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Abstract

In the open problem session of the FPSAC’03, R.P. Stanley gave an
open problem about a certain sum of the Schur functions (See [19]). The
purpose of this paper is to give a proof of this open problem. The proof
consists of three steps. At the first step we express the sum by a Pfaffian
as an application of our minor summation formula ([7]). In the second
step we prove a Pfaffian analogue of Cauchy type identity which generalize
[22]. Then we give a proof of Stanley’s open problem in Section 4. We
also present certain corollaries obtained from this identity involving the
Big Schur functions and some polynomials arising from the Macdonald
polynomials, which generalize Stanley’s open problem.

Résumé

Dans la session de problèmes de SFCA’03, Stanley a posé un problème
ouvert sur certaine somme de fonctions de Schur (voir [19]). Le but de
cet article est de résoudre ce problème ouvert. La preuve consiste en trois
étapes. Premièrement on exprime cette somme comme un Pfaffien en ap-
pliquant notre formule de sommation de mineurs [7]. Deuxièmement on
démontre un analogue Pfaffien de l’identité de type Cauchy, qui généralise
une identité de Sunquist [22]. Et puis on résoud le probème ouvert de
Stanley dans la Section 4. On présente aussi quelques corollaires de cette
identité impliquant les grandes fonctions de Schur et des polynômes ap-
paraissant dans l’étude des polynômes de Macdonald, qui généralise le
problème originel de Stanley.

1 Introduction

In the open problem session of the 15th Anniversary International Con-
ference on Formal Power Series and Algebraic Combinatorics (Vadstena,
Sweden, 25 June 2003), R.P. Stanley gave an open problem on a sum
of Schur functions with a weight including four parameters, i.e. Theo-
rem 1.1 (See [19]). The purpose of this paper is to give a proof of this
open problem. In the process of our proof, we obtain a Pfaffian identity,
i.e. Theorem 3.1, which generalize the Pfaffian identities in [22]. Note that
certain determinant and Pfaffian identities of this type first appeared in
[15], and applied to solve some alternating sign matrices enumerations
under certain symmetries stated in [11]. Certain conjectures which exten-
sively generalize the determinant and Pfaffian identities of this type were
stated in [17], and a proof of the conjectured determinant and Pfaffian
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identities was given in [6]. Our proof proceeds by three steps. In the first
step we utilize the minor summation formula ([7]) to express the sum of
Schur functions into a Pfaffian. In the second step we express the Pfaffian
by a determinant using a Cauchy type Pfaffian formula (also see [16], [17]
and [6]), and try to simplify it as much as possible. In the final step we
complete our proof using a key proposition, i.e. Proposition 4.1 (See [18]
and [21]).

We follow the notation in [13] concerning the symmetric functions.
In this paper we use a symmetric function f in n variables (x1, . . . , xn),
which is usually written as f(x1, . . . , xn), and also a symmetric function
f in countably many variables x = (x1, x2, . . . ), which is written as f(x)
(for detailed description of the ring of symmetric functions in countably
many variables, see [13], I, sec.2). To simplify this notation we express
the n-tuple (x1, . . . , xn) by Xn, and sometimes simply write f(Xn) for
f(x1, . . . , xn). When the number of variables is finite and there is no fear of
confusion what this number is, we simply write X for Xn in abbreviation.
Thus f(x) is in countably many variables, but f(X) is in finite variables
and the number of variables is clear from the assumption.

Given a partition λ, define ω(λ) by

ω(λ) = a
P

i≥1dλ2i−1/2eb
P

i≥1bλ2i−1/2cc
P

i≥1dλ2i/2ed
P

i≥1bλ2i/2c,

where a, b, c and d are indeterminates, and dxe (resp. bxc) stands for the
smallest (resp. largest) integer greater (resp. less) than or equal to x for
a given real number x. For example, if λ = (5, 4, 4, 1) then ω(λ) is the
product of the entries in the following diagram for λ.

a b a b a

c d c d

a b a b

c

Let sλ(x) denote the Schur function corresponding to a partition λ. R. P. Stan-
ley gave the following conjecture in the open problem session of FPSAC’03.

Theorem 1.1. Let
z =

X

λ

ω(λ)sλ.

Here the sum runs over all partitions λ. Then we have

log z −
X

n≥1

1

2n
an(bn − cn)p2n −

X

n≥1

1

4n
anbncndnp2

2n

∈ Q[[p1, p3, p5, . . . ]]. (1.1)

Here pr =
P

i≥1 xr
i denote the rth power sum symmetric function.

