GENERALIZED PSEUDO-PERMUTATIONS

LE MINH HA AND PHAN HA DUONG

ABSTRACT. We introduce and study combinatorial properties of pseudo-permutations
with multiple occurences. We prove that the set of all such generalized pseudo-permutations
of a given type have a lattice structure and derive a recursive formula to compute its car-
dinality, which turns out to be related to Stirling numbers of the second kind. Results
about the longest and shortest chains are also obtained.

RESUME. Nous introduisons et étudions des propiétés combinatoires des pseudo-permutations
avec occurrences multiples. Nous montrons que ’ensemble de toutes ces pseudo-permutations
généralisées d’un type donné possede une structure de treillis et dérivons une formule
récursive pour calculer sa cardinalité, qui est reliée aux nombres de Stirling du second
type. Résultats sur les chaines les plus longues et les chaines les plus courtes sont également
obtenus.

1. INTRODUCTION

One of the most active and important research area in Computer Science and in particu-
lar, Artificial Intelligence is representation of temporal knowledge (see, e.g., [AlI81, Yu83],
where one needs to consider a set of events which happen at certain dates and wants to
use this information to solve a problem, take a decision. In this context, it is natural to
represent the temporal relations between n events by an ordered sequence of nonempty
parts, each part corresponds to events which happen at the same time.

For example, the sequence (2,4)(1,2)(3) means that the events 2 and 4 occur first at the
same time, then event 1 and event 2 (for the second time) occur, and event 3 occurs last.
If we add the constraint that each event occurred exactly once, then we have a so-called
pseudo-permutation of order n. This is a new combinatorial object which was introduced in
the five author paper [KLNPS] and studied futher in [BHKNO1]. They showed that there is a
natural partial order on the set of all pseudo-permutation of a given order, and surprisingly,
turns out to be a lattice. This new object is not only combinatorially interesting in its own
right, but turns out to be closely related to S-arrangement in the field of formal languages
[DS00, Sch97].

In this paper, we deal with the more general (and more natural) case where each event
can occur several times; in other words, pseudo-permutations with multiple occurrences.
We show that most of the properties of pseudo-permutations can be generalized to this
situation. Our main results are proofs of the lattice property of the set of all generalized
(pseudo-)permutation of a given type K, and a recursive formula to compute its size by
using Stirling numbers of the second kind. Results about the longest and shortest chains
are also obtained. Geometric applications, and applications in representation theory of the
symmetric groups will appear in a subsequence paper.

Let us now recall some basic definitions and introduce our cast of characters. Let n
be a positive integer number. Let &(n) be the group of all permutations of n numbers
1 < i < n. There is a natural partial order on &(n) by requiring that ¢’ is covered by o,
and write o = ¢, if ¢/ is obtained from o by switching two consecutive numbers 7 and j in
o where i < j. The resulting poset is what usually called permutohedron of order n, and is
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denoted by P(n). A pseudo-permutation of order n is a sequence of non-empty parentheses
of numbers from 1 to n. Let PP(n) denote the set of all such pseudo-permutations of
order n. Note that the order inside each parentheses is irrelevant (events occur at the same
time!), and we make the convention that the numbers in each parentheses will always be
written in increasing order.

As in the case of permutations, there is also a partial order on PP(n). Say that a pseudo-
permutation s’ is covered by s, and write s = &', if and only if it can be obtained from the
latter by applying one of the following two operators:

e The merging operators M;: If each element of the parentheses (i)' is smaller than
all elements of the (i + 1), then M can combine these two parentheses into a single
one.

e The splitting operators S; j: the (i)!" parentheses is split into two, the second one
is composed of the first j smallest elements.

For example, Ms ((3567) (1) (2) (4)) = (3567) (12) (4); and Sy 3 ((3567) (12) (4)) =
(7) (356) (12) (4). We also use the notation PP(n) for the resulting poset of all pseudo-
permutations of order n and call it pseudo-permutohedron of order n. Figure 1 is an example
of such a pseudo-permutohedron for n = 3. Of course, the complexity of these posets
increase exponentially with n.
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FIGURE 1. The permutohedron P(3) (left) and the pseudo-permutohedron
PP(3) (right). The order orientation is top-down.

We will now define generalized (pseudo-)permutation. Let m be a positive integer, and
K = (ki,...,k,) be a composition of m, i.e. k; are positive integers and »_ k; = m.
Let I be the sequence of integers (1,...,1,...,n,...,n) where each integer i appears k;
times. Sometimes, in order to distinguish between numbers of the same symbols, we write
T =(11,...15,...,n1...nk,). A generalized permutation of type K is, by definition, a
permutation of I.

