PARTITIONS AND COMPOSITIONS DEFINED BY (IN)EQUALITIES
(EXTENDED ABSTRACT)

SYLVIE CORTEEL AND CARLA D. SAVAGE

ABSTRACT. We consider sequences of integers (A1, ..., A;) defined by a system of linear
inequalities with integer coefficients. We show that when the constraints are strong enough
to guarantee that all \; are nonnegative, the weight generating function for the integer
solutions has a finite product form [,(1 — qbi)_l, where the b; are positive integers that
can be computed from the coefficients of the inequalities. The results are proved bijectively
and are used to give several examples of interesting identities for integer partitions and
compositions. The method can be adapted to accomodate equalities along with inequalities
and can be used to obtain multivariate forms of the generating function. Our initial results
were conjectured thanks to the Omega package [6].

We generalize the method to handle special cases with rational coefficients (including
lecture hall partitions) and obtain new identities involving partitions and compositions
defined by the ratio of consecutive parts. In particular, we obtain a surprising result
about “anti-lecture hall” compositions.

RESUME. Nous considérons des suites d’entiers (Ai1,..., ;) définies par un systéme
d’inégalités linéaires a coefficients entiers. Nous montrons que si les solutions du systeme
sont toujours des suites d’entiers positifs ou nuls alors la série génératrice des solutions
selon leur poids est le produit Hf;ol(l fqbi)_l. Les b; sont des entiers positifs que I’on cal-
cule & partir du systéme. Les résultats sont démontrés bijectivement et donnent des iden-
tités intéressantes pour les partitions et les compositions. La méthode peut étre adaptée
aux systeémes d’(in)égalités et permet aussi d’obtenir des séries génératrices multivariées.
Les résultats initiaux ont été conjecturés grace au package Omega [6].

Nous généralisons la méthode pour manipuler des cas avec des coefficients rationnels
(comme les lecture hall partitions) et obtenons des nouvelles identités pour les partitions et
compositions définies par le rapport entre parts successives. En particulier nous obtenons
un résultat surprenant pour les “anti-lecture hall” compositions.

1. INTRODUCTION

For a sequence A = (A1, Ag,..., \x) of integers, define the weight of A to be Ay + -+ 4+ A\
and call each \; a part of A. If a sequence A of weight n has all parts nonnegative, we
call it a composition of n into k nonnegative parts and if, in addition, A is a nonincreasing
sequence, we call it a partition of n into at most k parts. In the remainder of the paper we
will consider that \; =0if i <0 or i > k.

In this paper we want to study partitions and compositions into & nonnegative parts
defined by equalities and inequalities. This work was motivated by results of the form :

e Given a positive integer r, the partitions A = (A1,...,A\x) of n which satisfy A\; >
N —1
rAip1 for 1 < i < k have weight generating function Hi':ol (1 - q””"'”l) [14].
e Given a positive integer r the weight generating function of the partitions A\ with
. itr -1
at most k parts and \; > Z;Zl(—l)ﬂ'l (D Xjgis 1 <i < kis: H?:_ol (1 — q(t )> )

J
See [2, 13, 18].
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e The weight generating function of the partitions A with at most k parts and X;/(k —
i+ 1) > N1 /(k—1i), 1 <i < kis: Hi:ol (1 —q2i+1)71. See the Lecture Hall
Theorem in [10].

More generally, we consider integer sequences A of length k satisfying A\; > Zf;i AijNitj

where the a;; guarantee that all A; > 0. We show in Section 2 that when the a;; are all

integers, the weight generating function for these compositions is Hi:ol(l — ¢*)~!, where

the b = (bo,...,br_1) is a sequence of positive integers that may be readily derived from
the a;;. Several generalizations and a linear algebra proof are included.

