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GRAPHS AND PAIRS OF NON-CROSSING DYCK PATHS
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ABSTRACT. Schnyder trees, or realizers, of maximal plane graphs, are widely used in
the graph drawing domain. In this paper, a bijection between realizers and pairs of
non-crossing Dyck paths is proposed. The transformation of a realizer into a pair of non-
crossing Dyck paths and the opposite operation can be done in linear time. Applying this
bijection, we enumerate the number of realizers of size n and we can efficiently generate
all of them.

RESUME. Les arbres de Schnyder, ou réaliseurs, d'un graphe maximal planaire, sont large-
ment répandus dans le domaine du dessin de graphe. Nous proposons ici, une bijection
entre les réaliseurs et les paires de chemins de Dyck qui ne se coupent pas. La transforma-
tion d’un réaliseur en une paire de chemin de Dyck et son inverse se font en temps linéaire.
Utilisant cette bijection, nous pouvons énumérer les réaliseurs de taille n et nous pouvons
les générer exhaustivement de maniere efficace.

1. INTRODUCTION

Schnyder showed that every maximal plane graph admits a special decomposition of its
interior edges into three trees (see Fig. 2), called a realizer [16, 17]. Such decomposition
can be constructed in linear time [17]. Using realizers, it has been proved in [17] that every
plane graph with n > 3 vertices has a planar straight-line drawing in a rectangular grid
area (n —2) X (n — 2).

Realizers are useful for many graph algorithms, of course for graph drawing [17, 4, 1, 13]
but also for graph encoding [5]. They are linked to canonical orderings (or shelling orders)
[9, 14], with 3-orientations [6], and with orderly spanning trees [4]. They can also be used
to characterize planar graphs in terms of the order of their incidence, i.e., a graph G is
planar iff the dimension of the incidence order of vertices and edges is at most 3 [16].

Realizers of the same graph have already been investigated [6, 3]. Suitable operations
transforming a realizer of a graph to another realizer of the same graph have been introduced
[3]. A particular normal form is also characterized. Moreover, the structure of the set
of realizers of a given graph turns out to be a distributive lattice [6, 3]. Operations on
realizers of same size have also been investigated. In [18] diagonal flip operations have been
introduced. For all the maximal planar graphs in [2], colored diagonal flip operations on
realizers have been proposed.

Here, we deal with realizers of size n, i.e. realizers of maximal plane graphs of size n.
The main motivations are the following: how many realizers of size n are there and how
can they be generated. To answer these two questions, a bijection between realizers of size
n and pairs of non-crossing Dyck paths of size 2n — 6 is proposed.

A Dyck path of size 2n is a path in the discrete plane that starts from the point (0,0)
and ends at the point (2n,0). It is composed of length sqrt(2) elementary steps North-East
and South-East such that it stays in the positive quarter of the plane. (f,g) is a pair of
non-crossing Dyck paths if g never goes below f. Such paths have been studied by D.
Gouyou-Beauchamps [10, 11]. Pairs of non-crossing Dyck paths are a particular case of
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vicious walkers [8, 7, 12, 15]. In [10], the number of pairs of non-crossing Dyck paths of
length 2n is calculated: |V,| = Cy42C, — C2 41, where C, is the Catalan number %

The principle of the bijection is the following. To each realizer R we can associate a
particular realizer R, called star realizer. A star realizer is a realizer in which the third
tree is a star i.e. all the inner vertices are children of the root. A realizer R is totally
defined by its associated star realizer R. and a particular sequence of flips, called a prefiz
flip sequence, which transforms R. into R. The star realizer and the prefix flip sequence
can be encoded by two non-crossing Dyck paths of size 2n — 6, where n is the size of the
realizer. The star realizer is totally defined by its first tree Tp. Ty is encoded by a Dyck
path. The prefix flip sequence is encoded by a second Dyck path obtained from the first
one by local transformations.

The rest of this paper is organized as follows. In Section 2, realizers are presented and
some of their properties are given. Star realizers and the prefix flip sequence are introduced
in the section 3. The bijection between realizers and non-crossing Dyck paths is explained
in section 4.

