A SCHENSTED INSERTION FOR TENSOR POWERS OF THE WEIL
REPRESENTATION

TOM ROBY

ABSTRACT. We give the first known example of a Robinson-Schensted type insertion for a
class of infinite dimensional representations. The tensor powers of the Weil representation
W of sp(2n,C) decompose as a direct sum of certain highest weight sp(2n,C)-modules
L () tensored with some corresponding finite dimensional irreducible O(k,C)-module
V. Concentrating only on the sp(2n,C)-module structure, we can see this as iterating
the following decomposition:

2) Li(A\) @ W ~ P Liqa ().

If k is sufficently large relative to n and A, then the module L () and all the terms on
the right hand side belong to the holomorphic discrete series and our insertion algorithm
allows us to give a weighted bijection proving the formal character identity corresponding
to the decomposition (2). It seems likely that a correspondence along these lines can be
given to combinatorially explain similar identities of formal characters for small k as well.
We give a such a correspondence when n = 2, but this remains open for general n.

RESUME. On donne le premier exemple d’une insertion de type Robinson-Schensted pour
une classe representations de dimension infinies. La puissance tensorielle de la represen-
tation de Weil decomposee en somme directe de certains sp(2n,C)-modules de highest
weight est tensoree avec des O(k,C)-modules V) irreducibles de dimensions finies. En
etudiant seulement les structures des sp(2n,C)-module on peut obtenir ces resultats par
iteration de la decomposition suivante

(2) Li(A\) @ W ~ P Lita () -

Si k est suffisament grand par rapport a n et A alors le module L () et tous les termes de
droite appartiennent a la serie discrete holomorphe et notre algorithm d’insertion permet
de donner une weighted bijection demontrant ainsi I'indentite du caractere formel corre-
spondant a la decomposition (2). Il semblerait probable qu'une correspondence similaire
pourait etre donnee de facon a donner une expliquation combinatoire sur les identites des
caracteres formels pour petit k. Ceci est a 'heure actuelle un projet. On donne un tel
correspondence pour n = 2, mais le probléme reste ouvert pour n > 2.

1. INTRODUCTION

Our goal is to extend the notion of tableaux, insertion and the Robinson-Schensted
correspondence (or the R-S correspondence for short) to a class of infinite-dimensional
representations of the Lie algebra g = sp(2n,C). (Here n > 2 is a fixed positive integer;
see § 2 for definitions of this and terms to follow.) The Weil representation of g is an
infinite-dimensional representation which can be realized on the space of polynomials W =
Clz1,x2,...,2,] using multiplication operators and certain simple differential operators.
We can reformulate results of M. Kashiwara and M. Vergne ([KV]) (see also the work of
R. Howe [How|) to show that the centralizer of the action of g on the k-th tensor power
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W%k of W is given by an action of the orthogonal group O(k, C), and that they constitute
a dual pair, namely the space W®* decomposes into a multiplicity-free sum:

(1) W ~ (B Li(A) @ Vi,
A

where each Lp(\) is an irreducible g-module, each V) is an irreducible O(k,C)-module
(using the notation in [KV]), and the summation is for A € £y where L, = {A € Y | () <
n, ]+, < k}. Here Y denotes Young’s lattice, the lattice of all partitions of nonnegative
integers (ordered by inclusion). These Li(A) all turn out to be irreducible highest weight
modules (for a fixed choice of Cartan subalgebra h and Borel subalgebra b). The highest
weight of Li()) is

k k k
A(/@,A) = —(§—|—An)€1— (§+)\n_1)62—...—(§—|—A1)€n
= *gwn — An€1 — Ap_1€2 — - — >\16n7

where w, = €1 + €2+ --- +¢€,.
The highest weights A(k, A) obtained in this manner from (1) for all £ € Z>( lie in
(but do not fill) a cone Cyp = {> "  a;¢; € Q | 0 > ay > az > -+ > ay } in the lattice

Q= (Y0 a |a;€t-Z(1<i<mn), anda; — a1 €Z (1 <i<n-—1)}. Since
the V) are finite-dimensional O(k,C)-modules, it is possible to describe their behavior in
combinatorial terms. R. King and B. Wybourne exploited this connection to obtain some
combinatorial results for the infinite-dimensional representations Li(A) ([KW]).

Our model is the following version of the classical R-S correspondence which depicts the

decomposition of the k-th tensor power of the natural representation of gi(n,C):

[1,n" = J] CST™(A) x SYT(N).
13)En
Here CST™()) (resp. SYT())) denotes the set of column strict or semistandard tableaux
(resp. standard tableaux) of shape A with entries from [1,n] = {1,2,...,n}. This bijection
is constructed as a repetition of a procedure called row insertion, CST™(\) x [1,n] —>
11 LA CST™ (1), which depicts the decomposition of the tensor product V\® Vg ~ ®u Vi

l(w)<n
(where V) and V), are here irreducible finite-dimensional gl(n, C)-modules, Vg is the space

of natural representation of gi(n,C), and u runs over partitions such that p/\ is one box
and [(u) < n). By analogy, our correspondence should consist of a repetition of a bijection
reflecting the decomposition of the tensor product

m

where p runs over partitions in L1 such that p/A is a horizontal strip.

The first ingredient we need is a set SIST(\) of certain tableaux which, with a notion of
weight depending on k, gives the weight generating function equal to the formal character of
Lk,»)- Here, for any A € h*, L denotes the (unique) irreducible highest weight g-module
with highest weight A.

This has been done for a subclass of these g-modules in [TY], namely for those having
highest weights in a smaller cone C1 = {>_}" | aje; € Cy | —n > aq }, in other words those in
the holomorphic discrete series, in which case Lp is actually a generalized Verma module:
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If we put ¢ = gi(n,C) embedded in g in a suitable fashion, then all weights in Cj are
t-dominant integral (with respect to the Borel subalgebra b N ¢ of £). Therefore, if A € Cp,
we have a finite-dimensional irreducible &-module F) with highest weight A. Let p denote
the parabolic subalgebra of g containing b and with Levi part . Then we can form the
generalized Verma module Ny = U(g) ®(p) Fa, where F} is regarded as a p-module by
defining the action of the nilpotent radical of p to be trivial. If A € Cy — C1, Ly is the
irreducible quotient of N (still possibly isomorphic to Ny for some such A).

It can be easily seen that, in (2), if Li(\) has highest weight in C4, then so does every
summand on the right hand side. Our result in § 3 presents a weight-preserving bijection

(3) SIST(A) x Z% — [ SIST(n) ,

where p runs through partitions in L1 such that p/\ is a horizontal strip. Here, the
generating function of ZZ, with a proper definition of weights, gives the formal character
of W, and that of SIST()) similarly gives the formal character of Lg()\) = L(k,») as stated
above; so this bijection models the decomposition (2) for the case A(k,\) € Cy.

Unlike the case of finite-dimensional representations, an equality of formal characters is
in general far from sufficient to draw out any conclusion on the decomposition of a tensor
product. In our case, however, it is known that the tensor product decomposes as a direct
sum of irreducible highest weight modules. (See [Kob].)

If we start from an Lg () in the holomorphic discrete series, we can repeat our procedure
describing (2) and depict the decomposition of Li(\) ® W®*' . However, this is not enough
to depict the whole decomposition of the tensor powers of W, since W itself (the very
starting point) is a direct sum of two irreducible modules whose highest weights are not in
C1. (Recall that we have assumed that n > 2. 1f n = 1, then all Ny ») in consideration
are irreducible, so that (3) covers all desired cases.)

