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Abstract

This report presents the study of algorithms whose goal is to determine whether two
Datalog programs are equivalent. Datalog is a query language used over deductive
databases. Datalog is a fragment of Prolog, and consists in Horn clauses without
function symbols.

In general, it is undecidable whether two given Datalog programs are equivalent
one to each other; however, this problem becomes decidable if we look at restricted
classes of Datalog programs: monadic Datalog programs and transitive Datalog
programs. Indeed, the algorithms designed in order to solve the equivalence problem of
such Datalog programs involve similar techniques.

This report first presents Datalog programs in general, then the two particular classes
of Datalog programs above mentioned. It continues with a study of the links between
Datalog programs,a finite trees and finite automata. It eventually presents the algo-
rithms designed during the internship, which solve a problem slightly more general than
the equivalence problem: the inclusion of a Datalog program in a monadic Datalog
program, then in a transitive Datalog program.

Résumé

Ce rapport présente l’étude d’algorithmes dont le but est d’évaluer l’équivalence entre
des programmes Datalog. Datalog est un langage de programmation par requêtes,
utilisé sur des bases de données déductives. Datalog constitue un fragment du langage
Prolog, consistant en des clauses de Horn sans symboles de fonction.

Si l’équivalence entre deux programmes Datalog est, de manière générale, indécidable,
il est cependant possible de résoudre ce problème dans le cadre d’instances particulières
de programmes Datalog : les programmes Datalog avec récursion monadique, puis les
programmes Datalog avec clôture transitive. En effet, il apparaît que les algorithmes
développés pour résoudre le problème de l’équivalence de programmes, dans ces deux
cadres particuliers, font en fait appel à des notions similaires.

Ce rapport présente, dans un premier temps, les programmes Datalog de manière gé-
nérale, puis les instances particulières de programmes Datalog mentionnées ci-dessus.
Il se poursuit par une étude sur les liens entre programmes Datalog, arbres finis, et
automates finis. Enfin, il présente les algorithmes développés durant le stage, et per-
mettant de résoudre un problème légèrement plus général que le problème d’équivalence
entre deux programmes : l’inclusion d’un programme Datalog quelconque dans un pro-
gramme Datalog avec récursion monadique, puis dans un programme Datalog avec
clôture transitive.
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Chapter 1

Introduction

1.1 Goal of the Project

In database theory, first-order database query languages are lacking in expressive power.
Since then, many higher-order query languages have been investigated, including Data-
log, the language of logic programs without function symbols.

Along with the evaluation of Datalog programs comes naturally the question of the
containment of Datalog programs. Unfortunately, Datalog program equivalence is
non-decidable. Since the source of the difficulty in evaluating Datalog programs is
their recursive nature, it can be investigated whether equivalence of Datalog programs
with restricted recursion is decidable.

To that extent, a theorem of particular interest is a powerful general decidability result
due to Courcelle [8], which establishes the decidability of some decision problems
involving Datalog programs and monadic second-order queries. Unfortunately, while
Courcelle’s result yields the decidability such problem, it provides only non-elementary
time-bounds [7].

Therefore, my main goal was to specify some classes of Datalog program to which
Courcelle’s decidability result would apply. Then, my second task was to look for
upper and lower bounds of the computational complexity of containment and equivalence,
with the help of the automaton-theoretic approach advocated in [15].

1.2 Main Steps of the Project

My internship was divided in three main steps. First of all, my main objective was to
discover and understand what a Datalog program was, as well as the links that bind
Datalog programs to finite tree and finite automata. It is during that period that
I managed to build my own intuition on finite trees, on automata, and on Datalog
programs. My two major sources of information were [5] and [9]: in particular, I chose
to adopt, for this report, a structure quite similar to the one of [9], which has been the
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reference I worked with during several months.

Then, Moshe Y. Vardi presented me the first class of Datalog programs I would
have to work on, the monadic Datalog programs. Since he had already thought about
this particular class of programs, what I had to do was mainly to understand the ideas
he had had, then to design and algorithm based on these ideas, and that would decide
the containment of a program in another one.

After that, he presented me the first class of Datalog programs I would have to
work on, the transitive Datalog programs. This time, whereas it remained easy to
see how to use Courcelle’s theorem, it was not clear whether Courcelle’s result
gave a good upper bound for the computational complexity of the containment problem.
After some unsuccessful attempts, the lecture of some articles [2, 3, 4] related to my
problem gave me the ideas that eventually allowed me to design an algorithm solving
the containment problem, and whose complexity was much better than the upper bound
given by Courcelle’s general result.

1.3 Overview of the Report

This report first describes Datalog programs, as well as the restricted classes of Dat-
alog programs on which I worked: the monadic Datalog programs and the transitive
Datalog programs. Then, the report stresses the links that bind Datalog programs,
finite trees and finite automata, since automata techniques have been extensively while
designing the two algorithms I found. Finally, the report focuses on the algorithms that
were designed, as well as the main steps of the proof of the correctness of those algorithms.

However, if the general ideas of the proofs and of the tools introduced will be described
in the main body of this report, the proofs used are often quite long and technical. There-
fore, the reader eager to verify the proofs themselves can do so by going to Appendix A.
Similarly, the use of Courcelle’s theorem, that assured me of the decidability of the
problems I looked at, was not helpful at all while designing more efficient algorithms.
This is why the part concerning this theorem is postponed in Appendix B.
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Chapter 2

Datalog Programs

2.1 Conjunctive Queries

A conjunctive query is a positive existential conjunctive first-order formula: the only
propositional connective allowed is ∧ and the only quantifier allowed is ∃. Without loss
of generality, we can assume that conjunctive queries are given as formulæ θ(x1, . . . , xk) of
the form (∃y1, . . . , ym)(a1∧. . .∧an) with free variables (also called distinguished variables)
among x1, . . . , xk, and where the ai’s are atomic formulæ of the form p(z1, . . . , zl) over
the variables x1, . . . , xk, y1, . . . , ym.

For instance, (∀y)(E(x, y) ∧ E(y, z)), (∃y)(E(x, y) ∧ ¬E(y, z)) and (∃y)(E(x, y) ∨
E(y, z)) are not conjunctive queries, but (∃y)(E(x, y) ∧ E(y, z)) is a conjunctive query.
The latter query is satisfied by all pairs 〈x, z〉 such that there is a path of length 2 between
x and z.

We need now to distinguish between variables and occurrences of variables in a con-
junctive query, but we only consider occurrences of variables in the atomic formulæ of
the query. For example, the variables x, y and z respectively have one, two and one
occurrence in (∃y)(E(x, y) ∧ E(y, z)).

Eventually, a union of conjunctive queries is a disjunction

s∨
i=1

θi(x1, . . . , xk)

of conjunctive queries. A union of conjunctive queries Θ(x1, . . . , xk) can be applied to a
database D. The result

Θ(D) = {(a1, . . . , ak)|D � Θ(a1, . . . , ak)}

is the set of k-ary tuples that satisfy Θ in D. If Θ has no distinguished variables, then
it is viewed as a Boolean query: the result is either the empty relation (corresponding to
false) or the relation containing the 0-ary tuple (corresponding to true).
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2.2 Datalog and Containment

A Datalog program consists of a set of Horn rules. A Horn rule consists of a single
atom in the head of the rule and a conjunction of atoms in the body, where an atom is a
formula of the form p(z1, . . . , zl) where p is a predicate symbol and z1, . . . , zl are variables.
The predicates that occur in head of rules are called intensional (IDB) predicates. The
other predicates are called extensional (EDB) predicates.

For instance, let P be the following Datalog program:

odd(Y ) ∧ successor(Y,X) ⇒ even(X)
even(Y ) ∧ successor(Y,X) ⇒ odd(X)
zero(X) ⇒ even(X)

In the program P, the IDB predicates are even and odd; the EDB predicates are suc-
cessor and zero.

Let Π be a Datalog program. Let Qi
Π(D) be the collection of facts about an IDB

predicate Q that can be deduced from a database D by at most i applications of the rules
in Π. Finally, let Q∞Π (D) be the collection of facts about Q that can be deduced from D
by any number of applications of the rules in Π, that is,

Q∞Π (D) =
⋃
i≥0

Qi
Π(D)

Example 2.2.1.
Let us consider the deductive database

D = ({0, 1, 2, 3}, {zero(0), successor(0, 1), successor(1, 2), successor(2, 3)})

By applying the program P to D, we successively obtain the databases

• ({0, 1, 2, 3}, {zero(0), successor(0, 1), successor(1, 2), successor(2, 3),
even(0)}).
• ({0, 1, 2, 3}, {zero(0), successor(0, 1), successor(1, 2), successor(2, 3),
even(0),odd(1)}).
• ({0, 1, 2, 3}, {zero(0), successor(0, 1), successor(1, 2), successor(2, 3),
even(0),odd(1), even(2)}).
• ({0, 1, 2, 3}, {zero(0), successor(0, 1), successor(1, 2), successor(2, 3),
even(0),odd(1), even(2),odd(3)}).

Therefore, even∞P (D) = {(0), (2)}.

We say that the program Π with goal predicate Q is contained in a union of conjunctive
queries Θ if Q∞Π (D) ⊆ Θ(D) for each database D. Similarly, we say that the program
Π with goal predicate Q is contained in another program Π with goal predicate Q if
Q∞Π (D) ⊆ Q

∞
Π (D) for each database D. Finally, we say that the program Π with goal

predicate Q is equivalent to another program Π with goal predicate Q if Q∞Π (D) = Q
∞
Π (D)

for each database D.
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For instance, let P be the following Datalog program:

integer(Y ) ∧ successor(Y,X) ⇒ integer(X)
zero(X) ⇒ integer(X)

Then, the program P with goal predicate even is contained in the program P with goal
predicate integer, but these programs are not equivalent to each other.

2.3 Monadic Datalog Programs

A class of Datalog programs of particular interest is the class of monadic Datalog
programs, defined below.

Definition 2.3.1.
Let Π be a Datalog program, and P1, . . . , Pk its predicates (i.e. the predicates occurring
in any rule of Π). Π is a monadic Datalog program if there exists a total mapping
ϕ : {P1, . . . , Pk} → N such that, for every rule R : I1(x1) ∧ . . . ∧ In(xn) ⇒ I0(x0) of Π,
then ϕ(I0) ≥ max{ϕ(I1), . . . , ϕ(In)}, with strict inequality if I0 is not a monadic predicate
(i.e. a predicate of arity 1).

Intuitively, in such a program, only a monadic IDB predicate can depend recursively
of itself when being defined. That is why this program is said to be monadic.

2.4 Transitive Datalog Programs

Another class of particular interest is the class of transitive Datalog programs, defined
below.

Definition 2.4.1.
Let Π be a Datalog program. Let us suppose that we can split its predicates P1, . . . , Pk
in two sorts: we call the predicates of the first sort star predicates (these predicates will
often be denoted with asterisks), and we call the predicates of the second sort star-free
predicates. Then, for each star predicate P ∗, P ∗ must be binary and Π also contains
a binary star-free predicate P . Furthermore, Π contains two rules > ⇒ P ∗(X,X) and
P (X, Y )∧P ∗(Y, Z)⇒ P ∗(X, Y ); P ast may not appear in the head of any other rule of Π.
Finally, we suppose that there is exists a total mapping ϕ : {P1, . . . , Pk} → N such that,
for every ruleR : I1(x1)∧. . .∧In(xn)⇒ I0(x0) of Π, then ϕ(I0) ≥ max{ϕ(I1), . . . , ϕ(In)},
with strict inequality if R is not a star rule P (X, Y ) ∧ P ∗(Y, Z)⇒ P ∗(X, Y ).

If a Datalog program Π verifies all these properties, Π is said to be transitive.

Then, we call baby-star rule every rule > ⇒ P ∗(X,X), star rule every rule P (X, Y ) ∧
P ∗(Y, Z) ⇒ P ∗(X, Y ), and star-free rule every other rule (i.e. every rule whose head
predicate is a star-free predicate).
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Intuitively, such a program features a logical formula implementing finite disjunc-
tions and conjunctions of queries, existential and universal quantification, and recursion
through transitive closure of binary predicates. That is why this program is said to be
transitive.

2.5 Alternative Definitions

For more convenience, we will use slightly different definitions of the two classes of pro-
grams introduced above. If these definitions are equivalent to those already given, they
are the definitions that will be used later in the report. In order to introduce these defi-
nitions, we define a well-ordering on the set N[X] of the polynomials with non-negative
integer coefficients.

Proposition 2.5.1.
We denote by N[X] the set of polynomials with non-negative integer coefficients. Let ≤
be the ordering on N[X] defined as P ≤ Q if and only if Q− P has a leading coefficient
in N. ≤ is a well-ordering.

Proof. See Appendix A, Proof A.1.1

This proposition allows us to use a very efficient technique along the entire report: if
S is a set and ϕ : S → N[X] a total mapping, we use rewriting rules r1, . . . , rk over S
such that, ∀s ∈ S, ϕ(ri(s)) < ϕ(s). Therefore, the process of rewriting must be finite.

It is such a technique that lets us give the following characterisation of monadic Dat-
alog programs:

Proposition 2.5.2.
Let Π be a monadic Datalog program. Π is equivalent to a monadic Datalog program
Π′ such that:

• the goal predicate of Π′ does not appear in the body of any rule of Π′.
• every IDB predicate of Π′ which is not the goal predicate is monadic.

Proof. See Appendix A, Proof A.1.2

Definition 2.5.3. In such a program, we call internal IDB predicates the IDB predicates
that are not the goal predicate, goal rules the rules whose head predicate is the goal
predicate, and internal rules the rules whose head predicate is an internal predicate.

Likewise, we obtain the following characterisation of Datalog programs with transi-
tive closure:
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Proposition 2.5.4.
Let Π be a transitive Datalog program. Π is equivalent to a transitive Datalog pro-
gram Π′ such that:

• the goal predicate of Π′ does not appear in the body of any rule of Π′.
• every IDB predicate of Π′ that appears in the body of some star-free rule of Π′ must
be a star predicate.
• every IDB predicate of Π′ which is not the goal predicate is of arity 2.

Proof. See Appendix A, Proof A.1.3
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Chapter 3

Datalog, Finite Trees and Automata

The main part of this chapter is directly inspired from the article [9].

3.1 Containment of Conjunctive Queries

The notion of containment of conjunctive queries and of Datalog programs are very
similar. Therefore, it is useful to look first at theorems regarding the containment of
conjunctive queries.

In particular, a very useful characterisation of the containment of conjunctive queries
is related to the notion of containment mapping defined below:

Definition 3.1.1.
A containment mapping from a conjunctive query ψ to a conjunctive query θ is a renaming
of variables subject to the following constraints:
• every distinguished variable must map to itself, and
• after renaming, every literal in ψ must be among the literals of θ.

Conjunctive-query containment can then be characterized in terms of containment
mappings (cf. [14]).

Theorem 3.1.2.
A conjunctive query θ(x1, . . . , xk) is contained in a conjunctive query ψ(x1, . . . , xk) if and
only if there is a containment mapping from ψ to θ.

It may be convenient to view a containment mapping h from ψ to θ as a mapping from
occurrences of variables in ψ to occurrences to variables in θ. Such a mapping has the
property that v1 and v2 are occurrences of the same variable in ψ, then h(v1) and h(v2)
are occurrences of the same variable in θ.

Sagiv and Yannakakis [11] extended Theorem 3.1.2 to the case where queries are
unions of conjunctive queries.
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Theorem 3.1.3.
If Φ = ∪iφi and Ψ = ∪iψi are (finite) unions of conjunctive queries, then Φ is contained
in Ψ (i.e., Φ(D) ⊆ Ψ(D) for every database D) if and only if each φi is contained in
some ψj , i.e., there is a containment mapping from ψj to φi.

3.2 Expansion Trees

Expansions can be described in terms of expansion trees. The nodes of an expansion tree
for a Datalog program Π are labelled by pairs of the form (α, ρ), where α is an IDB
atom and ρ is an instance of a rule r of Π such that the head of ρ is α. The atom labelling
a node x is denoted αx and the rule labelling a node x is denoted ρx. In an expansion
tree for an IDB predicate Q, the root is labelled by a Q-atom. Consider a node x, where
αx is the atom R(t), ρx is the rule

R1(t1) ∧ . . . ∧Rm(tm)⇒ R(t)

and the IDB atoms in the body of the rule are Ri1(ti1), . . . , Ril(t
il). Then x has children

x1, . . . , xl labelled with the atoms Ri1(ti1), . . . , Ril(t
il). In particular, if all atoms in ρx

are EDB atoms, then x must be a leaf.

The query corresponding to an expansion tree is the conjunction of all EDB atoms in
ρx for all nodes x in the tree; the free variables of this query are the variables appearing in
the head atom of the root of the tree, and the other variables are bound to an existential
quantifier. Thus, we can view an expansion tree τ as a conjunctive query. Let trees(Q,Π)
denote the set of expansion trees for an IDB predicate Q in Π. (Note that trees(Q,Π) is
an infinite set.) Then for every database D, we have

Q∞Π (D) =
⋃

τ∈trees(Q,Π)

τ(D)

It follows that Π is contained in a conjunctive query θ if there is a containment mapping
from θ to each expansion tree τ in trees(Q,Π), i.e. a mapping which maps distinguished
variables to distinguished variables and the atoms of θ to atoms in the bodies of rules
labelling nodes of τ .

