
Polymorphic Extractors for Semantic and Portable
Pattern Matching (Short Paper)

Amir Shaikhha
University of Oxford
United Kingdom

amir.shaikhha@cs.ox.ac.uk

Abstract
This paper introduces polymorphic extractors, a technique
for tackling two main issues with the existing pattern match-
ing techniques in functional languages. First, this technique
defines semantic pattern matching rather than a syntactic
one. Second, this technique solves the portability issue when
defining a set of patterns based on different underlying data-
structure design choices. Furthermore, polymorphic extrac-
tors can be further improved by performing optimizations
and multi-stage programming. The key technique behind
polymorphic extractors is using the tagless-final technique
(a.k.a. polymorphic embedding/object algebras) for defining
different extraction semantics over expression terms.

CCSConcepts •Theory of computation→Patternmatch-
ing; Rewrite systems; • Software and its engineering →
Functional languages.

Keywords Extractors, Tagless Final, Language Embedding

ACM Reference Format:
Amir Shaikhha. 2019. Polymorphic Extractors for Semantic and
Portable Pattern Matching (Short Paper). In Proceedings of the 18th
ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences (GPCE ’19), October 21–22, 2019, Athens,
Greece. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3357765.3359522

1 Introduction
Pattern matching has many applications in term rewriting
systems, optimizing compilers, proof systems, and verifica-
tion tools. Building compilers for domain-specific languages
(DSLs) benefits greatly from pattern matching; DSL devel-
opers encode domain-specific knowledge through rewrite
rules for optimizing DSL expressions [9, 19, 21, 23, 25, 29].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GPCE ’19, October 21–22, 2019, Athens, Greece
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6980-0/19/10. . . $15.00
https://doi.org/10.1145/3357765.3359522

However, the standard pattern matching provided by func-
tional languages suffers from two main problems. First, such
pattern matching is syntactic and misses the semantic knowl-
edge of the DSL. For example, consider the arithmetic ex-
pression 42 ∗ (4 + 3). Based on mathematical knowledge it is
obvious that both of the following patterns should success-
fully match this expression: 1) a ∗ (b + 3), and 2) a ∗ (3 + b).
However, the standard pattern matching considers only the
first pattern to have a successful match.

Second, there are different design decisions for defining an
intermediate representation (IR) for an optimizing compiler.
Each IR design choice enforces the rewrite rules to respect
some forms of constraints (e.g., in ANF [6] all the subexpres-
sions should be either a constant literal or a variable). Hence,
changing the IR used in an optimizing compiler, requires a
complete refactoring of all the rewrite rules. This means that
these rewrite rules are not portable.

In this paper, we solve these two problems by combining
two techniques. First, inspired from the notion of Views [30]
and Scala extractors [5] (which are similar to active patterns
in F# [27] and pattern synonyms in Haskell [18]), we define
an extensible version of pattern matching; we define objects
that examine a given pattern on a tree-structured value, and
in the case of a successful match, extract some of its subtrees.
We refer to such objects as extractors throughout this paper,
and we focus on extractors for expression terms.
Second, we make the implementation of the extractors

polymorphic, and thus portable, using the tagless-final [2,
12] (also known as polymorphic embedding [7] or object
algebras [15]) technique. This techique has been successfully
used for having different evaluation semantics for a DSL
(e.g., interpretation, compilation, partial evaluation, etc.) [2,
7, 15, 21]. In this paper, we define the extraction evaluation
semantics in the tagless-final embedding.

The contributions of this paper are as follows:
• After giving a background on the tagless-final approach
(Section 2), we introduce extractors (Section 3) and a sim-
ple tagless-final embedding of them (Section 3.1).

• We better demonstrate the polymorphic nature of our
extractors by showing how they can handle syntactic
sugar constructs (Section 3.2), commutative operators (Sec-
tion 4.2), associative operators (Section 4.3), and further
possible improvements (Section 4.4).

61

https://doi.org/10.1145/3357765.3359522
https://doi.org/10.1145/3357765.3359522
https://doi.org/10.1145/3357765.3359522

GPCE ’19, October 21–22, 2019, Athens, Greece Amir Shaikhha

• We use two different IR definitions (one in Section 2.3
and another one in Section 4) to better demonstrate the
portability of our extractors.

