed
in the process. In particular, γ having three parameters that can all three be

RandomNumberOfSecondarySources(n,s)
1 if n = s then
2 return 0

3 d←Random([αk(n, s)])
4 u← 0
5 while d > 0 do
6 u← u+ 1
7 d← d−

`
n
s

´
· γ(ks, u, n− s− u) · αk(n− s, u)

8 return u

RandomlySetTransitionsFromSources(T ,U ,R,δ)
// Transitions are added to δ during the process

1 if T = ∅ then
2 return

3 (p, a)←Remove the first element of T
4 if Random([γ(|T |, |U|, |R|)]) ≤ u · γ(|T | − 1, |U| − 1, |R|)

then
5 q ←Remove the first element of U
6 δ(p, a)← q

7 else
8 q ← Random(U ∪R ∪ {⊥})
9 if q 6= ⊥ then

10 δ(p, a) = q

11 RandomlySetTransitionsFromSources(T ,U,R,δ)

RandomAcyclicAutomaton(n,s,δ)
1 if n = s then
2 δ =empty function
3 return

4 u← RandomNumberOfSecondarySources(n,s)
5 B ←RandomAcyclicAutomaton(n− s,u,δ)
6 T ← ∅
7 for p ∈ {n− s+ 1, . . . , n} and a ∈ A do
8 Add (p, a) in T
9 U ← {n− s− u+ 1 . . . , n− s}

10 R← [n− s− u]
11 RandomlySetTransitionsFromSources(T ,U,R,δ)

Fig. 2. On the left a random acyclic automaton with 30 states on a two-letter alphabet.
On the right our main algorithms. The states are labelled in a specific way during the
process, but this does not change the uniformity of the unlabelled result, since we
follow the correct counting numbers for the sources, secondary sources and transitions
between them.

proportional to n, there are Θ(n3) numbers to store. Thanks to Eq. (5), each
new value of γ is computed in a constant number of arithmetic operations, giving
the following result.

Theorem 1 (Preprocessing). The preprocessing step of the algorithm, where
all the possibly needed values of αk, γ and

(
n
s

)
are computed can be done using

O(n3) arithmetic operations and the memory to store O(n3) numbers.

Once the preprocessing is done, the random generation can be performed
efficiently, as stated in the following theorem.

Theorem 2 (Generation). After the preprocessing, the random generation of
an acyclic automaton with n state can be done in a linear number of arithmetic
operations and random generations of integers.

Notice that, as it is usually the case when using the recursive method, the
numbers involved in the computations are huge. This is why our theorems are
stated in terms of number of arithmetic operations: one cannot consider that such
operations can be done in constant time in real implementations. Alternative
algorithms for the recursive method that use floating point arithmetic have been
studied, but this is beyond the scope of this article.

4.5 A lazy strategy

A common strategy for that kind of algorithms is the lazy strategy, which consists
in computing the values for αk and γ only when needed. They are still stored,
but the computations are done on the fly. This strategy proves to be very efficient
in practice in our case, because of the specific shape of a uniform random acyclic
automata (as depicted in Fig. 3).

If A is an acyclic automaton, let sources(A) be its number of sources and let
pruned(A) be the acyclic automaton obtained when removing the sources and
their outgoing transitions. We define the width width(A) of an acyclic automaton
A by width(A) = max {sources(A),width(pruned(A))} ifA has at least one state
and width(A) = 0 otherwise. The width of an acyclic automaton A is therefore
the maximum size of a layer of sources obtained when repeatedly pruning A.

We aim at using the width of the output automaton as a parameter for
the complexity of our algorithm. The main motivation for this is the typical
flat shape of a random acyclic automaton (Fig. 3). Assume that the algorithm
produces an automaton A of width w. Then the various values taken by u in
the algorithms are always smaller than or equal to w, and those taken by |T |
smaller than or equal to k ·w. Therefore, the lazy strategy only computes values
for γ(t, u, r) for t ≤ k · w, u ≤ w and r ≤ n, which requires O(n · w2) time and
space. However, the idea would not work without a shortcut to compute the
values of αk(n, s), which is needed in the algorithms; indeed, the variable u in
Eq. (4) takes values that are bigger than w, especially considering the inductive
nature of this equation. Fortunately, we can use the inclusion-exclusion formula
of Eq. (2) instead, which can be computed using O(n2 ·w) arithmetic operations
according to Lemma 1. This gives the following result.

Fig. 3. The shape of a random acyclic automata with 200 states on a two-letter alpha-
bet. The initial state is on the left, and we have represented the number of sources seen
at each step when repeatedly pruning the automaton. The width of this automaton is
6, and its shape is typical of what is observed under the uniform distribution.

