DECREASING SUBSEQUENCES IN PERMUTATIONS AND
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ABsTrACT. In a recent paper, Backelin, West and Xin describe a map ¢* that
recursively replaces all occurrences of the pattern k---21 in a permutation
o by occurrences of the pattern (k — 1)---21k. The resulting permutation
¢* (o) contains no decreasing subsequence of length k. We prove that, rather
unexpectedly, the map ¢* commutes with taking the inverse of a permutation.

In the BWX paper, the definition of ¢* is actually extended to full rook
placements on a Ferrers board (the permutations correspond to square boards),
and the construction of the map ¢* is the key step in proving the following
result. Let T be a set of patterns starting with the prefix 12---k. Let T be
the set of patterns obtained by replacing this prefix by k- - - 21 in every pattern
of T'. Then for all n, the number of permutations of the symmetric group S,
that avoid T equals the number of permutations of S, that avoid T”.

Our commutation result, generalized to Ferrers boards, implies that the
number of involutions of S, that avoid T is equal to the number of involutions
of S,, avoiding 7", as recently conjectured by Jaggard.

VERSION FRANCAISE. Dans un article récent, Backelin, West et Xin ont défini
une transformation ¢* qui détruit récursivement toutes les sous-suites décrois-
santes de longueur k£ d’une permutation (k est fixé). Cette transformation
s’obtient en itérant une transformation élémentaire ¢ qui détruit une sous-
suite décroissante de longueur k.

Ces deux transformations peuvent étre étendues a des objets plus généraux
que les permutations : des placements de tours sur des diagrammes de Ferrers.
Le trio BWX s’est servi de ¢* pour démontrer le résultat suivant. Soit 7" un
ensemble de motifs commencant tous par le préfixe 12 ---k. Soit 7”7 ’ensemble
de motifs obtenu en remplagant ce préfixe par k ---21 dans chacun des motifs
de T'. Alors pour tout n, le nombre de permutations de S, qui évitent 1" est
égal au nombre de permutations de S, qui évitent T”.

Le résultat principal de notre travail est que, trés curieusement, la trans-
formation itérée ¢* commute avec ’inversion des permutations (alors que ¢a
n’est pas le cas de la transformation élémentaire ¢). Plus généralement, elle
commute avec la symétrie diagonale des placements de tours.

Un corollaire est ’analogue du résultat de BWX pour les involutions : avec
des notations évidentes, I (T) = In(T"), ou T et T” sont définis comme ci-
dessus. Ce résultat avait été conjecturé par Jaggard.

1. INTRODUCTION

Let m = mymy - - -, be a permutation of length n. Let 7 = 7y - - - 74, be another
permutation. An occurrence of 7 in 7 is a subsequence 7, - - - m;, of 7 that is order-
isomorphic to 7. For instance, 246 is an occurrence of 7 = 123 in # = 251436.
We say that « avoids 7 if w contains no occurrence of 7. For instance, the above
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permutation 7 avoids 1234. The set of permutations of length n is denoted by S,
and S, (7) denotes the set of T-avoiding permutations of length n.

The idea of systematically studying pattern avoidance in permutations appeared
in the mid-eighties [20]. The main problem in this field is to determine S, (7), the
cardinality of S, (7), for any given pattern 7. This question has subsequently been
generalized and refined in various ways (see for instance [1, 4, 8, 17], and [16] for
a recent survey). However, relatively little is known about the original question.
The case of patterns of length 4 is not yet completed, since the pattern 1324 still
remains unsolved. See [5, 9, 22, 21, 25] for other patterns of length 4.

For length 5 and beyond, all the solved cases follow from three important generic
results. The first one, due to Gessel [9, 10], gives the generating function of the
numbers S, (12--- k). The second one, due to Stankova and West [23], states that
Sn(2317) = S, (3127) for any pattern 7 on {4, 5, ..., k}. The third one, due to Back-
elin, West and Xin [3], shows that S, (12---k7) = S,(k---217) for any pattern 7
on the set {k + 1,k +2,...,¢}. In the present paper an analogous result is estab-
lished for pattern-avoiding involutions. We denote by Z,,(7) the set of involutions
avoiding 7, and by I,(7) its cardinality.