The expansion trees that are obtained by “unfolding” the program Π are of particular
interest.

Definition 3.2.1.
An expansion tree τ of a Datalog program Π is an unfolding expansion tree if it satisfies
the following conditions:

• the atom labelling the root is the head of a rule in Π.
• if a node x is labelled by (αx, ρx), then the variables in the body of ρx either occur

in αx or do not occur in the label of any node above x.
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Intuitively, an unfolding expansion tree is obtained by starting with a head of a rule in
Π as the atom labelling the root, and then creating children by unifying an atom labelling
a node with a “fresh” copy of a rule in Π. Note that if a variable v occur in the atom
labelling a node x but not in the atoms labelling the children of x, then v will not occur
in the label of any descendant of x.

We denote the collection of unfolding expansion trees for an IDB predicate Q in a
program Π by u_trees(Q,Π). It is easy to see that every expansion tree can be obtained
by renaming variables in an unfolding expansion tree. Thus, every expansion tree, viewed
as a conjunctive query, is contained in an unfolding expansion tree.

Example 3.2.2.
Figure 3.1 shows expansion trees for the IDB predicate p in the following transitive closure
program.

e(X,Z) ∧ p(Z, Y ) ⇒ p(X, Y )
e′(X, Y ) ⇒ p(X, Y )

Note that the variable X is re-used in the child of the root of the expansion tree, while
a new variable W is used instead of X in the child of the root of the unfolding expansion
tree.

p(X,Y), e(X,Z) ∧ p(Z,Y) ⇒ p(X,Y)

?

p(Z,Y), e(Z,X) ∧ p(X,Y) ⇒ p(Z,Y)

?

p(X,Y), e’(X,Y) ⇒ p(X,Y)

(a)

p(X,Y), e(X,Z) ∧ p(Z,Y) ⇒ p(X,Y)

?

p(Z,Y), e(Z,W) ∧ p(W,Y) ⇒ p(Z,Y)

?

p(W,Y), e’(W,Y) ⇒ p(W,Y)

(b)

Figure 3.1: (a) Expansion Tree (b) Unfolding Expansion Tree

The following proposition follows immediately.

Proposition 3.2.3.
Let Π be a program with a goal predicate Q. For every database D, we have

Q∞Π (D) =
⋃

τ∈u_trees(Q,Π)

τ(D)
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3.3 Some Notations

Having introduced the concept of expansion trees, we will now introduce some notations
that will be very useful below in this report. Indeed, since a tree can be seen as a set of
nodes, and since we can also consider sets of predicates or of variables, the sooner we find
a convenient notation for these objects, the better. Therefore, here are some notations
that will be found throughout the entire report:

Definition 3.3.1.
Let Π be a Datalog program. We denote by program_var(Π) twice the maximum
number of variables occurring in any rule of Π, and by var(Π) the set of variables
{xΠ,1, . . . , xΠ,program_var(Π)}.

Let γ be a Datalog program with goal predicate Γ such that u_trees(Γ, γ) be finite.
We denote by tree_var(γ) twice the maximum number of variables occurring in any tree
σ ∈ u_trees(Γ, γ), and by var�(γ) the set of variables {x′γ,1, . . . , x′γ,tree_var(γ)}.

Let A be set of instances of atoms. We denote by var(A) the set of variables occurring
in any atom of A.

Let v be tuple of variables. We denote by var(v) the set of variables occurring in v.

Let R be an instance of a rule of a Datalog program Π. We denote by var(R) the
set of variables occurring in R.

Let σ be an expansion tree of a Datalog program Π. We denote by var(σ) the set of
variables occurring in σ.

Let σ be a tree. We denote by Nσ the set of nodes in σ.

Let σ be a tree, and n ∈ Nσ a node in σ. We denote by σ(n) the sub-tree of σ whose
root is n.

3.4 Proof Trees

If unfolding expansion trees are at the basis of the study of Datalog programs, they have
the disadvantage of involving an unbounded number of variables. Therefore, we introduce
now the notion of proof tree: the basic idea behind proof trees is to describe expansion
trees using a finite number of labels. We bound the number of labels by bounding the
set of variables that can occur in labels of nodes in the tree, taking advantage of the
notations introduced in the precedent section.

Definition 3.4.1.
Let Π be a Datalog program. A proof tree for Π is an expansion tree for Π all of whose
variables are from var(Π). We denote the set of proof trees for a predicate Q of a program
Π by p_trees(Q,Π).
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The intuition behind proof tree is that variables are re-used. In an unfolding expansion
tree, when we “unfold” a node x we take a “fresh” copy of a rule r in Π. In a proof tree,
we take instead an instance of r over var(Π). Since the number of variables in var(Π)
is twice the number of variables in any rule of Π, we can instantiate the variables in the
body of r by variables different from those in the goal αx.

Example 3.4.2.
Figure 3.2 describes an unfolding expansion tree and a proof tree for the IDB predicate
p in the transitive-closure program of Example 3.2.2.

Note that, in the proof tree, instead of using a new variable W , we re-use the variable
X.

p(X,Y), e(X,Z) ∧ p(Z,Y) ⇒ p(X,Y)

?

p(Z,Y), e(Z,W) ∧ p(W,Y) ⇒ p(Z,Y)

?

p(W,Y), e’(W,Y) ⇒ p(W,Y)

(a)

p(X,Y), e(X,Z) ∧ p(Z,Y) ⇒ p(X,Y)

?

p(Z,Y), e(Z,X) ∧ p(X,Y) ⇒ p(Z,Y)

?

p(X,Y), e’(X,Y) ⇒ p(X,Y)

(b)

Figure 3.2: (a) Unfolding Expansion Tree (b) Proof Tree

A proof tree represents an expansion tree where variables are re-used. In other words,
the same variable is used to represent a set of distinct variables in the expansion tree.
Intuitively, to reconstruct an expansion tree for a given proof tree, we need to distinguish
among occurrences of variables.

Definition 3.4.3.
Let n1 and n2 be nodes in a proof tree Σ, with a lowest common ancestor n, and let
v1 and v2 be occurrences, in n1 and n2, respectively, of a variable v. v1 and v2 are
said to be connected in Σ if the head of every node, except perhaps for n, on the simple
path connecting n1 and n2, contains an occurrence of v. Connectedness is an equivalence
relation and it partitions the occurrences of variables in the proof tree. We denote the
equivalence class of an occurrence v of a variable v in a proof tree Σ by [v]Σ, and the set
of such equivalence classes by [Σ].

Similarly, if (v1, . . . ,vk) is a tuple of occurrences of variables, the tuple ([v1]Σ, . . . , [v1]Σ)
is denoted by [(v1, . . . ,vk)]Σ. And if ρ is an instance of a rule in Σ, we denote by [var(ρ)]
the set {[v]|ρ contains the occurrence v of a variable v}.

There is a canonical identification from proof trees to unfolding trees, which states the
straightforward but essential following proposition:
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Proposition 3.4.4.
Let Π be a Datalog program with goal predicate Q. For all Σ in p_trees(Q,Π), there
exists an unique tree (up to renaming of its variables) ν ∈ u_trees(Q,Π) such that some
bijective mappings h : Nν → NΣ and θ : var(ν)→ [Σ] (which we can extend to a mapping
θ : var(ν)→ var(Π) in a natural way) have the following property:

• ∀n, n′ ∈ Nν, h(n) is a child of h(n′) in Σ if and only if n is a child of n′ in ν.
• ∀n ∈ Nν, if n = (R(t), ρ), then h(n) = (θ(R(t)), θ(ρ)).

We denote by U(Σ) this tree ν ∈ u_trees(Q,Π), and call unfolding mapping (resp.
unfolding node mapping) of Σ the mapping θ (resp. h).

3.5 Automata on Trees

Let N+ denote the set of positive integers. The variables x and y denote elements of
N∗+ (the set of finite sequences of positive integers). A tree τ is a finite subset of N∗+,
such that if xi ∈ τ , where x ∈ N∗+ and i ∈ N+, then also x ∈ τ and, if i > 1, then also
x(i − 1) ∈ τ . The elements of τ are called nodes. If x and xi are nodes of τ , then x is
the parent of xi and xi is the child of x. The node x is a leaf if it has no children. By
definition, the empty sequence ε is a member of every tree; it is called the root.

A Σ-labelled tree, for a finite alphabet Σ, is a pair (τ, π), where τ is a tree and π : τ → Σ
assigns a label to every node. Labelled trees are often referred to as trees ; the intention
will be clear from the context. The set of Σ-labelled trees is denoted trees(Σ).

A tree automaton A is a tuple (Σ, S, S0, δ, F ), where Σ is a finite alphabet, S is a
finite set of states, S0 ⊆ S is a set of initial states, F ⊆ S is a set of accepting states,
and δ : S × Σ → 2S

∗ is a transition function such that δ(s, a) is finite for all s ∈ S
and a ∈ Σ. A run r : τ → S of A on a Σ-labelled tree (τ, π) is a labelling of τ
by states of A, such that the root is labelled by an initial state and the transitions
obey the transition function δ; that is, r(ε) ∈ S0, and if x is not a leaf and x has k
children, then 〈r(x1), . . . , r(xk)〉 ∈ δ(r(x), π(x)). If for every leaf x of τ there is a tuple
〈s1, . . . , sl〉 ∈ δ(r(x), π(x)) such that {s1, . . . , sl} ⊆ F , then r is accepting. A accepts
(τ, π) if it has an accepting run on (τ, π). The tree language of A, denoted T (A), is the
set of trees accepted by A.

An important property of tree automata is their closure under Boolean operations.

Proposition 3.5.1. [6]
Let A1, A2 be automata over an alphabet Σ. Then there are automata A3, A4, and A5

such that L(A3) = Σ∗ − L(A1), L(A4) = L(A1) ∩ L(A2), and L(A5) = L(A1) ∪ L(A2).

As in word automata, the constructions for union and intersection involve only a poly-
nomial blow-up in the size of the automata, while complementation may involve an ex-
ponential blow-up in the size of the automaton.

The non-emptiness problem for tree automata is to decide, given a tree automaton A,
whether T (A) is non-empty.
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Proposition 3.5.2. [10, 13]
The non-emptiness problem for tree automata is decidable in polynomial time.

Proof. See Appendix A, Proof A.2.1

We note that using techniques such as in [1], the non-emptiness problem for tree au-
tomata is decidable in linear time.

Another problem related to non-emptiness is the containment problem, which is to
decide, given tree automata A1 and A2, whether T (A1) ⊆ T (A2). As for word automata,
the containment problem is reducible to the non-emptiness problem, though the reduction
may be computationally expensive.

Proposition 3.5.3. [11]
The containment problem for tree automata is EXPTIME-complete.
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Chapter 4

Monadic Programs

4.1 Decorated Unfolding Trees

Unfolding expansion trees allow us to register sequences of rules that can be applied in
order to answer positively to the goal predicate of a Datalog program. In addition to
that, we also may have to store information on the variables appearing during the process
of answering this query.

Intuitively, the entire information that we can obtain is, for any variable appearing in
an unfolding tree, the set of monadic predicates that hold on this variable. Therefore, we
have to store this information with the tree itself, which is done by adding a decoration to
the tree: we also indicate which monadic predicates hold on any variable appearing in the
tree, then verify whether this indication is compatible with a given monadic Datalog
rule, or with a set of such rules.

To that extent, we introduce here the concept of decorated unfolding trees.

Definition 4.1.1.
A decorated unfolding tree of a Datalog program Π with goal predicate Q is a triple
(τ,L, ϕ) where τ ∈ u_trees(Q,Π), L is a finite set, var(τ) is the set of the variables
appearing in τ , and ϕ ∈ 2var(τ)×L can be seen as a total mapping from the variables in τ
to the subsets of L.

We denote by u_dec(Q,Π) the collection of decorated unfolding trees for program Π
with goal predicate Q. Moreover, if S is a finite set, we denote by u_dec(S, Q,Π) the set
of trees (τ,L, ϕ) ∈ u_dec(Q,Π) such that L = S.

Datalog is a fragment of fixpoint logic. Therefore, it is natural, while dealing with
Datalog, to look for the existence of fixpoints under some applications. Intrinsically,
the importance of the notion of fixpoint is highly related to monadic second-order (MSO)
logic. And this notion allows us to specify whether a decorated unfolding tree gives
information coherent with a monadic Datalog rule or program. That we define now the
notion of fixpoint decorated unfolding tree.
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Definition 4.1.2.
Let R be a rule

R1(t1) ∧ . . . ∧Rm(tm)⇒ R(t)

where the IDB atom R(t) in the head and the IDB atoms Ri1(ti1), . . . , Ril(t
il) in the

body are monadic, and where the EDB atoms in the body are Rj1(ti1), . . . , Rjl′
(tjl′ ). A

decorated unfolding tree τ dec = (τ,L, ϕ) is said to be a fixpoint decorated unfolding tree
with respect to R if and only if the following holds:

• {R,Ri1 , . . . , Ril} ⊆ L.
• for each total mapping h : var(R)→ var(τ) from the variables ofR to the variables

of τ , if Rj1(h(tj1)), . . . , Rjl′
(h(tjl′ )) hold and {(h(ti1), Ri1), . . . , (h(til), Ril)} ⊆ ϕ,

then (h(t), R) ∈ ϕ.

If Π is a Datalog program with goal predicate Q, we denote by u_decfp(R, Q,Π) the
set of fixpoint decorated unfolding trees τ of Π with respect to R. And, if S is a finite
set, we denote by u_decfp(S,R, Q,Π) the set of fixpoint decorated unfolding trees τ of
Π with respect to R and such that Lτ = S.

A Datalog program is a finite conjunction of Horn rules; therefore, after having
defined the concept of fixpoint decorated unfolding tree with respect to a particular Horn
rule, a natural generalisation is to define the concept of fixpoint decorated unfolding tree
with respect to a Datalog program.

Definition 4.1.3.
Let ΠM be a monadic Datalog program with goal predicate QM and rules R1, . . . ,Rn.
Let LIDB be the set of internal IDB predicates of ΠM. A fixpoint decorated unfolding tree
with respect to ΠM is a tree τ dec = (τ,L, ϕ) such that L = LIDB and which is a fixpoint
decorated expansion tree for every internal rule Ri in ΠM.

If Π is a Datalog program with goal predicate Q, we denote by u_decfp(ΠM, Q,Π)
the set of fixpoint decorated unfolding trees τ of Π with respect to ΠM;

Intuitively, in such a decorated unfolding tree, if some monadic predicate R(X) holds
for a variable X, then it follows that (X,R) ∈ ϕ. Moreover, it is important to see that
we can always build fixpoint decorated unfolding trees, as states the immediate, following
lemma:

Lemma 4.1.4.
Let be Π a Datalog program with goal predicate Q and ΠM a monadic Datalog pro-
gram. ∀τ ∈ u_trees(Q,Π),∃τ dec = (τ,L, ϕ) ∈ u_decfp(ΠM, Q,Π).

A very convenient way of proving properties over families of trees is to use proofs by
induction. However, using such proofs may need to extract sub-trees from a given tree.
And, while working on expansion trees, the leaves of a tree cannot be labelled with rules
whose body contains any IBD predicate. Therefore, it is necessary to introduce “fresh”
predicates, each one seen as formally equivalent to an IBD predicate. This is done while
introducing the concept of extensional closure defined below:
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Definition 4.1.5.
Let Π be a Datalog program with IDB predicates R1, . . . , Rn. The extensional closure
of Π, denoted Π•, is the Datalog program obtained by adding “fresh" EDB predicates
R•1, . . . , R

•
n, and by setting new rules:

• if R1(v1)∧ . . .∧Rn(vn)⇒ R0(v0) is a rule Ri of Π, and Ri1 , . . . , Ril are some IDB
predicates in the body of Ri, then R′1(v1) ∧ . . . ∧R′n(vn)⇒ R0(v0) is a rule of Π•,
where R′k = R•k if k ∈ {i1, . . . , il}, and R′k = Rk if k /∈ {i1, . . . , il}; this new rule is
said to be derived from the rule Ri.
• if R is an IDB predicate of Π, then R•(v)⇒ R(v) is a rule of Π•; the new predicate
R• is said to be derived from the IDB predicate R.

It is immediate that, if every EDB predicate of a Datalog program Π is an EDB
predicate of the monadic Datalog program ΠM, then Π is contained in ΠM if and only
if is it contained in Π•M.

Now, as well as we have allowed the construction of unfolding expansion trees featuring
sub-trees of a tree, it is necessary to find a way to extend the notion of containment
mapping to these trees, preferably in a natural fashion. This is precisely what is done
below:

Definition 4.1.6.
Let Π be Datalog program with goal predicate Q, ΠM a monadic Datalog program
with goal predicate QM, and Π•M its extensional closure. Let be τ dec = (τ,L, ϕ) ∈
u_dec(Q,Π) and σ• ∈ u_trees(QM,Π•M) . A decorating containment mapping from σ•

to τ dec is a total mapping h : var(σ•)→ var(τ) such that the following holds:

• h maps every distinguished variable in σ• to itself.
• for every EDB atom R•(v) derived from an IDB atom R(v), (h(v), R) ∈ ϕ.
• for every EDB atom R(v) not treated above, R(h(v)) is an EDB atom in τ .