For n = 2, which is the smallest value of n having reducible Ny y), we also fill this gap
(§ 4). Namely we find subsets SIST(k, \) of SIST(A), for any (k,\) with A € L, whose
weight generating function gives the formal character of Lg()), including the case where
A(k,\) € Cy — C1. We also present a modification of the bijection (3) which depicts the
decomposition (2) for the case A(k,\) € Cy — Cy. So for n = 2, we have associated the
whole decomposition of the tensor powers of W with combinatorial bijections. For general
n, we conjecture the existence of such subsets SIST(k, \) and modified bijections that work
for the cases where A(k,\) € Cy — C1.

The author is grateful to I. Terada for suggesting this problem and providing patient,
persistent support. We are indebted to K. Nishiyama, T. Kobayashi and T. Oshima for
discussion and clarification of many points concerning these infinite dimensional represen-
tations.

2. THE WEIL REPRESENTATION AND ITS MODULES

We assume throughout the paper that n > 2 to avoid the degenerate case n = 1.

Definition 2.1 Fix the skew-symmetric form on C?" given as (v, w) = v'Jw, where .J is
the 2n x 2n matrix given as follows:

0 -1
(%)
The symplectic Lie algebra g = sp(2n,C) is then given by
sp(2n,C) = {X € gl(2n,C)|X'J + JX = 0}.
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We may consider gi(n,C) as living inside sp(2n, C) via the following embedding

A 0
Ar—><0 At)'

We fix a Cartan subalgebra h and a Borel subalgebra b containing b in the manner read
from Fig. 1 and its footnote. Let ¢; € h* be such that €;(E;; — Eptjn+j) = 0ij. The set of
corresponding simple roots is is {€; — €41 (1 < i < n), 2¢,}.

Note that gl(n, C) shares a Cartan subalgebra h with sp(2n,C). Also, gl(n,C)Nb is a Borel
subalgebra of gi(n,C).

Definition 2.2 The Weil representation p of sp(2n,C) on W = Clzy,x2,. ..,y is given
explicitely in Figure 1 by defining how various basis elements act on the polynomial ring.
It extends, up to a twist by an automorphism of sp(2n,C), the simpler action of gl(n,C)

given by sending E;; — x;0;, where 0; := a%j'

W has two independent highest weight vectors, namely 1 (weight —%wn) and x,, (weight

—twn —€,). U(g) - 1 (resp. U(g) - @) is the space of all polynomials of even total degree
(resp. odd total degree). We have W = U(g)-1® U(g) - n, and that these two submodules
are irreducible. In the notation defined below, they are Ly o)) and Lp(,my. These two
highest weights belong to Cy — C1. (See Definition 2.6).
Definition 2.3 Let A be a weight for g = sp(2n,C), i.e, A € h*. Let p be the parabolic
subalgebra which contains b and whose Levi part is € = gl(n,C) (thought of as embedded
in sp(2n, C) by the map described immediately after Definition 2.1). A is called ¢-dominant
integral it A =31 | i€, ¢ — cip1 € Lo (1 <i<n-—1).

We define the following four modules.

e L) = the unique irreducible highest weight g-module with highest weight A (for all
A €b*)

e M)y := the Verma module for g of highest weight A (for all A € h*).

e F) =the finite dimensional irreducible ¢-module with highest weight A (for -
dominant integral A).

e Nj =the generalized Verma module U(g) ®/(y) Fa for g, where Fy is regarded as a
U (p)-module by defining the action of the nilpotent radical of p to be trivial.

Definition 2.4 For A € Y with I[(\) <n and k € Z>0, we put:

k
Ak, A) = —5(61 +ea+ o ten) = A€l — Ap—1€2 — 0 = Aiép.

- k
== ninn + )i
i—1

Definition 2.5 We define the following lattice @ in h*, which will contain all the weights
we counsider:

n

~ 1

Q:{ E aiei|ai€§-Z(1§i§n), andai—aiHeZ(lgign—l)}
i=1

Unlike the usual weight lattice for sp(2n,C) (see, e.g., [Hum]), which is just the one freely
generated by the ¢;’s, here we also need to include those half-integral linear combinations
for which every coefficient a; is not an integer.

Definition 2.6 We define two cones in the lattice @ as follows
Co:{a161+a262+...+anen€@ |0>a1>a2>-->ap}.

Cir={aie1+asea+...+anen €Q|—n>a1>a2>->an}.
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FIGURE 1. The Weil representation for sp(2n,C).

Root Element A n = 2 Example | Operator p(A)
10 0 O
00 0 O
Cartan SA Eu - En+i,n+i P 00 -1 0 —.’Eiai — %
00 0 O
01 0 O
. . 00 0 O
€ — € for i < J Eij — En+j,n+i 00 0 0 x]ﬁi
00 -1 0
000 O
. . 1 0 0 O
—€ € fori < j Eji — Entint 000 —1 x,é?J
00 0 O
00 0 1
. . 0010
€+ ¢ for i # j Einyj+ Ejnti 000 0 RV —laiaj
00 0O
00 0O
. . 00 0O
—€; —¢€j for i # j | Enyij+ Enyji 010 0 V—1lz;z;
1 0 00
0 01O
0 00O
2¢; Einti 00 0 0 V107
00 0O
0 00O
00 0O
00 0O

In this table, the positive and negative root vectors alternate +, —, +, —, +, — after the
Cartan subalgebra entry. There is a Lie algebra automorphism of sp(2n,C) which
exchanges Eg and E_g for all positive roots 3, and which act as —1 on h. This means that
there is another version of the Weil representation given by composing this automorphism
with p. It is this version which extends the representation Ej; — z;0; of gi(n,C).

Facts 2.7. We have the following facts concerning the modules L.

(1) (IKV] and [How]) For k € Z~q, we put L, = { X €Y | I(A) <n and Ny + X;, <k},
where )\;- denotes the length of the jth column of the Young diagram of \. Then we
have

Wk ~ B L(\) ® Vy
ANEL
where Li(\) >~ L,y and Vy is a finite-dimensional irreducible O(k, C)-module.

(2) C1 C {AEN) | X € Ly, k € Zso} C Co. (This is immediate. Set k = 2n or

k=2n+41.
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(3) IfA € (5, Ly is in the holomorphic discrete series if and only if A € C1. Moreover,
in this case Ly is isomorphic to Ny.

These conditions make it clear that, for k sufficiently large (> 2n), all the irreducible
sp(2n, C)-modules appearing in the decomposition of W@k are holomorphic discrete series
modules. On the other hand, the two irreducible constituents of W (see after Definition 2.2)
are not in the holomorphic discrete series.

Lemma 2.8. The formal character of the Weil representation W is given as the sum of all
monomaials in tl_l, t2_1, .o, t7Y with an additional factor

_1

chw = 3 e o) - Lafar o tn) 2
_ _ .
c€Zl,, H?zl(l _ti )

Namely, if we define the %—adjusted weight of a monomial z¢ or ¢ € Z%, to be ¢ — %wn,

then the weight generating function of Z% for the %—adjusted weight equals the formal
character of W.

Lemma 2.9.

ch F, ct,)"E PRI
ch NA(k,)\) _ A(k,N) _ (tth tn) 28)\(t1 5 i ln )

—1,—1 —-1,-1
ngigjgn(l —t 't ) ngigjgn(l —t 't )
where sy is the Schur function. Therefore, we can compute the character of Li(\) =

Ly = Naw,ny if Ak, N) € Cy.