In Section 3, we consider rational coefficients a;;. We show how to use the results of
Section 2 to give an explicit form for the generating function for any set of compositions
defined by the ratio of consecutive parts:

Mg > > L N> 22y >0
dy da ds dg—1
This result has been implemented in Maple and our experiments have led to several inter-
esting results. We focus here on some related to the Lecture Hall Theorem.
In [10], Bousquet-Mélou and Eriksson considered the set Ly of partitions A into at most
k parts satisfying \;/(k — i+ 1) > X\iy1/(k — i), for 1 < i < k, and proved the following
Lecture Hall Theorem:

k-1

) > =1 =g

AELy, 1=0

This result was generalized in [11] to an (m, )-Lecture Hall Theorem (m,l > 2) for partitions
into at most k parts satisfying A;/ax_;+1 > ANiy1/ak—q, for 1 < i < k, where {a;} is the
(mn, )-sequence defined by:

ag; = lagi—1 — agi—2; A2i—1 = Magi—2 — G2i-3, 1 =2,

with the initial conditions a1 = 1 and ag = [, m,l > 2. A different approach in [12] led to
the Refined Lecture Hall Theorem (setting u = v =1 gives (1)) :

k i
S Myl Z T L tuwg

117 u2qk+i )
AELg =1

with [A] = ([A1/(k—i+1)],[No/(k—1)],...,[Ax/k]) and o(}) is the number of odd parts
in .

In Section 4, we show a slight generalization of (1) in which the constraints on A\; can
be modified. In a footnote in [11], Bousquet-Mélou and Erikson note that their proof of
the (m,[)-Lecture Hall Theorem can be simplified. In Section 5, we shall describe the
resulting short and elegant proof of the (m,[)-Lecture Hall Theorem and show that it can
be generalized to compositions when m =1and [ >3 orm >3 and [ = 1.

So, for one example, compositions satisfying,

)\1 > )\2 )\3 )\4 /\5 )\6
127 5

have generating function

(1—)(1=g"Y1=¢")1=¢)A—¢") A1 —¢)] "
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Finally, in Section 6, we prove another new result, the Anti-Lecture Hall Theorem for the
set Ay of compositions into at most k parts satisfying A\;/i > Aiy1/(i + 1), for 1 < i < k:

k

@ > =Tl

A€EA i=1

In fact, we prove the following refinement of (2):

k .
1+ uvg*
YMIB) )
Z ql L A o(AD) — HTW
AEA i=1

where |A| = (|A1/1],[A2/2],..., [ \x/k]). The bijective proof we give follows the idea of
Yee’s beautiful proof [17] of the Refined Lecture Hall Theorem.
Because of space constraints we give only sketches of the proofs in this extended abstract.
Our initial results were conjectured thanks to experiments with the Omega package [6, 4],
a Mathematica implementation of the Omega operator defined by MacMahon [15] as:

Q (o ] oo oo oo
S1 Sr __
> E ... E Ag 5]t o) = E ... E Agi s

S§1=—00 Sp=—00 s1=0 sr=0

This operator was then not used for 85 years except by Stanley in 1973 [16]. A few years
ago Andrews revived this operator [1, 2] and used it in [1] to give a second proof of the
Lecture Hall Theorem. In conjunction with Paule and Riese, he implemented the operator
in the Omega package and together they have continued to identify the power of the Omega
operator for such combinatorial problems as magic squares [9], hypergeometric multisums
[3], constrained compositions [8], plane partitions diamonds [5], and k-gons partitions [7].

2. INTEGER COEFFICIENTS

Let A[l...k —1,1..k — 1] be an upper diagonal matrix of integers and let P4 be the set of
sequences A = (A1, Ag, ..., \;) satisfying

k—1
A=) AL A4
=1

k—1
(3) Ai > ZA[i,jP\j+1 for2<i<k-—1
j=i
A > 0.

Define a sequence of matrices AW, 1 < ¢t < k — 1, as follows: A1 = A and A® is a
matrix of dimension (k —t) x (k — t), whose entries are defined by the recurrence :

ADL G = (AL + DAY, 5+ 1]+ ACD[L G+ 1]
AN G] = AUV 41,541 if2<i<k—t.

Then each matrix A®) is an upper diagonal matrix of integers and we can show the following.

Lemma 1. If every element of Pa is a composition, then the same is true of P,w for
1<t<k-1.