Finally, it appears that the objects defined above respect the intuition I gave about
capturing all the necessary pieces of information, and verifying that these pieces of infor-
mation are coherent with a given set of rules. Indeed, here is the first main result that I
obtained during the project, and that closely relates containment of a Datalog program
in a monadic Datalog program to the existence of decorating containment mappings.

Theorem 4.1.7.
Let Π be a Datalog program with goal predicate Q, ΠM a monadic Datalog program
with goal predicate QM. Π is contained in ΠM if and only if for all τ dec = (τ,L, ϕ) in
u_decpf (ΠM, Q,Π), there exists a tree σ• in u_trees(QM,Π•M) whose root is a leaf, and
a decorating containment mapping σ• h•→ τ dec.

Proof. See Appendix A, Section A.3.1.
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4.2 Decorated Proof Trees

In the precedent chapter, we decided to transform unfolding expansion trees into proof
trees, in order to bound the number of variables used and to be able to work on a finite
vocabulary. In the same way, we will now introduce decorated proof trees, that consist in
a reduction of decorated expansion trees to trees with a number of variables bounded a
priori.

However, the reduction from unfolding expansion trees to proof trees is only locally
injective. This is why several “former” distinct variables whose image through ϕ were
different may now appear with the same name. Therefore, all the information that was
contained globally in the sets ϕ has now to be stored in each node of our new trees.
Or, at least, since we cannot bound the quantity of information contained in ϕ by just
knowing the two Datalog programs that we are looking at (because a given Datalog
program may have expansion trees involving an arbitrary high number of variables), we
want to store in each node of our trees the information that was contained in ϕ and that
concerned the variables appearing in that node.

Definition 4.2.1.
A pre-decorated proof tree for a Datalog program Π with goal predicate Q is a triple
(τ,L, ϕ) such that

• p is a proof tree: τ ∈ p_trees(Q,Π).
• ∃ϕ′ such that (U(τ),L, ϕ′) ∈ u_dec(Q,Π).
• ϕ ∈ 2Nτ×var(Π)×L verifies:

– ∀n ∈ NU(τ), ∀v ∈ var(n),∀l ∈ L, v, l) ∈ ϕ′ ⇒ (h(n), θ(v), l) ∈ ϕ.
– ∀n ∈ Nτ ,∀v ∈ var(Π),∀l ∈ L, v /∈ var(n)⇒ (n, v, l) /∈ ϕ.

Formally, and since it would be nice to have directly a structure of trees that can be
treated by tree automata, we can identify pre-decorated proof trees in proof trees, which
is done as follows:

Definition 4.2.2.
A decorated proof tree for a Datalog program Π with goal predicate Q is a tree σ whose
nodes n are quadruples (αn, ρn,Ln, ϕn), for which there exists a pre-decorated proof tree
(τ,L, ϕ) for Π and a bijection i : Nσ → Nτ such that:

• ∀n1, n2 ∈ Nσ, n1 is the father of n2 if and only if i(n1) is the father of i(n2).
• ∀n ∈ Nσ,Ln = L and ϕn = {(v, l) ∈ var(Π)× L|(n, v, l) ∈ ϕ}.

For more convenience, we will, whenever τ is a decorated proof tree, denote by U(τ)
the unfolding tree which is, in fact, the tree U(p) where p is the first component of the
pre-decorated proof tree associated to τ . This mapping U stresses the close relationship
that exists between decorated proof trees and decorated unfolding trees, this relationship
being so close that it induces the concept of fixpoint decorated proof trees.
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Definition 4.2.3.
Let Π be a Datalog program with goal predicate Q, and ΠM a monadic Datalog
program whose set of internal IDB predicates is L. A fixpoint decorated proof tree of Π
with respect to ΠM is a tree τ ∈ p_dec(L, Q,Π) such that U(τ) ∈ u_decfp(ΠM, Q,Π).
We denote by p_decfp(ΠM, Q,Π) the set of fixpoint decorated proof trees of Π with
respect to ΠM.

This set of trees being defined, we now need a way to check whether some random tree
τ ∈ p_decfp(ΠM, Q,Π) is fixpoint relatively to a monadic program. And, as well as a
decorated unfolding tree is fixpoint with respect to a monadic program if and only if it
is fixpoint with respect to each of its internal rules, we look now at a way of checking
whether a decorated proof tree is fixpoint with respect to a monadic rule.

But, since it is often algorithmically easier to verify that a given set is not a fixpoint
under some operations (since we only have to find an element that is sent outside the
considered set) than to verify that this set is a fixpoint, we prefer look at infixpoint
certificates, that certify that a given decorated proof tree is not a fixpoint decorated
proof tree.

Definition 4.2.4.
Let τ be some decorated proof tree, and

R = R1(v1) ∧ . . . ∧Rm(vm)⇒ R(v)

be a rule with monadic IDB atoms R(v), Ri1(vi1), . . . , Ril(v
il) where {R,Ri1 , . . . , Ril} ⊆

Lτ , and EDB atoms Rj1(vj1), . . . , Rj′l
(vj′l). An infixpoint certificate from R to τ is a

mapping h from the occurrences of variables v ∈ var(R) to occurrences of variables
v ∈ var(τ) such that

• if v1 and v2 are two occurrences of a variable v ∈ var(R), then the occurrences
h(v1), h(v2) ∈ var(τ) are connected.
• if an EDB predicate Ril(v

il) holds in R, then Ril(h(vil)) holds in τ .
• if an IDB predicate Rjl(v

jl) holds in the body of R, then (h(vjl), Rjl) ∈ ϕn, where
n is the node of τ containing the occurrence h(vjl).
• if n is the node of τ dec containing the occurrence h(v), then (h(v), R) /∈ ϕn.

If Π is a Datalog program with goal predicate Q, we denote by p_dec¬pf (L,R, Q,Π)
the set of trees τ ∈ p_dec(L, Q,Π) such that an infixpoint certificate from R to τ exists.

Indeed, this definition satisfies our will to discover certificates proving that a given
decorated proof tree is not a fixpoint decorated proof tree, as states the following propo-
sition:

Proposition 4.2.5.
Let Π be a Datalog program with goal predicate Q, L a finite set of IDB predicates, R
a monadic rule whose IDB predicates are elements of L, and τ ∈ p_dec(L, Q,Π). Then,
τ ∈ p_dec¬pf (L,R, Q,Π) if and only if U(τ) /∈ u_decpf (L,R, Q,Π).
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Proof. See Appendix A, Proof A.3.10.

Having seen how to check whether τ ∈ p_decfp(ΠM, Q,Π), we have to look at a
criterion stating whether ∃σ• ∈ u_trees(QM,Π•M) whose root is a leaf and a decorating
containment mapping σ• h•→ τ . But, this time, it appears that verifying that a decorating
containment mapping exists is easier, since we only have to exhibit it.

Definition 4.2.6.
Let τ be some decorated proof tree, and

R = R1(v1) ∧ . . . ∧Rm(vm)⇒ R(v)

be a rule whose body contains EDB atoms Rj1(vj1), . . . , Rj′l
(vj′l) and monadic IDB atoms

Ri1(vi1), . . . , Ril(v
il), where {Ri1 , . . . , Ril} ⊆ Lτ . A reaching goal certificate from R to τ

is a mapping h from the occurrences of variables v ∈ var(R) to occurrences of variables
v ∈ var(τ) such that

• if v1 and v2 are two occurrences of a variable v ∈ var(R), then the occurrences
h(v1), h(v2) ∈ var(τ) are connected.
• if an EDB predicate Ril(v

il) holds in R, then Ril(h(vil)) holds in τ .
• if an IDB predicate Rjl(v

jl) holds in the body of R, then (h(vjl), Rjl) ∈ ϕn, where
n is the node of τ containing the occurrence h(vjl).
• R(h(v)) is the goal predicate of the the root r of τ .

If Π is a Datalog program with goal predicate Q, we denote by p_decgoal(L,R, Q,Π)
the set of trees τ ∈ p_dec(L, Q,Π) such that a reaching goal certificate from R to τ
exists.

And, indeed, the reaching goal certificate defined above reaches our demands, which
were to have a certificate proving that a decorating containment mapping exists as states
the following proposition:

Proposition 4.2.7.
Let Π be a Datalog program with goal predicate Q, ΠM a monadic Datalog pro-
gram with goal predicate QM, L the set of internal IDB predicates of ΠM, and τ ∈
p_dec(L, Q,Π). Then, ∃σ• ∈ u_trees(QM,Π•M) whose root is a leaf and a decorating
containment mapping σ• h•→ U(τ) if and only if τ ∈ p_decgoal(L,R, Q,Π) for some goal
rule R of ΠM.

Proof. See Appendix A, Proof A.3.11.

The two above propositions, combined to Theorem 4.1.7, are sufficient to prove the
following main theorem:

Theorem 4.2.8.
Let Π be a Datalog program with goal predicate Q, ΠM a monadic Datalog program
with goal predicate QM, and let L be the set of the internal IDB predicates of ΠM. Π
is contained in ΠM if and only if every tree τ ∈ p_dec(L, Q,Π) satisfies one of the two
following sentences:
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• τ ∈ p_dec¬pf (L,R, Q,Π) for some internal rule R of ΠM.
• τ ∈ p_decgoal(L,R, Q,Π) for some goal rule R of ΠM.

Proof. See Appendix A, Proof A.3.12.

4.3 Tree Automata

The main feature of decorated proof trees, as opposed to decorated expansion trees, is the
fact that the number of possible labels is finite. Because this set of labels is finite, the set
of decorated proof trees p_dec(Q,Π), for an IDB predicate Q in a program Π, as well as
the related sets of decorated proof trees p_dec¬pf (L,R, Q,Π) and p_decgoal(L,R, Q,Π),
can be described by a tree automaton.

In this section, after each proposition stating the existence of an automaton of bounded
size that recognises a specified set of decorated proof trees, we indicate a construction of
such an automaton. However, the correctness of these constructions will not be addressed
in this report, not in its main body nor in the annex. Indeed, the proof of the correctness
of these constructions is very similar to the proofs indicated in [9].

Proposition 4.3.1.
Let Π be a Datalog program with a monadic goal predicate Q and L a finite set. There
is an automaton A

p_dec
L,Q,Π, whose size is exponential in the size of Π and L, such that

T (A
p_dec
L,Q,Π) = p_dec(L, Q,Π).

Proof. We design an automaton that treats a tree τ and verifies that the triples labelling
every node of τ are coherent with the fact that τ be a decorated proof tree. It follows
that

T (A
p_dec
L,Q,Π) = {τ ∈ p_dec(L, Q,Π)}

The construction of this automaton is detailed in Appendix A, Proof A.3.13.

Proposition 4.3.2.
Let Π be a Datalog program with a monadic goal predicate Q, L be a finite set of IBD
predicates, and R be a monadic rule whose IBD predicates are elements of L. Then there
is an automaton Ap_dec

¬pf

L,R,Q,Π , whose size is exponential in the size of Π, L and R, such that

T (A
p_dec¬pf
L,R,Q,Π ) ∩ T (A

p_dec
L,Q,Π) = p_dec¬pf (L,R, Q,Π).

Proof. We design a non-deterministic automaton that treats a tree τ , supposing that
we have already certified that τ was a decorated proof tree, tries to guess an infixpoint
certificate and accepts τ if an infixpoint certificate for the rule R has been found. It
follows that

{τ ∈ p_dec(L, Q,Π) ∩ T (A
p_dec¬pf
L,R,Q,Π )} = {τ ∈ p_dec(L, Q,Π) ∩ p_dec¬pf (L,R, Q,Π)}

The construction of this automaton is detailed in Appendix A, Proof A.3.14.
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Proposition 4.3.3.
Let Π be a Datalog program with a monadic goal predicate Q, L be a finite set of IBD
predicates, and R be a rule such that IBD predicates in its body are elements of L. Then
there is an automaton A

p_decgoal
L,R,Q,Π , whose size is exponential in the size of Π, L and R,

such that T (A
p_decgoal
L,R,Q,Π ) ∩ T (A

p_dec
L,Q,Π) = p_decgoal(L,R, Q,Π).

Proof. We design a non-deterministic automaton that treats a tree τ , supposing that we
have already certified that τ was a decorated proof tree, tries to guess a reaching-goal
certificate and accepts τ if a reaching-goal certificate for the rule R has been found. It
follows that

{τ ∈ p_dec(L, Q,Π) ∩ T (A
p_decgoal
L,R,Q,Π )} = {τ ∈ p_dec(L, Q,Π) ∩ p_decgoal(L,R, Q,Π)}

The construction of such an automaton is detailed in Appendix A, Proof A.3.15.

Thanks to the existence of the automata involved in Propositions 4.3.1, 4.3.2 and 4.3.3,
we can now reduce the containment problem for Datalog programs in unions of con-
junctive queries to an automata-theoretic problem.

Theorem 4.3.4.
Let Π be a program with monadic goal predicate Q, ΠM a monadic program with goal
predicate QM. Let L be the set of internal IDB predicates in ΠM, R1, . . . ,Rk the internal
rules of ΠM and Q1, . . . ,Ql the goal rules of ΠM. Then, Π is contained in ΠM if and
only if

T (A
p_dec
L,Q,Π) ⊆

k⋃
i=1

T (A
p_dec¬pf
L,Ri,Q,Π) ∪

l⋃
i=1

T (A
p_decgoal
L,Qi,Q,Π )

Proof. See Appendix A, Proof A.3.16.

Finally, Theorem 4.3.4 indicates us an algorithm checking whether a given Datalog
program is contained in another given monadic Datalog program.

Theorem 4.3.5.
Containment of a Datalog program in a monadic Datalog program is in 2EXPTIME.

Proof. See Appendix A, Proof A.3.17.
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Chapter 5

Transitive Programs

5.1 A Derived Non-Recursive Program

Similarly to what we did with monadic Datalog programs, we solve the containment
problem in transitive Datalog programs by storing as much information as possible.
However, similarly to what happened with decorated unfolding trees, which had been
designed to solve the containment problem in monadic programs, information will have
to be stored in the nodes of a tree, involving a bounded number of variables.

Therefore, an efficient idea was to reduce every transitive program to a non-recursive
Datalog program, so that we could bound a priori the number of variables appearing
in each expansion tree of this new non-recursive program. However, the difficulty is that
this new non-recursive program has to be rich enough to give us the information necessary
to the resolution of the containment problem. It was while looking for such a suitable
non-recursive Datalog program that I invented the diamond-reduction of a transitive
Datalog program γ, which consists in the program defined below:

Definition 5.1.1.
Let γ be a transitive Datalog program. The diamond-reduction of γ is the Datalog
program γ� built hereafter:

Every predicate in γ is a predicate in γ�. Moreover, in addition to these predicates,
γ� contains a binary EDB predicate G�, called diamond predicate, for each star IDB
predicate G∗ in γ. The rules in γ� are defined as follows:

• Each star-free rule

E1(v1) ∧ . . . ∧ Ek(vk) ∧G∗1(x1
1, x

1
2) ∧ . . . ∧G∗l (xl1, xl2)⇒ G(t)

in γ is also a rule in γ�.
• For each star IDB predicate G∗ in γ, γ� contains so-called diamond-rules, which are

rules ρ having the following property:

– ∃n ∈ {1, 2, 3, 4, 5} such that ρ is a rule

E1(x0, x1) ∧ E2(x1, x2) ∧ . . . ∧ En(xn−1, xn)⇒ G∗(x0, xn)
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– ∀i ∈ {1, 2, . . . , n}, Ei is either the predicate G or the predicate G�.
– ∀i ∈ {1, 2, . . . , n− 1}, if Ei = G, then Ei+1 = G�.

As wanted initially, every diamond-reduction of every transitive program is a non-
recursive program, and therefore has only finitely many unfolding trees:

Proposition 5.1.2.
Let γ be a transitive Datalog program with goal predicate Γ. Let γ� be its diamond-
reduction. γ� is a non-recursive program, and u_trees(Γ, γ�) is finite.

Proof. See Appendix A, Proof A.4.7.

5.2 Labelled Proof Trees

The class of proof trees has the convenient property of requiring a limited number of
variables. However, it only features unfolding expansion trees. Therefore, we decide to
add some labellings to those proof trees, in order to have a richer structure.

Definition 5.2.1.
Let Π be a Datalog Program with goal predicateQ and γ a transitive Datalog program
with goal predicate Γ. For al τ in u_trees(Γ, γ�), we denote by Pτ the set of occurrences
of atoms appearing in τ .

We define L(γ,Π) to be the set of tuples (τ, S, r, V, ϕ) where τ ∈ u_trees(Γ, γ�) has
its variables among var�(γ�), S is a subset of Pτ , r is an instance of a rule of Π with
variables among var(Π), V ⊆ var(r) and ϕ ∈ (V ∪ var�(γ�))var�(γ

�) is a total mapping
from var�(γ

�) to V ∪ var�(γ�).