The systematic study of pattern avoiding involutions was also initiated in [20],
continued in [9, 11] for increasing patterns, and then by Guibert in his thesis [12].
Guibert discovered experimentally that, for a surprisingly large number of pat-
terns 7 of length 4, I,(7) is the nth Motzkin number:

/2] \
n.

My = kZ:O Kk + 1)!(n — 2k)!

This was already known for 7 = 1234 (see |18]), and consequently for 7 = 4321,
thanks to the properties of the Schensted correspondence [19]. Guibert explained all
the other instances of the Motzkin numbers, except for two of them: 2143 and 3214.
However, he was able to describe a two-label generating tree for the class 7,,(2143).
Several years later, the Motzkin result for the pattern 2143 was at last derived from
this tree: first in a bijective way [13], then using generating functions [6]. No simple
generating tree could be described for involutions avoiding 3214, and it was only in
2003 that Jaggard [15] gave a proof of this final conjecture, inspired by [2]. More
generally, he proved that for k =2 or 3, I,,(12---k7) = I,(k---217) for all 7. He
conjectured that this holds for all &, which we prove here.

We derive this from another result, which may be more interesting than its im-
plication in terms of forbidden patterns. This result deals with a transformation
¢* that was defined in [3] to prove that S,(12---k7) = S,(k---217). This trans-
formation acts not only on permutations, but on more general objects called full
rook placements on a Ferrers shape (see Section 2 for precise definitions). The map
¢* may, at first sight, appear as an ad hoc construction, but we prove that it has
a remarkable, and far from obvious, property: it commutes with the inversion of
a permutation, and more generally with the corresponding diagonal reflection of a
full rook placement. (By the inversion of a permutation 7 we mean the map that
sends 7, seen as a bijection, to its inverse.)

The map ¢* is defined by iterating a transformation ¢, which chooses a certain
occurrence of the pattern k- - - 21 and replaces it by an occurrence of (k—1) - - - 21k.
The map ¢ itself does not commute with the inversion of permutations, and our
proof of the commutation theorem is actually quite complicated.

This strongly suggests that we need a better description of the map ¢*, on which
the commutation theorem would become obvious. By analogy, let us recall what
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F1GURE 1. A full rook placement on a Ferrers board, and its inverse.

happened for the Schensted correspondence: the fact that the inversion of permu-
tations exchanges the two tableaux only became completely clear with Viennot’s
description of the correspondence [24].

Actually, since the Schensted correspondence has nice properties regarding the
monotone subsequences of permutations, and provides one of the best proofs of the
identity I,,(12---k) = I,(k - - - 21), we suspect that the map ¢* might be related to
this correspondence, or to an extension of it to rook placements.

2. WILF EQUIVALENCE FOR INVOLUTIONS
One of the main implications of this paper is the following.

Theorem 1. Let k > 1. Let T be a set of patterns, each starting with the prefix
12---k. Let T' be the set of patterns obtained by replacing this prefix by k- --21 in
every pattern of T. Then, for all n > 0, the number of involutions of S,, that avoid
T equals the number of involutions of S, that avoid T'.

In particular, the involutions avoiding 12---kT and the involutions avoiding
k---217 are equinumerous, for any permutation T of {k+ 1,k +2,...,¢}.

This theorem was proved by Jaggard for k¥ = 2 and k = 3 [15]. It is the
analogue, for involutions, of a result recently proved by Backelin, West and Xin for
permutations [3]. Thus it is not very suprising that we follow their approach. This
approach requires looking at pattern avoidance for slightly more general objects
than permutations, namely, full rook placements on a Ferrers board.

Let A be an integer partition, which we represent as a Ferrers board (Figure 1).
A full rook placement on A, or a placement for short, is a distribution of dots on
this board, such that every row and column contains exactly one dot. This implies
that the board has as many rows as columns.