The following definitions of semi-infinite symplectic tableaux and weight are from [TY].

Definition 2.10 Fix a positive integer n, and let A € Y have length < n. Let I';, denote
the totally ordered set {1 <1 <2 <2 < --- <n < n}. The semi-infinite complementary
shape to A is the following convex subset of Z x Z:

A semi-infinite sp(2n, C) tableau of complementary shape X is a map T : S\ — Iy, satisfying
the following conditions:

(1) For each i € [n], there exists N; € Z such that T'(i,j) =i whenever j < Nj.
(2) Each row is weakly increasing: T'(i,j) < T'(i,j + 1) whenever both are defined.
(3) Each column is strictly increasing: T'(i,7) < T'(i + 1, j) whenever both are defined.

Note that the first two conditions imply that T'(i, j) > 4, which is part of the definition of
(finite) symplectic tableaux used by, e.g., [KE], [Ber], and [KT] [Ber]).

We write sch(7T') = A to indicate that the semi-infinite tableau 7" has semi-infinite com-
plementary shape A, and denote the set of all SIST’s of that shape by SIST(A).

Definition 2.11 Define the crude weight of T € SIST(A) to be Y"1 | cie; (€ b*), which we
abbreviate as (c1,¢a,...,¢,) € Z™ where

¢; := —(number of i’s in T') — ( number of columns of T not containing i) — \,,.

The idea is that, as for the usual symplectic tableaux, the letter i (resp. i) has weight ¢;
(resp. —¢;), and that the reference tableau (whose crude weight is defined to be zero) is the
one of complementary shape A\ = () with all entries in the ith row equal to 7. For example,
the crude weight of the tableau in Figure 2 is (—13, —15,—13, —14). Also, for each k € Z+
we define the g—adjusted weight of T to be (the crude weight of T') — %61 — %62 — e — %en.
For example, the %—adjusted weight of the tableau in Figure 2 is (—323, -3, —33 _35)

27 27 27 2
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FIGURE 2. A Semi-infinite symplectic tableau of complementary shape (9,9,4,1)

1 fryprfrjryp1rfrjryprfryrfr{1r]2|3
2122222233 [3]|3]|3]3
331313 ([3]3]3]4
414144141444

Lemma 2.12 ([TY]). If A € Y with I(X\) < n and k € Z=q, then the weight generating
function of SIST(\) for the %—adjusted weight equals the formal character of Np x)- In
particular, if A(k,\) € C1, this also equals the formal character of Lk -

3. INSERTION

Using the duality (2.7 (1)) and some knowledge of O(k,C)-modules, it is not difficult
to see the decomposition (2) holds. The goal of this section is to give an insertion scheme
which shows that the formal characters of both sides of (2) are equal.

Definition 3.1 We define an insertion operator

I; : SIST(A) — [ SIST ()
"

where p will turn out to be a shape such that p/X is a single box as follows. Remove the
rightmost ¢ in the ith row, making it a hole. Start sliding by jeu de taquin moving letters in
the northwest direction, until a hole is left on the boundary of the SIST. (Or equivalently
one could regard the slide starting from infinite left in the ith row.) The resulting tableau
is a SIST because the sliding process preserves semistandardness. u/)\ is one box since the
tableau loses one box of its shape at its outer corner.

In what follows, the weight of an ordered pair is the sum of the weights of its components.

Lemma 3.2. Fiz A € Y with () < n. Then the map

SIST(X) x [1,n] — [ SIST(n)

defined by (T,i) — IL;(T) is a weight-preserving bijection, where p runs over partitions
weY with (1) < n and such that p/X is one box, and the SIST’s are assigned their crude
weights, and the weight of i € [1,n] is defined to be —e;.

Proof. This map is well-defined because given any hole in a column-strict tableaux there
is a unique jeu de taquin slide starting at that hole to the boundary of the tableaux. The
candidate for the inverse map is the reverse slide, which moves letters in the southeast
direction, starting from the hole at p/A. (So in order to reverse this map, one must know
A as well as p.) Any such reverse slide must eventually converge to some single row 4, and
the output of this inverse candidate will be the pair consisting of the resulting tableau and
the letter 7. That this gives the inverse map follows in the same way that it does for the
case of finite jeux de taquin slides. The forward map forces one ¢ to be lost in the tableaux,
so by the definition of crude weight the map is weight-preserving. O
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Example 3.3 Consider I;(T") where T' =

J1)11]1]2(2](3
12122213
13[13[3]3
We show the sliding step by step:
11 1121213 11 21213 1{1[2]2]2]3
21212023 _ 212012(2(3] _ 212 213
313(3(3 1313[3(3 131333
111112121213 el 2 213
121212 3| 121212133
1313[3]3 3133

L,(T) is the final tableau in the sequence above, and p/X is the leftmost empty box in
row 3.

Definition 3.4 Let I]" denote the operator which repeats I; m times, and for ¢ € Z3, set
I¢T) = I o I;" o+ ITY(T). In other words, I°(T) is the map which successively slides
c1 1's to the left in T', ¢ 2’s to the left in T', and so on.

The main theorem of this section follows. It gives an analogue of Schensted’s correspon-

dence which shows the effect of tensoring a stable module Li()) (e.g., when k > 2n) with
one copy of W.

Theorem 3.5. Let A € Y with [(X\) < n. Then the map
SIST(A) x Z%y = [ [ SIST(1)
m

defined by (T,c) — I°(T) is a weight-preserving bijection, where p runs over partitions
w €Y with () < n and such that p/X\ is a horizontal strip, and the SIST’s and the
n-tuples are assigned their crude weights.

Example 3.6 Consider 111 (T) where T is the following tableau of weight (—5, —5, —7):

L1111
12122
131313

2]3]

WD | =

Lol NI I

We show the effect of successively inserting 1,1,1,2,3, and indicate the sliding path by
highlighting the sides of the squares involved. The sliding between the second and third
tableaux is the same as that shown in Example 3.3 above.

Jififififi]2]2]3 ~fifilifip2(2]3] | 11 1f2]2]2]3]
122122213 I T FIEIE BB B 2 2k2] 2033
13]3]3]3]3 13]3]3]3]3] - [3]3]3]3
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f1fi]2]2]2]2]3] | ~fil1il2f2]2]2]3] | ~f1]1]2f2]2]2]3]
212]213]3]3 _ 213[3]3]3 . 2(213(3[3]3
13]3]3] 1313 |3
Note that the final tableau has weight (-8, —6,—8), as it should.
Before beginning the proof of Theorem 3.5, we note the following
Lemma 3.7. Let P be a skew tableau, and let Cq, Co, ..., C; be a sequence of squares such

that C; is an inner (resp. outer) cocorner of the skew shape shape(P)UCi U --- U Cj_1.
Recursively define P; by Py = P and P; to be the result of the sliding which moves letters
northwest (resp. southeast) performed on P;_1 starting from the hole at C;. Let D; be the
square lost at the end of the sliding from P;_q to P;. If the C; form a horizontal strip from
right to left (resp. left to right), then the D; also form a horizontal strip from right to left
(resp. left to right).