Let Σ ∈ p_trees(Q,Π) be a tree whose nodes are N1, . . . , N|Σ|. A labelling of Σ is a
tree σ whose nodes are n1, . . . , n|Σ|, each ni being labelled by a couple (Ni, Li) such that

• Li ⊆ L(γ,Π).
• if Ni = (Ri(ti), ρi), then ∀l = (τ, S, r, V, ϕ) ∈ Li, r = ρi.
• ∀i, j, ni is a child of nj if and only if Ni is a child of Nj.

Conversely, we also say that Σ is the de-labelling of σ, which we denote Σ = d(σ).

We call labelled proof trees of Π the labelling of the proof trees Σ ∈ p_trees(Q,Π).
If Σ ∈ p_trees(Q,Π) is a proof tree, we denote by p_label(Σ, γ, Q,Π) the set of all
labellings of Σ. We also define p_label(γ,Q,Π) to be the set of all the labelled proof
trees of Π:

p_label(γ,Q,Π) =
⋃

Σ∈p_trees(Q,Π)

p_label(Σ, γ, Q,Π)
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We develop again the similarity to the path followed while designing the algorithm of
decision of the containment in monadic programs: we had used the concept of proof trees
fixpoint relatively to a monadic program; more precisely, it consisted in saying that the
statements that have been approved as being true should be closed under application of
any internal rule of the monadic program we looked at.

Here, let us consider a transitive program γ. We say that a labelled proof tree τ is
fixpoint relatively to a transitive program if, supposing that the EDB atoms of γ present
in τ and that the rules in γ are true, the labels of τ contain as many true statements
as possible, in the sense of their interpretation defined in Appendix A, Definitions A.4.4
and A.4.10.

Definition 5.2.2.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog pro-
gram. We identify every tree σ ∈ p_label(γ,Q,Π) to a couple (Σ, E), where Σ = d(σ)
and E is the set E = {(N, l)|∃L ⊆ L(γ,Π) such that l ∈ L and (N,L) is a node of
σ} ⊆ NΣ × L(γ,Π).

Now, ∀E ⊆ NΣ × L(γ,Π), we define ΨΣ(E) ⊆ NΣ × L(γ,Π) to be the set of couples
(N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈ NΣ×L(γ,Π) verifying one of the following conditions:

1. (N, l) ∈ E.
2. N is the father, in the tree Σ, of some node N ′ = (R′(t′), ρ′) ∈ NΣ, V ⊆ var(t′)

and (N ′, (τ, S, ρ′, V, ϕ)) ∈ E.
3. N is a child, in the tree Σ, of some node N ′ = (R′(t′), ρ′) ∈ NΣ, V ⊆ var(t) and

(N ′, (τ, S, ρ′, V, ϕ)) ∈ E.
4. ∃S ′ ⊇ S such that (N, (τ, S ′, ρ, V, ϕ)) ∈ E.
5. ∃S ′, S ′′ ⊆ S such that S = S ′ ∪ S ′′, ϕ(var(S ′)) ∩ ϕ(var(S ′′)) ⊆ V , and such that

both (N, (τ, S ′, ρ, V, ϕ)) ∈ E and (N, (τ, S ′′, ρ, V, ϕ)) ∈ E.
6. ∃τ ′ ∈ u_trees(Γ, γ�) such that (N, (τ ′, S, ρ, V, ϕ)) ∈ E.
7. ∃V ′ ⊆ var(ρ) such that (N, (τ, S, ρ, V ′, ϕ)) ∈ E.
8. ∃h : var�(γ

�)∪V → var�(γ
�)∪V such that h|V = IdV and (N, (τ, S, ρ, V, h◦ϕ)) ∈ E.

9. ∃ϕ′ ∈ (var�(γ
�)∪V )var�(γ

�) such that ϕ′|var(S) = ϕ|var(S) and (N, (τ, S, ρ, V, ϕ′)) ∈ E.

10. ∃n′ = (R′(t′), ρ′) ∈ Nτ and ∃S ′ ⊆ S such that S = S ′ ∪ {R′(t′)}, S ′ contains all
atoms in the body of ρ′ and (N, (τ, S ′, ρ, V, ϕ)) ∈ E.

11. ∃τ ′ ∈ u_trees(Γ, γ�) and an atom G�(x, y) ∈ S such that (N, (τ ′, S ′, ρ, V, ϕ)) ∈ E,
where S ′ = S\{G�(x, y)} ∪ {G(x, y)}.

12. ∃τ ′ ∈ u_trees(Γ, γ�) an atom G�(x, y) ∈ S and a variable z ∈ var�(γ�) such that
(N, (τ ′, S ′, ρ, V, ϕ)) ∈ E, where S ′ = S\{G�(x, y)} ∪ {G�(x, z), G�(z, y)}.

13. S is a singleton {G�(x, y)} such that ϕ(x) = ϕ(y).
14. S is a singleton {P (v)} where P is an EDB predicate and ϕ maps P (v) to an atom

P (x) appearing in ρ.
15. S = ∅.

A fixpoint labelled proof tree is a tree σ ∈ p_label(γ,Q,Π) such that i(σ) = (Σ, E)
verifies E = ΨΣ(E). We denote by p_labelfp(Σ, γ, Q,Π) the set of fixpoint labelled proof
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trees σ ∈ p_label(Σ, γ, Q,Π), and by p_labelfp(γ,Q,Π) the set of fixpoint labelled proof
trees σ ∈ p_label(γ,Q,Π).

It seems that both notions of labelled proof trees and of fixpoint labelled proof trees are
dual. Indeed, since finding an adapted definition for labelled proof trees was obviously a
necessary step, choosing which of those would be fixpoints was also critical. And, in fact,
I got the ideas of these two notions at the same time.

After having found the algorithm detailed in the Chapter 4 and read many other articles
dealing with automata on trees, practical uses of Datalog, or various containment
problems of Datalog programs, I acquired a good intuition of how tree automata could
work on proof trees, and how that would be used in the context of containment problems.

The idea behind those objects is the following: in any node of a proof tree, we can
identify only the variables present in this proof tree, the other variables of the proof
tree being not defined in this node. Therefore, every label of any labelled proof tree
represents a logical formula which is guaranteed to be true, and where the free variables
are all variables present in the node. More precise information of the detail of these
formulaæ is available in Appendix A, Definitions A.4.4 and A.4.10.

Now, here are the arguments that led me to design the notion of diamond-reduction
and the associated fixpoint labelled proof trees: a general method to show that a program
A is contained in a program B is to exhibit, for any unfolding tree τA of A, a containment
mapping from an unfolding tree τB of B to τA. Similarly, here, if a program Π is contained
in a transitive program γ, the main idea is to find, for every unfolding tree τ of Π, a
containment mapping from some unfolding tree τ ′ of γ to τ . And, in fact, finding such
a mapping is somehow equivalent to finding a proof, given the rules of γ, the variables
present in τ , and the predicates indicated in the nodes τ , that a certain predicate over
the variables of τ is true: if Q(t) is the atom in the head of τ and if Γ is the goal predicate
of γ, we want to prove that Γ(t) holds.

How is it possible to find such a proof? An idea is that it is possible to prove every
EDB atom that is true, since such an EDB atom must be directly present among the
EDB atoms of τ . Now, we proceed inductively: if it is possible to prove φ1(t1) or to
prove φ2(t2), it must be possible to prove φ1(t1) ∨ φ2(t2); and if it is possible to prove
φ1(t1) and to prove φ2(t2), it must be possible to prove φ1(t1) ∧ φ2(t2). Therefore, the
entire difficulty is to find how to prove φ∗(x, y), where φ∗ is the transitive closure of some
binary relation φ, if we can prove enough formulæ involving φ. Indeed, the difficulty
appears here since it is here the appears the recursion, and therefore that we cannot
bound a priori the number of formulæ φ(a, b) that we will have to prove, and the number
of variables that may be involved in such a proof.

However, there is a trick that allows us to skip this potential infinity: our aim is to
prove a statement of the form

Λ(x, y,v) ∧ φ∗(x, y)

where Λ is some logical formula, v is the tuple formed of the variables present in the
current node, and x, y are two more variables. It is sufficient to prove some stronger
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statement of the form

(∃a, b) (Λ(v) ∧ φ∗(x, a) ∧ φ(a, b) ∧ φ∗(b, y))

Again, it is sufficient to prove separately statements of the form

(∃a) (Λ1(v) ∧ φ∗(x, a) ∧ φ1(a,v))

(∃b) (Λ2(v) ∧ φ∗(b, y) ∧ φ2(b,v))

if Λ(v) ≡ Λ1(v) ∧ Λ2(v) and if we can show (∀a, b,w) (φ1(a,w) ∧ φ2(b,w)⇒ φ(a, b)).

The question that shall be asked now is how to find suitable a and b. Since the idea
above implies splitting the predicate φ∗(x, y) in two smaller predicates, here is the method
I found: when looking at some formula in a node of the unfolding tree, the only variables
that may be identified are those appearing in the body of the rule labelling the node. By
removing this node, we split the tree in several sub-trees, and can look at which variables
are defined in which sub-trees. If x and y are defined both in one same sub-tree, we may
delay the treatment of the predicate φ∗(x, y). If they are not, there must be variables a
and b, one being defined only in the sub-tree of x and the other not, such that a and b be
two consecutive steps in a shorter path labelled by φ and linking x to y: we choose these
variables and then, recursively, we are able to apply the trick mentioned in the paragraph
just above.

Finally, the structure of labelled proof tree associated to the notion of fixpoint labelled
proof trees defined just above are suitable for the design of an algorithm deciding the
containment of a program in a transitive program. Indeed, the following theorem estab-
lishes the equivalence of the containment of a Datalog program in a transitive Datalog
program and the existence of a common characteristic to all fixpoint labelled proof trees,
existence that is very easy to check thanks to tree automata:

Theorem 5.2.3.
Let Π be a Datalog program with goal predicate Q, γ a transitive Datalog program
with goal predicate Γ.

Π is contained in γ if and only if, for every tree σ ∈ p_labelfp(γ,Q,Π), the root
(N,L) = ((R(t), ρ), L) of σ is such that, for some tuple of variables v and some label
l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L, ϕ(v) = t.

Proof. See Appendix A, Sections A.4.1, A.4.2, A.4.3 and A.4.4.

5.3 Tree Automata

We define here another non-decreasing application, forgetting only the two criteria that
link the labels associated to neighbour nodes of the tree. Indeed, these two criteria are
the only two that refer to the labels associated to different nodes, while the thirteen other
refer only to the labels of a node itself.



32 Chapter 5. Transitive Programs

Definition 5.3.1.
Now, ∀E ⊆ L(γ,Π), let Φ(E) ⊆ L(γ,Π) be the set of 5-uples l = (τ, S, ρ, V, ϕ) ∈ L(γ,Π)
verifying one of the following conditions:

1. l ∈ E.
2. ∃S ′ ⊇ S such that (τ, S ′, ρ, V, ϕ) ∈ E.
3. ∃S ′, S ′′ ⊆ S such that S = S ′ ∪S ′′, ϕ(var(S ′))∩ϕ(var(S ′′)) ⊆ V, (τ, S ′, ρ, V, ϕ) ∈ E

and (τ, S ′′, ρ, V, ϕ) ∈ E.
4. ∃τ ′ ∈ u_trees(Γ, γ�) such that (τ ′, S, ρ, V, ϕ) ∈ E.
5. ∃V ′ ⊆ var(ρ) such that (τ, S, ρ, V ′, ϕ) ∈ E.
6. Some total mapping h : var�(γ

�) ∪ V → var�(γ
�) ∪ V verifies h|V = IdV and

(τ, S, ρ, V, h ◦ ϕ) ∈ E.
7. ∃ϕ′ ∈ (var�(γ

�) ∪ V )var�(γ
�) such that ϕ′|var(S) = ϕ|var(S) and (τ, S, ρ, V, ϕ′) ∈ E.

8. ∃n′ = (R′(t′), ρ′) ∈ Nτ and ∃S ′ ⊆ S such that S = S ′ ∪ {R′(t′)}, S ′ contains all
atoms in the body of ρ′ and (τ, S ′, ρ, V, ϕ) ∈ E.

9. ∃τ ′ ∈ u_trees(Γ, γ�) and an atom G�(x, y) ∈ S such that (τ ′, S ′, ρ, V, ϕ) ∈ E, where
S ′ = S\{G�(x, y)} ∪ {G(x, y)}.

10. ∃τ ′ ∈ u_trees(Γ, γ�), an atom G�(x, y) ∈ S and a variable z ∈ var�(γ�) such that
(τ ′, S ′, ρ, V, ϕ) ∈ E, where S ′ = S\{G�(x, y)} ∪ {G�(x, z), G�(z, y)}.

11. S is a singleton {G�(x, y)} such that ϕ(x) = ϕ(y).
12. S is a singleton {P (v)} where P is an EDB predicate and ϕ maps P (v) to an atom

P (x) appearing in ρ.
13. S = ∅.

This non-decreasing application facilitates the description of an automaton that will
recognise only the trees in p_labelfp(γ,Q,Π), therefore allowing us to determine an al-
gorithm that decides the containment of a Datalog program in a transitive Datalog
program.

Theorem 5.3.2.
Let Π be a Datalog program with goal predicate Q, and γ be a transitive Datalog
program with goal predicate Γ. There is an automaton AQ,ΠΓ,γ , whose size is doubly expo-
nential in the size of Π and triply exponential in the size of γ, such that T (AQ,ΠΓ,γ ) = ∅ if
and only if Π is contained in Γ.

Proof. We design a non-deterministic automaton that treats a tree τ , checks whether τ is
a labelled proof tree, whether the labels (N,L) of its nodes verify Φ(L) = L, and whether
the criteria #2 and #3 of the Definition 5.2.2 are verified throughout the tree: the three
points above are verified if and only if τ ∈ p_labelfp(γ,Q,Π). Then, the automaton
accepts τ if the three points above are verified, and if the root (N,L) = ((R(t), ρ), L)
of τ is such that no tuple of variables v and no l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L satisfy the
equality ϕ(v) = t.
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It follows that T (AQ,ΠΓ,γ ) = ∅ if and only if Π is contained in Γ. The construction of
such an automaton is detailed in Appendix A, Proof A.4.38.

Finally, Theorem 5.3.2 indicates us an algorithm checking whether a given Datalog
program is contained in another given transitive Datalog program.

Theorem 5.3.3.
Containment of a Datalog program in a transitive Datalog program is in 3EXPTIME.

Proof. See Appendix A, Proof A.4.39.
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Chapter 6

Conclusion

6.1 Further Work

If the containment or the equivalence of Datalog programs is not decidable in the
general case, the particular classes that are monadic and transitive Datalog programs
are particular instances for which these two problems are decidable. Indeed, both monadic
and transitive Datalog programs are expressible in monadic second-order logic, which
allows us to use Courcelle’s theorem, and therefore to prove the decidability of the
containment problem for these instances.

However, Courcelle’s theorem provides us a much too inefficient algorithm, since its
complexity was non-elementary, while it was possible to design algorithms with elemen-
tary complexity. Therefore, we have now new upper bounds for the containment and the
equivalence problems in the case of monadic or transitive Datalog programs.

In both cases, the use of automata-theoretic techniques, as advocated in [9], happened
to be quite successful, since it allowed me to find and prove the two algorithms presented
in this report. It is remarkable that these two attempts were successful, since it was
highly not self-evident that such efficient algorithms would exist.

But two points remain unexplored: first, we have not studied the existence of lower
bounds for these problems, and it remains possible that better algorithms exist. Further-
more, if equivalence is reducible to containment, it is not obvious that, in the particular
cases that interest us, these problems be of the same complexity class. In particular,
the most uncertain point is the existence of more efficient algorithms that would not be
based on automata techniques, but would involve totally different ideas. Indeed, since
the dramatic improvement that was obtained during this project was due to the use of
techniques that were not involved in the algorithm provided by Courcelle’s result, we
cannot assure now that that automata techniques allow us to design the most efficient
algorithms.
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6.2 Personal Reflexion

This research internship was, for me, an exceptional opportunity to discover what the
world of academic research can be. In that perspective, I am particularly glad of the
experience I lived.

Indeed, since I started my upper education, mathematics and theoretical computer
science have always interested me. That is why doing research appeared as the eventual
conclusion of my formation. However, six months ago, even while imagining that I would
want to do research later, I still did not know what research could be. And I have to
acknowledge that I enjoyed it very much.

I enjoyed it mostly because of the thrill of the discovery. Previously, while at school,
I could not discover anything. Trying to guess the demonstration of a theorem before
the teacher tells you what it is provided me an edulcorated version of this thrill: I could
have discovered a theorem, even if someone did it before me. But, otherwise, what I did
was discovering objects, learning what other people had already found, and eventually
solving problems that had been especially designed to be solved with a prepared set of
tools.

During these four months, I had, first of all, to learn what people had previously found,
like what I had done before. However, there was already a little improvement: if I could,
and very often did, ask questions to my advisor, Moshe Y. Vardi, I could also take the
initiative of looking by myself for sources of explications that would be adapted to my
level of comprehension.