The main result of this section is the following.
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Theorem 1. Let Py(k) be the set of sequences A\ = (A1, Ao, ..., \;) satisfying (3). Let
Pa(n, k) be the set of sequences Pa(k) of weight n. If every A € P4 is a composition, then
the weight generating function for Py(k) is

0 k—1
n 1
(4) Z |Pa(n, k)lq" = H ?qbiu
n=0 =1

where b; = AD[1,1] +1 > 0.
Sketch of proof. The mapping
O(\) = (b1s1,b2s2, ..., bp_15k—1)

where
k—1
si=Nir1— Y Al i\
j=i+1
can be shown to be a bijection from P4(n,k) to the set of sequences ri,79,...,7k—1 of

weight n in which 7; is a nonnegative multiple of b;. In the case that the b; are distinct
positive integers, this can be viewed alternatively as a bijection with partitions of n into
parts in {by,...,bg_1}. O
Example 1. The partitions A of n with at most & parts and with \; = Zi.:ll Ai+1 comprise
Pa(n, k) where, for 1 <i<j<k—1, Afi,j]=1if i =1 or i = j and A[i, j] = 0 otherwise.
Then b; = 2¢ for 1 < i < k—1 so by Theorem 1, the generating function is H?:_f(l —¢*) L.
Example 2. There is a one-to-one correspondence between sequences Ay, ..., A\; of weight
n satisfying

N
—

(1A = 0

[en]

Jj=

~

D (1N > 0 for2<i<k
7=0

and the set of compositions of n into k — 1 even parts. The A satisfying the constraints are
compositions and they comprise the set P4(n,k) where A is the (k — 1) x (k — 1) upper
diagonal matrix defined by A[i,j] = (—1)""/ which has by = by = ++- = bp_; = 2.

Corollary 1. Under the constraints of Theorem 1, if we now allow A\ > 25;11 AL, j1N i

the generating function becomes
k—1

1
i

1=0

where by = 1.

Linear algebra approach. Our method of proof makes the bijection of Theorem 1 explicit.
However, as suggested by one of the referees, a linear algebra proof can also be illuminating,.
Following the argument of the referee, we embed the constraint matrix, A, into a k x k
matrix, B, where B[i,j] = 0 if ¢ > j and B[i, j] = A[i,j — 1] otherwise. Hence B is strictly
upper diagonal and thus, nilpotent : B¥ = 0. Considering ) as a column vector, the matrix
inequality, A > B, describes the system (3), with the first constraint changed to inequality.
Then

A(I - B) = [80,81, e Skfl]T
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for the s; defined in the proof of Theorem 1. Iterating this identity yields
AN = (14+B+B?*+---+ B Y[sp,81,...501]7
= (I=B)"[so,s1,...sk1],

since B¥ = 0. So, I — B is invertible, and, in particular, it is an upper diagonal matrix of
integers whenever B, and therefore, A, is. Hence the recurrences of A®) are equivalent to
taking the inverse of a matrix. Let C' = (I — B)~!. Then, furthermore, all the elements
of P4 are compositions iff all the entries in C' are nonnegative. Let h = (1,1,...,1)
be the row vector of length k containing only ones. The weight of the composition A is
IA\| = hA = hC|[sg,s1,...5; 1]%. Define p = hC. Then the weight generating function of
Py is

k
1
At As prso+e+prsk—1 —
(5) qu ko— Z g kkl_Hl_qu’
Jj=1

AEPY 505ee03S5—1>0

where p; (corresponding to b;_1) is p; = C[1,j] + C[2,4] + --- + C[4, j]. O
Example 3. The weight generating function of the partitions A with at most & parts and
with Ay > 2X\g + Zi-c:_; Air1 and g > Zi-g:_Ql Ait1 is

k—2

1 1
(1-q¢)(1—¢* g 1— g
This follows from Corollary 1: since A is a partition, for i« > 2, Afi,i] = 1 and A[i,j] =0
for 2 < j <. Also, A[1,1] =2 and A[i,j] =1fori=1,2 and j > 2,s0 by =1, by = 3, and
by =5(i 1) for2<i<k— 1.
Example 4. The generating function of the partitions A with at most k& parts and \; >
it Ny L<i <k s [T (1—¢h) L
We can generalize Theorem 1 to allow the constraints of the matrix A to be satisfied
with equality for any specified set of \;. Given a set S C {0,1,...,k — 1}, let P4(k;S) be
the set of sequences A = (A1, Ag, ..., \x) satisfying, for 1 <17 < k:
k—1
A=Y Ali,jlAjs ifi-1€S
j=i
k—1
A= Al ifi-1¢8.
J=1
Let P4(n,k;S) be the set of sequences in P4(k;S) of weight n.