Proof. By a result of M. Haiman ([Hai], Lemma 2.7), we can exchange the role of the skew
tableau which the sliding process actually moves and the skew tableau which designates
the order of the starting positions of the sliding. Therefore it suffices to show that, if a
sequence of slides is performed on a horizontal strip tableau numbered from left to right,
then the result is also a horizontal strip tableau numbered from left to right. This is a well
known fact. U

of Theorem 3.5. First we show that the result of I¢(T") has shape complementary to p with
1/ X being a horizontal strip. We can cut off the infinite stable part of T' (leaving some of its
stable part) to obtain a finite skew tableau 7° whose inner shape is such that we can put a
horizontal strip, adjacent to the inner shape of T°, with ¢; boxes in row i. Performing slides
(moving letters northwest) along this horizontal strip, right to left, has the same effect as
I¢, and by Lemma 3.7 we know that p/\ is a horitontal strip (actually created from right
to left).

Next we define a candidate for the inverse map. Let U be a SIST which belongs to the
left-hand side. We can cut off the stable part, similarly to the above, in such a way that
the lengths of adjacent rows of the inner shape differ by at least |u/A|. We perform slides
(moving letters southeast) along the horizontal strip p/A from right to left. By Lemma
3.7, the inner boundary of U moves southeast by a horizontal strip (vacation being created
from right to left). Denote by ¢; the number of boxes in this horizontal strip lying in row i.
Then we see that if we iterate the inverse map of Lemma 3.2 to U in such a way that the
outer shape loses /A from right to left, then the letters obtained are ¢, n’s, ¢,—1 (n—1)’s,

, ¢1 1’s, in this order. The output of our inverse candidate is defined to be the pair
formed by the SIST obtained at the end of this iteration of the inverse to Lemma 3.2, and
the n-tuple (c1,ca, ..., ¢n).

Now from the fact that map described as the inverse candidate in the proof of Lemma
3.2 is really the inverse, our map (in Theorem 3.5) and our inverse candidate (in this
proof) are also inverses to each other. It preserves weights because it is an iteration of
the weight-preserving map in Lemma 3.2 (and because of the definition of crude weights of
n-tuples).

O

Corollary 3.8. Let k € Z>9, and suppose that X\ € Ly and A(k,\) € C1. Then all p
appearing on the right-hand side of Theorem 3.4 belong to L1, and for those u we have
Ak +1,p) € Cy1. Moreover, the map in Theorem 3.4 is also weight-preserving if we assign
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%—adjusted weights to SIST()), %—adjusted weights to 23, and %—adjusted weights to
SIST(u). Thus interpreted, this bijection gives the formal character identity for (2).

Proof. 1f A(k,\) € C1, then A(k+1, ) € Cy for any o O A. The condition p € L4 is more
subtle. () < m is assured from the beginning (Theorem 3.5), so we only have to check if
wh+ph < k+1holds. If k41 > 2n, this is satisfied automatically. So suppose k+1 < 2n—1,
or equivalently % < n — 1. Now the condition A(k,\) € Cy implies \,, + % > n, so that we
have A, > 2. This implies \] + A, = 2n, so that if X\ € L, we must have 2n < k, which is
a contradiction. Therefore the case k 4+ 1 < 2n — 1 never occurs, and we have p € Ly 1.
Since the map of Theorem 3.4 is weight-preserving for crude weights, it is also weight-
preserving for the adjusted weights because the adjustments match. Using Lemma 2.7 and
2.9, and comparing with (2), we see that the weight generating function identity (for the
adjusted weights) resulting from this bijection coincides with the formal character identity
for (2). O

Definition 3.9 Following R. Proctor’s notion of “N-orthogonal tableaux” [Pro], we pro-
pose a skew semistandard tableau of shape /A with entries from [k + 1,1] = {k + 1,k +
2,...,1} to be called a skew O(1)/O(k)-tableau if it satisfies what he calls the g-orthogonal
condition for ¢ = k, k+ 1, ..., [ in the following sense. For such ¢, let A@ denote the
shape containing A and all letter < q. Thus A = AE) c A+ e A = 1, and the
differences of adjacent terms are horizontal strips. The g-orthogonal condition requires that
the sum of the first two columns of A@ is at most ¢. Let O(1)/O(k)(/A) denote the set of
all O(1)/O(k)-tableaux of shape /.

Corollary 3.10. Let k € Z>o, and let A € Ly. Also assume that A(k,\) € Cy. Iterating
the map in Theorem 3.4, we obtain a weight-preserving bijection

SIST(A) x (220)" % T] SIST(k) x O(k + K')/O(k)(11/A)

where p ranges over all partitions with (n) < n. The SIST-component of the output is
the result of inserting (by Lemma 3.2) k' n-tuples, and the skew-tableau component of the
output is the one that records the complementary shapes of SIST’s after each insertion of
an n-tuple, namely the shape MEHD) s the shape complementary to the SIST after inserting
the ith n-tuple.

Example 3.11 Suppose n = k = 3 and A = (3,1). Successively inserting the monomials
t2t9, t1t3t3, and ts into the following tableau of weight (—3, —5, —2) proceeds as shown:

J1{1[1]3 1{1]2]2

21219 * (M) 23]

A3 x|k 3 RN
{1]1[2]2 L{1]1[1]2(2

203 *]*|=* (1,2,1) 2 3 3% %
13 x| * x| % 13 * |k | % | %
Lf1]1f1]2]2 * 1{1]1f1]2]2 *
212 3|3 x* x| 0.10) 213 3 * *
13 ) k| k] ok ] k| % R EEEE R EIERERERES
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The *’s keep track of the complementary shape at the start of each insertion, while the
-’s indicate the horizontal strip that is added by each inserted monomial. The final com-
plementary shape here is u = (7,3,1), and the final skew-orthogonal recording tableau of
shape A/ is

«|«]al5]5]5]

|Cﬂ**

4. THE COMPLETE CORRESPONDENCE WHEN n = 2

The previous section’s insertion map gives the decomposition of tensoring with W only
for those modules L 1, \) whose characters are the same as for the corresponding generalized
Verma module Ny y). This is always true when £ is sufficiently large relative to n, but
not for small values of k.

However, using the duality of these modules with the O(k, C) modules, it is possible to
describe ch L, ») as an alternating sum of terms of the form ch Ny ). For example,
if we define L(k,\) := ch Ly, and N(k,A) := ch Ny ). then we have the following
expressions.

For n = 1 all the modules are stable, i.e., L(k,\) = N(k,\) for all k.

For n = 2 we have

(1) L(1,0) = N(1,0) — N(1,(2,2))
(2) L(1,0) = N(1,0) — N(1,(2,1))
(3) L(2,(m)) = N(2,(m)) — N(2,(m,2))

In this section we use the above relations to define a subset of SIST tableaux, SIST(k, \)
which gives the weight generating function for L(k, A). Then we give the following weight-
preserving bijections fi for k =0,1,2:

(4) 72, % SIST(1,0) ][ SIST(1,00)
(5) SIST(1,0) x 22, 2% J]SIST( (1)
r>0
(6) SIST(1,0) x 72, - SIST(2,(1,1)) [ ] SIST(2. (1))

r>1

(7) SIST(2, (s)) x Z2, EER ]_[ {SIST((S + 7)) [ISIST((s +7,1))| (s>2)

r

In all cases, sch f;(T') — sch(T) is a horizontal strip. By the last step we have reached
the k = 3 stage, which is stable, so our usual definition of SIST gives the correct weight
generating function, and the insertion of Section 3 works thereafter. For k > 2, the shapes
(1,1), , and O are stable, so there is no need for a special fo bijection to handle these
cases.