Then arrived the fear: the fear before the unknown, since I would investigate problems
for which no solution had, to my knowledge, ever been found before. I could not be
assured to succeed, since it was even possible that the problems I wanted to solve be
intrinsically unsolvable. Hopefully, Moshe Y. Vardi had the excellent idea of letting me
work first on a problem — about the containment in monadic Datalog programs — he
had almost solved himself: he had not spent enough time on it to find a good, closed
solution, but he had already thought of all the elements of the solution.

That is why, while investigating solutions on the second problem — about the contain-
ment in transitive Datalog programs — I was confident that I would find a solution.
And it is when finding such a solution that I had this feeling of thrill. I had experienced
fear again, while looking desperately for a simple proof, and thinking that I might have
spent one month to prove a theorem that would eventually be false. But, when I first
thought of the solution presented in this report, as well as when, one month later, I
proved it, I had the terrific feeling of having discovered something, which is the feeling
that made research so attractive to me when I was younger.

Finally, I want to thank again all the people I met during this internship. Because
these people allowed me to live a great experience, an experience that assures me now
that, even if I eventually choose not to do research later, it will be for something that I
will love even more, and therefore that I will enjoy very much.
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Appendix A

Detailed Proofs

A.1 Datalog Programs

Proposition A.1.1. [Proposition 2.5.1]
We denote by N[X] the set of polynomials with non-negative integer coefficients. Let ≤
be the ordering on N[X] defined as P ≤ Q if and only if Q− P has a leading coefficient
in N. ≤ is a well-ordering.

Proof. ≤ is obviously a total ordering. Let us assume that some set S 6= ∅ has no minimal
element: we can build a decreasing sequence (Pi)i≥0 of elements of S ⊆ N[X].

Therefore, the set D = {(Pi)i≥0|∀i ∈ N, Pi ∈ N[X] and Pi+1 < Pi} 6= ∅. Let δ =
min{deg(P0)|(Pi) ∈ D} be the minimal degree of all first terms of such sequences, and
∆ = {(Pi) ∈ D| deg(P0) = δ} 6= ∅. We then set γ = min{(P0)δ|(Pi) ∈ ∆} to be
the minimal leading coefficient of all first terms of sequences of ∆, and Γ = {(Pi) ∈
∆|(P0)δ = γ} 6= ∅.

Let be (Pi)i≥0 ∈ Γ. ∀n ∈ N, the sequence (Pi+n)i≥0 ∈ D and P0+n ≤ P0, so that
(Pi+n)i≥0 ∈ Γ. Therefore, we also know that (Pi − γXδ) is a decreasing sequence of
polynomials in N[X]. Then, (Pi− γXδ) ∈ D and deg(P0− γXδ) < δ, which is impossible
since δ is minimal.

This proves that our initial assumption was false, and therefore that the Proposi-
tion 2.5.1 is true.

Proposition A.1.2. [Proposition 2.5.2]
Let Π be a monadic Datalog program. Π is equivalent to a monadic Datalog program
Π′ such that:

• the goal predicate of Π′ does not appear in the body of any rule of Π′.
• every IDB predicate of Π′ which is not the goal predicate is monadic.
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Proof. Let P1, . . . , Pk be the predicates in Π. If P is a predicate in Π andR is a Datalog
rule with k occurrences of P in its body, we associate the couple (P,R) to the polynomial
NP,R(X) = Xk. Then, if D is a Datalog program with predicates among P1, . . . , Pk and
whose rules are R1, . . . ,Rd, we associate the couple (P,D) to the polynomial NP,D(X) =∑d

i=0 NP,Ri(X).

Now, we rewrite the program Π in order to obtain a program of the form described
above. Let be Q the goal predicate of Π. We create a new predicate Qgoal and a new
rule Rgoal : Q(x) ⇒ Qgoal(x), to build a new Datalog program Π1 which, if its goal
predicate is Qgoal, is equivalent to Π.

If Π1 contains a non-monadic IDB predicate which is not Qgoal, we choose such a
predicate P . Let be R1, . . . ,Rm the rules of Π1 whose heads contain an occurrence of P :
by renaming their variables, we suppose that each Ri is a rule I i1(xi1) ∧ . . . ∧ I iri(x

i
ri

) ⇒
P (x). If R is a rule P (x1) ∧ I2(x2) ∧ . . . ∧ Il(xl) ⇒ I0(x0) whose body contains an
occurrence of P , by renaming its variables, we suppose that x1 = x and that every
variable appearing in R and in a rule Ri appears in the tuple x. Now, we create m rules
R′1, . . . ,R′m, where R′i is the rule I i1(xi1) ∧ . . . ∧ I iri(x

i
ri

) ∧ I2(x2) ∧ Il(xl)⇒ I0(x0).

If we replace the rule R by the m rules R′1, . . . ,R′m, we transform the program Π1 in
an equivalent program Π2 such that NP,Π2(X) < NP,Π1(X). This process must be finite;
therefore, by repeating it, we calculate a monadic program Π3, equivalent to Π, such that
P does not appear in the body of any rule of Π3. Therefore, if we remove every rule of Π3

whose head predicate is P , we obtain an equivalent monadic program Π4, with predicates
among P1, . . . , Pn, but whose set of predicates does not contain P .

By repeating this rewriting process for every non-monadic IDB predicate different from
Qgoal, we successively obtain programs with at most n, n− 1, . . . predicates. This process
must be finite, and we eventually compute a monadic program Π′ which is equivalent to
Π, and that does not contain any non-monadic IDB predicate different from Qgoal. Since
Qgoal cannot appear in the body of any rule of Π′, Π′ is the program whose existence is
equivalent to the correctness of the Proposition 2.5.2.

Proposition A.1.3. [Proposition 2.5.4]
Let Π be a transitive Datalog program. Π is equivalent to a transitive Datalog pro-
gram Π′ such that:

• the goal predicate of Π′ does not appear in the body of any rule of Π′.
• every IDB predicate of Π′ that appears in the body of some star-free rule of Π′ must
be a star predicate.
• every IDB predicate of Π′ which is not the goal predicate is of arity 2.

Proof. Let P1, . . . , Pk be the predicates in Π. If P is a predicate in Π andR is a Datalog
rule with k occurrences of P in its body, we associate the couple (P,R) to the polynomial
NP,R(X) = Xk. Then, if D is a Datalog program with predicates among P1, . . . , Pk and
whose rules are R1, . . . ,Rd, we associate the couple (P,D) to the polynomial NP,D(X) =∑d

i=0 NP,Ri(X).
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Now, we rewrite the program Π in order to obtain a program of the form described
above. Let be Q the goal predicate of Π. We create a new predicate Qgoal and a new
rule Rgoal : Q(x) ⇒ Qgoal(x), to build a new Datalog program Π1 which, if its goal
predicate is Qgoal, is equivalent to Π.

If the body of some star-free rule of Π1 contains an IDB predicate which is not a star
predicate, we choose such a predicate P . Let be R1, . . . ,Rm the rules of Π1 whose heads
contain an occurrence of P : by renaming their variables, we suppose that eachRi is a rule
I i1(xi1)∧ . . .∧I iri(x

i
ri

)⇒ P (x). If R is a star-free rule P (x1)∧I2(x2)∧ . . .∧Il(xl)⇒ I0(x0)
whose body contains an occurrence of P , by renaming its variables, we suppose that
x1 = x and that every variable appearing in R and in a rule Ri appears in the tuple x.
Now, we create m rules R′1, . . . ,R′m, where R′i is the rule I i1(xi1)∧ . . .∧ I iri(x

i
ri

)∧ I2(x2)∧
Il(xl)⇒ I0(x0).

If we replace the rule R by the m rules R′1, . . . ,R′m, we transform the program Π1 in
an equivalent program Π2 such that NP,Π2(X) < NP,Π1(X). This process must be finite;
therefore, by repeating it, we calculate a transitive program Π3 equivalent to Π, such that
P does not appear in the body of any star-free rule of Π3. The set of predicates appearing
in the body of any star-free rule of Π3 is smaller than the set of predicates appearing in
the body of any star-free rule of Π1

By repeating this rewriting process for every IDB predicate which is not a star predi-
cate, we successively obtain programs with at most n, n− 1, . . . predicates in the bodies
of their star-free rules. This process must be finite, and we eventually calculate a transi-
tive program Π′ equivalent to Π, whose star-free rules do not contain any star-free IDB
predicate in their body.

Now, no IDB predicate Q of arity different from 2 can appear in the body of any
star-free rule of Π′ (since Q cannot be a star predicate). Moreover, Q cannot appear in
the body of any baby-star or star rule of Π′. Therefore, if we erase every rule whose
head predicate is not of arity 2, we obtain a Datalog program Π′′ equivalent to Π′,
and therefore to Π. Since Qgoal cannot appear in the body of any rule of Π′′, Π′′ is the
program whose existence is equivalent to the correctness of the Proposition 2.5.4.

A.2 Datalog, Finite Trees and Automata

Proposition A.2.1. [Proposition 2.5.4] [10, 13]
The non-emptiness problem for tree automata is decidable in polynomial time.

Proof. Let A = (Σ, S, S0, δ, F ) be the given tree automaton. Let accept(A) be the minimal
set of states in S such that
• F ⊆ accept(A), and
• if s is a state such that there are a letter a ∈ Σ and a transition 〈s1, . . . , sk〉 ∈
δ(s, a) ∩ accept(A)∗, then s ∈ accept(A).

It is easy to see that T (A) is non-empty if and only if S0 ∩ accept(A) 6= ∅. Intuitively,
accept(A) is the set of all states that label the roots of accepting runs. Thus, T (A) is
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non-empty precisely when some initial state is in accept(A). The claim follows, since
accept(A) can be computed bottom-up in polynomial time.

A.3 Monadic Programs

A.3.1 Proof of Theorem 4.1.7

First of all, as said in the Proposition 2.5.1, we define a total mapping that maps every
finite tree to a polynomial P ∈ N[X], so that the well-ordering ≤ defined on N[X] induces
a well-ordering on equivalence classes of finite trees, which will ultimately allow us to run
a proof by induction.

Definition A.3.1.
A finite tree τ being given, we define inductively the order ω of its nodes by setting

• ω(ρ) = 0, where ρ is the root of τ .
• if n1 is a child of a node n2 in τ , then ω(n1) = ω(n2) + 1.

We then define the weight of the tree τ relatively to a finite set S of predicates as being
the polynomial with non-negative integer coefficients

WS(τ)(X) =
∑

node n∈τ

WS(n)X2ω(n) +WS(n)X2ω(n)+1

where WS(n) (resp. WS(n)) is the number of occurrences of predicates that appear in
the body the rule ρ of n and that are (resp. are not) elements of S.

Eventually, we denote τ1 >S τ2 the inequality WS(τ1) > WS(τ2). Then, every set of
trees E 6= ∅ has a S-minimal element, that is to say an element τ ∈ E whose weight is
minimal in WS(E).

Indeed, this well-ordering is sufficient to let us prove the proposition below, which
consists in the first implication of the equivalence stated by Theorem 4.1.7:

Proposition A.3.2.
Let be Π a Datalog program with goal predicate Q and ΠM a monadic Datalog pro-
gram with goal predicate QM. ∀τ dec = (τ,L, ϕ) ∈ u_decfp(ΠM, Q,Π), if some mapping
σ

h→ τ from a tree σ ∈ u_trees(QM,ΠM) to τ exists, then ∃σ∗ ∈ u_trees(QM,Π∗M)

whose root is a leaf and such that some decorating containment mapping σ∗ h∗→ τ dec from
σ∗ to τ dec exists.

Proof. Let T be the set of unfolding expansion trees ν of Π∗M such that some decorating
containment mapping ν

θ→ τ dec exists. The above defined σ ∈ T , which therefore is
not empty. Indeed, σ also is an unfolding expansion tree of Π∗M, and every (traditional)
containment mapping h from σ to τ can be extended to a decorating containment mapping
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h∗ from σ to τ dec, for instance by binding all variables of σ that do not belong to the
domain of h to some variable X of τ .

Let now S = {R∗|R is an internal IDB predicate of ΠM} be the set of the derived
EDB predicates in Π∗M, i.e. appearing in Π∗M but not in ΠM itself. Let be µ ∈ T , and
a decorating containment mapping h : µ→ τ dec. Let us look at a leaf n of µ : its rule ρ
has an IBD predicate R(t) in its head, and only EDB predicates in its body.

If n has a father ñ with rule ρ̃, then ρ must be an internal rule of Π∗M. τ dec ∈
u_decfp(Π1, Q,Π), so that (h(t), R) ∈ ϕ. Therefore, by erasing n and replacing the
occurrence R(t) in ρ̃ by the EDB predicate R∗(t), we get a tree µ̃ <S µ such that h is
also a decorative containment mapping from µ̃ do τ dec: µ̃ ∈ T , and µ is not a S-minimal
element of T .

That is why every S-minimal element of T has its root as only node. Such an element
exists, which completes our proof.

We have to prove now that, conversely, the existence of decorative containment map-
pings implies the existence of containment mappings. And it appears that this converse
property is true on least fixpoints, defined as follows:

Definition A.3.3.
Let Π be a Datalog program with goal predicate Q, and ΠM a monadic Datalog
program. Let now be τ dec = (τ,L, ϕ) ∈ u_decfp(ΠM, Q,Π). We define inductively sets
Ωi of couples (X, l) ∈ V ar(τ dec)× L such that l ∈ ϕ(X) by setting

• Ω0 = ∅
• ∀i ≥ 0, (X, l) ∈ Ωi+1 if and only if either

– (X, l) ∈ Ωi

– for some internal rule R in ΠM:

R1(t1) ∧ . . . ∧Rm(tm)⇒ R(t)

with IDB atoms R(t), Ri1(ti1), . . . , Ril(t
il), EDB atoms Rj1(ti1), . . . , Rjl′

(tjl′ ),
there exists a total mapping h : var(R) → var(τ) such that Rj1(h(tj1)), . . . ,
Rjl′

(h(tjl′ )) hold and that {(h(t1), Ri1), . . . , (h(til), Ril)} ⊆ Ωi.

If ϕmin = ∪i≥0Ωi, we define the least fixpoint decorated unfolding tree relative to τ dec
to be τmin = (τ,L, ϕmin). We also define the degree d◦ of a couple (X, l) ∈ Lmin to be
d◦(X, l) = min{i ≥ 0|(X, l) ∈ Ωi}. Finally, we denote by u_declpf (ΠM, Q,Π) the set of
all least fixpoint decorated unfolding trees relative to any tree τ dec ∈ u_decfp(ΠM, Q,Π).

Thanks to the algorithm of construction of least fixpoint decorated unfolding trees this
definition consists in, the following three propositions are now straightforward:

Proposition A.3.4.
Let be Π a Datalog program with goal predicate Q, ΠM a monadic Datalog program
and τ ∈ u_trees(Q,Π) an unfolding tree.
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If τ dec = (τ,L, ϕ) ∈ u_decfp(ΠM, Q,Π) is a fixpoint decorated unfolding tree, the least
fixpoint decorated unfolding tree τmin = (τ,L, ϕmin) relative to τ dec is also a fixpoint
decorated unfolding tree, and it does not depend from the choice of ϕ.

Corollary A.3.5. Let be Π a Datalog program with goal predicate Q, ΠM a monadic
Datalog program and τ ∈ u_trees(Q,Π) an unfolding tree.

If τ dec = (τ,L, ϕ) ∈ u_decfp(ΠM, Q,Π) is a fixpoint decorated unfolding tree and
τmin = (τ,Lmin, ϕmin) is a least fixpoint decorated unfolding tree, then ϕmin ⊆ ϕ.

Lemma A.3.6.
Let be Π a Datalog program with goal predicate Q and ΠM a monadic Datalog pro-
gram. ∀τ ∈ u_trees(Q,Π),∃τ dec = (τ,L, ϕ) ∈ u_declfp(ΠM, Q,Π).

Moreover, in addition to the concept of least fixpoint decorated unfolding tree, in
Definition A.3.3, we also defined the degree of the couples (X, l) ∈ ϕmin. This notion of
degree allows us to introduce a specific comparison relation on trees.

Definition A.3.7.
Let Π be a Datalog program with goal predicate Q, ΠM a monadic Datalog program
τ dec = (τ,L, ϕ) ∈ u_declpf (ΠM, Q,Π). We denote by Cτdec the set of couples (σ, h) where
σ ∈ u_trees(QM,ΠM) and h : σ → τ dec is a decorating containment mapping. We define
the depth of a couple (σ, h) ∈ Cτdec to be the polynomial in N[X]

Dτdec(σ, h)(X) =
∑

(V,l)∈Ω∞

D(V, l)Xd◦(V,l)

where D(V, l) is the number of occurrences of derived predicates l∗(t) that appear in σ
and such that h(t) = V .

We finally denote (σ1, h1) >τdec (σ2, h2) the inequality Dτdec(σ1, h1) > Dτdec(σ2, h2).
Every non-empty subset E ⊆ Cτdec has a τ dec-minimal element, that is to say an element
(σ, h) ∈ E whose depth is minimal in Dτdec(E).