Each cell of the board will be denoted by its coordinates: in the first placement
of Figure 1, there is a dot in the cell (1,4). If the placement has n dots, we associate
with it a permutation 7 of Sy, defined by 7 (i) = j if there is a dot in the cell (3, 7).
The permutation corresponding to the first placement of Figure 1is 7 = 4312. This
induces a bijection between placements on the n x n square and permutations of
Sn.

The inverse of a placement p on the board X is the placement p' obtained by
reflecting p and A with respect to the main diagonal; it is thus a placement on the
conjugate of A, usually denoted by A'. This terminology is of course an extension
to placements of the classical terminology for permutations.

Definition 2. Let p be a placement on the board A, and let 7 be the corresponding
permutation. Let 7 be a permutation of S;. We say that p contains 7 if there
exists in 7 an occurrence m;, T, - - - 7;,, of 7 such that the corresponding dots are
contained in a rectangular sub-board of A. In other words, the cell with coordinates
(ix, max; m;; ) must belong to A.
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The placement of Figure 1 contains the pattern 12, but avoids the pattern 21,
even though the associated permutation m = 4312 contains several occurrences
of 21. We denote by S\ (7) the set of placements on A that avoid 7. If X is self-
conjugate, we denote by Zy(7) the set of symmetric (that is, self-inverse) placements
on A that avoid 7. We denote by Sy (7) and I(7) the cardinalities of these sets.

In [2, 3, 23], it was shown that the notion of pattern avoidance in placements
is well suited to deal with prefix exchanges in patterns. This was adapted by
Jaggard [15] to involutions:

Proposition 3. Let a and B be two involutions of Sy. Let T, be a set of patterns,
each beginning with a. Let T be obtained by replacing, in each pattern of Ty, the
prefic o by 8. If, for every self-conjugate shape X, In(a) = I\(B), then I\(T,) =
I\(Tg) for every self-conjugate shape.

Hence Theorem 1 will be proved if we can prove that Ix(12---k) = I (k- --21) for
any self-conjugate shape A. A simple induction on k, combined with Proposition 3,
shows that it is actually enough to prove the following;:

Theorem 4. Let \ be a self-conjugate shape. Then I\(k---21) = I\ ((k—1) - - - 21k).

A similar result was proved in [3] for general (asymmetric) placements: for every
shape A, one has S)(k---21) = S\((k—1)---21k). The proof relies on the descrip-
tion of a recursive bijection between the sets Sy(k---21) and Sx((k — 1) ---21k).
What we prove here is that this complicated bijection actually commutes with the
inwversion of a placement, and this implies Theorem 4.

But let us first describe (and slightly generalize) the transformation defined by
Backelin, West and Xin [3]. This transformation depends on k, which from now on
is supposed to be fixed. Since Theorem 4 is trivial for £k = 1, we assume k > 2.

Definition 5 (The transformation ¢). Let p be a placement containing k - - - 21,
and let 7w be the associated permutation. To each occurrence of & ---21 in p, there
corresponds a decreasing subsequence of length k in 7. The A-sequence of p, denoted
by A(p), is the smallest of these subsequences for the lexicographic order.

The corresponding dots in p form an occurrence of k - - - 21. Rearrange these dots
cyclically so as to form an occurrence of (k —1) ---21k. The resulting placement is
defined to be ¢(p).

If p avoids k---21, we simply define ¢(p) := p. The transformation ¢ is also
called the A-shift.

7463521 7362514

FIGURE 2. The A-shift on the permutation 74 6 3 5 2 1, when k = 4.