4.1. Definition of SIST(k, \).

Definition 4.1 We call T € SIST(}) 22-deletable if it contains the configuration 22, in

which case removing the rightmost such configuration and shoving left will leave a valid

SIST.
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We call T' € SIST(O) %—deletable if it contains a 2 in row 1, a 2 in row 2, and if it remains
a SIST when the rightmost 2 in Row; T" and the rightmost 2 in Rows T" are removed and
any elements to the right of the deleted 2 are shoved one box left along the top row.

We call T € SIST((s)) 22-deletable if Row; T contains adjacent entries 22, and if it
remains a SIST when this pair is removed and any elements to the right of the deleted 2
are shoved two boxes left along the top row.

In our representation of tableaux, we will use -’s to indicate cells that have been vacated
due to sliding, as opposed to cells that are part of the complementary shape, which we
indicate by *. We use x to indicate a cell that might be either a - or a x. To highlight
that a certain configuration must occur as the rightmost columns of a tableau, we make
the right boarder bold. In the bijections that follow, it will be necessary to keep track of
the original complementary shape of the tableau as sliding proceeds.

Example 4.2 In the examples that follow, the tableaux on the left are deletable, and the
ones on the right are not.

[i2]2]2] .. [1i[i[2 1[2]2]2
ool [ -] Jolol -] BUT NOT 219
NE . i T1[1]2
2|2 2]-1*]  BUT NOT 212)
1{1]12]2 AN 11112 1111
121212 * 2120 BUT NOT 12122 *
1111121212 SN Q411112 11112
Q Q é Q ] I/ Q ? : : BUTNOT -0 2 ? ? 2 2

A simple argument shows that 7' € SIST(0) is %—deletable if and only if 2 € Row; T and

2 € Rowy T'. Similarly, T' € SIST(0) is %g—deletable if and only if Row; 7" contains at least
two 2’s. Finally, T € SIST((s)), where s > 2 is 22-deletable if and only if Row; 7" contains
a 22 pair which lies above empty cells in Rows T'; in other words, the pair of elements lie
in cells T'(1, —i) and T(1,—i + 1), where 2 < i < s.

Definition 4.3 For n = 2, we define SIST(k, \) as follows:

SIST(1,0) := {T € SIST(0)|T is not 2a-deletable}
SIST(1,0) := {T €SIST(O)|T is not 3-deletable}
SIST(2,(s)) := {T € SIST((s)) | T is not 22-deletable}, for s > 2.

For all other pairs (k,A), SIST(k, \) := SIST()).

Before giving the algorithms that define the maps f; and their inverses, we need to define
some operators that replace a given SIST with a different one of the same weight. Each
step of f; will consist of a normal sliding step, possibly augmented by a transformation. In
order to keep the transformation straight, we will use the following notation.

e S T OR S T will indicate a slide that is part of a single step of the algorithm.
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e T — U indicates a transformation other than a slide that is performed immediately
after a slide as part of the same step of the algorithm.

e S — U indicates a single step of the algorithm, including any nonslide transfor-
mation that may occur. If the entire step consists soley of an t; slide, we write:
s Ly,

e For the reverse algorithms, we use the same general conventions, but write the

C 1. (2] (2]
extracted monomial in square brackets above the arrow, e.g., S LN U,orS r[—l T.

The first operation will replace %—deletable tableaux with elements of SIST(1,)

Definition 4.4 Let T € SIST(0J) with T'(1,—1) = 2 and T'(2,—2) = 2. Define RaiseBar T'
to be the tableau obtained from T by changing the (1, —1)-entry to 2, and changing the
leftmost 2 in Rowo T' to a 2. (In general, this may not be a SIST, because column-strictness
may fail for the entry that was lowered, but as we use it below, we always get another
SIST.) Inversely, if 7' € SIST(O) satisfies T'(1,—1) = 2, then LowerBar T is defined to be
the tableau obtained from 7" by changing the (1, —1)-entry to 2, and changing the rightmost
2 in Rowa T to a 2. (This operation always gives a well-defined SIST of the same shape.)

Definition 4.5 Let T be a tableau with schT = (s) for some s > 2, and i = 1 or 2. To
explode an ii pair in row i, means to place the horizontally adjacent entries i in row 4,
immediately to the right of the rightmost ¢ in row 4. If i = 1, the added entries displace
two entries to the cells immediately below. If i = 2, they displace the entries to the right
of the explosion two place to the right. (While this procedure might not yield a valid SIST
in general, it always will in the contexts where we apply it.)

Definition 4.6 Now define the map fy as follows. Slide according to the monomial until a
shape other than () or [J is reached. (Call this a shape violation for fy.) This will necessarily
imply sch 7' = (2) because sliding always yields a horizontal strip. If the violation occurs
while sliding ¢;, then explode (E) an i pair in row i. Continue until the entire monomial
has been used. Finally, apply the RaiseBar (RB) operator if the result is %—deletable of
sch(O).

Example 4.7 Start with the monimial t3¢2. We get the following sequence of insertions:

Note that the output of this algorithm will always have complementary shape () or [J
because anytime we reach a tableaux T with schT = (2) it gets replaced by (E) with a
tableaux U with sch U = (). Since (RB) only applies to tableaux of sch = [J, it will never
take place immediately after (E), only after a slide.

The following lemma, is easily shown by direct calculation.

Lemma 4.8. The tableau T created from the monomial t‘{té by fo can be described as
follows.

a) If j and l are even, then Row1 T consists of /2 1’s, and Rows T consists of /2 2’s,
and sch T = {).

b) If j is even and | is odd, then Rowi T consists of j/2 1’s and Rows T consists of
(1—-1)/2 2% and sch T = [1.

1) o, F2] o F1a2(2] @FTl o [F[aJi]2] =
. B 2' NDIINE 21202 N )
{112 B |- fafil2] =, [|1]1f2] EB |- f1]1]2
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c) If j is odd and [ is even and posztwe then Rowy T consists of (j —1)/2 1’s followed
by a 2, and Rowo T consists of 5 —12%, and schT = . (This is the only case
that Ralquar is applied.) The specwl case j is odd and |l = 0 gives the same result,
except that T(1,—1) = 2 instead of a 2.

d) Ifj andl are odd, then Row, T consists of (j—1)/2 1’s, followed by a 2, and Rows T
consists of (I+1)/2 2’s, and schT = (.

Theorem 4.9. The map fy is a weight-preserving bijection:

72, L% SIST(1,0) [ SIST(1,0))

Proof. Define a map go : SIST(1,0) [[SIST(1,0) — Z2, by setting go(T) = wt(T), the
weight of the tableaux T. We claim that fo and gg are inverses. If we start with a monomial
m in Z2, and compute T' = fo(m), then wt(T') = m; for this would be the result of normal
sliding, and it is easy to check that performing Explode or RaiseBar does not change the
weight of a tableau. Hence, go(fo(m)) = m. Conversely, suppose we start with an arbitrary
T € SIST(1,0) [ SIST(1,0). Let w = wt(T). If schT = (), then it is easy to see that T'
is the unique tableau of weight w which is not %%—deletable. The only possible columns in

é, é, ;, %, and 2 5, which have respective Weightsi(O,O), (—2,0), (0,-2), (—2,—2),

and (—1,—1). Since T can contain either columns of % or columns of % but not both,
each possible weight for a tableau of sch = (J can be made uniquely as a integral linear
combination of these Weights which uses the column % at most once. Now Lemma 4.8
shows that fo(w) is not Qi -deletable, so we must have T' = fo(w) = fo(go(T)).