2. REALIZERS

2.1. Definitions. We assume that the reader is familiar with graph theory. In this paper
we deal with simple and undirected graphs. A drawing of a graph is a mapping of each
vertex to a point of the plane and of each edge to the continuous curve joining the two ends
of this edge. A planar drawing, or plane graph is a drawing without crossing edges except,
eventually, on a common extremity. A graph that has a planar drawing is a planar graph.
A plane graph splits the plane into topologically connected regions, called face regions. A
face is the counter-clockwise walk of the boundary of a face region. One of the regions
is unbounded and its associated face is named the external face of the plane graph. The
vertices and edges of this face are called external vertices and external edges. The other
vertices are called inner ones. The adjacency list of a vertex u is the list of neighbors of u.
In plane graphs, the neighbors of u are ordered in the clockwise order in the adjacency list
of u.

A planar graph G is mazimal (or triangulated) if all the other graphs with a same number
of vertices that contain it are not planar. The faces of a maximal plane graph are triangular.
In this case, we denote vg, v1,v2 the three vertices of the external face of this plane graph.

Definition 1. (Schnyder [16])
A realizer of a maximal plane graph G is a partition of the interior edges of G in three
sets Ty, 11, T of directed edges such that for each interior vertex u there holds:

(1) u has out-degree exactly one in each of Ty, T1, Ts.
(2) The counter-clockwise order of the edges incident on w is: leaving in Ty, entering
in Ty, leaving in 11, entering in Ty, leaving in Ty and entering in 1.

b

FIGURE 1. Edge coloration and orientation around a vertex
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Schnyder show that, Ty, 77 and Ts were three ordered rooted trees where their edges are
oriented toward their roots, which are the external vertices vy, v1,vs. Each tree contains
n — 2 vertices.

An example of a graph, and a realizer of this graph are given in Figure 2.

&

FIGURE 2. An example of a realizer (a graph on the left side, and one of its
realizers on the right side).

Vo

In the sequel, the edges of the tree T; are colored with color ¢, where i € {0,1,2} such
that the external edges (v;, v;4+1) are of the color ¢ + 1.

uy i ug denotes the path colored i from u; to us. We write u; >’
—

Lew U2 (vesp. ug > ug)

if uy is after ug in the counter-clockwise preordering (resp. clockwise preordering) of the tree
T;. The parent of u in the tree T; is denoted by Pj(u). Let C'h;(u) be the list of children of
w in clockwise order. Ch;(u, k) denotes the k'h child of the vertex u in T;. We denote by
deg;(u) the number of ingoing edges (number of children), of u in T;. If u is not the element
of Ch;(P;(u)), its predecessor v’ in Ch;(P;(u)) is the left brother u. The right branch of a
vertex u in a tree T, is the path in T" that joins the right most leaf of the subtree of u to u.
The length of a right branch is the number of edges of the right branch.

2.2. Diagonal Flips on Realizers. Let R, be the set of realizers of graphs of size n.

In [18], R. Wagner proved that it is possible to obtain all maximal planar graphs of size
n using a rewriting rule, called a diagonal flip. In this section, we extend this result to
realizers using colored flips.

Definition 2. Let G be an embedded graph. Let us,ui,uy and us, ug, u1 be two adjacent
faces where ug is not neighbor of us. A diagonal flip consists of removing the edge (u1,uy)
and inserting the edge (ug,us).

FicUure 3. Diagonal flip operation

Theorem 1. (Wagner [18])
Let G1 and Gy be two mazximal planar graphs with n vertices. There exists a sequence of
diagonal flips that transforms Gy into Ga.
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2.3. Generalization to realizers. As shown in Figure 4, we propose colored diagonal
flips for realizers using two kinds of flips: f{ and fi. It is easy to see that the application
of a diagonal flip f or fi on a realizer gives another realizer.

The choice between fi and fi depends on the quadrilateral configuration. Note that if,
the edge (ug,u1) is colored ¢ — 1 and oriented towards u1, and if the edge (us,u1) is colored
i+ 1 and oriented towards uj, then fi(u;) or fi(ui) can be applied.

FIGURE 4. Flips on realizer

Unfortunately, these two operations are not always possible to apply. This occurs for the
configuration of the quadrilateral of Figure 5.

®.

i

i+1

FiGURE 5. Configuration for which colored flip cannot be directly applied.

Theorem 2. [2] There exists a sequence of colored flips that transforms any realizer R with
n vertices into any other realizer R’ with n vertices.

3. STAR REALIZERS AND PREFIX FLIP SEQUENCE

In this section, we present a particular class of realizers, called star realizers. Using these
particular realizers, we construct in a unique way all realizers with a prefiz flip sequence.

3.1. Star realizers.

Definition 3. A star realizer R. = (Ty, T}, Cn—2) is a realizer where Cp,_2 is a star of size
n — 2 where all the edges are oriented toward the center of the star, i.e. Cph_o is a rooted
tree of depth 1.