An example is provided by Figure 2 (the letters of the A-sequence are underlined,
and the corresponding dots are black). It is easy to see that the 4-shift decreases the
inversion number of the permutation associated with the placement (details will be
given in the proof of Corollary 11). This implies that after finitely many iterations of
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¢, there will be no more decreasing subsequences of length k in the placement. We
denote by ¢* the iterated transformation, that recursively transforms every pattern
k---21 into (k — 1) ---21k. For instance, with the permutation 7 =746 352 1
of Figure 2 and k = 4, we find

T=7463521-—7362514-—3261574=¢"(n).
The main property of ¢* that was proved and used in [3] is the following:

Theorem 6 (The BWX bijection). For every shape A, the transformation ¢*
induces a bijection from Sx((k —1)---21k) to Sx(k---21).

The key to our paper is the following rather unexpected theorem.

Theorem 7 (Global commutation). The transformation ¢* commutes with the
inversion of a placement.

For instance, with 7 as above, we have
T =7642531-—7421536-—4217536=¢*(n"")

and we observe that

¢*(m ) = (¢"(m) .
Note, however, that ¢(r 1) # (¢(r))~". Indeed, ¢(x~1) = 74215 3 6 while
(p(m))™" =6 427531, so that the elementary transformation ¢, that is, the
A-shift, does not commute with the inversion.

Theorems 6 and 7 together imply that ¢* induces a bijection from
Ir((k —1)---21k) to Zx(k---21), for every self-conjugate shape A. This proves
Theorem 4, and hence Theorem 1. The rest of the paper is devoted to proving
Theorem 7, which we call the theorem of global commutation. By this, we mean
that the inversion commutes with the global tranformation ¢* (but not with the
elementary transformation ¢).

Remarks

1. At first sight, our definition of the A-sequence (Definition 5), does not seem to
coincide with the definition given in [3]. Let ag, - - - aza; denote the A-sequence of the
placement p, with a; > --- > a;. We identify this sequence with the corresponding
set of dots in p. The dot aj is the lowest dot that is the leftmost point in an
occurrence of k---21 in p. Then aj_; is the lowest dot such that arar_1 is the
beginning of an occurrence of k- --21 in p, and so on.

However, in [3], the dot aj is chosen as above, but then each of the next dots
aj_4,...,ay is chosen to be as far left as possible, and not as low as possible.
Let us prove that the two procedures give the same sequence of dots. Assume
not, and let a; # aj be the first (leftmost) point where the two sequences differ.
By definition, a; is lower than a;-, and to the right of it. But then the sequence
ak_l---ajﬂa;-aj ---agay is an occurrence of the pattern k---21 in p, which is
smaller than ay, - - - aza; for the lexicographic order, a contradiction.

The fact that the A-sequence can be defined in two different ways will be used
very often in the paper.

2. At this stage, we have reduced the proof of Theorem 1 to the proof of the global
commutation theorem, Theorem 7.

3. FROM LOCAL COMMUTATION TO GLOBAL COMMUTATION

In order to prove that ¢* commutes with the inversion of placements, it would
naturally be tempting to prove that ¢ itself commutes with the inversion. However,
this is not the case, as shown above. Given a placement p and its inverse p', we
thus want to know how the placements ¢(p) and ¢(p')" differ.
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Definition 8. For any shape A and any placement p on A, we define 1(p) by

P(p) == o(p')".
Thus 9(p) is also a placement on A.

Note that ¢¥™(p) = (¢™(p"))’, so that the theorem of global commutation, The-
orem 7, can be restated as ¢* = ¢*.

Combining the above definition of ¢ with Definition 5 gives an alternative de-
scription of .

Lemma 9 (The transformation ). Let p be a placement containing k- --21. Let
bi,ba,..., b be defined recursively as follows: For all j, b; is the leftmost dot such
that bj - - - baby ends an occurrence of k---21 inp. We call by, - - - baby the B-sequence
of p, and denote it by B(p).

Rearrange the k dots of the B-sequence cyclically so as to form an occurrence of
(k—=1)---21k: the resulting placement is ¥ (p).

If p avoids k---21, then ¥(p) = p. The transformation 1 is also called the
B-shift.

According to the first remark that concludes Section 2, we can alternatively
define b;, for j > 2, as the lowest dot such that b;---bsb; ends an occurrence of
k---211in p.