If sch’T" = [, then the following similar but slightly more complicated argument shows
that there is a unique way to make a tableau of weight w(7T"), which is not %—deletable. Here

T are

we can no longer use % columns, but we must use exactly one of the following columns to
insure that the total degree is odd: ?, ?, ?, or ?, which have respective weights (0, —1),
(—=2,-1), (=1,0), and (—1,-2).

In the first case, the only possible columns are %, %, and %, giving a unique way to attain
any weight of the form (0, —1), for [ odd and positive.

In the second, the possible nonzero weight columns are %, %, % and '. Asin the sch T' = ()
case, only one of the first two types of columns can appear; thus, omitting the final column
?, we have a unique way to attain any even weight. So this case gives a unique way to
construct a tableau whose weight is of the form (—j, —!) for j even and positive, | odd and
positive.

In the third case, since our tableau cannot have a 2 in row 2, we may only have columns
2 2
positive. In the fourth case, we find that since T' can contain either columns of % or columns

and 2, giving a unique way to attain any weight of the form (—7,0), for j odd and

of % but not both, and no columns %, that the single 2 column contributes (—1,—2) to the
weight, and the other columns contribute a unique way of writing any weight with both
coordinates even, yielding a unique way to attain any weight of the form (—j, —I), for j
odd, I even and positive. O

Definition 4.10 Define the map f; by iterating the following procedure. We start with a
tableau T' € SIST(1, ) or SIST(1,) and a monomial m. Perform one slide according to the
monomial. If we obtain a tableau T of the following form, we make one of the replacements
shown, the first one that applies. Recall our convention that -’s indicate cells that have
been vacated due to sliding, while * indicate cells that are part of the complementary shape
of the original tableaux.
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e (Explode) schT = p = (2,1); we call this a shape violation for f1, since wh A+ ph >
k = 2. To repair this shape violation, we Explode a 2 in Rowy T and a 2 in Rowy T,
to wit, we make the following replacement (which makes the resulting tableau %—

deletable):

al. (E1) a . (E2)
2 = 2121 or |° = 42 fra<o
*

Then continue sliding according to the monomial.

e (BarTur) T has a symplectic violation, i.e., T is 22-deletable. In this case, T' must
contain one of the two configurations below, to which we apply the following BarTur
operation:

— ll — ll

* 2| | |- 2]2]
(These make the resulting tableau 3-deletable or 23-deletable.) Then continue

sliding according to the monomial.

2|2 @Y |2 |OR 2]2| B2 [2]2

Continue this procedure until the entire monomial has been used, and there are no further
shape or symplectic violations. At each step at most one BarTur or Explode may occur
before the next slide happens.

Lemma 4.11. The procedure above gives a well—deﬁned map

SIST(1,0) x Z2, EEN []sist(2
r>0

Proof. Since the original tableau T has schT = (), the only transformation we could apply
s (B2). Suppose that the algorithm described gives a sequence of slides:

T=Ty—T — Ty — - — T, = fi(T).
We will show by induction that each T; has the following properties:

A) schT; is a horizontal strip (possibly empty), created from right to left in the bottom
row of Tj.

B) T; is a SIST.

C) T; is not 22-deletable.

Ty clearly enjoys these properties. Suppose T; has these properties. If no BarTur is
involved in the move T; — T;11, then by the results of Section 3, T;41 also satisfies (A-C).
So now assume that the move involves BarTuring so that we have T; — U — T;y1, where
U is the tableau after sliding, before BarTuring. We have

T, —
Iol-1-1|-- ~JIplalal--

Say that the rightmost 2 in Row; U occurs in column j. We claim that the cell U(2,j — 1)
(marked as containing b) could not be empty. For if the slide T; — U caused this cell to

vacate, Tj itself would have been 22-deletable, containing the configuration 22 in columns
j and j 4+ 1. On the other hand, if this configuration was caused by the slide, then either
the 2 or 2 must have ascended from the second row, where it would have been resting in
the middle of the the horizontal shape of schT;, contradicting (A) for T;. We conclude
that b = 2 or 2, and that sch U is a horizontal strip starting at column j. So schTj; is a
horizontal strip starting at column j + 2, all of whose cells lie in the bottom row. Now (A)
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follows by induction since we have just taken the leftmost cell away from sch7;. T;,1 is a
SIST by inspection, and is not 22-deletable since T;41(1,k) = U(1,k) =2 for k > j+1. O

Lemma 4.12. The procedure above gives a well-defined map

SIST(1,00) x 22, % T SIST(2, () [ SIST(2, (1, 1))

r>1

Proof. Suppose we have a sequence of insertions as above, and assume that T; satisfies the
following conditions:
A) schT; = (1,1) or (r).
B) T; is a SIST.
C) T; is not 22-deletable.
We wish to show that the same properties hold for T; ;.
If T; — T;41 involves no Explodes or BarTurs, then (A B) are automatic, and we cannot
get a 22-deletable tableaux, which would force us to BarTur.
Now suppose we need to BarTur: T; — U — T;y1, where the rightmost 2 in Row; T
occurs in column —j. As in the lemma above we find that U(2,—j — 1) is nonempty. We
get two cases, depending on whether j =2 or j > 2:

1 Tal2lal-1 32 [Tal2

dal?2 ?I (Bl) dal?2 .
* AIPIE:

[N
10

=2)  OR = =
| V=2 o T B TG

Since we reached U by sliding without Explode, we know that schT; = (r), some r > 2
(not (1,1)), so after BarTuring, we get sch ;41 = (r — 1) or if j =r =2, schTj31 = (1,1)
In either case no 2 column appears, whence (C). By inspection, T; 41 is a SIST.

Now suppose we need to Explode: T; — U — T;,1 has two cases:

b?l ((E_1>) ~JIpl2]2 OR lplal- ((E_%) -..ba2|
cl- *I . Q * el -] x ... c 2 *I

Since T; had no shape violation, U (2,—3) = c is not empty. It is clear that schT;,1 = [.
Since b < ¢ < 2 implies b < 2, we get that T;4; is a SIST in the first case. In the second
it follows from the condition a < 2. Finally, we see that T;, 1 is not 22-deletable because

there is only one empty cell in the second row.
O

Definition 4.13 Within a SIST, we use the symbol X to represent a cell which may contain
either a - or . We define a map ¢; by iterating the following procedure. We start with T €
SIST(2, (s)) or SIST((1,1)) and a complementary shape A = () or (1. Before performing a
single reverse slide into the complementary shape, we make one of the following replacements
(the first one that applies, if any), provided the resulting tableau is a SIST.

e (BarTurBack)

o[- @8 [202] or [2[2] “© [2]2
2«1 « | 2|2
e (Implode)
o] @2 [a] -] 2[2] @ 2|1
2 *I i >I<I, fora<2. OR bl2]* bl- >I<I, for a < 2,
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Then perform a single reverse slide into the leftmost cell of the complementary shape
of the resulting tableau, which extracts a term ¢;. The cases overlap for tableaux
ending %%3 and %g*
The procedure ends when a tableau T € SIST(1, \) is reached to which none of the replace-
ments above applies. The output is the pair (T, m), where m is the product of the terms ¢;
extracted at each step.