In the first realizer of Figure 7, the vertex ve is a neighbor of all inner vertices of the
graph. So this realizer is a star realizer.

Property 1. Let Ty be an ordered rooted tree of size n — 2. There is a unique tree T| such
that R. = (To, T}, Cp—2) is a star realizer.

Proof. First, one can remark that there is only one way to connect Ty and C),_s: the
clockwise prefix order in Ty is the counter-clockwise order around vs. Once Ty and Cj,_o
are connected, we obtain a planar map. Let Fy = (v2, ug, Up,, Upy, - . ., Ug,, up4+1) be a face
of this planar map (see Figure 6). The parent in T} of the vertices wu, ug,, Ug,,- - - s Uky_y
must be a vertex of this face. This is the only way to satisfy the second item of the
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definition 1 (see Figure 1). For the same reason the only vertex which can be the parent

of ug, Uk, , Uky, - - - , Uk,_, is the vertex uyy. For each vertex wy, only one vertex can be the
parent of uy in T7. Hence, there is only one tree T} such that R, = (Ty,T],Cp_2) is a
realizer. M
v, O v, O
2 Uy 2 Ugi
u u
k u k u
53 Uy 53 Uy
ky P ky P
a. b.

FIGURE 6. a. Face of the planar map obtained from the connection of Tj
and Cj,_a. b. The same face, with the edges of T} inside

From the construction of the tree T in the proof of property 1, the following property
comes directly

Property 2. Let R, = (T, T1,T>) be a star realizer. Let G. the mazimal plane graph of
R.. Let (uy,...,un—3) be the inner vertices of G in the clockwise prefix order of Ty. The
number of children of uy in Ty is the length of the right branch of its left brother.

3.2. Prefix Flip sequence. In this section, we will denote by deg;(u) the number of
children of w in the tree 7j. Similarly, we will also denote by degj(u) the number of
children of w in the tree 7.

Definition 4. Let R. = (Ty,T],Cpn—2) be a star realizer. The inner vertices uy of G are
numbered respecting the prefix order of Ty. A Prefix Flip Sequence, or PES, is a sequence
of flips (f7(un,), f£(uky),- -, [T (uk,)) that can be applied to R. such that i < j = k; < kj.

In the sequel, a PFS will be represented by a list of n—2 numbers, specifying the number
of flips to apply on each inner vertex. For example, the PFS (fZ(u3), f2(us), f2(uq)) is
represented by (0,0,1,2). #f(ur) denotes the number of flips on uy in the PFS. In the
previous sequence, #f(u4) = 2. Figure 7 shows this PFS applied to a star realizer.

FIGURE 7. Example of prefix flip sequence (0,0, 1,2)

Remark 1. A prefiz flip sequence does not change the tree Ty of the star realizer.

Property 3. Let R. = (To, T}, Cp—2) be a star realizer. Let S be a prefix flip sequence and
R = (Ty, T1,Ts) be the realizer obtained from R, by S. For each inner vertex uy, we have:

deg (ux) = degy (ur) + #f (wr—1) — #f (ur,)

Proof. The property can be reformulated in the following way: when a flip is applied on
ug in S, degy(ug) is decremented and degy (ug41) is incremented. Obviously, when a flip
f?(ug) is applied, deg; (uy) is decremented. Let us show, that when a flip f7(uz) is applied,
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degi (ug+1) is incremented. For this purpose, let us prove by induction on k that when a
flip can be applied on wuy, uk41 is just after Py(ux) in the adjacency list of u.

First we can remark, that in a the star realizer R, for each k, ugy1 is just after Pa(ug)
in the adjacency list of wug.

Assume that after applying the flips of S on the k& — 1 first vertices, u;;1 is just after
P»(u;) in the adjacency list of u; for all i > k. After applying f7(ug), ugy1 is still just after
Py (ug) in the adjacency list of uy (see Fig. 4). So for the # f(uy) flips on wug, uky1 is just
after Po(ug) in the adjacency list of uy.

Moreover, the modifications made by the flips f?(uy,) are enclosed in the region (ve, w1, Ugt1 0, vp).
Hence, P5(uj41) in the adjacency list of ugy, and for each i > k + 1, the adjacency list of
u; is unchanged.

Hence, in a prefix flip sequence, each time we operate a flip fZ(uy), the number of children
of uy in 17 is decremented and the number of children of w1 is incremented. O

Remark 2. The property 3 can be also expressed: #f(ur) = deg(ur) + #f(ug—1) —
degy (u).