2 Background: Tagless Final
Tagless final [2, 12] (also known as polymorphic embed-
ding [7] or object algebras [15]) is a type-safe approach for
embedding [8] domain-specific languages in a host program-
ming language. This approach allows the DSL developer
to make the DSL definition extensible from two aspects: 1)
adding different evaluation semantics for the constructs of a
DSL (e.g., interpretation, compilation, etc.), and 2) the possi-
blity to extend the set of constructs defined for a DSL.
Among different techniques for implementing this ap-

proach (e.g., type classes [2, 12] and the module system [2,
13]), we have chosen the mixin composition (also known as
the cake pattern), as this approach has been used before for
implementing DSLs in Scala [7, 21].
Throughout this paper, we consider a DSL defined for

semiring-based arithmetic operations on real numbers, an
extended form of which has been used for linear algebra
DSLs [4, 13, 24]. This DSL consists of two binary operations
for addition and multiplication, as well as a construct for
creating a constant real number. The tagless-final interface
for this DSL is as follows:

trait SemiRingDSL {

type Rep

def const(d: Double): Rep

def add(a: Rep, b: Rep): Rep

def mult(a: Rep, b: Rep): Rep

}

The code above defines a trait (similar to an interface in
Java or a module signature in ML). The SemiRingDSL trait is
parameterized with a Rep type member, which is the type of
the objects manipulated by the DSL. This trait contains one
abstract method for each constructs of the DSL, here const,
add, and mult.
One can then define generic programs in the DSL:

class App1[B <: SemiRingDSL](val base: B) {

import base._

def exp1: Rep = {

mult(const(42), add(const(4), const(0)))

}

}

Next, we show different evaluation semantics for this DSL.

2.1 Interpretation
One can define an interpreter for the DSL by specifying the
Rep type as Double. The following trait defines an interpreter
for SemiRingDSL:

trait SemiRingDSLInter extends SemiRingDSL {

type Rep = Double

def const(d: Double): Rep = d

def add(a: Rep, b: Rep): Rep = a + b

def mult(a: Rep, b: Rep): Rep = a * b

}

Evaluating the example program above in the REPL with
this evaluation semantics, results in:

scala> new App1(new SemiRingDSLInter {}).exp1

result: Double = 168.0

2.2 Stringification
Rather than directly evaluating DSL programs, one can also
represent the programs as strings. Below is a trait that stringi-
fies programs in our semiring-based DSL:

trait SemiRingDSLStringify extends SemiRingDSL {

type Rep = String

def const(d: Double): Rep = d.toString

def add(a: Rep, b: Rep): Rep = s"($a + $b)"

def mult(a: Rep, b: Rep): Rep = s"($a * $b)"

}

Evaluating the same program with the stringification evalu-
ation semantics results in:

scala> new App(new SemiRingDSLStringify {}).exp1

result: String = "(42.0 * (4.0 + 0.0))"

2.3 Compilation
Another possibility is to have a symbolic representation of
the program using algebraic data types (ADTs). The follow-
ing code represents the ADT representation for the con-
structs of this DSL, and the tagless-final evaluation strategy
for creating a symbolic representation (or compiled version
of a DSL program):

sealed trait Exp

case class Add(a: Exp, b: Exp) extends Exp

case class Mult(a: Exp, b: Exp) extends Exp

case class Neg(a: Exp) extends Exp

case class Const(v: Double) extends Exp

trait SemiRingDSLExp extends SemiRingDSL {

type Rep = Exp

def add(a: Rep, b: Rep): Rep = Add(a, b)

def mult(a: Rep, b: Rep): Rep = Mult(a, b)

def const(d: Double): Rep = Const(d)

}

Evaluating the same program by using the compilation eval-
uation semantics results in:

62

Polymorphic Extractors for Semantic and Portable Pattern Matching (Short Paper) GPCE ’19, October 21–22, 2019, Athens, Greece

scala> val exp1 = new App(new SemiRingDSLExp

{}).exp1

exp1: Exp =

Mult(Const(42.0),Add(Const(4.0),Const(0.0)))

This representation can later on be manipulated in order
to encode domain-specific optimizations. Next, we define
another evaluation semantics for extracting patterns on the
compiled representation of DSL programs.