As direct consequence of this theorem, we obtain the following corol-
lary. Let Sλ(x; t) = det (qλi−i+j(x; t))1≤i,j≤`(λ) denote the big Schur func-

tion corresponding the partitions λ, where qr(x; t) = Q(r)(x; t) denote the
Hall-Littlewood functions (See [13], III, sec.2).

Corollary 1.2. Let

Z(x; t) =
X

λ

ω(λ)Sλ(x; t),
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Here the sum runs over all partitions λ. Then we have

log Z(x; t)−
X

n≥1

1

2n
an(bn − cn)(1− t2n)p2n −

X

n≥1

1

4n
anbncndn(1− t2n)2p2

2n

∈ Q[[p1, p3, p5, . . . ]].
(1.2)

This corollary is also generalized to the two parameter polynomials
defined by I. G. Macdonald. Define

Tλ(x; q, t) = det
`
Q(λi−i+j)(x; q, t)

´
1≤i,j≤`(λ)

where Qλ(x; q, t) stands for the Macdonald polynomial corresponding to
the partition λ, and Q(r)(x; q, t) is the one corresponding to the one row
partition (r) (See [13], IV, sec.4). Then we obtain the following corollary:

Corollary 1.3. Let

Z(x; q, t) =
X

λ

ω(λ)Tλ(x; q, t),

Here the sum runs over all partitions λ. Then we have

log Z(x; q, t)−
X

n≥1

1

2n
an(bn − cn)

1− t2n

1− q2n
p2n −

X

n≥1

1

4n
anbncndn (1− t2n)2

(1− q2n)2
p2
2n

∈ Q[[p1, p3, p5, . . . ]].
(1.3)

In the rest of this section we briefly recall the definition of Pfaffians.
For the detailed explanation of Pfaffians, the reader can consult [9] and
[20]. Let n be a non-negative integer and assume we are given a 2n by
2n skew-symmetric matrix A = (aij)1≤i,j≤2n, (i.e. aji = −aij), whose
entries aij are in a commutative ring. The Pfaffian of A is, by definition,

Pf(A) =
X

ε(σ1, σ2, . . . , σ2n−1, σ2n) aσ1σ2 . . . aσ2n−1σ2n .

where the summation is over all partitions {{σ1, σ2}<, . . . , {σ2n−1, σ2n}<}
of [2n] into 2-elements blocks, and where ε(σ1, σ2, . . . , σ2n−1, σ2n) denotes
the sign of the permutation

„
1 2 · · · 2n
σ1 σ2 · · · σ2n

«
.

2 Pfaffian Expressions

Given a partition λ = (λ1, . . . , λm) satisfying `(λ) ≤ m, we associate a
decreasing sequence λ + δm which is usually denoted by l = (l1, . . . , lm),
where δm = (m − 1, m − 2, . . . , 0). The key observation to prove Theo-
rem 1.1 is the following theorem, which shows that the weight ω(λ) can
be expressed by a Pfaffian:

Theorem 2.1. Let n be a non-negative integer. Let λ = (λ1, . . . , λ2n)
be a partition such that `(λ) ≤ 2n, and put l = (l1, . . . , l2n) = λ + δ2n.
Define a 2n by 2n skew-symmetric matrix A = (αij)1≤i,j≤2n by

αij = ad(li−1)/2ebb(li−1)/2ccdlj/2edblj/2c

for i < j, and as αji = −αij holds for any i, j ≥ 0. Then we have

Pf [A]1≤i,j≤2n = (abcd)(
n
2)ω(λ).
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The essential idea to prove Theorem 2.1 is the following lemma which
already appeared as Lemma 7 in Section 4 of [7].

Lemma 2.2. Let xi and yj be indeterminates, and let n is a non-negative
integer. Then

Pf[xiyj ]1≤i<j≤2n =

nY
i=1

x2i−1

nY
i=1

y2i. 2 (2.1)

Theorem 2.1 shows that the weight ω(λ) can be expressed by the
Pfaffians of submatrices of a certain matrix, and the row/column indices
of the submatrices are determined by the partition λ. This shows that
the weighted sum of the Schur functions is a sum of minors multiplied by
the ”sub-Pfaffians”. Thus we need a minor summation formula from [7].