We have seen that, in general, ¢ does not commute with the inversion. That is,
¢(p) # ¥(p) in general. The above lemma tells us that ¢(p) = ¥(p) if and only
if the A-sequence and the B-sequence of p coincide. If they do not coincide, then
we still have the following remarkable property, whose proof is deferred to the very
end of the paper.

Theorem 10 (Local commutation). Let p be a placement for which the A- and
B-sequences do not coincide. Then ¢(p) and vy (p) still contain the pattern k- --21,
and

(1 (p)) = ¥(4(p))-

For instance, for the permutation of Figure 2 and k = 4, we have the following
commutative diagram, in which the underlined (resp. overlined) letters correspond
to the A-sequence (resp. B-sequence):

[

63521

P T

4 362571

T~

3261574

o]

|

73625

I

A classical argument, which is sometimes stated in terms of locally confluent and
globally confluent rewriting systems (see [14] and references therein), will show that
Theorem 10 implies ¢¥* = ¢*, and actually the more general following corollary.

Corollary 11. Let p be a placement. Any iterated application of the transforma-
tions ¢ and 1 yields ultimately the same placement, namely ¢*(p). Moreover, all
the minimal sequences of transformations that yield ¢* (p) have the same length.

Before we prove this corollary, let us illustrate it. We think of the set of permu-
tations of length n as the set of vertices of an oriented graph, the edges of which are
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given by the maps ¢ and 1. Figure 3 shows a connected component of this graph.
The dotted edges represent ¢ while the plain edges represent . The dashed edges
correspond to the cases where ¢ and 9 coincide. We see that all the paths that
start at a given point converge to the same point.

Proof. For any placement p, define the inversion number of p as the inversion num-
ber of the associated permutation 7 (that is, the number of pairs (i, j) such that
i < jand m; > 7). Assume p contains at least one occurrence of k- --21, and let
i1 < --- < i be the positions (abscissae) of the elements of the A-sequence of p. A
careful examination of the inversions of p and ¢(p) shows that

k—1

inv(p) —inv(é(p)) = k—1+2 Z Card {i:im <@ <ipmyr and m, > w5 > W, )
m=1

In particular, inv(¢(p)) < inv(p). By symmetry, together with the fact that

inv(7~1) = inv(n), it follows that inv(1)(p)) < inv(p) too.

We encode the compositions of the maps ¢ and ¥ by words on the alphabet

{¢,%}. For instance, if u is the word ¢?, then u(p) = ¢)*(p). Let us prove, by
induction on inv(p), the following two statements:
1. If w and v are two words such that u(p) and v(p) avoid k - - - 21, then u(p) = v(p).
2. Moreover, if u and v are minimal for this property (that is, for any non-trivial
factorization u = ugui, the placement u, (p) still contains an occurrence of k - - - 21
— and similarly for v), then u and v have the same length.

If the first property holds for p, then u(p) = v(p) = ¢*(p). If the second property
holds, we denote by L(p) the length of any minimal word u such that u(p) avoids
k---21.

If 7 is the identity, then the two results are obvious. They remain obvious, with
L(p) = 0, if p does not, contain any occurrence of k - - - 21.

Now assume p contains such an occurrence, and u(p) and v(p) avoid k- --21. By
assumption, neither u nor v is the empty word. Let f (resp. g) be the rightmost
letter of u (resp. v), that is, the first transformation that is applied to p in the
evaluation of u(p) (resp. v(p)). Write u = v'f and v = v'g.

If f(p) = g(p), let ¢ be the placement f(p). Given that inv(q) < inv(p), and that
the placements u(p) = u'(¢) and v(p) = v'(q) avoid k - - - 21, both statements follow
by induction.