Corollary 2. If all elements of P4 are compositions, the weight generating function for
PA(k; S) 18

00 k—1 1
Z|PA(n,k;S)|q" = H 1_ b
n=0 i=0,igS q
where by = 1 and for i > 1, b; = AW[1,1] + 1. O

As noted by the referee, the inverse problem can be solved completely in the domain
of linear algebra if by = 1. Given a sequence (by,...,b;) of positive integers, such that
b1 = 1, you can always construct an upper triangular matrix C' with ones on the diagonal
and nonnegative entries such that the sum of the entries in the jth column is b;. Then the

matrix B =1 — C~! contains in its northeast corner a (k — 1) x (k — 1) constraint matrix

A such that P4 has generating function Hle(l D
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3. RATIONAL COEFFICIENTS

In this section we would like to generalize our results to allow some of the elements of
the constraint matrix to be rational. In particular, we will find an explicit form of the
generating function for the set of integer sequences A1, ..., Ay satisfying the constraints:

(6)

k
mn mn M —
AL > Cﬂd—i)\ﬂ + E CiAi; A2 > d—Q/\?,; Az > d—§>\4; PV e dk i/\ld Ak > 0,
i—2

where for 1 < i < k — 1, n; and d; are positive integers and the ¢; are any integers which
make the first constraint strong enough to guarantee that A; > 0.
Fori=1,...,k leta; = H;;ll d; H]t:il ng. Then a;/a;+1 = n;/d;, so the system (6) above

is equivalent to:

a k
(7) Al > ¢ [—1A2-‘ + ZCZ)\Z and

42 i—2

Aafag > Agfag > -+ > Ne_1/ag—1 > A\ /ay.

Theorem 2. Given a sequence of positive integers ai,...,ar and a sequence of integers
C1,-..,Ck, consider the set of sequences \i,...,\p satisfying (7). As long as the c¢; are
integers which guarantee that A1 > 0, the weight generating function is

ay Zi42 _ Zi4l

az—1 az—1 ap—1 Cl[- z2-|+zk=2(ci+1)zi k—2 bi|r B X -|
(8) D0 Dm0 Dm0 2 ‘ [[ii g o+ on

1= (1 —g)
where by =1, by = c1a1 and b; = cray + (co+ Dag + -+ -+ (¢iy1 + Dajyq, for2 <i < k-—1.

Sketch of proof. For 2 < i <k, let \; = a;z;+7z;, where z; > 0 and 0 < z; < a;. Rearrange
the sequence A1, g, ..., A\x by decreasing part \; by (a; — 1)z; + z; and increasing A1 by

the same amount for 2 < i < k to get a new sequence x1,xo,..., T, of the same weight
satisfying
k
r1 > (ca+ (2 +1)ag — Dag + Y ((ci + Da; — 1)z + s
=3
Ty > Tig1+8i—1 for2<i<k-—1
z, > 0
where
k
so = c1fa1z2/az] + ) (e + 1)z,
i=2
and

si = [ziya/aiv2 — Zix1/ait1]
for 1 <1i < k—2.. By the method of Theorem 1, we can show that the generating function
for fixed sg, s1,...Sk_9 is

k—2 b.s;
ITiso ¢
k—1 N
IL5 (1 —¢%)
where by = 1, by = c1a1, and b; = ciaq1 + (CQ + 1)&2 + (03 + 1)&3 + -4 (Ci+1 + 1)CLZ'_|_1,
for 2 < i < k — 1. Summing over all possible sequences sg,s1,...Sk_9 as the z; vary
independently from 0 to a; — 1 gives the result. U
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Example 5. By Theorem 2, sequences (A1, A2, A3, A\g) satisfying Ay > 2\ — A3 + 24 and
A2/3 > A3/2 > A\y/1 > 0 have generating function