Let m, n and r be integers such that r ≤ m, n and let T be an
m by n matrix. For any index sets I = {i1, . . . , ir}< ⊆ [m] and J =
{j1, . . . , jr}< ⊆ [n], let ∆I

J(A) denote the sub-matrix obtained by select-
ing the rows indexed by I and the columns indexed by J . If r = m and
I = [m], we simply write ∆J(A) for ∆

[m]
J (A). Similarly, if r = n and

J = [n], we write ∆I(A) for ∆I
[n](A). For any finite set S and a non-

negative integer r, let
`

S
r

´
denote the set of all r-element subsets of S. We

cite a theorem from [7] which we call a minor summation formula:

Theorem 2.3. Let n and N be non-negative integers such that 2n ≤ N .
Let T = (tij)1≤i≤2n,1≤j≤N be a 2n by N rectangular matrix, and let
A = (aij)1≤i,j≤N be a skew-symmetric matrix of size N . Then

X

I∈([N]
2n)

Pf
“
∆I

I(A)
”

det (∆I(T )) = Pf
`
TA tT

´
.

If we put Q = (Qij)1≤i,j≤2n = TA tT , then its entries are given by

Qij =
X

1≤k<l≤N

akl det
“
∆ij

kl(T )
”

, (1 ≤ i, j ≤ 2n).

Here we write ∆ij
kl(T ) for ∆

{ij}
{kl}(T ) =

˛̨
˛̨tik til

tjk tjl

˛̨
˛̨. 2

First we restrict our attention to the finite variables case. As an appli-
cation of the minor summation formula, i.e. Theorem 2.3, we can express
the sum with a Pfaffian.

Theorem 2.4. Let n be a positive integer and let ω(λ) be as defined in
Section 1. Let

zn = zn(X2n) =
X

`(λ)≤2n

ω(λ)sλ(X2n) =
X

`(λ)≤2n

ω(λ)sλ(x1, . . . , x2n)

(2.2)
be the sum restricted to 2n variables. Then we have

zn(X2n) =
(abcd)−(n

2)Q
1≤i<j≤2n(xi − xj)

Pf (pij)1≤i<j≤2n , (2.3)

where pij is defined by

pij =

˛̨
˛̨xi + ax2

i 1− a(b + c)xi − abcx3
i

xj + ax2
j 1− a(b + c)xj − abcx3

j

˛̨
˛̨

(1− abx2
i )(1− abx2

j )(1− abcdx2
i x

2
j )

. (2.4)
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Proof. By Theorem 2.3 it is enough to compute

βij =
X

k≥l≥0

ad(k−1)/2ebb(k−1)/2ccdl/2edbl/2c
˛̨
˛̨xk

i xl
i

xk
j xl

j

˛̨
˛̨ .

Let f ij
kl = ad(k−1)/2ebb(k−1)/2ccdl/2edbl/2c

˛̨
˛̨xk

i xl
i

xk
j xl

j

˛̨
˛̨ , then, this sum can be

divided into four cases, i.e.

βij =
X

k=2r+1, l=2s
r≥s≥0

f ij
kl +

X
k=2r, l=2s

r≥s≥0

f ij
kl +

X
k=2r+1, l=2s+1

r≥s≥0

f ij
kl +

X
k=2r+2, l=2s+1

r≥s≥0

f ij
kl .

We compute each case:

(i) If k = 2r + 1 and l = 2s for r ≥ s ≥ 0, then

X
k=2r+1, l=2s

r≥s≥0

f ij
kl =

X

r≥s≥0

arbrcsds

˛̨
˛̨x2r+1

i x2s
i

x2r+1
j x2s

j

˛̨
˛̨

=
X

r≥s≥0

csds

˛̨
˛̨
˛̨
˛

asbsx2s+1
i

1−abx2
i

x2s
i

asbsx2s+1
j

1−abx2
j

x2s
j

˛̨
˛̨
˛̨
˛

=
(xi − xj)(1 + abxixj)

(1− abx2
i )(1− abx2

j )(1− abcdx2
i x

2
j )

.

In the same way we obtain the followings by straight forward com-
putations.

(ii) If k = 2r and l = 2s for r ≥ s ≥ 0, then

X
k=2r, l=2s

r≥s≥0

f ij
kl =

a(x2
i − x2

j )

(1− abx2
i )(1− abx2

j )(1− abcdx2
i x

2
j )

.