Note that the proviso that the immediate result of replacement be a SIST only applies

to (BB2); e.g.,

(BB2)
22f2]| U {202]2] o0 [2]2]2

21212 211 ]2

Lemma 4.14. The procedure above gives a well-defined map

[Ts1ST(2, () [T SIST(2, (1,1)) 25 [ SIST(1,A) x Z%,
r>1 A=0,0

Proof. Given a pair (S, \) where S is a SIST in the preimage of g1 and A = () or [ is the
complementary shape to slide into, let

S=85—85—5%—- - — 85,

represent the sequence of SIST's obtained by the procedure. We will show by induction that
each S; has the following properties:

A) sch S;\\ is a horizontal strip (possibly empty).
B) S; is in SIST(2,sch S;).
C) n(S;) := |sch S;\\| + 2|{2 € S;}| is a strictly decreasing function of i.

The function n gives an upper bound on the number of steps remaining in the algorithm,
since each implosion requires a 2 and leads to two more sliding steps.

Note we always have a well-defined case to apply to our tableau: say S; — U +— S;11.
To show (C), note that each BarTurBack and Implode transformation reduces by one the
number of 2’s and increases |sch S;\A| by two, which the following reverse slide reduces
by one. Hence, n(S;y+1) = n(S;) — 1. Since each BarTurBack and Implode transformation
preserves (A) and (B), as does sliding, it follows by induction that each S; satisfies all three
properties.

The g; procedure must finish after finitely many steps because of property (C). We claim
that the final output is in SIST(1,A). If A = O, then we need that the final SIST S, is

not %—deletable. If it were, then it would contain a 2 column, forcing one of the Implode

2
or BarTurBack cases to apply. But then S, is not the last SIST of the procedure. On the
other hand, if A = () and S,,, is %%—deletable, then S, falls into the third BarTurBack case,

and sliding would have continued. U
The following technical lemma will help us show that the maps f; and g; are inverses.

Lemma 4.15. In applying the g1 map step by step, we extract all to terms before extracting
any t1 terms.

Proof. The penultimate paragraph of the proof of Theorem 3.5 showed that this holds for
each step of g1 consisting of a pure reverse slide. Thus, it suffices to show the following: at
no point in the g; algorithm do we have the sequence of moves

rM gDy

where (7) is one of the allowed replacements. We show this by contradiction in each case.
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In case (BB2) we would have:

Jaslail2121¢ct|-- '[E)] --.laglazlail 212 | -- (BE)Z) .. .laslaz]ai| 2 2 [t'_2)]
.b3 b2 bl QCQ"‘ b3 b2 bl é é b3 b2 bl

where the final step implies the inequalities by > 2 and b;41 > a; for ¢ > 2 in order for
the to reverse slide to take place entirely along row two. These inequalities force the ¢y
reverse slide to have the form shown, entirely across the top row until the last column

Cc1

shown explicitely; the column ) must be of the form 2, 2, or .- Since by = 2, we find the

NERNOE)
tableau R has the configuration %%, and (BB2) should have been applied to the rightmost
such, rather than a pure t; reverse slide. This contradicts the definition of ¢;.

Following the same line of reasoning, in case (BB1) we would have:

azlai] 2|2 - [Lr—1>] ---laglaslai] 2| - (B£2) ---laglaz]la1| 219 [L_Q)]

[b3]b2|br| - | * <o-lbg|ba]b1| 2| * <o-lbg b b1 ]| - | * v

The leftmost tableau R could not have occurred in the g; process since it is not a valid
SIST, nor a configuration that arises from one of the g; transformations.
Following the same line of reasoning, in case (12) we would have:

Jazja |2 I ,[t_lj ---laslaz] a 2| (E)) .laslasz] a

‘bg bg 2 >I<I "'b3 bg 2 *I "'b3 bg : *I

The leftmost tableau R could not have occurred in the g; process since it is not the output
of any g;-transformation, and the g; process would have applied (BB1) rather than a simple
reverse slide.

Finally, one can never have (/1) followed by [to] since

s
c

(1
-laz] a 2 Q (Il) ---la2] a Q
2

H

would force b to land below 2, which is impossible. O
Lemma 4.16. For A\ = () or [ the procedures fi and g, are inverses, to wit:

g1 o f1(T, M) =id: SIST(1,)) x Z%; and f10 gy =id: [[SIST(2, (r)) [[SIST(2.(1,1))

r>1

Proof. To show that g; o f1(T, M) = id, we must prove that at each step of the g; algorithm
we recreate the same sequence of shapes that f; must have created to reach a given tableau
T. In other words, even if T' might have arisen a prior: by some other combination of slides
and fi-transformations, we will show by tracing backwards the impossibility that f; could
have created T in any other way. This will insure that ¢g; correctly undoes the f; procedure
step by step. In general T may arise from (1) a single ¢1 or t, slide, or possibly the empty
slide if T" € SIST(1, \), (2) from an (E1) or (E2) explosion preceded immediately by a slide,
or (3) from a (B1) or (B2) BarTur preceded immediately by slide.

Case (BB1): Suppose T contains the configuration 2;. By inspection, T' is not the

2
result of (F1) or (E2). If it came from a pure slide, then we must have:

lazla1l 21 - t1 |---lag|ay 2' (EQ)---LLQ ail| - t2

oo |bi |2 | % "'bIQ*I by | ]

U
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where a quick inspection reveals that the middle tableau could only have come from (E2).
Since a; < b; for all i, the preceding slide must be an t. But now we have an f; path
in which an t, slide preceded an t; slide, contradicting the definition of f;. Alternatively,

B2 .
if it came from (B2) preceded by a slide: T (<—>) T L U, then schU = (2,1), which is

impossible for a tableau in the image of fi. Hence, T must have been created in the last
step by a (B1) transfomration.

Case (BB2): This case is the most involved because the (B2) and (BB2) transformations
can occur in columns other than the rightmost two. This requires us to consider several
subcases.

Case A = ): In this case the only columns occuring to the right of the rightmost %%

(which is the only columns where (BB2) is allowed) are of the form 2. Tracing back, we
find that at each stage the only possibilites are that we applied (B2) or a pure ¢; slide.
Since we are assuming by way of contradiction that 7" was not created by (B2), the last step
was an t1 slide. If any move as we trace back was (B2), then it must have been preceeded
by an t3 slide since a;45 < a; < b; for any s € Z>g. But we must eventually apply (B2)

since there are a finite number of ? columns to the right of % %, with one - being filled with
each t; slide we trace back. Eventually we reach sch = (), and the final two columns are

%% Therefore, we reach the contradiction of having an to slide precede and ¢; slide.
Case A = [1: Let the negative integer k denote the rightmost column in which % appears.

The only possible columns to the right of this are ?, i, or . In particular, when £k = —2,
we know that T ends with: % %i or %% .- We already showed that the latter case must come

from (B1), so we consider the former, tracing back:

[|azjar] 2|2
f1b2lb1] 2|2 ] * “ofbalbi| 2] - | * colbalbi| 2] 2] ¢

(2)---&2 arl212| - (t‘l---ag azlail 21 - (E)

\]]

where the last (B1) is forced by an earlier case, and must be preceded by an ¢ slide by the
usual inequalities, yielding the same to slide preceding an t; slide contradiction as before.

To handle the general case where k < —2 we note that as in the A = ) case, until we slide
into (2, —2) the only possible backwards steps are (B2) preceded by an ¢; slide, or a pure t;
slide. Since we want to show that (BB2) is correct, we suppose by way of contradiction that
T was immediately created by a pure ¢1 slide. The arguments of the last two paragraphs
show that we eventually perform the (BB2) operation preceded by an t9 slide, which is a
contradiction. This finishes the (BB2) case.