With the help of this new induced well-ordering, we can prove by induction the following
proposition, which is complementary to the Proposition A.3.2:

Proposition A.3.8.
Let be a Datalog program Π with goal predicate Q and a monadic Datalog program
ΠM with goal predicate QM. For every least fixpoint decorated tree ∀τ dec = (τ,L, ϕ) ∈
u_declpf (ΠM, Q,Π) and ∀σ∗ ∈ u_trees(QM,Π∗M) whose root is a leaf, if some decorat-
ing containment mapping σ∗ h∗→ τ dec exists, then ∃σ ∈ u_trees(QM,ΠM) such that a
containment mapping σ h→ τ exists.

Proof. Let be Cτdec be the set of couples (σ, h) where σ ∈ u_trees(QM,Π∗M) and h : σ →
τ dec is a decorating containment mapping. By hypothesis, Cτdec 6= ∅. Let (σ, h) ∈ Cτdec ,
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and dmax = deg(Dτdec(σ, h)). If dmax 6= 0, let n be a node in σ such that some derived
EDB predicate R∗(t) in the rule ρ of n verifies d◦(h(t), R) = dmax; let R be a rule in ΠM:

R1(v1) ∧ . . . ∧Rm(vm)⇒ R(v)

with IDB atoms R(v), Ri1(vi1), . . . , Ril(v
il) and EDB atoms Rj1(vj1), . . . , Rjl′

(vjl′ ), and a
total mapping g : var(R) → var(τ) such that {(g(vi1), Ri1), . . . , (g(vil), Ril)} ⊆ Ωdmax−1

and Rj1(g(vj1)), . . . , Rjl′
(g(vjl′ )) hold.

Without loss of generality, we can assume that var(R)∩var(σ) = ∅. In order to merge
the predicate R(v) in R with the predicate R∗(t) in ρ, we introduce a total mapping

ψ : var(R) → var(R) ∪ {t}
v → t
x → x if x 6= v

We can now build a new tree σ̃ ∈ u_trees(QM,Π∗M) by replacing every occurrence of
R∗(t) in the rule ρ of n by an occurrence of R(t), and by adding a child to n, this child
being a leaf ñ labelled by (R(t), R1(ψ(v1)) ∧ . . . ∧ Rm(ψ(vm)) ⇒ R(t)). Then, we also
build the mapping

h̃ : var(σ̃) → var(τ)
x → h(x) if x ∈ var(σ)
x → g(x) if x /∈ var(σ)

This gives us a new couple (σ̃, h̃) ∈ Cτdec , such that (σ̃, h̃) <τdec (σ, h).

Let now (σ, h) ∈ Cτdec be a τ dec-minimal element of Cτdec . The above analysis tells us
that Dτdec(σ, h) is constant, so that every occurrence of a derived predicate R∗(t) in σ
verifies (h(t), R) ∈ Ω0 = ∅. Therefore, σ contains no derived predicate, and also is an
unfolded expansion tree of ΠM. In addition, h induces a (normal) containment mapping
σ

h→ τ , which ends the proof.

Propositions A.3.2 and A.3.8 are now sufficient to prove Theorem 4.1.7:

Theorem A.3.9. [Theorem 4.1.7]
Let Π be a Datalog program with goal predicate Q, ΠM a monadic Datalog program
with goal predicate QM. Π is contained in ΠM if and only if for all τ dec = (τ,L, ϕ) in
u_decpf (ΠM, Q,Π), there exists a tree σ• in u_trees(QM,Π•M) whose root is a leaf, and
a decorating containment mapping σ• h•→ τ dec.

Proof. If Π is contained in ΠM, let be τ dec = (τ,L, ϕ) ∈ u_decfp(ΠM, Q,Π). By Propo-
sition 3.1.3, ∃σ ∈ u_trees(QM,ΠM) and a containment mapping h : σ → τ . Then,
by Proposition A.3.2, ∃σ∗ ∈ u_trees(QM,Π∗M) whose root is a leaf and a decorating
containment mapping σ∗ h∗→ τ dec.
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Conversely, let τ be some tree in u_trees(Q,Π). By Lemma 4.1.4, ∃τ dec = (τ,L, ϕ) ∈
u_declfp(ΠM, Q,Π). Then, ∃σ∗ ∈ u_trees(QM,Π∗M) whose root is a leaf and a deco-
rating containment mapping σ∗ h∗→ τ dec. By Proposition A.3.8, ∃σ ∈ u_trees(QM,ΠM)
and a containment mapping h : σ → τ . This is true ∀τ ∈ u_trees(Q,Π); therefore, by
Proposition 3.1.3, Π must be contained in ΠM.

A.3.2 From Unfolding to Proof Trees

Proposition A.3.10. [Proposition 4.2.5]
Let Π be a Datalog program with goal predicate Q, L a finite set of IDB predicates, R
a monadic rule whose IDB predicates are elements of L, and τ ∈ p_dec(L, Q,Π). Then,
τ ∈ p_dec¬pf (L,R, Q,Π) if and only if U(τ) /∈ u_decpf (L,R, Q,Π).

Proof. If τ ∈ p_dec¬pf (L,R, Q,Π), let (σ,L, ϕ) = U(τ) ∈ u_dec(L, Q,Π). The above
defined infixpoint certificate from R to τ induces a total mapping h : var(R) → var(σ)
such that Rj1(h(tj1)), . . . , Rjl′

(h(tjl′ )) hold and {(h(ti1), Ri1), . . . , (h(til), Ril)} ⊆ ϕ, but
(h(t), R) /∈ ϕ. Therefore, U(τ) /∈ u_decpf (L,R, Q,Π).

Conversely, if U(τ) /∈ u_decpf (L,R, Q,Π), since L ⊇ {Ri1 , . . . , Ril}, there exists a
mapping h : var(R) → var(σ) such that Rj1(h(tj1)), . . . , Rjl′

(h(tjl′ )) hold and that
{(h(ti1), Ri1), . . . , (h(til), Ril)} ⊆ ϕ, but (h(t), R) /∈ ϕ. h induces an infixpoint certificate
from R to τ , which proves that τ ∈ p_dec¬pf (L,R, Q,Π).

Proposition A.3.11. [Proposition 4.2.7]
Let Π be a Datalog program with goal predicate Q, ΠM a monadic Datalog pro-
gram with goal predicate QM, L the set of internal IDB predicates of ΠM, and τ ∈
p_dec(L, Q,Π). Then, ∃σ∗ ∈ u_trees(QM,Π∗M) whose root is a leaf and a decorating
containment mapping σ∗ h∗→ U(τ) if and only if τ ∈ p_decgoal(L,R, Q,Π) for some goal
rule R of ΠM.

Proof. If ∃σ∗ ∈ u_trees(QM,Π∗M) whose root is a leaf and a decorating containment
mapping σ∗ h∗→ U(τ), let R∗ be the rule of Π∗M in its body, and let R be the rule of
ΠM from which R∗ is derived. R is a goal rule of ΠM and the decorating containment
mapping σ∗ h∗→ U(τ) induces a reaching goal certificate from R to τ . Therefore, τ ∈
p_decgoal(L,R, Q,Π).

If τ ∈ p_decgoal(L,R, Q,Π) for some goal rule R of ΠM, let R∗ be the rule of Π∗M
that is derived from R and that has no IDB predicate in its body. Finally, let ν ∈
u_trees(QM,Π∗M) be the tree whose root is the leaf r = (QM(v),R∗). Then, the above
defined reaching goal certificate from R to τ induces a decorating containment mapping
from ν to U(τ).

Theorem A.3.12. [Theorem 4.2.8]
Let Π be a Datalog program with goal predicate Q, ΠM a monadic Datalog program
with goal predicate QM, and let L be the set of the internal IDB predicates of ΠM. Π
is contained in ΠM if and only if every tree τ ∈ p_dec(L, Q,Π) satisfies one of the two
following sentences:
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• τ ∈ p_dec¬pf (L,R, Q,Π) for some internal rule R of ΠM.
• τ ∈ p_decgoal(L,R, Q,Π) for some goal rule R of ΠM.

Proof. If Π is contained in ΠM, let be τ ∈ p_dec(L, Q,Π). If, for every internal rule R
of ΠM, τ /∈ p_dec¬pf (L,R, Q,Π), then U(τ) ∈ u_decpf (L,R, Q,Π) for every such rule,
and U(τ) ∈ u_decpf (ΠM, Q,Π). Π is contained in ΠM, so that ∃σ∗ ∈ u_trees(QM,Π∗M)

whose root is a leaf and a decorating containment mapping σ∗ h∗→ U(τ), and then τ ∈
p_decgoal(L,R, Q,Π) for some goal rule R of ΠM.

Let us now assume that every tree τ ∈ p_dec(L, Q,Π) satisfies one of the two following
sentences:

• τ ∈ p_dec¬pf (L,R, Q,Π) for some internal rule R of ΠM.
• τ ∈ p_decgoal(L,R, Q,Π) for some goal rule R of ΠM.

∀(σ,L, ϕ) ∈ u_decpf (ΠM, Q,Π), ∃τ ∈ p_dec(L,ΠM, Q,Π) such that U(τ) = (σ,L, ϕ).
Then, for every internal rule R of ΠM, U(τ) ∈ u_decpf (L,R, Q,Π), which shows that
τ /∈ p_dec¬pf (L,R, Q,Π). That is why τ ∈ p_decgoal(L,R, Q,Π) for some goal rule R of
ΠM. Then, ∃σ∗ ∈ u_trees(QM,Π∗M) whose root is a leaf and a decorating containment
mapping σ∗ h∗→ U(τ). So, by Theorem 4.1.7, Π is contained in ΠM.

A.3.3 Tree Automata

Proposition A.3.13. [Proposition 4.3.1]
Let Π be a Datalog program with a monadic goal predicate Q and L a finite set. There
is an automaton A

p_dec
L,Q,Π, whose size is exponential in the size of Π and L, such that

T (A
p_dec
L,Q,Π) = p_dec(L, Q,Π).

Proof. We describe the construction of the automaton

A
p_dec
L,Q,Π = (Σ,S ∪ {accept},SQ, δ, {accept})

The state set S and the alphabet Σ both are the set of quadruples (R(t), ρ,L, ϕ) where
R(t) is an IDB atom with variables among var(Π), ρ is an instance of a rule of Π whose
set of variables var(ρ) ⊆ var(Π) and whose head atom is R(t), and ϕ ∈ 2L×var(Π) verifies
ϕ(var(Π)\var(ρ)) = {∅}. The start-state set SQ is the set of all triples (Q(t), ρ,L, ϕ) ∈ S.
The transition function δ is constructed as follows:

• Let ρ be a rule instance

R1(t1) ∧ . . . ∧Rm(tm)⇒ R(t)

in Π, with IDB atoms Ri1(ti1), . . . , Ril(t
il) in its body. Let be s = (R(t), ρ,L, ϕ),

s1 = (Ri1(ti1), ρ1,L, ϕ1), . . . , sl = (Ril(til), ρl,L, ϕl) ∈ S. If ϕ(ti1) = ϕ1(ti1), . . .
and ϕ(til) = ϕl(til), then 〈s1, . . . , sl〉 ∈ δ(s, s).
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• Let ρ be a rule instance

R1(t1) ∧ . . . ∧Rm(tm)⇒ R(t)

with only EDB atoms in its body. Let be s = (R(t), ρ,L, ϕ) ∈ S. Then 〈accept〉 ∈
δ(s, s).

By using technical arguments similar to those developed in [9], it follows that

T (A
p_dec
L,Q,Π) = {τ ∈ p_dec(L, Q,Π)}

It is easy to see that the number of states and transitions in the automaton is expo-
nential in the size of Π and L.

Proposition A.3.14. [Proposition 4.3.2]
Let Π be a Datalog program with a monadic goal predicate Q, L be a finite set of IBD
predicates, and R be a monadic rule whose IBD predicates are elements of L. Then there
is an automaton Ap_dec

¬pf

L,R,Q,Π , whose size is exponential in the size of Π, L and R, such that

T (A
p_dec¬pf
L,R,Q,Π ) ∩ T (A

p_dec
L,Q,Π) = p_dec¬pf (L,R, Q,Π).

Proof. We describe the construction of the automaton Ap_dec
¬pf

L,R,Q,Π . If R is a Datalog rule
R1(t1) ∧ . . . ∧ Rm(tm) ⇒ R0(t0) whose body contains IDB atoms Ri1(ti1), . . . , Ril(t

il)
and EDB atoms Rj1(tj1), . . . , Rjl′

(tjl′ ), we introduce the (possibly empty) sets θE =
{Rj1(tj1), . . . , Rjl′

(tjl′ )}, θI = {Ri1(ti1), . . . , Ril(t
il)}, θH = {R0(t0)}.

The automaton Ap_dec
¬pf

L,R,Q,Π is (Σ,S ∪{accept},SQ, δ, {accept}). The the alphabet Σ is as
in the proof of Proposition 4.3.1. The state set S is the set Σ×2θE×2θI×2θH×(var(Π)∪
{∅})var(R). The second (resp. third, fourth) component in S represents the collection of
subsets of θE (resp. θI , θH) and the final component is the set of total mappings from
var(R) to var(Π)∪{∅}, which also can be seen as the set of partial mappings from var(R)
to var(Π). The start-state set SQ is the set of all tuples ((Q(t), ρ,L, ϕ), θE, θI , θH ,M∅)
where ((Q(t), ρ,L, ϕ) ∈ Σ andM∅(var(R)) = {∅}. The transition function is constructed
as follows:

• Let P be a rule instance

P1(t1) ∧ . . . ∧ Pm(tm)⇒ P (t)

in Π, with IDB atoms Pi1(ti1), . . . , Pil(t
il) in its body. Let be

s = ((P (t), ρ,L, ϕ), βE, βI , βH ,M), s1 = ((Pi1(ti1), ρ1,L, ϕ1), β1
E, β

1
I , β

1
H ,M

′), . . .,
sl = ((Pil(til), ρl,L, ϕl), βlE, βlI , βlH ,M ′) ∈ S. Then,

〈si1 , . . . , sil〉 ∈ δ(s, (P (t), ρ,L, ϕ))

if some sets β′E ∈ 2θE , β′I ∈ 2θI , β′H ∈ 2θH satisfy the following:

1. ∀a ∈ {E, I,H}, β′a, β1
a, . . . , β

l
a is a partition of βa.

2. ∀v ∈ var(R),M(v) 6= ∅ ⇒M ′(v) = M(v).
3. If two sets βja and βkb (where a, b ∈ {E, I,H}) share a variable v, M ′(v) 6= ∅.
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4. If a variable v occurs in some βja (where a ∈ {E, I,H}) and M ′(v) 6= ∅, M ′(v)
is in tij .

5. For every instance of EDB atom R(x1, . . . ,xk) ∈ β′E, ∅ /∈ M ′({x1, . . . ,xk})
and R(M ′(x1), . . . ,M ′(xk)) is an EDB atom of P .

6. For every instance of IDB atom R(t) ∈ β′I , M ′(t) 6= ∅ and R ∈ ϕ(M ′(t)).
7. For every instance of IDB atom R(t) ∈ β′H , M ′(t) 6= ∅ and R /∈ ϕ(M ′(t)).

• Let P be a rule instance

P1(t1) ∧ . . . ∧ Pm(tm)⇒ P (t)

in Π, where all atoms in the body of the rule are EDB atoms. Let
s = ((P (t), ρ,L, ϕ), βE, βI , βH ,M) ∈ S. Then, 〈accept〉 ∈ δ(s, (P (t), ρ,L, ϕ)) if the
following holds:

1. For every instance of EDB atom R(x1, . . . ,xk) ∈ βE, ∅ /∈M({x1, . . . ,xk}) and
R(M(x1), . . . ,M(xk)) is an EDB atom of P .

2. For every instance of IDB atom R(t) ∈ βI , M(t) 6= ∅ and R ∈ ϕ(M(t)).
3. For every instance of IDB atom R(t) ∈ βH , M(t) 6= ∅ and R /∈ ϕ(M(t)).

By using technical arguments similar to those developed in [9], it follows that

{τ ∈ p_dec(L, Q,Π)∩T (A
p_dec¬pf
L,R,Q,Π )} = {τ ∈ τ ∈ p_dec(L, Q,Π)∩p_dec¬pf (L,R, Q,Π)}

It is easy to see that the number of states and transition in the automaton is exponential
in the size of Π, L and R.

Proposition A.3.15. [Proposition 4.3.3]
Let Π be a Datalog program with a monadic goal predicate Q, L be a finite set of IBD
predicates, and R be a rule such that are IBD predicates in its body are elements of L.
Then there is an automaton Ap_dec

goal

L,R,Q,Π , whose size is exponential in the size of Π, L and

R, such that T (A
p_decgoal
L,R,Q,Π ) ∩ T (A

p_dec
L,Q,Π) = p_decgoal(L,R, Q,Π).

Proof. We describe the construction of the automaton Ap_dec
goal

L,R,Q,Π . If R is a Datalog rule
R1(t1) ∧ . . . ∧ Rm(tm) ⇒ R0(t0) whose body contains IDB atoms Ri1(ti1), . . . , Ril(t

il)
and EDB atoms Rj1(tj1), . . . , Rjl′

(tjl′ ), we introduce the (possibly empty) sets θE =
{Rj1(tj1), . . . , Rjl′

(tjl′ )}, θI = {Ri1(ti1), . . . , Ril(t
il)}.