3 Extractor
In this section, we present simple extractor objects for the
programs of our example DSL. Generally speaking, when an
extractor is applied to a tree-shaped data structure, in the
case of a successful match, it returns the subtrees of that
data structure. However, it is also possible that an extractor
fails the match. Thus, a generic form of extractor has the
following type:

type GenExt[Node] = Node => Option[Seq[Node]]

More specifically, an extractor for the compiled representa-
tion of the DSL programs has the following type:

type Ext = Exp => Option[Seq[Exp]]

3.1 Simple Tagless Final Extractor
Next, we present the generic tagless-final interface for the
extractor evaluation semantics:

trait SemiRingDSLExtGen extends SemiRingDSL {

type Node

type Rep = GenExt[Node]

def hole: Rep

final def const(d: Double): Rep = (e: Node) =>

constGen(e) match {

case Some(d2) if d == d2 => Some(Seq())

case _ => None

}

def constGen: Node => Option[Double]

}

The hole method matches with every instance of the in-
put tree-shaped data structure, returning a sequence of one
element containing the whole tree. The constGen method
extracts the double value from the double constant literal.
Thus, the const method uses the constGen and checks if
the double value is the same as the expected one. In the
case of a success match, the constmethod returns an empty
sequence; otherwise, the match should fail (by returning a
None value).

For the previously mentioned compiled reprsentation (cf.
Section 2.3), the tagless extractor interface is as follows:

trait SemiRingDSLExt extends RingDSLExtGen {

type Node = Exp

def add(a: Rep, b: Rep): Rep = (e: Exp) => e

match {

case Add(av, bv) => (a(av), b(bv)) match {

case (Some(s1), Some(s2)) => Some(s1 ++ s2)

case _ => None

}

case _ => None

}

def mult(a: Rep, b: Rep): Rep =

// similar to addition

def constGen = (e: Exp) => e match {

case Const(d) => Some(d)

case _ => None

}

def hole: Rep = (e: Exp) => Some(Seq(e))

}

All constructs are implemented as follows. First, an input
expression is matched against the corresponding pattern. If
the match fails, then the extractor also returns None. If the
match is successful, then the extractors for the parameters of
the construct (referred to as subextractors) should be applied
to the subexpressions. If even one of these matches fails,
the extractor must fail again. However, if all matches are
successful, then the extractor concatenates the sequences
returned by all subextractors.
Evaluating the previous example program by using the

simple extractor evaluation semantics results in a function.
Applying it to the compiled representation of the expression
results in:

scala> val pat1 = new App(new SemiRingDSLExt

{}).exp1

scala> pat1(exp1)

result: Option[Seq[Exp]] = Some(List())

This means that the match is successful. However, this extrac-
tor does not extract any of the subexpressions. The following
example shows the usage of the hole method for retrieving
a subexpression:

scala> val pat2 = {

val srExt = new SemiRingDSLExt {}

import srExt._

mult(hole, add(const(4), hole))

}

scala> pat2(exp1)

result: Option[Seq[Exp]] = Some(List(Const(42.0),

Const(0.0)))

As this example shows, the first hole extracts the constant
literal Const(42.0), and the second one extracts the con-
stant literal Const(0.0). Note that although in this example,

63

GPCE ’19, October 21–22, 2019, Athens, Greece Amir Shaikhha

the extracted terms are all constant terms, they could be any
arbitrary expression term, as long as the pattern matches
successfully. We have used these constant terms to make the
examples more concise and easier to follow.

The next example considers the case where the extractor
does not match with the given expression:

scala> val pat3 = {

val srExt = new SemiRingDSLExt {}

import srExt._

mult(hole, add(const(0), hole))

}

scala> pat3(exp1)

result: Option[Seq[Exp]] = None

Even though we know that the addition operator is com-
mutative (the order of operands does not matter), the extrac-
tor is still syntactic; this semantic knowledge is needed to be
encoded in the extractor. We will encode the commutative
property into the addition operator in Section 4.2.