In the (I1) and (12) cases, it is clear by inspection that such a tableau could only arise
from (E1) or (E2) respectively. This completes the proof that g1 o f1(T, M) = id.

To show that fi 0 g7 = id is much easier. By definition, g1 is a sequence of moves each of
which is a reverse slide, or a transformation followed by a reverse slide. Since each fi-move
is a slide or a slide followed by a transformation, and since sliding is reversible by the results
of Section 3, we know that the initial slide of f; correctly reconstructs the tableau T created
by the final reverse slide of g;. We claim that if T falls into one of the cases calling for a
transformation in the definition of f1, that this 7' could only have arisen from its opposite
transformation in ¢;. .

Case (E1): If T ends with 2*, we claim that it must have arisen from (I1). Indeed,
since T contains a symplectic violation, it could not be the end result of any step of ¢1
(Lemma 4.14). By inspection this configuration can not be created by (BB1) or (12). If it
were created by (BB2), the symplectic violation would remain. The claim follows.
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The (E2), (B1), and (B2) cases follow similarly. The only new idea is that for the latter
two cases, T' is 22-deletable, which is why it could not be the end result of any step of g.
O

Definition 4.17 Define the map fy by iterating the following procedure. We start with a
tableau in SIST(2, (s)) with s > 2 and a monomial m. Perform one slide according to the
monomial. If we obtain a tableau T" which contains the configuration _ | (a shape violation)
then explode a 22 pair in Rowy 7. The new 22 pair must be placed just to the right of the
rightmost 2 in Row; T, possibly displacing a string of 2’s to the right.

Lemma 4.18. For s > 2 the procedure above gives a well-defined map:

SIST(2, () x Z%o 2% [SIST((s + ) [ISIST((s +7,1))] .

T

Proof. Suppose we have a sequence of steps T =Ty — Ty — -+ — T, = fo(T) as
described above, and assume that T} satisfies the following condition:

T; € SIST((s + 7)) [ISIST((s +r,1) ()

We wish to show that the same condition holds for T}, .
If the step Tj — Tj41 involves no (E3) then the condition holds by familiar properties
(E2)

of ordinary sliding. Now suppose we have T} KA i Tj+1. The configuration | must
occur in the two rightmost columns since U was obtained by sliding from a SIST. Further,
these are the only columns of the form _ because if there were more than two, then U was
created by a slide that left in hole a column £ < —2, whence the last two columns of T); were
empty, contradicting the condition. So when we apply (E3) to U,we get schTj11 = (s). It
is easy to see that Tj4q is a SIST since Exploding 22 in the first row preserves inequalities
along the first row and column strictness. So T)j1; satisfies (x). This argument also shows
that all the explosions happen in the initial stages of fi: a pair of ;1 slides entirely across
the top row is followed by (E3), returning the tableau to the initial shape. Once a slide
descends into the second row, no more explosions can occur and the complementary shape
monotonically increases.

Hence, by induction, fs is well defined. O

Definition 4.19 Define the map go by iterating the following procedure. Given an integer
s > 2 and a tableaux in SIST((s+)) [[ SIST((s+r, 1) for some r € Z>g, we check whether
the schT = (s). If not, then perform a single reverse slide into sch = (s). If so, and if T
is 22-deletable, then implode a 22 pair in row 1 of T (shoving any elements to the right
of the implosion leftwards two spaces) and perform a single reverse slide along Row; T
The procedure terminates when schT = (s) and T is not 22-deletable, and the monomial
extracted is the product of the terms extracted in each sliding step.

Lemma 4.20. For s > 2 the procedure above gives a well-defined map:

]_[ [SIST((s + 7)) [ISIST((s + 7, 1)) | 2 SIST(2, (s)) x Z2,,.

r

Proof. Since only ordinary sliding is applied until sch T = (s), the procedure is clearly well-
defined and always gives a SIST. At this point, if T is 22-deletable, then it must contain a
22 pair that lies above empty cells in (s); hence we can implode 22, leaving a valid SIST,
then reverse slide, giving a tableau of sch = (s,1). (In the next step, an ordinary reverse
slide will be applied to this resulting tableau.)
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To show that the procedure terminates, note that the number of implosions is bounded
above by the minimum of the number of 2’s in Row; 7" and the number of 2’s in Row; 7.
Once we reach sch = (s), all the remaining reverse slides take place entirely across the top
row. The final output will be in SIST(2, (s)) since the procedure continues until it reaches
a tableau that is not 22-deletable. O

Lemma 4.21. For s > 2 the procedures fo and go are inverses, to wit:
g20fa(T, M) =id: SIST(2, (s)) XZQZO and faoge = id: H [SIST((S—I—T)) [ISIST((s+r,1))

Proof. The key idea is to note that whereas all the fy explosions take place as the initial
steps of fo and reset the complementary shape to be (s), after which all steps are ordinary
slides, that go exactly reverses this, reverse sliding until it gets to complementary shape
(s), then undoing all the initial explosions. O

This completes the full version of Schensted’s correspondence for the Weil representation
in the case n = 2, and leaves the case of general n as a tantilizing open problem, for which
the techniques developed here may be useful.

REFERENCES
[Ber] A. Berele, “A Schensted-Type Correspondence for the Sympectic Group,” J. Comb. Thy. A 43
(1986), 320-328.
[Hai] M. Haiman, “Dual equivalence with applications, including a conjecture of Proctor,” Discrete

Math 99 (1992), 79-113.
[How| R. Howe, Remarks on classical invariant theory, Trans. A.M.S. 313 (1989), 539-570.
[Hum)] J.E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New

York, 1972.

[KE] R. C. King and N. G. I. El-Sharkaway, “Standard Young tableaux and weight multiplicities of
the classical Lie groups. J. Phys. A 16 (1983), 3153-3177.

KK] S. V. Kerov and A. N. Kirillov, “Combinatorics of rational representations of the group GL(n,C).”

(Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 200 (1992), Kraev.
Zadachi Mat. Fiz. Smezh. Voprosy Teor. Funktsii. 24, 83-90, 188 [Math Rev 94a:05214].

[Kob] T. Kobayashi, “Discrete series representations for the orbit spaces arising from two involutions of
real reductive spaces,” preprint.

[KT] K. Koike and I. Terada, “Young diagrammatic methods for the restriction of representations of
complex classical Lie groups to reductive subgroups of maximal rank,” Adv. Math. 79 (1990),
104-135.

[KV] M. Kashiwara and M. Vergne, “On the Segal-Shale-Weil representations and harmonic polyno-
mials, 7 Inv. Math 44 (1978), 1-47.

[KW] R. C. King and B. G. Wybourne, “Holomorphic discrete series and harmonic series unitary irre-

ducible representations of non-compact Lie groups: Sp(n,R), U(p, q) and SO*(2n),” J. Phys. A
18 (1985), 3113-3139.

[Pro] R. Proctor, “Young tableaux, Gelfand patterns, and branching rules for classical groups,” Journal
of Algebra 164 (1994), 299-360.
[TY] I. Terada and H. Yaoko, “Semistandard updown tableaux and formal characters of certain induced

highest weight modules for sp(2n, C),” in preparation.

DEPARTMENT OF MATH & COMPUTER SCIENCE, CALIFORNIA STATE UNIVERSITY, 25800 CARLOS BEE
BLvD., HAYWARD, CA 94542-3092
E-mail address: troby@csuhayward.edu