The automaton Ap_dec
goal

L,R,Q,Π is (Σ,S ∪ {accept},SQ, δ, {accept}). The the alphabet Σ is
as in the proof of Proposition 4.3.1. The state set S is the set Σ× 2θE × 2θI × (var(Π)∪
{∅})var(R). The second (resp. third) component in S represents the collection of subsets
of θE (resp. θI) and the final component is the set of total mappings from var(R) to
var(Π) ∪ {∅}, which also can be seen as the set of partial mappings from var(R) to
var(Π). The start-state set SQ is the set of all tuples ((Q(u), ρ,L, ϕ), θE, θI ,M) where
((Q(u), ρ,L, ϕ) ∈ Σ and every variable v in t0 is such that M(v) is a variable in u. The
transition function is constructed as follows:

• Let P be a rule instance

P1(t1) ∧ . . . ∧ Pm(tm)⇒ P (t)
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in Π, with IDB atoms Pi1(ti1), . . . , Pil(t
il) in its body. Let

s1 = ((Pi1(ti1), ρ1,L, ϕ1), β1
E, β

1
I ,M

′), . . ., sl = ((Pil(til), ρl,L, ϕl), βlE, βlI ,M ′) and
s = ((P (t), ρ,L, ϕ), βE, βI ,M) ∈ S. Then,

〈si1 , . . . , sil〉 ∈ δ(s, (P (t), ρ,L, ϕ))

if some sets β′E ∈ 2θE , β′I ∈ 2θI satisfy the following:

1. ∀a ∈ {E, I}, β′a, β1
a, . . . , β

l
a is a partition of βa.

2. ∀v ∈ var(R),M(v) 6= ∅ ⇒M ′(v) = M(v).
3. If two sets βja and βkb (where a, b ∈ {E, I}) share a variable v, M ′(v) 6= ∅.
4. If a variable v occurs in some βja (where a ∈ {E, I}) and M ′(v) 6= ∅, M ′(v) is

in tij .
5. For every instance of EDB atom R(x1, . . . ,xk) ∈ β′E, ∅ /∈ M ′({x1, . . . ,xk})

and R(M ′(x1), . . . ,M ′(xk)) is an EDB atom of P .
6. For every instance of IDB atom R(t) ∈ β′I , M ′(t) 6= ∅ and R ∈ ϕ(M ′(t)).

• Let P be a rule instance

P1(t1) ∧ . . . ∧ Pm(tm)⇒ P (t)

in Π, where all atoms in the body of the rule are EDB atoms. Let
s = ((P (t), ρ,L, ϕ), βE, βI ,M) ∈ S. Then, 〈accept〉 ∈ δ(s, (P (t), ρ,L, ϕ)) if the
following holds:

1. For every instance of EDB atom R(x1, . . . ,xk) ∈ βE, ∅ /∈M({x1, . . . ,xk}) and
R(M(x1), . . . ,M(xk)) is an EDB atom of P .

2. For every instance of IDB atom R(t) ∈ βI , M(t) 6= ∅ and R ∈ ϕ(M(t)).

By using technical arguments similar to those developed in [9], it follows that

{τ ∈ p_dec(L, Q,Π)∩T (A
p_decgoal
L,R,Q,Π )} = {τ ∈ τ ∈ p_dec(L, Q,Π)∩p_decgoal(L,R, Q,Π)}

It is easy to see that the number of states and transition in the automaton is exponential
in the size of Π, L and R.

Theorem A.3.16. [Theorem 4.3.4]
Let Π be a program with monadic goal predicate Q, ΠM a monadic program with goal
predicate QM. Let L be the set of internal IDB predicates in ΠM, R1, . . . ,Rk the internal
rules of ΠM and Q1, . . . ,Ql the goal rules of ΠM Then Π is contained in ΠM if and only
if

T (A
p_dec
L,Q,Π) ⊆

k⋃
i=1

T (A
p_dec¬pf
L,Ri,Q,Π) ∪

l⋃
i=1

T (A
p_decgoal
L,Qi,Q,Π )

Proof. By Theorem 4.2.8, Π is contained in ΠM if and only if

p_dec(L, Q,Π) ⊆
k⋃
i=1

p_dec¬pf (L,Ri, Q,Π) ∪
l⋃

i=1

p_decgoal(L,Qi, Q,Π)
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By Propositions 4.3.1, 4.3.2 and 4.3.3, this means that

T (A
p_dec
L,Q,Π) ⊆

k⋃
i=1

(
T (A

p_dec¬pf
L,R,Q,Π ) ∩ T (A

p_dec
L,Q,Π)

)
∪

l⋃
i=1

(
T (A

p_decgoal
L,R,Q,Π ) ∩ T (A

p_dec
L,Q,Π)

)
i.e.

T (A
p_dec
L,Q,Π) ⊆

k⋃
i=1

T (A
p_dec¬pf
L,Ri,Q,Π) ∪

l⋃
i=1

T (A
p_decgoal
L,Qi,Q,Π )

Theorem A.3.17. [Theorem 4.3.5]
Containment of a recursive Datalog program in a union of conjunctive queries is in
2EXPTIME.

Proof. For more convenience, we suppose that the monadic Datalog program that we
consider is as in Proposition A.1.2. Then, by Proposition 3.5.1, we obtain an automaton
AQM,ΠM
Q,Π , whose size is exponential in the size of ΠM and Π, such that

T (AQM,ΠM
Q,Π ) =

k⋃
i=1

T (A
p_dec¬pf
L,Ri,Q,Π) ∪

l⋃
i=1

T (A
p_decgoal
L,Qi,Q,Π )

Thus, by Theorem 4.3.4, containment in a monadic programs can be reduced to contain-
ment of tree automata whose size of exponential size. By Proposition 3.5.3, containment
of tree automata can be decided in exponential time. Therefore, the result follows.

A.4 Transitive Programs

A.4.1 Proof of Theorem 5.2.3 : First Steps

First of all, we transform expanding trees into a new type of tree, called transitive tree.
Indeed, in transitive programs, the recursion is essentially restricted to star rules which,
while being derived along an unfolding expansion tree, let us see locally a structure of
comb. Such a structure implies an arbitrary height of the tree, and could be nicely re-
organized by involving only one node whose number of children would be arbitrary high:
be reducing the height of the tree, we would sacrifice the boundedness of the number of
children of its nodes. It is this re-organisation that has been performed in transitive trees,
which are not more expanding trees stricto sensu, but remain very close to expanding
trees, and appear to be much more adapted to the study of transitive Datalog programs.

Definition A.4.1.
A transitive tree for a transitive Datalog program γ with goal predicate Γ is a tree
whose nodes are labelled by couples (α, ρ), where α is an IDB atom and ρ is an instance
of a Datalog rule whose head is α. The atom (resp. the rule) labelling a node x is
denoted αx (resp. ρx). The root of the tree must be labelled by a Γ-atom.

Consider a node x:
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• if αx is an atom P (t) where P is a star-free predicate of γ, then ρx must be a
star-free rule R of γ:

I∗1 (x1, y1) ∧ . . . ∧ I∗k(x1, y1) ∧ P1(x1) ∧ . . . ∧ Pl(xl)⇒ P (t)

where I1, . . . , Ik are star predicates of γ, P1, . . . , Pl are EDB predicates, and x has k
children x1, . . . , xk such that αxi = I∗i (xi, yi) for each i ∈ {1, . . . , k}. In particular,
if the body of ρx does not contain any star predicate, then x must be a leaf.
• if αx is an atom I∗(x, y) where I is a star predicate of γ, then ρx must be either

– a Datalog rule > ⇒ I∗(x, y), where x = y.
– a Datalog rule

∧n
i=0 I(xi, xi+1) ⇒ I∗(x0, xn+1), where n ∈ N, x = x0 and

y = xn+1 (this case is possible even if x = y).

The query corresponding to an expansion tree is the conjunction of all EDB atoms in
ρx for all nodes x in the tree, with the variables in the root atom as the free variables. It is
immediate that the queries corresponding to any expansion tree of a transitive Datalog
program γ with goal predicate Γ are the queries corresponding to any transitive tree of
γ. Therefore, if we denote by trans(Γ, γ) the set of transitive trees, we have, for every
database D,

Γ∞γ (D) =
⋃

τ∈trees(Γ,γ)

τ(D) =
⋃

τ∈trans(Γ,γ)

τ(D)

Once again, of particular interest are transitive trees that are obtained by “unfolding”
the program Γ.

Definition A.4.2.
A transitive tree τ of a transitive Datalog program γ is an unfolding transitive tree if
it satisfies the following conditions:

• the atom labelling the root is the head of a rule in γ.
• if a node x is labelled by (αx, ρx), then the variables in the body of ρx either occur

in αx or they do not occur in the label of any node above x.

We denote by u_trans(Γ, γ) the set of unfolding transitive trees of Γ for the predicate
γ. The following proposition follows immediately.

Proposition A.4.3.
Let Γ be a transitive program with a goal predicate Γ. For every database D, we have

Γ∞γ (D) =
⋃

τ∈u_trans(Γ,γ)

τ(D)
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Now, as we already said, it may be convenient to extract from a tree as many pieces of
information as possible. Therefore, a natural idea is to look at how a set of predicates,
with the help of such rules, can imply another set of predicates. This is why we introduce
now the concept of interpretations of a transitive Datalog program, as well as the
concept of positive instances.

Definition A.4.4.
Let γ be a transitive Datalog program, {P1, . . . , Pn} the set of its predicates, and ‖γ‖
the number of its rules. Each rule Ri of γ is associated to a formula Fi in Second-Order
Logic:

• if Ri is a star-free rule:

Ps1(v1) ∧ . . . ∧ Psk(vk)⇒ Ps0(v0)

whose set of variables is {v1, . . . , vm}, it is associated to the formula

Fi(P1, . . . ,Pn) ≡ (∀v1, v2, . . . , vm)

((
k∧
i=1

Psi(vi)

)
⇒ Ps0(v0)

)

with the free predicates among P1, . . . ,Pn and no free variable.
• if Ri is a star rule:

Ps1(x, z) ∧ Ps0(z, y)⇒ Ps0(x, y)

it is associated to the formula

Fi(P1, . . . ,Pn) ≡ (∀x, y) (∃n ∈ N) (∃v0, . . . , vn)((
(x = v0) ∧ (y = vn) ∧

n∧
i=1

Ps1(vi−1, vi)

)
⇒ Ps0(x, y)

)
with the free predicates among P1, . . . ,Pn and no free variable.
• if Ri is a baby star rule:

> ⇒ Ps0(x, x)

it is associated to the formula

Fi(P1, . . . ,Pn) ≡ >

with the free predicates among P1, . . . ,Pn and no free variable.

Now, let V = {v1, . . . , vm} and V ′ = {v′1, . . . , v′m′} be finite sets of variables, then
A = {Ps1(v1), . . . , Psa(va)} a finite set of atoms with variables among V and A′ =
{Ps′1(v

′
1), . . . , Ps′

a′
(v′a′)} a finite set of atoms with variables among V ∪ V ′. The interpre-

tation of γ on the 4-uple (V ,V ′,A,A′) is the formula

Iγ(V ,V ′,A,A′) ≡ (∀P1, . . . ,Pn) (∀v1, . . . , vm) (∃v′1, . . . , v′m′)‖γ‖∧
i=1

Fi(P1, . . . ,Pn) ∧
a∧
i=1

Psi(vi)

⇒ a′∧
i=1

Ps′i
(v′i)


with no free predicate and no free variable.
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If Iγ(V ,V ′,A,A′) ≡ >, a positive instance of γ on the 4-uple (V ,V ′,A,A′) is a total
mapping φ : V ∪ V ′ → V such that φ|V = IdV and that

> ≡ (∀P1, . . . ,Pn) (∀v1, . . . , vm)‖γ‖∧
i=1

Fi(P1, . . . ,Pn) ∧
a∧
i=1

Psi(vi)

⇒ a′∧
i=1

Ps′i
(φ(v′i))



Now, similarly to the Definition 5.1.1 that we have given, we define another program,
called triangle-reduction of a transitive program, and which consists in a fragment of the
diamond-reduction of the transitive program. In fact, the difference between triangle-
reduction and diamond-reduction lies in the length of the diamond-rules that are al-
lowed: the diamond-rules in the diamond-reduction are designed to allow a “fusion" of
the diamond-rules present in the triangle-reduction.

Definition A.4.5.
Let γ be a transitive Datalog program. The triangle-reduction of γ is the Datalog
program γ∇ built hereafter:

Every predicate in γ is a predicate in γ�. Moreover, in addition to these predicates,
γ∇ contains a binary EDB predicate G�, called diamond predicate, for each star IDB
predicate G∗ in γ. The rules in γ∇ are defined as follows:

• Each star-free rule

E1(v1) ∧ . . . ∧ Ek(vk) ∧G∗1(x1
1, x

1
2) ∧ . . . ∧G∗l (xl1, xl2 ⇒ G(t))

in γ is also a rule in γ∇.
• For each star IDB predicate G∗ in γ, γ∇ contains the diamond-rules involving at

most 3 atoms, which are rules ρ verifying:

– ∃n ∈ {1, 2, 3} such that ρ is a rule

E1(x0, x1) ∧ E2(x1, x2) ∧ . . . ∧ En(xn−1, xn)⇒ G∗(x0, xn)

– ∀i ∈ {1, 2, . . . , n}, Ei is either the predicate G or the predicate G�.
– ∀i ∈ {1, 2, . . . , n− 1}, if Ei = G, then Ei+1 = G�.

Now, we derive from the existence of the mapping ϕ described in the Definition 2.4.1
the notion of degree of a predicate of the diamond-reduction γ� of a transitive Datalog
program γ.

Definition A.4.6.
Let P be a predicate in γ� and ϕ the mapping described in the Definition 2.4.1 The degree
of P is the integer d◦P defined as follows:

• If P is an EDB predicate of γ, then d◦P = 2 + 3ϕ(P ).
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• If P is an star-free IBD predicate of γ, then d◦P = 3ϕ(P ).
• If P is a predicate G�, then d◦P = 3ϕ(P ) + 1.
• If P is an star IBD predicate of γ, then d◦P = 3ϕ(P ) + 2.

This notion of degree of a predicate has the immediate consequence of proving that
both γ� and γ∇ must be non-recursive programs, and therefore that both u_trees(Γ, γ�)
and u_trees(Γ, γ∇) must be finite.

Proposition A.4.7.
Let γ be a transitive Datalog program with goal predicate Γ. Let γ� be its diamond-
reduction. γ� is a non-recursive program, and u_trees(Γ, γ�) is finite.

Proof. In γ�, the definition of a predicate P may not depend on a predicate Q such
that d◦P ≤ d◦Q. Therefore, no predicate can depend recursively on itself when being
defined. That is why γ� is a non-recursive program, which immediately implies that
u_trees(Γ, γ�) is finite.

Since every rule of γ∇ is a rule of γ�, the following corollary is now straightforward:

Corollary A.4.8.
Let γ be a transitive Datalog program with goal predicate Γ. Let γ∇ be its triangle-
reduction. γ∇ is a non-recursive program, and u_trees(Γ, γ∇) is finite.

After that, and now that we know what is a fixpoint labelling, two special such fix
points are very susceptible of being of a great interest: the bigger one and the least one.
NΣ×L(γ,Π) being the bigger fix point, we therefore have too look at the least fix point.

Definition A.4.9.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog pro-
gram. ∀Σ ∈ p_trees(Q,Π), it is straightforward that ΨΣ is a non-decreasing function,
such that ∀E ⊆ NΣ × L(γ,Π), E ⊆ ΨΣ(E). We denote by Ψω

Σ(E) the set
⋃
n∈N Ψn

Σ(E).
It is straightforward that Ψω

Σ(E) is the smallest set F such that E ⊆ F = ΨΣ(F ).

We say that i−1(Σ,Ψω
Σ(∅)) is the minimal labelling of Σ, and we denote this tree by

lmin(Σ). By the above property, lmin(Σ) ∈ p_labelfp(Σ, γ, Q,Π).

Definition A.4.10.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog pro-
gram. Let Σ ∈ p_trees(Q,Π) be a proof tree of Π, and (N, l) be a couple (N, l) =
((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈ NΣ ×L(γ,Π). If κ = U(Σ) ∈ u_trees(Q,Π), let A be the set
of all atoms E(v) in κ where E is an EDB predicate in both Π and γ; and let θ be the
unfolding mapping of Σ.

We call κ-mapping the total mapping Λϕ,κ : var�(γ
�) ∪ var(ρ) → var�(γ

�) ∪ var(κ)
such that
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• Λϕ,κ(v) = ϕ(v) if ϕ(v) ∈ var�(γ�).
• Λϕ,κ(v) = θ−1([ϕ(v)]Σ) if ϕ(v) ∈ var(ρ).

If S = {Psi(vi)|1 ≤ i ≤ |S|}, we set S ′ = {P ′si(Λϕ,κ(vi))|1 ≤ i ≤ |S|}, where, ∀i ∈
{1, . . . , |S|},

• if Psi is a predicate G�, then P ′si is the predicate G∗.
• otherwise, P ′si = Psi .

The interpretation of (N, l) is the formula IN(l) ≡ Iγ(var(κ), var�(γ
�),A, S ′).