1+ +a°+¢° +¢% +¢° (1+¢*+a%)(1+¢° 1

1-9)1-¢")1-¢")1—¢?) (1-a1-a)1-e¢)(1-¢2) (1-q(l—¢)1—¢)1

In some cases, the numerator of the generating function of Theorem 2 can be easily
shown to factor, giving results such as the following.

Corollary 3. Suppose the sequence a1, as,...,a; has the property that for 1 <i <k—1 if
a; > 1, then a;41 = 1. Then there is a one-to-one correspondence between the compositions
AL, .-y Ak of m satisfying

At/ar > Nafas > A3faz > - > N1 /ag—1 > A/ ay,
and the partitions of n into parts in
{l,bl,bl +1,... ,bk_l},

where by = 1, by = a1 + az and bi41 = b; + aj4o for 1 < i < k — 2, such that at most one
part can appear from each of the sets

Si=A{plbi +1 <p < bi1 — 1},
Proof. The generating function (8) becomes
Hf:_g:bi+l_bi>1(l + qbi-i-l + qbi+2 4+ qbi+1—1)

[1520 (1— qb)

Example 6. By Corollary 4, compositions of n satisfying
M > XA >A3/22> X0 2> X5/22> -0 > Xop > Aopy1 /2

are in one-to-one correspondence with the set of partitions of n into parts of size at most
3k + 1 in which parts divisible by 3 can appear at most once.

In some cases, the numerator of the generating function of Theorem 2 does factor, but
it is not as easily shown. We consider some examples of this type in Section 5 on lecture
hall compositions and in Section 6 on anti-lecture hall compositions.

4. TwO VARIABLE GENERATING FUNCTIONS

In their study of lecture hall partitions, Bousquet-Mélou and Eriksson found it very useful
to consider the 2-variable (odd/even weighted) generating function of the set of partitions
satisfying the lecture hall constraints. We show here how our method can be adapted to
get multivariable generating functions for compositions satisfying linear constraints, using
the two-variable case as an example.

Let A[l..k —1,1..k — 1] be an upper diagonal matrix of integers such that P4 is a set of
compositions. For A € Py, let (A, =AM+ A3+ A5+ - andand [Ae =Xo+A\g+Ag+---.
Define two sequences of matrices O), and EW | 1 <t < k—1 so that O) + F®) = A®) ag
follows. O®) and E®) are (k —t) x (k — t) matrices satisfying

OWIi, 5] = AW, 4] if i is odd, otherwise, O, j] = 0;

EWi, j] = AW, 4] if i is even, otherwise, EMW[4, 5] = 0;

—q%)
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Fort > 1,
0WN, 5 = (0¥ V[1,1]+1— (t mod 2))ATV[2,j +1] + OUV[1,j +1],
OWi, 5] = OW Vi4+1,j+1] ifi>2;
EVM, 5] = (BYV[L,1]+ (t mod 2)) A2, 5 + 1] + B[, j + 1],
EW[ ] = ECVi+1,j41] ifi>2;

We can prove the following 2-variable version of Theorem 1.

Theorem 3. The odd/even weighted generating function for the compositions in Py is:

k—1 1
[Alog 1 Ale —
Zl‘ y _H1*$oiyei’
AEPy =0
where sequences 0y, 01, . ..,0_1 and eg,€1,...,ex_1 are defined by og = 1; ey =0 and for
t>0,
0, =0W[1,1]+1— (tmod?2) e =EWM[1,1]+ (t mod 2).

Note from referee. We can refine Theorem 1 via the enumeration in (5) by associating
with A the monomial ] q;\", is possible :

/\1
EZI;A 1:[ Jl_Il 1- HZS] qzC[w]

From Theorem 3, imitating the bijective proof of Theorem 2, we can get the odd/even

generating function G (z,y) for the compositions satisfying the constraints:
(9) e P ziza
a1 a2 as Ap—1 ag

Theorem 4.