(iii) If k = 2r + 1 and l = 2s + 1 for r ≥ s ≥ 0, then

X
k=2r+1, l=2s+1

r≥s≥0

f ij
kl =

abcxixj(x
2
i − x2

j )

(1− abx2
i )(1− abx2

j )(1− abcdx2
i x

2
j )

.

(iv) If k = 2r + 2 and l = 2s + 1 for r ≥ s ≥ 0, then

X
k=2r+2, l=2s+1

r≥s≥0

f ij
kl =

acxixj(xi − xj)(1 + abxixj)

(1− abx2
i )(1− abx2

j )(1− abcdx2
i x

2
j )

.

Summing up these four identities, we obtain

βij =
(xi − xj){1 + abxixj + a(xi + xj) + abcxixj(xi + xj) + acxixj(1 + abxixj)}

(1− abx2
i )(1− abx2

j )(1− abcdx2
i x

2
j )

.

It is easy to see the numerator is written by the determinant, and this
completes the proof. 2
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3 Cauchy Type Pfaffians

The aim of this section is to prove (3.4). In the next section we will use this
identity to prove Stanley’s open problem. First we prove a fundamental
Pfaffian identity, i.e. Theorem 3.1, and deduce all the identities in this
section to this theorem. An intensive generalization was conjectured in
[17] and proved in [6]. There is a certain Pfaffian-Hafnian analogue of
Borchardt’s identity in [5].

First we fix our notation. Let n be an non-negative integer. Let X =
(x1, . . . , x2n), Y = (y1, . . . , y2n), A = (a1, . . . , a2n) and B = (b1, . . . , b2n)
be 2n-tuples of variables. Set V n

ij (X, Y ; A, B) to be

(
aix

n−j
i yj−1

i if 1 ≤ j ≤ n,

bix
2n−j
i yj−n−1

i if n + 1 ≤ j ≤ 2n,

for 1 ≤ i ≤ 2n, and define V n(X, Y ; A, B) by

V n(X, Y ; A, B) = det
`
V n

ij (X, Y ; A, B)
´
1≤i,j≤2n

.

For example, if n = 1, then we have V 1(X, Y ; A, B) =

˛̨
˛̨a1 b1

a2 b2

˛̨
˛̨, and if

n = 2, then V 2(X, Y ; A, B) looks as follows:

V 2(X, Y ; A, B) =

˛̨
˛̨
˛̨
˛̨

a1x1 a1y1 b1x1 b1y1

a2x2 a2y2 b2x2 b2y2

a3x3 a3y3 b3x3 b3y3

a4x4 a4y4 b4x4 b4y4

˛̨
˛̨
˛̨
˛̨
.

The main result of this section is the following theorem.

Theorem 3.1. Let n be a positive integer. Let X = (x1, . . . , x2n), Y =
(y1, . . . , y2n), A = (a1, . . . , a2n), B = (b1, . . . , b2n), C = (c1, . . . , c2n) and
D = (d1, . . . , d2n) be 2n-tuples of variables. Then

Pf

2
664

˛̨
˛̨ai bi

aj bj

˛̨
˛̨ ·
˛̨
˛̨ci di

cj dj

˛̨
˛̨

˛̨
˛̨xi yi

xj yj

˛̨
˛̨

3
775

1≤i<j≤2n

=
V n(X, Y ; A, B)V n(X, Y ; C, D)

Y

1≤i<j≤2n

˛̨
˛̨xi yi

xj yj

˛̨
˛̨

.

(3.1)

The following proposition is obtained easily by elementary transfor-
mations of the matrices and we omit the proof.

Proposition 3.2. Let n be a positive integer. Let X = (x1, . . . , x2n) be
2n-tuples of variables and let t be an indeterminate. Then

V n(X,111 + tX2; X,111) = (−1)(
n
2)t(

n
2)

Y

1≤i<j≤2n

(xi − xj), (3.2)

where 111 denotes the 2n-tuple (1, . . . , 1), and 111+ tX2 denotes the 2n-tuple
(1 + tx2

1, . . . , 1 + tx2
2n).