Lemma 1. Let R = (Ty,Th,Ts) be a realizer and R. = (T, T}, Cp—2) be its star realizer.
There exists a unique prefix flip sequence Scw that transforms R. into R.

Proof. FExistence: Let R be arealizer. Let us consider the following algorithm:

for each vertex uy in counter prefix order of T do
while uy, is not a neighbor of vy do
Make the flip f3 (Ps(uy))
end while
end for
We cannot operate an infinite number of times the flip fi(Ps(u)). Hence the algorithm
terminates. When this algorithm ends, a star realizer is obtained, since all the inner vertices
are neighbors of va. The reverse of the flip fi (P2 (uy)) is the flip fZ(ux) (see Figure 4). The
reverse of the sequence of flips built by the previous algorithm is a prefix flip sequence.
Hence, for every realizer R, there exists a flip sequence that transforms the star realizer R,
of R into R.

Unicity: Two realizers with two different star realizers cannot be identical since, they
will have different trees Ty. Let R. be a star realizer. Let S.,1 and Sguo be two prefix flip
sequences. Let Ry (resp. Ry) be the realizer obtained from R. by the flip sequence Sgy1
(resp. Scw1). Let k be the first index where the two sequences are different. The deg (uy)
in Ry is different from deg; (ux) in Ro (see property 3). Hence, a star realizer with two
different sequences cannot produce the same realizer. U

Remark 3. If the flips can be operated in any order, there are several ways to transform
R. into R. For example, the sequence (fZ(uy), f(u3)) transforms the star realizer R, into
the realizer R of Figure 7.

4. ENCODING AND DECODING REALIZERS

In this section the bijection between realizers and pairs of non-crossing Dyck words is
presented. This bijection is described as an encoding scheme. A first Dyck word is used to
encode a star realizer. Precisely, this word encodes the tree T of the star realizer. Then,
a second Dyck word, which is used to encode the prefix flip sequence, is obtained from the
first one by applying some permutations. In the decoding process, the first word is used to
reconstruct the tree Ty and the star realizer. The difference between the two words encodes
the PFS.
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4.1. Non-crossing Dyck paths. We use a finite set called alphabet where the elements
are called letters. Here, we will use the alphabet A = {/(",/)'}. A word is a finite sequence
of letters denoted by f = fi1fa2... fn. The set A* of all words on the alphabet A is equipped
with the concatenation. The length of a word, denoted by |f|, is the number of letters of f.
For a letter z, |f|, denotes the number of letters z in the word f. A word f’ is a left factor
of f if there exists a word f” such that f = f’f”. A morphism ¢ from A* to N is defined
by: 6('(") =1,6(")) = =1 and §(f" ") = 6(f") +(f"). The Dyck language is the following:
D = {f € A*|6(f) = 0 and Vf’ left factor of f,5(f’) > 0}. We denote by D,, = D n A?".
We denote by open(k, f) the position of the k'* opening parenthesis in f.

Dyck paths are paths coded by Dyck words. A step North-East is coded by ’(" and a step
South-East is coded by ’)’. These paths start from the point (0,0), never go bellow the
x-axis and end on the x-axis. Dyck words of 2n — 2 length are classically used to encode
ordered rooted trees of size n. Figure 8 a. shows an ordered rooted tree and its coding with
a Dyck word.

The pair (g, h) of D, x D,, are non-crossing Dyck words if for all ¢’ (resp. h') left factor
of g (resp. h) such that |¢'| = |h'|, 6(h") > d(¢'). V,, denotes the set of pairs of non-
crossing words of D,, x D,,. Obviously, a pair of non-crossing Dyck words encodes a pair of
non-crossing Dyck paths. Figure 8 b. shows an example of non-crossing Dyck paths.

X AR

OO g=(00)0, h=((00))
a. b.

FiGure 8. a. Encoding an ordered rooted tree with a Dyck word. b.
Example of non-crossing Dyck paths

Theorem 3. (Gouyou-Beauchamps [10])
Vo] = CpiaCh — CfH_l, where Cy, is the Catalan number (2n)!

nl(n+1)!"

The first values of |V,| are 1,1,3,14, 84,594, 4719, ...