3.2 Syntactic Sugar Constructs
Let us extend our semiring DSL with the additive inverse
construct, resulting in a ring-based DSL. The tagless-final
interface for the extended DSL is as follows:

trait RingDSL extends SemiRingDSL {

def neg(a: Rep): Rep

final def sub(a: Rep, b: Rep): Rep =

add(a, neg(b))

}

As one can see, the subtraction operator is defined as syn-
tactic sugar in terms of the addition and negation operators.
Thus, for the symbolic representation of this DSL it is suffi-
cient to define an ADT case for the negation operator, and
the subtraction operator is desugared into the representation
for the addition and negation operators. The tagless-final
evaluation semantics for compilation is as follows:

trait RingDSLExp extends SemiRingDSLExp with

RingDSL {

def neg(a: Rep): Rep = Neg(a)

}

Similarly, for the extraction tagless-final interface, there is
no need to define the extractor for the subtraction construct;
implementing the negation construct is sufficient:

trait RingDSLExt extends SemiRingDSLExt with

RingDSLExtGen {

def neg(a: Rep): Rep = (e: Exp) => e match {

case Neg(av) => a(av)

case _ => None

} }

class App2[B <: RingDSL](val base: B) {

import base._

def exp2: Rep =

mult(const(42), sub(const(0), const(4)))

def exp3: Rep =

add(const(42), add(const(4), const(3)))

def exp4_1: Rep =

add(add(const(42), const(41)), add(const(3),

const(4)))

def exp4_2: Rep =

add(add(const(42), add(const(41), const(3))),

const(4))

def exp4_3: Rep =

add(add(add(const(42), const(41)), const(3)),

const(4))

}
Figure 1. Several example generic programs defined in the
ring-based DSL.
Consider the generic programs represented in Figure 1.

By applying the previously defined extractors on exp2, we
get the following results:

scala> pat1(exp2)

result: Option[Seq[Exp]] = None

scala> pat2(exp2)

result: Option[Seq[Exp]] = None

scala> pat3(exp2)

result: Option[Seq[Exp]] = Some(List(Const(42.0),

Neg(Const(4.0))))

The first two extractors, fail matching with the given ex-
pression, as they are expecting the first operand of addition
to be Const(4.0). However, the last extractor successfully
matches the expression thanks to desugaring subtraction
into addition and negation. Also, when the exp2 is evaluated
by the extraction semantic, it matches with its corresponding
compiled version:

scala> val pat4 = new App2(new RingDSLExt

{}).exp2()

scala> pat4(exp2)

result: Option[Seq[Exp]] = Some(List())

In this section, we have shown the power of the simple
extractors for pattern matching over expression terms, even
for syntactic sugar constructs. Next, we investigate more
advanced forms of extractors.

4 Deep Extractor
In this section, we show how extractors can encode more
semantic knowledge of the DSL constructs. In other words,
we show how to shift from syntactic pattern matching into
semantic pattern matching. First, we show how to make the
extractors aware of the commutative property of a construct

64

Polymorphic Extractors for Semantic and Portable Pattern Matching (Short Paper) GPCE ’19, October 21–22, 2019, Athens, Greece

in Section 4.2. Then, we make the extractors for associative
constructs in Section 4.3. Finally, we show future directions
for advanced extractors.

4.1 Deep Embedding for Extractors
In Section 3.1, we have introduced a simple form of extrac-
tors. This form directly (or shallowly) evaluates the extractors
given expression terms. However, similar to the limitations
associated with the direct embedding of DSLs [10, 26], in or-
der to enrich extractors with more features, such as domain-
specific rules (Section 4.2 and Section 4.3) and optimizations
(Section 4.4), we get inpsiration from deep embedding of
DSLs, and introduce the deep extractors.
Similar to deep embedding of DSLs in a host language,

we have to define the symbolic representation for each of
the extractor cases. To reduce the number of cases, we intro-
duce two cases for both expression terms and extractors: 1)
constant values, and 2) n-ary functions.1 Additionally, the
extractors require a case for holes.

Figure 2 shows the tagless interface for both compilation
and extractor evaluation semantics. The apply method of
the subclasses of the ExtDeep trait specifies the extractor
behaviour. The most interesting case is the FuncExt case for
extracting n-ary functions. In this case, after checking if the
expression is an n-ary function with the same expected sym-
bol, all the subextractors are matched with all the subexpres-
sions. If all of them successfully match, the concatenation of
the returned sequences of all subextractors is returned.