Let t be an arbitrary indeterminate. If we set yi = 1 + tx2
i in (3.1),

then ˛̨
˛̨xi 1 + tx2

i

xj 1 + tx2
j

˛̨
˛̨ = (xi − xj)(1− txixj)

and (3.2) immediately implies the following corollary.
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Corollary 3.3. Let n be a non-negative integer. Let X = (x1, . . . , x2n),
A = (a1, . . . , a2n), B = (b1, . . . , b2n), C = (c1, . . . , c2n) and D = (d1, . . . , d2n)
be 2n-tuples of variables. Then

Pf

»
(aibj − ajbi)(cidj − cjdi)

(xi − xj)(1− txixj)

–

1≤i<j≤2n

=
V n(X,111 + tX2; A, B)V n(X,111 + tX2; C, D)Q

1≤i<j≤2n(xi − xj)(1− txixj)
. (3.3)

In particular, we have

Pf

»
aibj − ajbi

1− txixj

–

1≤i<j≤2n

= (−1)(
n
2)t(

n
2) V n(X,111 + tX2; A, B)Q

1≤i<j≤2n(1− txixj)
. 2 (3.4)

Now we give a sketch of a proof of Theorem 3.1. Let n and r be
integers such that 2n ≥ r ≥ 0. Let X = (x1, . . . , x2n) be a 2n-tuple of
variables and let 1 ≤ k1 < · · · < kr ≤ 2n be a sequence of integers. Let
X(k1,...,kr) denote the (2n − r)-tuple of variables obtained by removing
the variables xk1 , . . . , xkr from X2n. The key to prove Theorem 3.1 is
the following lemma:

Lemma 3.4. Let n be a positive integer. Let X = (x1, . . . , x2n), A =
(a1, . . . , a2n) and C = (c1, . . . , c2n) be 2n-tuples of variables. Then the
following identity holds.

2n−1X

k=1

Q2n−1
i=1
i6=k

(xk − xi)

xk − x2n
(ak − a2n)(ck − c2n)

× V n−1(X(k,2n),111(k,2n); A(k,2n),111(k,2n))V n−1(X(k,2n),111(k,2n); C(k,2n),111(k,2n))

=
V n(X,111; A,111)V n(X,111; C,111)Q2n−1

i=1 (xi − x2n)
.

Here 111 denotes the 2n-tuples (1, . . . , 1).

This lemma and the expansion of the Pfaffians along the last row/column
implies Theorem 3.1 by a direct computation.

4 A Proof of Stanley’s Open Problem

The key idea of our proof is the following proposition, which the reader
can find in [18], Exercise 7.7, or [21], Section 3.

Proposition 4.1. Let f(x1, x2, . . . ) be a symmetric function with infinite
variables. Then f ∈ Q[pλ : all parts λi > 0 are odd] if and only if

f(t,−t, x1, x2, . . . ) = f(x1, x2, . . . ).2

Our strategy is simple. If we set vn(X2n) to be

log zn(X2n)−
X

k≥1

1

2k
ak(bk − ck)p2k(X2n)−

X

k≥1

1

4k
akbkckdkp2k(X2n)2

(4.1)

then we claim it satisfies

vn+1(t,−t, X2n) = vn(X2n). (4.2)

This will eventually prove Theorem 1.1. As an immediate consequence of
(2.3), (2.4) and (3.4), we obtain the following theorem:
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Theorem 4.2. Let X = (x1, . . . , x2n) be a 2n-tuple of variables. Then

zn(X2n) = (−1)(
n
2) V n(X2,111 + abcdX4; X + aX2,111− a(b + c)X2 − abcX3)Q2n

i=1(1− abx2
i )
Q

1≤i<j≤2n(xi − xj)(1− abcdx2
i x

2
j )

,

(4.3)

where X2 = (x2
1, . . . , x

2
2n), 111 + abcdX4 = (1 + abcdx4

1, . . . , 1 + abcdx4
2n),

X + aX2 = (x1 + ax2
1, . . . , x2n + ax2

2n) and 111 − a(b + c)X2 − abcX3 =
(1− a(b + c)x2

1 − abcx3
1, . . . , 1− a(b + c)x2

2n − abcx3
2n). 2

The (4.3) is key expression to prove that vn(X2n) satisfies (4.2). Once
one knows (4.3), then it is straightforward computation to prove Stanley’s
open problem. The following proposition is the first step.

Proposition 4.3. Let X = (x1, . . . , x2n) be a 2n-tuple of variables. Put

fn(X2n) = V n(X2,111 + abcdX4; X + aX2,111− a(b + c)X2 − abcX3).

Then fn(X2n) satisfies

fn+1(t,−t, X2n)

= (−1)n2t(1− abt2)(1− act2)

2nY
i=1

(t2 − x2
i )

2nY
i=1

(1− abcdt2x2
i ) · fn(X2n).