Zi42 _ Zitl
az—1 ap—1 ["2274 25425+ o TTk—2/ 0 el =]
z ce Ezk 0T o2 yz2+z4+ Hi:l (xolyel) aiya i1

10 Gi(z,y) = =220

ey [Ty (1~ woeye)
where op = 1, eg = 0, and for 1 <1 < k—10; =a1+az+as+ -+ ag-1)/2/4+1 and
€ = a2 + a4 + a6 + -+ + azpi/2)-

Proof. Omitted. O
We can now add more conditions on the first part when ar > ap_1 > - > aq :

9

Theorem 5. If G(z,y) = Hx(x,y)/(1 — x) is the generating function given in (10), then
whenever a1 > ag > -+ > ay, for anyl > 1 and j > 2 — 1, H(¢',¢’) is the generating
function for the partitions satisfying

A= ardefag] + (G =)D+ A+ X+ )+ (U =13+ A5+ A7+ )
(11) ﬁ > Ez...>)‘k_1
a2 as ag—1 ag

> M5

Proof. If j =1 = 1, the system (11) is the same as (9) and the generating function is
H(xz,y) = G(z,y)/(1—x). Suppose A satisfies (9), with ||, = [ and |\|c = m. To transform
A into a composition satisfying (11), we increase the first part by (I —1)|A|, + (§ — 1)|\|e to
get \. The conditions on j and [ and the a; guarantee that this increase is positive. Then

|)‘/| = |)‘|+(l_1)|)‘|o+(j_1)|)\|e = |/\|o+|)‘|e+(1_1)|/\|o+(j_1)|/\|e - l|/\|o+j|)‘|e~ U
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We can use Theorem 5 to generalize the Lecture Hall Partition theorem of Bousquet-
Meélou and Eriksson.

Corollary 4. Forl > 1 and j > 2 — 1, the generating function for the sequences Ay, ..., \g
satisfying Ay > U[kX/(k — 1)+ G — DD+ M+ A+ )+~ 1Az + X5+ Ar+--+)
and 22y > 2o > 2 M > R s

k—1

1 1
(1 _ q) Zl—!) (1 _ qil+ij+l)
Proof. Direct, as G (z,y) = Hi‘:ol #ﬂyl [10]. O
Example 7. There is a one-to-one correspondence between the compositions of n satisfying
A > 3[kAz/(k = 1)] + 255 1 (=1) A1y and 22 > 2% > .. > ML > 2 > 0 and the
partitions of n into odd parts less than or equal to 2k + 1.

5. GENERALIZED LECTURE HALL COMPOSITIONS
Given integers m, [, define the (m,1)-sequence a(™! = (a1, as,...) by the recurrence

agi = la2i—1 — @22, a2;—1 = Maz;—-2 — 42;-3, i > 27

with the initial conditions a1 = 1 and a9 = [. Let L,(gm’l) be the set of compositions into k

nonnegative parts satisfying, for 1 < i < k,

Qb s
)\12 k—i+1

Ait1-

k—1
Note that a(*>? = (1,2,3,4,...) and L,(CQ’Q) is the set of lecture hall partitions of [10].

When m, [ > 1, then a(™! is nondecreasing and L,(cm’l) is a set of partitions which we call
generalized lecture hall partitions. However, if m =1 and [ > 3 or [ = 1 and m > 3, the
sequence a(™! is an infinite, but non-monotone, sequence of positive integers and L,gm’l) is
a set of compositions, but not partitions.

Let G,(Cm’l) (z,y) be the odd/even weighted generating function for ngm,l)’ that is

)0 o e
Gy = Y =Py,
xeL{™"

Theorem 6 below was proved in [11] for m,l > 1. We give a short proof and extend it
to generalized lecture hall compositions (m = 1,1 > 3 or [ = 1,m > 3). We note that it
implies a straightforward bijective proof of the theorem.