4.2 Commutative Rules
Let us now encode the commutative property of addition. To
do so, we define the following case for deep extractors:

case class ExtCom(ext: FuncExt) extends ExtDeep {

def apply(e: Exp): Option[Seq[Exp]] = ext(e)

match {

case Some(seq) => Some(seq)

case None => FuncExt(ext.sym, Seq(ext.pats(1),

ext.pats(0)))(e)

} }

For a given extractor of a binary operator (2-ary function),
the defined extractor first checks if it matches with the input
expression. If not, it tries again with an extractor where
the order of subextractors is swapped. This way, it tries to
match the given extractor irrespective of the order of its
input operands.
By using the third example extractor and constructing a

commutative extractor for it, and then applying it to the first
example expression, the result is as follows:

scala> pat3(exp1)

1The expression 'foo is a constant literal of Symbol type in Scala.

sealed trait Exp

case class Const(v: Double) extends Exp

case class FuncExp(sym: Symbol, es: Seq[Exp])

extends Exp

trait RingDSLExpDeep extends RingDSL {

type Rep = Exp

def neg(a: Rep): Rep = FuncExp(’Neg, Seq(a))

def add(a: Rep, b: Rep): Rep =

FuncExp(’Add, Seq(a, b))

def mult(a: Rep, b: Rep): Rep =

FuncExp(’Mult, Seq(a, b))

def const(d: Double): Rep = Const(d)

}

sealed trait ExtDeep extends Ext

case class FuncExt(sym: Symbol, pats: Seq[Ext])

extends ExtDeep {

def apply(e: Exp): Option[Seq[Exp]] = e match {

case FuncExp(sym2, es) if sym == sym2 =>

pats.zip(es).foldLeft(Option(Seq[Exp]()))((acc,

cur) => (acc, cur._1(cur._2)) match {

case (Some(v1), Some(v2)) => Some(v1 ++ v2)

case _ => None

})

case _ => None

} }

case object ConstExt extends (Exp=>Option[Double]){

def apply(e: Exp): Option[Double] = e match {

case Const(d) => Some(d)

case _ => None

} }

case object HoleExt extends ExtDeep {

def apply(e: Exp): Option[Seq[Exp]] = Some(Seq(e))

}

trait RingDSLExtDeep extends RingDSLExtGen {

type Node = Exp

def add(a: Rep, b: Rep): Rep =

FuncExt(’Add, Seq(a, b))

def mult(a: Rep, b: Rep): Rep =

FuncExt(’Mult, Seq(a, b))

def neg(a: Rep): Rep = FuncExt(’Neg, Seq(a))

def constGen = ConstExt

def hole: Rep = HoleExt

}
Figure 2. Tagless final interface for the deep embedding of
both compilation and extractor evaluation semantics.

result: Option[Seq[Exp]] = Some(List(Const(42.0),

Const(4.0)))

As opposed to what we have observed in Section 3.1, this
extractor successfully matches the given expression. This is
thanks to encoding the commutative property of addition in
its corresponding extractor.

65

GPCE ’19, October 21–22, 2019, Athens, Greece Amir Shaikhha

4.3 Associative Rules
Another important algebraic property for the addition and
multiplication operators is associativity. As opposed to a
commutative operator, the order of operands is important in
an associative operator. However, the pairing of operators
for evaluating them is not important. The following case
handles associative operators:

case class ExtAsc(pats: Seq[Ext], sym: Symbol)

extends ExtDeep {

def apply(e: Exp): Option[Seq[Exp]] = e match {

case FuncExpN(s, es) if s == sym =>

pats.zip(es).foldLeft(Option(Seq[Exp]()))((acc,

cur) => (acc, cur._1(cur._2)) match {

case (Some(v1), Some(v2)) => Some(v1 ++ v2)

case _ => None

})

case _ => None

} }

The evaluation of an associative extractor is very similar to
an n-ary function. The key difference is using the FunExpN
(the implementation of which is elided due to space con-
straints) which returns the list of the operands, no matter
how their paranthesisation looks like.
Let us use the last three example expressions of Figure 1

that are equivalent modulo the fact that the association of
the addition operator is different among them.

scala> val pat4 = {

val rExt = new RingDSLExtDeepAsc {}

import rExt._

add(add(hole, hole), add(const(3), hole))

}

scala> pat4(exp4_1)

result: Option[Seq[Exp]] = Some(List(Const(42.0),

Const(41.0), Const(4.0)))

scala> pat4(exp4_2)

result: Option[Seq[Exp]] = Some(List(Const(42.0),

Const(41.0), Const(4.0)))

scala> pat4(exp4_3)

result: Option[Seq[Exp]] = Some(List(Const(42.0),

Const(41.0), Const(4.0)))

The extractor pattern has matched all the expression terms
returning the same subexpressions, no matter how their
addition operators were associated.