If f(p) # g(p), we may assume, without loss of generality, that f = ¢ and g = 9.
Let ¢1 = ¢(p), @2 = ¥(p) and ¢ = ¢(¥(p) = ¥(#(p)) (Theorem 10). The induction

326149857

FI1GURE 3. The action of ¢ and 1 on a part of Sy, for k = 4.
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hypothesis, applied to g1, gives u'(q1) = ¢*(¥(q1)) = ¢"(g), that is, u(p) = ¢*(q)
(see the figure below). Similarly, v'(g2) = ¢*(g2) = ¢*(q), that is, v(p) = ¢*(q).
This proves the first statement. If 4 and v are minimal for p, then so are v’ and
v' for ¢; and ¢ respectively. By the first statement of Theorem 10, ¢; and g2 still
contain the pattern k- --21, so L(q) = L(¢1) — 1 = L(g2) — 1, and the words «’ and
v’ have the same length. Consequently, u and v have the same length too. |

p

¢

a 7P
Y ¢

4. THE LOCAL COMMUTATION THEOREM

We have reduced the proof of Theorem 1 to the proof of the local commutation
theorem, Theorem 10. The rest of the paper is devoted to this proof, which turns
out to be unexpectedly complicated. There is no question that one needs to find a
more illuminating description of ¢*, or of ¢ o1, which makes Theorems 7 and 10
clear.

In the full version of the paper, available on the arXiv [7], this theorem is first
proved for permutations, and then extended to placements. In this extended ab-
stract, we simply study one big example, and use it to describe the main steps of
the proof (for permutations). This example is illustrated in Figure 4.

Example. Let 7 be the following permutation of length 21:
7=172120161918131511141281097426 53 1.
1. Let £ = 12. The A-sequence of 7 is
A(r)=1716/1514121097/6 53 1,
while its B-sequence is
B(r)=21201918/151412109 7/4 2.

Observe that the intersection of A(m) and B(w) (delimited by ’/’) consists of the
letters 15 14 12 10 9 7, and that they are consecutive both in A(7) and B(w). Also,
B contains more letters than 4 before this intersection, while 4 contains more
letters than B after the intersection. In the full version of the paper, we prove that
this is always true.

2. Let us now apply the B-shift to 7. One finds:
Y(r)=1720191618151314111210897422165 3 1.

The new A-sequence is now A(y(m)) = 17 16/15 13 11 10 8 7/6 5 3 1. Observe
that all the letters of A(r) that were before or after the intersection with B(w) are
still in the new A-sequence, as well as the first letter of the intersection. We prove
that this is always true. In this example, the last letter of the intersection is still
in the new A-sequence, but this is not true in general.
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By symmetry with respect to the main diagonal, after the A-shift, the letters of
B that were before or after the intersection are in the new B-sequence, as well as
the first letter of 4 following the intersection. This can be checked on our example:

G(r)=162120151918 131411 12108976425 3 1 17,

and the new B-sequence is B(¢(w)) =21 20 19 18/13 11108 76 /4 2.

3. Let a; = b; denote the first (leftmost) point in A(7) N B(x), and let aq = b. be
the last point in this intersection. We have seen that after the B-shift, the new A-
sequence begins with ay ---a; = 17 16 15, and ends with ag_1 ---a; =6 5 3 1. The
letters in the center of the new A-sequence, that is, the letters replacing a;_1 - - - ag4,
are z;_1---xq = 13 11 10 8 7. Similarly, after the A-shift, the new B-sequence
begins with by ---bj41 = 21 20 19 18, and ends with ag_1be—1---by = 6 4 2. The
central letters are again x;_q ---z4 = 13 11 10 8 7! (See Figure 4). This is not a
coincidence; we prove in [7] that this always holds.

4. We finally combine all these properties to describe explicitly how the maps
¢ o1 and 1 o ¢ act on a permutation 7, and conclude that they yield the same
permutation if the A- and B-sequences of © do not coincide.

Acknowledgements. We thank Yves Métivier and Gérard Huet for references on
the confluence of rewriting systems, and Olivier Guibert for interesting discussions
on pattern avoiding involutions.
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FIGURE 4. Top: A permutation 7, with its A- and B-sequences
shown. Left: After the B-shift. Right: After the .4-shift. Bottom:
After the composition of ¢ and 2.
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