(4.4)

From Theorem 4.2 and Proposition 4.3 we obtain the following propo-
sition.

Proposition 4.4. Let X = (x1, . . . , x2n) be a 2n-tuple of variables. Then

zn+1(t,−t, X2n) =
1− act2

(1− abt2)(1− abcdt4)
Q2n

i=1(1− abcdt2x2
i )

zn(X2n).

(4.5)

Now the proof of Theorem 1.1 is straightforward computation. We
omit the details.

5 Open Problems

The author tried to find an analogous formula when the sum runs over
all distinct partitions by computer experiments using Stembridge’s SF
package (cf. [2] and [3]). But the author could not find any conceivable
formula when the sum runs over all distinct partitions.

He also checked Hall-Littlewood functions case, and could not find in
the general case, but found some nice formulas if we substitute −1 into t.
These are byproducts found by our computer experiments.

Conjecture 5.1. Let

w(x; t) =
X

λ

ω(λ)Pλ(x; t),

where Pλ(x; t) denote the Hall-Littlewood function corresponding to the
partition λ, and the sum runs over all partitions λ. Then

log w(x;−1) +
X

n≥1 odd

1

2n
ancnp2n +

X

n≥2 even

1

2n
a

n
2 c

n
2 (a

n
2 c

n
2 − 2b

n
2 d

n
2 )p2n

∈ Q[[p1, p3, p5, . . . ]].

would hold. 2
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We might replace the Hall-Littlewood functions Pλ(x; t) by the Mac-
donald polynomials Pλ(x; q, t) in this conjecture. Let Pλ(x; q, t) denote
the Macdonald polynomial corresponding to the partition λ (See [13], IV,
sec.4).

Conjecture 5.2. Let

w(x; q, t) =
X

λ

ω(λ)Pλ(x; q, t).

Here the sum runs over all partitions λ. Then

log w(x; q,−1) +
X

n≥1 odd

1

2n
ancnp2n +

X

n≥2 even

1

2n
a

n
2 c

n
2 (a

n
2 c

n
2 − 2b

n
2 d

n
2 )p2n

∈ Q[[p1, p3, p5, . . . ]]

would hold. 2

6 Four-Parameter Partition Identities

In [2] C.E. Boulet gave a bijective proof of the following partition identi-
ties, i.e. Theorem 6.1 and Theorem 6.7. The aim of this section is to give
another proof of these identities. To make our arguments easier, we first
consider the strict partitions case.

Theorem 6.1. (Boulet)

X
µ strict partitions

ω(µ) =

∞Y
j=1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

1− ajbjcj−1dj−1
. (6.1)

Here the sum runs over all strict partitions µ.

To prove this theorem, we need the following lemma, which can be de-
rived from Lemma 2.2 by exactly the same method as we proved Lemma 2.1.
Note that any strict partition µ can be written as µ1 > · · · > µ2n ≥ 0 for
a uniquely determined integer n. Let `(µ) denote the length of the strict
partition µ, which is the number of nonzero parts of µ. For example, the
length of µ = (10, 8, 7, 5, 3) is five.

Lemma 6.2. Let n be a nonnegative integer. Let µ = (µ1, . . . , µ2n) be
a strict partition such that µ1 > · · · > µ2n ≥ 0. Define a skew-symmetric
matrix A = (αij)1≤i,j≤2n by

αij =

(
adµi/2ebbµi/2ccdµj/2edbµj/2cz, if µj = 0,

adµi/2ebbµi/2ccdµj/2edbµj/2cz2, if µj > 0,

for i < j, and as αji = −αij holds for any i, j ≥ 0. Then we have

Pf [A] = ω(µ)z`(µ). 2

Let Jn denote the square matrix of size n whose (i, j)-entry is δi,n+1−j .
We simply write J for Jn when there is no fear of confusion on the size n.
The following lemma can be obtained from Theorem 3 of Section 3 in [7].
(cf. Theorem of Section 4 in [23]). The prototype of this type identity
first appeared in [14].
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Lemma 6.3. Let n be a positive integer. Let A = (aij)1≤i,j≤n and
B = (bij)1≤i,j≤n be skew symmetric matrices of size n. Then

rX
t=0

zr
X

I∈([n]
2t )

γ|I| Pf
“
∆I

I(A)
”

Pf
“
∆I

I(B)
”

= Pf

»
J tAJ J
−J C

–
, (6.2)

where |I| =Pi∈I i and C = (Cij)1≤i,j is given by

Cij = γi+jbijz.