4.4 Further Improvements
There are several directions in which the current deep ex-
tractors can be improved.
AC Extractors. We have shown how to define commuta-
tive and associative extractors separately. However, we have

not shown how to define extractors which are simultane-
usly associative and commutative (referred to as AC rewrite
rules [3]). One possibility to support them is to define a more
generic form of commutative extractors, which does not only
handle binary operators, but rather n-ary functions. This is
feasible by defining an order for subexpressions based on
their symbols and operands.
Normal Form Extractors. Many optimizing compilers are
using specific normal forms such as CPS [1], SSA [22], and
ANF [6] in order to simplify data-flow analysis on the ex-
pression terms. It is possible to provide extractors which are
aware of the underlying normal form, without the need to
worry if the subexpressions are bound to a variable or not.
Optimizing Extractors. By looking at the implementation
of the apply function of the extractors, one can realise that
there is too much overhead of function calls and iterations
using foldLeft. One possible way to remove this overhead
is to use multi-stage programming [28] to perform partial
evaluation and loop fusion [14].
Guarded Extractors. Up to now, we have only considered
extractor patterns without any particular guard. This means
that there is no support for conditional rewrite rules [11].
An an example of conditional rewrite rules, one may want
to check if two holes extract the same expression or not.
Non-linear pattern matching [20] is an approach to solve
this problem, which can be integrated into our library.
Named Holes. The pattern holes presented in this paper
are all unnamed; an extractor returns a sequence of extracted
values, the order of which is specified by the evaluation order,
which makes their usage unintuitive. To avoid this issue, one
can use named holes; an extractor returns a map associating
hole names with the corresponding extracted value.
Quasiquotes. An alternative way for improving the usabil-
ity of polymorphic extractors is using quasiquotes to express
expression terms in the pattern side. These pattern expres-
sions are converted using macro-based frameworks such as
Yin-Yang [10] or Squid [16, 17] into their tagless-final repre-
sentation. The example extractors defined in Section 3 are
represented as follows using quasiquotes:

// pat1

e match { case code''42 * (4 + 0)'' => ... }

// pat2

e match { case code''$a * (4 + $b)'' => ... }

// pat3

e match { case code''$a * (0 + $b)'' => ... }

In these examples, the * and + operators are converted into
mult and addmethod invocations, respectively. Furthermore,
the meta variables (a and b) are converted into the hole
method invocation. Then, based on the call-by-value eval-
uation strategy, the expression extracted by each hole is
associated with the corresponding meta variable.

66

Polymorphic Extractors for Semantic and Portable Pattern Matching (Short Paper) GPCE ’19, October 21–22, 2019, Athens, Greece

References
[1] AndrewWAppel. Compiling with continuations. Cambridge University

Press, 2006.
[2] Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. Finally tag-

less, partially evaluated: Tagless staged interpreters for simpler typed
languages. Journal of Functional Programming, 19(05):509–543, 2009.

[3] Nachum Dershowitz. A taste of rewrite systems. In Functional Pro-
gramming, Concurrency, Simulation and Automated Reasoning, pages
199–228. Springer, 1993.

[4] StephenDolan. Funwith Semirings: A Functional Pearl on the Abuse of
Linear Algebra. In Proceedings of the 18th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’13, pages 101–110, New
York, NY, USA, 2013. ACM.

[5] Burak Emir, Martin Odersky, and John Williams. Matching objects
with patterns. In European Conference on Object-Oriented Programming,
pages 273–298. Springer, 2007.

[6] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In Proceedings of the
ACM SIGPLAN 1993 Conference on Programming Language Design and
Implementation, PLDI ’93, pages 237–247, New York, NY, USA, 1993.
ACM.

[7] Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan
Moors. Polymorphic embedding of DSLs. In Proceedings of the 7th
international conference on Generative programming and component
engineering, pages 137–148. ACM, 2008.

[8] Paul Hudak. Building domain-specific embedded languages. ACM
Comput. Surv., 28(4es), December 1996.

[9] Simon L. Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing
by the rules: rewriting as a practical optimisation technique in GHC.
In 2001 Haskell Workshop. ACM SIGPLAN.

[10] Vojin Jovanovic, Amir Shaikhha, Sandro Stucki, Vladimir Nikolaev,
Christoph Koch, and Martin Odersky. Yin-Yang: Concealing the deep
embedding of DSLs. GPCE 2014, pages 73–82. ACM, 2014.