Theorem 6. For integers m,l satisfying m,l >1 orm=1andl >3, orl=1 and m > 3,

G (2, y) = 1/(1 -~ x) and

m,l m,l m — m,l m,l —
G (w,y) = GO (@™, 2N /(1 — x), GorY (e, y) = GO (aly, 7Y /(1 — 2), n>0.

Note that this gives for k& > 0
2k 2n—1

(m.) B 1 (m,) _ 1
Gy, (@,y) = H 1= gaighit and Gy, 7y (7, y) = H 1 — ghigyai1
i=1 =1
where ag = 0, (a1, az,...) = a™", and (b, bs,...) = alb™),
Proof of theorem. We follow the method of Bousquet-Mélou and Eriksson, bypassing the
detour to reduced lecture hall partitions, as suggested in a note on page 10 of [11]. We fix
m, [ and drop the superscripts (m, ) to simplify notation. Let L4 — denote the partitions
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A € Ly with Ay = [agAe/ak—1]. We do this by establishing a bijection ¢ between partitions
A € Ly, and partitions v € Ljy1,= with [ve| = m|Ae| — | Xo| if & is even and |ve| = [|Ae] — [ Ao

if k is odd, and with |v,| = [Ac|. The bijection and its reverse are presented below :
Pk Aoy 1)
%= g o )
 [Bk41 ) o e
n A For i from 1 to |k/2]

For ¢ from 1 to |(k+1)/2]

A —2i+1
Ak —2i41 Agj — | =y +
’}/27:_’_1 — |V ak,z;i— A2i+1—|+ 21 [ ag;f;7121+2-‘

Lak+1—2i >\2i71J ~ o [m’}?i-‘ — V2i+1-

Ap+2—2i

As in [11] we can show that for the (m,[) sequence a and for any j > 0

a;—1 . ai+1 - | mj if ¢ even
= T, ﬂ_{ lj if i odd

70| = m|Xo| — |Ae| if k even and |v,| = U|A,| — |Ae| if & odd and || = [Ao]-
Also,

11 = [ags1v2/ak].
Ak42—4

Ak+1—i
A2i—1, A2, A2i+1 in A, map by ¢ to the consecutive parts

It remains to show that for £ > ¢ > 2, v >

i Ak —2i+1
Xoit1] + | Aoic1] — A2in 72042 = A2igl
—2i Q422

Yoi = Xoi—1,  Yeiy1 = |

in . As )\21‘ > Qhdio2i A2i+17 we get that

- Qg2

[apy1-2iA2i41/ak—2i] — A2i <0
and
Y2it1 < ak—2i+1>\2i—1/ak+2—2i = ak—2i+172i/ak+2—2i-
As Agi1 > apyo—2i\2i/ak+1-2i, we get that
lak—2i+1A2i—1/@kt2—2iM2i—1] — A2i > 0,
and
V2itl > Qh1—2iA2i41/ Ah—2i = A1-2iV2i4+2/ Ak—2i-

We have our conditions.

~v;—1. Note that consecutive parts

O

The bijection Now we show that this gives a straighforward bijection vy, between Lecture
Hall partitions in Lj and partitions into parts in ¢ = {c1, ¢a,..., ¢t} with ¢; = a; + b1 if
k is even and ¢; = a;_1 + b; otherwise. Let A be a partition in Ly and p its image by 9.
We denote by p(i) the multiplicity of the part ¢; in p. The bijection and its reverse are

presented below :
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(P

i < empty partition q’zjgl TR

For i from k£ downto 1 do A« empty partition
J— A — [aifai—1 2] For i from 1 to k£ do
Al A1 —J A=A +plk—i+1)
pk—i+1) —j If i < k then
If i > 1 then A — pi(N).

A= o (N

Example 8. For m =1=2,a=(1,2,3,4,...) and for A = (6,4,2,1) we get u = (5,5,3).
Example 9. For m = 1 and | = 4, a = (1,4,3,8,...) and for A = (12,4,5,1) we get
p=(54,4,4,4,1).