Theorem 6.4. Let n be a positive integer. Then

X
µ strict partitions

µ1≤n

ω(µ)z`(µ) = Pf

»
S Jn+1

−Jn+1 B

–
, (6.3)

where S = (1)0≤i<j≤n and B = (βij)0≤i<j≤n with

βij =

(
adj/2ebbj/2ccdi/2edbi/2cz if 0 = i < j ≤ n,

adj/2ebbj/2ccdi/2edbi/2cz2 if 0 < i < j ≤ n.

For example, if n = 3, then the Pfaffian in the right-hand side of (6.3)
is

Pf

2
66666666664

0 1 1 1 0 0 0 1
−1 0 1 1 0 0 1 0
−1 −1 0 1 0 1 0 0
−1 −1 −1 0 1 0 0 0

0 0 0 −1 0 az abz a2bz
0 0 −1 0 −az 0 abcz2 a2bcz2

0 −1 0 0 −abz −abcz2 0 a2bcdz2

−1 0 0 0 −a2bz −a2bcz2 −a2bcdz2 0

3
77777777775

,

and this is equal to 1 + a(1 + b + ab)z + abc(1 + a + ad)z2 + a3bcdz3.
Meanwhile, the only strict partition such that `(µ) = 0 is ∅, the strict
partitions µ such that `(µ) = 1 and µ1 ≤ 3 are the following three:

a a b a b a

the strict partitions µ such that `(µ) = 2 and µ1 ≤ 3 are the following
three:

a b
c

a b a

c

a b a

c d

and the strict partition µ such that `(µ) = 4 and µ1 ≤ 3 is the following
one:

a b a

c d
a

The sum of the weights of these strict partitions correspond to the above
Pfaffian.

Let ψn = ψn(a, b, c, d; z) = Pf

»
S Jn+1

−Jn+1 B

–
denote the right-hand

side of (6.3) for a nonnegative integer n. For example, we have ψ0 = 1,
ψ1 = 1+az, ψ2 = 1+a(1+b)z+abcz2 and ψ3 = 1+a(1+b+ab)z+abc(1+
a+ad)z2 +a3bcdz3. By elementary transformations and expansions along
rows/columns of Pfaffians, we obtain the following recursion formula.
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Proposition 6.5. Let ψn = ψn(a, b, c, d; z) be as above. Then we have

ψ2n = (1 + b)ψ2n−1 + (anbncndn−1z2 − b)ψ2n−2,

ψ2n+1 = (1 + a)ψ2n + (an+1bncndnz2 − b)ψ2n−1,

for any positive integer j.

From this recurrence relation we immediately obtain the following
corollary.

Corollary 6.6. Set q = abcd, xn = ψ2n and yn = ψ2n+1 then

xn+1 =
˘
1 + ab + a(1 + bc)z2qn¯xn − ab(1− z2qn)(1− acz2qn−1)xn−1,

yn+1 =
˘
1 + ab + abc(1 + ad)z2qn¯ yn − ab(1− z2qn)(1− acz2qn)yn−1,

where x0 = 1, y0 = 1 + az, x1 = 1 + a(1 + b)z + abcz2 and

y1 = 1 + a(1 + b + ab)z + abc(1 + a + ad)z2 + a3bcdz3.

There is no enough space here to describe the details of the results,
but, when z = 1, we can identify them with the three-term relation of
the Al-Salam Chihara polynomials and the solution is expressed by an
appropriate basic hypergeometric series, i.e.

xn(a, b, c, d; 1) = (−a; q)n 2φ1

„
q−n,−c

−a−1q−n+1

˛̨
˛ q;−bq

«
,

yn(a, b, c, d; 1) = (1 + a)(−abc; q)n 2φ1

„
q−n,−acd

−(abc)−1q−n+1

˛̨
˛ q;−c−1q

«
.

This method works to prove Theorem 6.1.
Finally let us mention that a similar argument also works to prove the

following ordinary partition identity.

Theorem 6.7. (Boulet)

X

λ partitions

ω(λ) =

∞Y
j=1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1− ajbjcjdj)(1− ajbjcj−1dj−1)(1− ajbj−1cjdj−1)
.

(6.4)

Here the sum runs over all partitions λ.
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