[11] Stéphane Kaplan. Conditional rewrite rules. Theoretical Computer
Science, 33(2):175 – 193, 1984.

[12] Oleg Kiselyov. Typed tagless final interpreters. In Generic and Indexed
Programming, pages 130–174. Springer, 2012.

[13] Oleg Kiselyov. Reconciling abstraction with high performance: A
metaocaml approach. Foundations and Trends in Programming Lan-
guages, 5(1):1–101, 2018.

[14] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smarag-
dakis. Stream Fusion, to Completeness. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, pages 285–299, New York, NY, USA, 2017. ACM.

[15] Bruno C.d.S Oliveira and William R Cook. Extensibility for the masses.
In European Conference on Object-Oriented Programming, pages 2–27.
Springer, 2012.

[16] Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. Quoted staged
rewriting: A practical approach to library-defined optimizations. In

Proceedings of the 16th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences, GPCE 2017, pages
131–145, New York, NY, USA, 2017. ACM.

[17] Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E.
Koch. Unifying analytic and statically-typed quasiquotes. Proc. ACM
Program. Lang., 2(POPL):13:1–13:33, December 2017.

[18] Matthew Pickering, Gergő Érdi, Simon Peyton Jones, and Richard A
Eisenberg. Pattern synonyms. In ACM SIGPLAN Notices, volume 51,
pages 80–91. ACM, 2016.

[19] Markus Puschel, José M. F. Moura, Jeremy R. Johnson, David Padua,
Manuela M. Veloso, Bryan W. Singer, Jianxin Xiong, Franz Franchetti,
Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and
Nicholas Rizzolo. SPIRAL: code generation for DSP transforms. Pro-
ceedings of the IEEE, 93(2):232–275, 2005.

[20] R. Ramesh and I. V. Ramakrishnan. Nonlinear pattern matching in
trees. J. ACM, 39(2):295–316, April 1992.

[21] Tiark Rompf and Martin Odersky. Lightweight Modular Staging: A
Pragmatic Approach to Runtime Code Generation and Compiled DSLs.
In the ninth international conference on Generative programming and
component engineering, GPCE ’10, pages 127–136, New York, NY, USA,
2010. ACM.

[22] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbers
and Redundant Computations. POPL ’88, pages 12–27. ACM, 1988.

[23] Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, and Simon
Peyton Jones. Efficient Differentiable Programming in a Functional
Array-processing Language. Proc. ACM Program. Lang., 3(ICFP):97:1–
97:30, July 2019.

[24] Amir Shaikhha and Lionel Parreaux. Finally, a Polymorphic Linear
Algebra Language. In Proceedings of the 33rd European Conference on
Object-Oriented Programming, ECOOP’19, 2019.

[25] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe
Dubach. Generating performance portable code using rewrite rules:
from high-level functional expressions to high-performance opencl
code. ACM SIGPLAN Notices, 50(9):205–217, 2015.

[26] Josef Svenningsson and Emil Axelsson. Combining deep and shallow
embedding for edsl. In International Symposium on Trends in Functional
Programming, pages 21–36. Springer, 2012.

[27] Don Syme, Gregory Neverov, and James Margetson. Extensible pattern
matching via a lightweight language extension. In ACM SIGPLAN
Notices, volume 42, pages 29–40. ACM, 2007.

[28] Walid Taha and Tim Sheard. MetaML and multi-stage programming
with explicit annotations. Theor. Comput. Sci., 248(1-2):211–242, 2000.

[29] Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. Build-
ing Program Optimizers with Rewriting Strategies. In Proceedings
of the Third ACM SIGPLAN International Conference on Functional
Programming, ICFP’98, pages 13–26, 1998.

[30] Philip Wadler. Views: A way for pattern matching to cohabit with
data abstraction. In Proceedings of the 14th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 307–313.
ACM, 1987.

67

	Abstract
	1 Introduction
	2 Background: Tagless Final
	2.1 Interpretation
	2.2 Stringification
	2.3 Compilation

	3 Extractor
	3.1 Simple Tagless Final Extractor
	3.2 Syntactic Sugar Constructs

	4 Deep Extractor
	4.1 Deep Embedding for Extractors
	4.2 Commutative Rules
	4.3 Associative Rules
	4.4 Further Improvements

	References