6. ANTI-LECTURE HALL COMPOSITIONS
In this section we study the sequences (\1,..., A;) defined by

Modes My
1= 2 = k —

We call these sequences anti-lecture hall because if they represent the heights of the rows
in an amphitheater (as it was done for the Lecture Hall partitions) only the students of
the first row are guaranteed to see the professor! We want to show that these compositions
have a surprising behavior, in particular, their weight generating function is
k 1+ qi
(12) 11 T
i=1

Let Aj be the set of anti-lecture hall compositions into k£ nonnegative parts. Given \ €
Ay, we can write A as ((x1,...,2k), (21,22, ..., 2x)) where \; = ix; + 2; with 0 < z; <i—1,
1 < i < k. Note that A € Ay if and only if 1 > 29 > ... 2 > 0 and if x; = x;41 then
2; > ziy1. Moreover |A| = Zle zi + 1.

The main result of this section is the following theorem (setting u = v =1 gives (12)).

Theorem 7.
k .
1 4+ uvg*
A _
E ' q‘ 1zl po(@) — | | W
AEA i=1

where © = (x1,...,2x) and o(x) is the number of odd parts of the partition x.

Proof. Let D; be the set of partitions into distinct parts less than or equal to k. Let
Fj be the subset of Ay where all the x; are even. To show the theorem we must give two
bijections :

e A bijection between Ay and Dy X Ej such that if («,3) is the image of A then

lal+18] = [Al, (@) +[B]] = ||, and () = o(x), where [3] = (|51/1], ..., [Fr/k])

and [(«) denotes the number of positive parts of «.
e A bijection between the set L), and the set F} of partitions into parts in the set
{2,3,...,k+1} such that if p is the image of A then |u| = |A| and [(u) = Z?Zl x;i/2.

The first bijection will show that : H(u,v,q) = [[7_,(1+ uvg’) Ex(u, q) Whgre Ei(u,q) =
> oAeE, ¢ ul*l. The second bijection will show that Ej(u,q) = Hf;l(l —u?qh)7L.
We construct the first bijection :
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Ak—>Dk;><Ek A—)(O&,ﬂ)
« < empty partition
f—=A

While one of the x; is odd
d — max{i | x; odd}
i—min{j>d|j=korazqg—1>xj10rzg>zj41}
Ty — rqg—1; temp «— zg4,
Zj<—Zj+1—1, deS’L'—l
zi — temp;, a+— aUi

Consider the f* iteration of the loop. Let d ¢ and iy be the indices chosen during that
iteration. A careful look at the algorithm shows that d; > d;y; and that iy > iy11. As
ay =iy we get that « is a partition into distinct parts. Moreover it is clear that 3 is in Ej,
as each iteration decreases by 1 only the odd z;. Finally we must note that |a| + |3] = |}
and [(«) = o(z). The reverse bijection is easy to construct.

We now give the second bijection between the set Ej and the set Fj.
Ek — Fk A — 1%

k
m(k+1) :Zk—l—%.
m(i) = zi_y — 2+ ER@=T) 9 << g
where m(i) is the multiplicity of the part i in pu.

It is easy to see that we can reconstruct A from p. Note that m(i) is always nonnegative
as zji—1 < i— 1 and if z;_1 < z; then x;_1 > x;, that is, (z;—1 — z;)(i —1)/2 > i — 1. Now
we must show |u| = |A| and that the number of parts of u is equal to the sum of the z;
divided by 2.

] = 2 (k+ 1)+ 30 i(zim1—20)+h(k+D)ak /24 0o (i=Vi(io —:) /2 = Si (zi+izs)

() = SV m(i) = 2+ 308 o(2ic1 — 2) + kap/2 + 3055 = (i — D)(mi1 — 2:)/2 =

Zi‘cﬂ /2. O
Example 10. Starting with A = ((7,6,4,3,3,2),(0,1,1,2,2,3)) we apply the first bijection
and get 5 = ((6,6,4,2,2,2),(0,0,1,2,2,2)) and o = (6,4,2). Then we apply the second
bijection and get u = (7,7,7,7,7,7,7,7,4,4,3)). We can check that |\| = |u| + |a| = 79,
|z| = 2l(n) + () = 25 and o(z) = l(a) = 3.
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