Let GP(K) be the set of all generalized permutations of type K. The generalized permu-
tohedron of type K, also denoted by GP(K), is the poset over GP(K) where ¢’ is covered by
o if ¢/ is obtained from o by switching two consecutive numbers i and j in o where 7 < j.

In the special case when each letter i appear exactly once, then GP(K) is just the usual
group &(m) of all permutations of order m. Given a generalized-permutation, again one
can try to put their numbers into non-empty parts by parentheses, such that in every
parentheses, each number appears at most once. Such a partition is called a generalized
pseudo-permutation. Let GPP(K) be the set of all generalized pseudo-permutations of type
K. As in the case of pseudo-permutation, one also has the merging operator M, and the
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splitting operator S on GPP(K). The generalized pseudo-permutohedron of type K, also
denoted by GPP(K), is the poset over GPP(K) where &' is covered by s if it can be obtained
from s by applying one of these two operators.

Figures 2 and 3 are pictures of the generalized-permutohedron GP(K) and the generalized
pseudo-permutohedron GPP(K) where K = (2,1,1).
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FIGURE 2. The generalized permutohedron of (211).
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FIGURE 3. The generalized pseudo-permutohedron of (211).
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2. LATTICE PROPERTIES OF GP(K) AND GPP(K)

Let m be a positive integer and let K = (k1, ..., k,) be a composition of m. In [KLNPS],
it is showed that the poset P(m) is in fact a lattice. Their proof make use of the inversion
table associated with each pseudo-permutation, and complicated construction of the infi-
mum and supremum. We are going to show that the newly introduced posets GP(K) as
well as GPP(K) enjoy similar property. But in order to prove this, we just have to show
that there is a canonical embedding ¢ of GP(K) into P(m) whose image is a sub-lattice of
P(m); similar statement holds for GPP(K). We refer to [DP90] for basic reference about
lattice theory.

Let Z be the sequence (11,...,1g,,...,m1,...,n,). We say that the elements i;s are
of the same symbol. We define a natural order between elements of 7 as follows: 1; <
cee < 1gy, < ... <mp<...,ng,. The permutohedron P(Z) and the pseudo-permutohedron
PP(I) are defined, similar to P(m) and PP(m). In fact, it it evident that P(Z) (resp.
PP(T)) is isomorphic as a lattice to P(m) (resp. PP(m)).

The embedding ¢ from GP(K) (resp. GPP(K)) to P(Z) (resp. PP(Z)) is done by just

replacing the sequence I = (1,...,1, ..., n,...,n) with Z = (11,..., 1%, ..., n1, ...,
—— N——
k1 times ky, times

ng,). It is easy to see that the image of ¢ of GP(K) (resp. GPP(K)) is the set of all
elements such that for any sub-indices r < s, the parentheses containing i, is on the left
of that for i5. In other words, the image of GP(K) (resp. GPP(K)) is the interval from
the element (17 ...1x, ...n1... 0y, ) to the element (ny ...nk, ... 11 ... 1 ). It is a standard
fact in lattice theory [DP90] that an interval in a lattice is a sub-lattice, hence we have:

Theorem 1. The generalized permutohedron GP(K) is isomorphic to a sub-lattice of
P(m), and the generalized pseudo-permutohedron GPP(K) is isomorphic to a sub-lattice of
PP(m).

3. COMBINATORIAL PROPERTIES OF GP(K) AND GPP(K)

Our purpose in this section is to compute the cardinalities of GP(K) and GPP(K). We
also obtain a decomposition of P(m) (resp. PP(m)) as a disjoint union of GP(L) (resp.
GPP(L)) where L are subsequences of K. As a corollary, we obtain a recursive formula for
the cardinality of GPP(K) in terms of GPP(L).

Recall that the Young subgroup &(K) of &(m) is defined as the product:

S(K)=6(k1) x ... x &(kp),

where the " component &(k;) acts on the set {i1,...,i,}. It is clear that GP(K) is
isomorphic to the coset P(Z)/S(K), and its cardinality can be computed by the following
well-known formula:

m)!

m .
GPK)| = <l<:1k:n) Tkl kg

For each element o of G(K), we define a map ¢, : GP(K) — P(Z) by letting ¢, (s) = o(s)
For example, if 7 = (11,19, 13,2,31,32) and if 0 = (321) x id x (21) and s = (23)1(13)1
then qf)o(ﬁ) = (232)13(1231)11.