Theorem 3 (Lazy Strategy). Using the lazy strategy in the random genera-
tor, the generation algorithm (including the computation of the required values)
needs O(n2 · w) arithmetic operations, where w is the width of the generated
acyclic automaton.

Theorem 3 is not enough to prove the generic efficiency of the lazy strategy:
one would also needs to show that, with high probably, a random uniform acyclic
automaton with n states has a small width with respect to n. Experimentation
indicates that it should be true, and trying to prove this is ongoing work. How-
ever, there is no reason to avoid this strategy, which is at least as good as the
classical one even when the generated acyclic automaton has a large width.

5 Conclusion and Experiments

Using some optimizations on an inductive decomposition of acyclic automata,
we proposed a random generator that is efficient enough to make experimental
statistics on automata of size up to 1000 or a bit more. We relied on the alter-
native description of βk by γ to lower the initial complexity, and used inclusion-
exclusion formulas to make the lazy strategy possible.

We have implemented our random generator in the interpreted language
Python, which is clearly not the best choice for computational speed. However,
we could easily generate accessible automata of size 1000 in a reasonable amount
of time (a few minutes to generate 100 automata on a personal computer).

In our experiments, we considered that each state is final with probability
1
2 . In our first test, we computed experimentally the probability that a random
acyclic automaton with final states is minimal. Notice that minimality is easier
to check for acyclic automata than for general automata (see [2] for the details).
The results for alphabets of size 2 and 3 are depicted in Fig. 4.

We also computed the number of words in the finite language recognized by
a random acyclic automaton with final states. Since it grows very fast, we switch
to logarithms by calculating logarithm of the geometric mean of the number of
recognized words. It seems to indicate that random acyclic automata are a very
compact way to describe huge random sets of words (see Fig. 5).

Acknowledgments: we would like to thanks Arnaud Carayol for the very fruit-
ful discussions we had during the preparation of this article.

100 200 300 400 500 600 700 800 900 1000

10%

20%

30%

40%

50%

k = 2

k = 3

number of states

ra
ti
o

of
m

in
im

al
au

to
m

at
a

Fig. 4. The ratio of minimal automata for
alphabet of size 2 and 3. Each curve has
been obtained by generating 1000 acyclic
automata for 101 different sizes, from 10
to 1000. Note that one can significantly
increase the ratio by forcing states with
no outgoing transition to be final (hoping
that there is only one such state, which is
often the case experimentally).

Fig. 5. The natural logarithm of the num-
ber of recognized words for an alphabet
of size 2. The curve has been obtained by
generating 1000 acyclic automata for 101
different sizes, from 10 to 1000. It is dif-
ficult to guess the function behind that
kind of experimental curves, but subex-
ponential growth like x 7→ e

√
x is a possi-

bility. 100 200 300 400 500 600 700 800 900 1000

5

10

15

20

25

30

number of states

lo
ga

ri
th

m
of

th
e

nu
m

be
r

of
re

co
gn

iz
ed

w
or

ds

References

1. A. Akhavi, I. Klimann, S. Lombardy, J. Mairesse, and M. Picantin. On the finite-
ness problem for automaton (semi)groups. IJAC, 22(6), 2012.

2. M. Almeida, N. Moreira, and R. Reis. Exact generation of minimal acyclic deter-
ministic finite automata. Int. J. Found. Comput. Sci., 19(4):751–765, 2008.

3. A. S. Antonenko. On transition function of mealy automata with finite growth.
Matematychni Studii, 29(1), 2008.

4. V. Carnino and S. De Felice. Sampling different kinds of acyclic automata using
Markov chains. TCS, 450:31–42, 2012.

5. M. Domaratzki. Improved bounds on the number of automata accepting finite
languages. In DLT’02, LNCS 2450, pages 209–219, 2002.

6. M. Domaratzki, D. Kisman, and J. Shallit. On the number of distinct languages
accepted by finite automata with n states. Journal of Automata, Languages and
Combinatorics, 7(4):469–486, 2002.

7. P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge Univ. Pr., 2009.
8. P. Flajolet, P. Zimmermann, and B. V. Cutsem. A calculus for the random gener-

ation of labelled combinatorial structures. TCS, 132(2):1–35, 1994.
9. V. A. Liskovets. Exact enumeration of acyclic deterministic automata. Discrete

Applied Mathematics, 154(3):537–551, 2006.
10. A. Nijenhuis and H. Wilf. Combinatorial algorithms. Computer science and applied

mathematics. Academic Press, 1975.
11. R. P. Stanley. Enumerative Combinatorics, volume 1. Cambridge Univ. Pr., 2000.