Algorithm 1 Encoding algorithm

Build the corresponding star realizer R, of R

Code the tree Ty by a Dyck word g.

h—g

for each vertex uy in the prefix order of T do
# f(ur) — deg) (u) — degr (uk) + # f (ug—1)
Move open(k, h) of # f(uy) ranks to the left in h.

end for

4.2. Encoding.

Property 4. In the algorithm 1, the number of flips on uy is less than or equal to the
number of consecutive closing brackets just before open(k,h) in h.

Proof. When no flips are previously made, h = ¢g. The number of consecutive closing
brackets just before open(k,h) in h is exactly the length of the right branch of its left
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brother. deg](u) is equal to the length of the right branch of its left brother (see property
2). As #flips(ux) < deg}(ux), the property is satisfied in this case.

Suppose that the property is verified for i < k — 1. The number of consecutive closing
brackets just before open(k,h) is deg (uy) + # flips(ug—1). As #flips(uy) < degi(u) +
# flips(uy_1) (see Remark 2) the property is still satisfied for i = k. O

Lemma 2. The previous algorithm encodes a realizer R of size n with a pair of non-crossing
Dyck words of lengths 2n — 6. This algorithm is linear time.

Proof. First we can notice that g and h are non-crossing Dyck words.

Injectivity: Let R = (Tp,T1,T5) and R = (T}, T}, T4) be two different realizers. Let (g, h)
(resp. (¢',h’) ) the pair of non-crossing Dyck words obtained by the previous algorithm
from R (vesp. R'). If Ty # Tg, then g # g'. Let Sy (vesp. S%) be the PFS associated to R
(resp. R’). Let k be the first index such that #f(ug) # #f'(ug). After the ky, step in the
loop, open(k, h) # open(k,h’). During the rest of the algorithm open(k,h) and open(k, h’)
are unchanged, so h # h'. Hence two different realizers are encoded with two different pairs
of non-crossing words.

Complezity: To construct the star realizer, all vertices of Ty are connected with an out-
going edge, colored 2, to vy and in-going edges, colored 1, to all the vertices of the right
branch of its left brother. This construction can be done in linear time. The encoding of
Ty with the traditional algorithm is also done in linear time. The treatment of each vertex
uy, is done in constant time. Hence the encoding algorithm computes in linear time. O

Example: to encode the realizer R of Figure 7, we can encode its star realizer R, and the
PFS (0,0,1,2). The tree Ty of R is the one of Figure 8 a. It can be encoded by g = (()())()-
To encode the flip sequence, we need to move the third opening bracket of one step to the
left and the fourth one to two steps to the left. So h = ((()())). Hence, the realizer R of
Figure 7 is encoded by the pair of non-crossing Dyck words (g, h).

4.3. Decoding. Let (g,h) be a pair of non-crossing words.

The function Concat(Ly, La) append the list Lo at the end of the list L; and returns
this new list. The function Split(L, i) removes the last ¢ elements of L and returns a list
which contains these i elements. The procedure AddFirst(L, E) added the element E at
the begining of the list L. Naturally, Del(E, i) removes the i'® element of the list L.

Algorithm 2 Decoding algorithm

Build the tree Ty from g

Build the star realizer R, = (T, T}, Cp—2)

R = (TO,Tl,TQ) — RC

for each vertex uy in the prefix order of T do
41 (ux) — open(g, k) — open(h, k)
L — Split(Chi (ug), # f (ug))
Chi(ug41) « Concat(Chy(ugy1), L)
Del(Chy(Pa(ug)), ug)
AddFirst(Cha(Chy(uk+1,0)), ug)

end for

Lemma 3. The algorithm 2 computes in linear time a realizer R of size n from a pair of
non-crossing Dyck words of lengths 2n — 6.
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Proof. Validity: as h > g, 0 < #f(uy) < deg)(uy) + #flips(ur—1) encodes a star Realizer
and a valid PFS. Moreover the algorithm 2 constructs the realizer encoded by the algorithm
1.

Complezity: as in the encoding algorithm, the construction of the star realizer can be
operated in linear time. The algorithm uses chained lists to store the list of children
of vertices in each tree. The split operation in the loop takes O(deg;(ux)) operations.
Globally, it takes O(m) = O(n) operations. The other operations in the loop take O(1)
operations. So globally it takes O(n) operations. O

The following theorem comes directly from lemma 2 and lemma 3:

Theorem 4. There is a bijection between realizers of size n and pairs of non-crossing Dyck
paths of lengths 2n — 6.

Corollary 5. The number of realizer of size n is |Ry,| = |Vp—3| = Cpn—3Cp_1 — C,%_Q.
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