It is easy to see that ¢, is an injection which preserves the lattice structure. In other
words, its image, denoted by GP(o, K), is a sub-lattice of P(Z). Note that all GP (o, K) are
isomorphic to GP(K) (by convention, GP(K) is GP(id, K)). See Figure 4 for an example
of lattice decomposition of P(11,12,2). We obtain then a decomposition of P(m):

3
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Proposition 2. P(m) is a disjoint union of lattices, each one is isomorphic to GP(K):

P(m)=P(I)= || GP(oK).
c€B(K)

FIGURE 4. The decomposition of P(11,1,2) for K = (2,1).

Let us now consider the generalized pseudo-permutohedron GPP(K). For each o in
S(K), we can also construct a lattice-monomorphism

¢o : GPP(K) — GPP(0,K) C PP(m),

which takes s to o(s). For every o € 6(K), the image GPP (0, K) of ¢, is isomorphic to
GPP(K). But unlike the previous situation for P(Z), PP(Z) is not the disjoint union of all
GPP(o,K). Indeed, consider the case when K = (2,1) (see Figure 5). The three elements

w1 2a,
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FIGURE 5. The decomposition of PP((2,1)).

(1112)(2), (11122) and (2)(1112) are not in any of GPP (o, K). The reason for this is that in
PP(Z), an element may have a parentheses containing a pair of numbers i,, i; of the same
symbol, while this is forbidden in GPP(o, K).

It remains to compute the set of all those extra elements in PP(Z). Let us introduce the
set Par(Z) of all sequences J obtained from Z by parenthesizing several elements of the
same symbol. For example, if Z = (11, 19, 13,2, 3), then J can be 13(1712)23 or (1;15)1523
or 15111323, etc. We define GPP(J) as the lattice of all elements s obtained from J by
using the two operators M and S, but numbers of the same symbol are not allowed to be



#38.6 LE MINH HA AND PHAN HA DUONG

merged or split. In other words, for any pair 4., is, the relative position between parentheses
containing ¢, and that containing ¢s does not change.

It is clear that the disjoint union of all lattices GPP(J) is PP(Z).
PP(I)= || GPP().
JePar(T)

On the other hand, let L; = (l1,...l,) where [; is the number of parentheses of the symbol
iin J, then we see that the lattice GPP(J) is isomorphic to the lattice GPP(Ly) (in fact,
if we identify a parentheses of the same symbol 7 in 7 to the number i, then J corresponds

to the sequence (1,...,1,...,n,...,n)). Write L < K if 1 <l; < k; for any 4, moreover
——— ———
I, times I, times

L < Kif L # K. Let N(K, L) be the number of sequences J such that L; = L, we obtain
immediately:

Theorem 3. The lattice PP(m) is isomorphic to a disjoint union of lattices GPP (L) with
multiplicity N(K, L).

(1) PP(m) = PP(I) = | | N(K,L)GPP(L).

From the above theorem, we need only to compute the multiplicity N (K, L). It is easy
to see that N(K, L) is equal to the product N (ki,l1) x ... X N(ky,1,), where N(k;,1;) is
the number of partitions of k; elements into l; (ordered) parentheses. Hence, N(k;,[;) =
;'S (k;, l;), where S(k;, ;) is the Stirling number of the second kind [Sta98|:

L=y (7
S(p,q) = — 1)(a—i P,
(p.q) P (—1) (q)]

We deduce that:
) Nk 1) = (-0 ().

In particular, N(K,K) = k! x ... X k! = |&(K)|, the above relation implies a recursive
formula to compute |GPP(K)]:

_PP(m)| =3k N(K,L)|GPP(L)|
- k!l % ... x k! ’

(3) IGPP(K)|

The cardinality of the pseudo-permutohedron PP(m) has been computed in [KLNPS],
which turns out to be related to Eulerian numbers a,, ; (See [FS70], [Com70]).

m—1
[PP(m)| = > 2ap;.
=0

Recall that a,,; is the number of permutations in &(m) whose descent number is exactly
(i —1). By convention, a,, o = 1.

Note that from the recursive formula for |GPP(K)| above, one can show by induction
that the cardinality of GPP(K) is a symmetric function on (kq,...,ky). That is, if K’ is
a permutation of K, then |GPP(K)| = |GPP(K’)|. Of course, the same result holds for
|GP(K)|. However, GP(K') (resp. GPP(K")) is, in general, not isomorphic as a lattice to
GP(K) (resp. GPP(K)). Figure 6 is a picture of GP(1,2,1) which is not isomorphic to
GP(2,1,1) (in Figure 6).
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FIGURE 6. The generalized permutohedron of (121)

4. LONGEST AND SHORTEST CHAINS

In this section, we will compute the length of the longest and shortest chains in a pseudo-
permutohedron as well as in a generalized pseudo-permutohedron. Here we mean a chain
in a lattice is a path from the maximal element to the minimal element. In order to prove
our results, we need to make use of the notion of inversion of a pair (i, 7) and the table of
inversions of a pseudo-permutation. This is a crucial ingredient in the proof of the lattice
property of the set of pseudo-permutations of order n [KLNPS].

Let s be a pseudo-permutation of order n. For every pair of numbers 1 <7 < j < n, we
associate a rational number called inversion, and denoted by inv(i,j) as follows:

1/2 if i and j are in the same parentheses,
inv(i,j) =<0 if the parentheses of i is on the left of that of j,
1 if the parentheses of 7 is on the right of that of j.

The table of inversions of s is just the list of all non-zero inv(i,j) in 5. The summation of all
such inversion numbers is called the inversion number of s. For example, if s = (4)(13)(2),
then its table of inversions is:

{%(1, 3),1(1,4),1(2,3),1(2,4),1(3,4)}

and its inversion number is 4%. The number on the left of each pair (i, j) is its inversion.

It is easy to see that in the lattice P(m), each operator increase inversion number by 1.
As a result, all chains in P(m) are of the same length. However, this is different in PP(m),
M and S still increase inversion numbers, the least increase is %, which correspond to either
merging two parentheses, each of a single element, into one; or splitting a parentheses which
contains two elements. It follows from this remark that the longest chains should be those
which contain only operations described above.

Proposition 4. There is a natural bijection between the set of chains in P(n) and the set
of longest chains in PP(n). Moreover, the length of the longest chains in PP(n) is n(n—1).

Proof. The bijection is given as follows. Given a chain of P(n), consider it as a subchain in
PP(n) via the obvious inclusion (parenthesizing every single number); then between any
two consecutive pseudo-permutations

DG (DG
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where i < j, insert a pseudo-permutation ... (ij).... The result is a chain of pseudo-
permutations of the longest length possible, since it is easy to check that the inversion
number increase by % in the entire chain. For example, 123,132,312, 321 is a chain in P(3),
the corresponding chain in PP(3) is:

(1)(2)(3), (1)(23), (1)(3)(2), (13)(2), (3)(1)(2), (3)(12), (3)(2) (1)

The converse is also clear, using the observation in the previous paragraph. Note that the
length of the longest chain in PP(n) is twice the difference of inversion number between the
maximum element (1)(2) ... (n) and the minimum element (n)(n—1)...(1) of PP(n). Since
the inversion number of of (1)(2)...(n) is 0, and the inversion number of (n)(n —1)...(1)
is @, we conclude that the longest length is n(n —1). O

The discussion above also applies to the “generalized” version, i.e. all chains in GP(K)
are of the same length and there is a bijection between the set of chains in GP(K) and
the set of longest chains in GPP(K). The inversion number of the minimal element
(n)...(n)...(1)...(1) is > ;; kikj, so every chain in GP(K) is of length >, , kik; and
the longest length in GPP(K) is 2}, kik;.

We next consider the shortest chains in PP(n).

1<j

Proposition 5. There are [(n — 1)!|? chains of shortest length in PP(n), and they each
have length (2n — 2).

Proof. We first show that any chain in PP(n) have length at least (2n—2). Our key observa-
tion is that the operations M or S can either eliminate or increase at most one parentheses
between any two numbers 7 and j at a time. Consider a chain from the maximum element
(1)(2)...(n) to the minimum one (n)...(1). At the beginning, there are (n-1) parentheses
between 1 and n, so one needs at least (n-1) steps to put 1 and n in the same parentheses.
Again, one needs at least (n — 1) more moves to move 1 to the position on the far right of
n, so that there are (n — 1) parentheses between them. Therefore, any chain in PP(n) has
length at least (2n — 2). It remains now to provide an explicit chain which has this length
(2n — 2). Here is an example,

(1)(2)...(n),(12)(3)... (n),...,(12...n),
n)(12...n—=1),(n)(n —1)(12...n —2),...,(n)(n —1)...(1).

Since in a shortest chain, the first (n — 1) steps decrease the number of parentheses
between 1 and n, the n'” elements in the chain must be (12...7n). It is easy to see that
there are (n — 1)! different paths from (1)(2)...(n) to (12...n), all have length (n — 1).
By symmetry, there are also (n — 1)! paths from (12...n) to (n)(n — 1)...(1). A chain
of minimum length is obtained by combining these two paths. Conversely, every chain
containing (12...n) has length 2n — 2. The proposition follows immediately. [

Our method of computing the shortest chains does not work for generalized pseudo-
permutations, however. Since there are more constraints over the merging operation M.
For example, it is not allowed to merge the two parentheses (12) and (13) because 1 appears
in both.
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