If IN(l) ≡ >, then a positive instance of (N, l) is a triple (N, l, φ) where φ is a positive
instance φ of γ on (var(κ), var�(γ

�),A, S ′).

Then comes a very important theorem, that links the interpretation of predicates to
the existence of containment mappings:

Proposition A.4.11.
Let Π be a Datalog program with goal predicate Q, γ a transitive Datalog program
with goal predicate Γ, Σ ∈ p_trees(Q,Π) a proof tree, N = (R(t), ρ) the root of Σ,
σ ∈ p_label(Σ, γ, Q,Π) a γ-labelled prof tree and Γ(v) an instance of Γ with variables
among var�(γ�).

There is a containment mapping from an unfolding tree ν ∈ u_trees(Γ, γ) to κ =
U(Σ) ∈ u_trees(Q,Π) if and only if ∃l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L(γ,Π) such that ϕ(v) = t
and IN(l) ≡ >.

Proof. Let us first assume that there exists a containment mapping M from ν to κ =
U(Σ). By a direct induction, we obtain that, if S ′ is the set whose elements are atoms
P (M(t)), where P (t) is an atom in ν, then > ≡ Iγ(var(κ), var�(γ

�),A, S ′). Therefore, if
(γ(v), r) is the root of ν, we must obtain that > ≡ Iγ(var(κ), var�(γ

�),A, {Γ(M(v))}).
We point out that, if (R(t′), ρ′) is the root of κ, then M maps v to t′, and therefore that
v, t′ and t must be of the same size. Then, ∃l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L(γ,Π), such that
ϕ(v) = t. That is why

IN(l) ≡ Iγ(var(κ), var�(γ
�),A, {Γ(t′)}) ≡ Iγ(var(κ), var�(γ

�),A, {Γ(M(v))}) ≡ >

Now, let us assume that ∃l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L(γ,Π), such that ϕ(v) = t and
IN(l) ≡ >. We can select a proof of IN(l) ≡ >. Then, by introducing the extensional
closure of γ, as defined in Definition 4.1.5, we easily prove by induction that there exists
a transitive tree ν ′ ∈ u_trans(Γ, γ) such that some containment mapping M′ from ν ′ to
κ exists. Then, we can transform ν ′ in an unfolding tree ν ∈ u_tree(Γ, γ) with the same
variables, and such that each EDB atom in ν ′ be an EDB predicate in ν. Therefore, M′

induces a containment mapping M′ : ν → κ, which closes the proof.
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A.4.2 Proof of Theorem 5.2.3 : A Sufficient Condition

Intuitively, the application introduced in the Definition 5.2.2 conserves the truthfulness of
a set of atoms. This intuition is confirmed by the fact that, starting from the knowledge
of no atom of any sort, this application can reach only sets of atoms whose interpretation
is true:

Lemma A.4.12.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog program
with goal predicate Γ. ∀Σ ∈ p_trees(Q,Π),∀(N, l) ∈ Ψω

Σ(∅), IN(l) ≡ >.

Proof. We prove the above statement by the induction below.

If Σ ∈ p_trees(Q,Π) and n ∈ N, letHn be the property : “∀(N, l) ∈ Ψn
Σ(∅), IN(l) ≡ >”.

First of all, since Ψ0
Σ(∅) = ∅, it is straightforward that H0 and H1 are true.

Now, if n ≥ 1 andHn is true, let be some (N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈ Ψn+1
Σ (∅) =

ΨΣ(E), where E = Ψn
Σ(∅). We are in (at least) one of the following 15 cases:

1. (N, l) ∈ E.
Therefore, IN(l) ≡ >.

2. N is the father, in the tree Σ, of some node N ′ = (R′(t′), ρ′) ∈ NΣ, V ⊆ var(t′)
and (N ′, (τ, S, ρ′, V, ϕ)) ∈ E.
> ≡ IN ′((τ, S, ρ′, V, ϕ)) and IN ′((τ, S, ρ′, V, ϕ)) ≡ IN(l). Therefore, IN(l) ≡ >.

3. N is a child, in the tree Σ, of some node N ′ = (R′(t′), ρ′) ∈ NΣ, V ⊆ var(t) and
(N ′, (τ, S, ρ′, V, ϕ)) ∈ E.
> ≡ IN ′((τ, S, ρ′, V, ϕ)) and IN ′((τ, S, ρ′, V, ϕ)) ≡ IN(l). Therefore, IN(l) ≡ >.

4. ∃S ′ ⊇ S such that (N, (τ, S ′, ρ, V, ϕ)) ∈ E.
> ≡ IN((τ, S ′, ρ, V, ϕ)) and IN((τ, S ′, ρ, V, ϕ))⇒ IN(l). Therefore, IN(l) ≡ >.

5. ∃S ′, S ′′ ⊆ S such that S = S ′ ∪ S ′′, ϕ(var(S ′)) ∩ ϕ(var(S ′′)) ⊆ V , and such that
both (N, (τ, S ′, ρ, V, ϕ)) ∈ E and (N, (τ, S ′′, ρ, V, ϕ)) ∈ E.
> ≡ IN((τ, S ′, ρ, V, ϕ)) and > ≡ IN((τ, S ′′, ρ, V, ϕ)). Moreover,

IN((τ, S ′, ρ, V, ϕ)) ∧ IN((τ, S ′′, ρ, V, ϕ)) ≡ IN(l)

Therefore, IN(l) ≡ >.
6. ∃τ ′ ∈ u_trees(Γ, γ�) such that (N, (τ ′, S, ρ, V, ϕ)) ∈ E.
> ≡ IN((τ ′, S, ρ, V, ϕ)) and IN((τ ′, S, ρ, V, ϕ)) ≡ IN(l). Therefore, IN(l) ≡ >.

7. ∃V ′ ⊆ var(ρ) such that (N, (τ, S, ρ, V ′, ϕ)) ∈ E.
> ≡ IN((τ, S, ρ, V ′, ϕ)) and IN((τ, S, ρ, V ′, ϕ)) ≡ IN(l). Therefore, IN(l) ≡ >.

8. Some total mapping h : var�(γ
�) ∪ V → var�(γ

�) ∪ V verifies h|V = IdV and
(N, (τ, S, ρ, V, h ◦ ϕ)) ∈ E.
IN((τ, S, ρ, V, h◦ϕ))⇒ IN(l) and IN((τ, S, ρ, V, h◦ϕ)) ≡ >. Therefore, IN(l) ≡ >.

9. ∃ϕ′ ∈ (var�(γ
�)∪V )var�(γ

�) such that ϕ′|var(S) = ϕ|var(S) and (N, (τ, S, ρ, V, ϕ′)) ∈ E.
IN((τ, S, ρ, V, ϕ′)) ≡ IN(l) and IN((τ, S, ρ, V, ϕ′)) ≡ >. Therefore, IN(l) ≡ >.

10. ∃n′ = (R′(t′), ρ′) ∈ Nτ and ∃S ′ ⊆ S such that S = S ′ ∪ {R′(t′)}, S ′ contains all
atoms in the body of ρ′ and (N, (τ, S ′, ρ, V, ϕ)) ∈ E.
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IN((τ, S ′, ρ, V, ϕ))⇒ IN(l) and IN((τ, S ′, ρ, V, ϕ)) ≡ >. Therefore, IN(l) ≡ >.
11. ∃τ ′ ∈ u_trees(Γ, γ�) and an atom G�(x, y) ∈ S such that (N, (τ ′, S ′, ρ, V, ϕ)) ∈ E,

where S ′ = S\{G�(x, y)} ∪ {G(x, y)}.
IN((τ ′, S ′, ρ, V, ϕ))⇒ IN(l) and IN((τ ′, S ′, ρ, V, ϕ)) ≡ >. Therefore, IN(l) ≡ >.

12. ∃τ ′ ∈ u_trees(Γ, γ�), an atom G�(x, y) ∈ S and a variable z ∈ var�(γ�) such that
(N, (τ ′, S ′, ρ, V, ϕ)) ∈ E, where S ′ = S\{G�(x, y)} ∪ {G�(x, z), G�(z, y)}.
IN((τ ′, S ′, ρ, V, ϕ))⇒ IN(l) and IN((τ ′, S ′, ρ, V, ϕ)) ≡ >. Therefore, IN(l) ≡ >.

13. S is a singleton {G�(x, y)} such that ϕ(x) = ϕ(y).
(N, l) ∈ ΨΣ(∅) ⊆ E. Therefore, IN(l) ≡ >.

14. S is a singleton {P (v)} where P is an EDB predicate and ϕ maps P (v) to an atom
P (x) appearing in ρ.
(N, l) ∈ ΨΣ(∅) ⊆ E. Therefore, IN(l) ≡ >.

15. S = ∅.
(N, l) ∈ ΨΣ(∅) ⊆ E. Therefore, IN(l) ≡ >.

This proves that Hn ⇒ Hn+1 and, therefore, that Hω is true, which is the statement of
our lemma.

This truthfulness directly implies the following theorem, which expresses one of the
two implications Theorem 5.2.3 consists in:

Theorem A.4.13.
Let Π be a Datalog program with goal predicate Q, γ a transitive Datalog program
with goal predicate Γ. Let be Σ ∈ p_trees(Q,Π), σ = lmin(Σ) ∈ p_labelfp(Σ, γ, Q,Π),
r = (N,L) the root of σ. Let Γ(v) be an instance of Γ with variables among var�(γ�). If
N = (R(t), ρ) is such that ϕ(v) = t and some l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L, then there exists
a containment mapping from a tree ν ∈ u_trees(Γ, γ) to κ = U(Σ) ∈ u_trees(Q,Π).

Proof. With the above notations, (N, l) = ((R(t), ρ), (τ, {Γ(v)}, ρ, V, ϕ)) ∈ Ψω
Σ(∅). Thus,

IN(l) = Iγ(var(κ), var�(γ
�),A, {Γ(t)}) ≡ >, which means that there exists a contain-

ment mapping from a tree ν ∈ u_trees(Γ, γ) to κ = U(Σ) ∈ u_trees(Q,Π).

A.4.3 Proof of Theorem 5.2.3 : A Necessary Condition

Now, we have to demonstrate a result which is much less intuitive than the precedent
one, and which states that the pieces of information caught through the concepts of
γ-labelled proof trees and obtained with the application defined in the Definition 5.2.2
are exhaustive enough to contain the pieces of information we are looking for (i.e. the
existence of containment mappings). It is this result that we will now prove. However,
the proof of this result involves the definition of many objects, whose definition may
sometimes appear complicated since some of them were designed in the only purpose of
avoiding nasty cases.

First of all, we introduce the concept of descendant-free sets of atoms, and some con-
cepts related to this one. This concept is quite natural: in order to reduce the number of
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proof trees we will have to look at, we want to quantify the existence of redundancy in
the labellings of a proof tree: indeed, if we can remove redundant atoms from a given set,
we will obtain a “smaller" set, but will not change anything to its interpretation. This
quantification is made possible through the invention of the concept of descendant-free
sets of atoms, which correspond to labellings without redundancy.

Definition A.4.14.
Let Π be a Datalog Program with goal predicate Q, τ ∈ u_trees(Q,Π), Pτ the set of
atoms in τ and N,N ′ ∈ Nτ .

If ∃k ≥ 0,∃N0, . . . , Nk ∈ Nτ such that N = N0, N
′ = Nk and ∀i ∈ {0, . . . , k − 1}, Ni

is the father of Ni+1, then N ′ is a descendant of N (we also say that N is an ascendant
of N ′).

Let S ⊆ Pτ be a non-empty set of atoms, and P(t) an occurrence of an atom in
P (t) ∈ S. If the node N ∈ Nτ whose rule ρ contains P(t) has an ascendant N ′ such that
S contains the head predicate Q(u) of its rule ρ′, then P(t) is said to be overwhelmed by
S in τ .

If every atom P (t) ∈ S has an occurrence P(t) that is not overwhelmed by S in τ , we
say that S is descendant-free in τ .

We define now the concept of natural partition and of natural label, that will both be
useful in order to formalize the splitting operation I briefly introduced in the page 29.
Intuitively, the natural partition is the most efficient partition of a set of atoms that can
be found to divide the atoms and allow us to prove separately the conjunctions of atoms
present in each of the sets the partition consists in.

Definition A.4.15.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog pro-
gram. Let Σ ∈ p_trees(Q,Π) be a proof tree of Π and (N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈
NΣ × L(γ,Π).

We define the symmetric relationship ≈(N,l) between variables a, b ∈ ϕ−1(var�(γ
�)) by:

a ≈(N,l) b⇔ ∃P (v) ∈ S,∃c, d ∈ var(v) such that ϕ(a) = ϕ(c) and ϕ(b) = ϕ(d). Then, we
define the equivalence relationship ≡(N,l) between variables a, b ∈ ϕ−1(var�(γ

�)) as the
reflexive transitive closure of ≈(N,l). This lets us define classes of equivalence C1, . . . , Ck ⊆
ϕ−1(var�(γ

�)) such that ∀i ∈ {1, . . . , k},∀a ∈ Ci,∀b ∈ ϕ−1(var�(γ
�)), b ∈ Ci ⇔ a ≡(N,l) b.

We can now split S into sets S0, S1, . . . , Sk ⊆ S such that S0 = {P (v) ∈ Si|var(v) ⊆ V }
and ∀i ∈ {1, . . . , k}, Si = {P (v) ∈ Si|var(v) ∩ Ci 6= ∅}. This partition (S0, . . . , Sk) of S
is called natural partition of (N, l).

Definition A.4.16.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog pro-
gram. Let Σ ∈ p_trees(Q,Π) be a proof tree of Π and (N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈
NΣ × L(γ,Π).

We say that (N, l) is natural if, whenever τ contains a node n whose rule is

ρ = E1(x0, x1) ∧ E2(x1, x2) ∧ . . . ∧ En(xn−1, xn)⇒ G∗(x0, xn)
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• if n ≥ 2;
• if Ei = G� for some i ∈ {1, . . . , n};
• if, for some j ∈ {1, . . . , i}, v = xj−1 or v ∈ var(τ ′), where the head predicate in the

root of τ ′ is Ej(xj−1, xj);
• if w = xi or, for some j ∈ {i + 1, . . . , n}, w = xj or v ∈ var(τ ′′), where the head

predicate in the root of τ ′′ is Ej(xj−1, xj);
then v 6≡(N,l′) w, where l′ = (τ, S\{Ei(xi−1, xi)}, ρ, V, ϕ).

Another definition that may be useful it the notion of the distance from a variable to a
node. In fact, it is the distance from the domain of the variable to the considered node.
This definition will be helpful when the time will come to delay the splitting operation
because all the interesting variables are in the same sub-tree.

Definition A.4.17.
Let τ be an unfolding tree of a Datalog program Π, v ∈ var(τ) and N ∈ Nτ . The
distance d(v,N) from v to N is the least integer n ∈ N such that ∃N0 = (R0(t0), ρ0), N1 =
(R1(t1), ρ1), . . . , Nn = (Rn(tn), ρn) ∈ Nτ where N = N0 and v ∈ var(ρn).

Now, we use immediately the notion of distance defined just above, to create a mapping
between positive instances and polynomials of N[X], which will allow us to run proofs by
induction.

Definition A.4.18.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog
program. Let Σ ∈ p_trees(Q,Π) be a proof tree of Π, κ = U(Σ) ∈ utrees(Q,Π),
(N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈ NΣ × L(γ,Π) such that IN(l) ≡ > and (N, l, φ)
a positive instance of (N, l).

Let P (v) be an atom in S. The weight of P (v) is the integer WP (v) defined as follows:

• If P is a predicate G�, let be z ∈ N such that G = Pz. Then, W(N,l,φ)(P (v))
is the least integer k ∈ N such that ∃w0, w1, . . . , wk ∈ var(κ) where G∗(φ(w)) =
G∗(w0, wk) and

> ≡ (∀P1, . . . ,Pn) (∀v1, . . . , vm)‖γ‖∧
i=1

Fi(P1, . . . ,Pn) ∧
a∧
i=1

Psi(vi)

⇒ k−1∧
i=0

Pz(wi, wi+1)


• Otherwise, W(N,l,φ)(P (v)) = 1.
The weight of (N, l, φ) is the polynomial of N[X]

W(N,l,φ)(X) =
∑

P (v)∈S

(
W(N,l,φ)(P (v))2Xd◦P +

∑
v∈v

d(φ(Λϕ,κ(v)), N)X

)
+

|ϕ(var�(γ
�)) ∩ var�(γ�)|

The notion of weight induces an ordering on positive instances. Therefore, if (N1, l1, φ1)
and (N2, l2, φ2) are positive instances of couples (N1, l1), (N2, l2) ∈ NΣ × L(γ,Π), we
denote by (N1, l1, φ1) ≤W (N2, S2, φ2) the inequality W(N1,l1,φ1)(X) ≤ W(N2,l2,φ2)(X).
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With the notion of eccentricity, introduced hereafter, we point out the existence of
predicates involving variables that do not appear in the same sub-trees. These are the
predicates of particular interest that were the subject of the discussion of the page 29.

Definition A.4.19.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog
program. Let Σ ∈ p_trees(Q,Π) be a proof tree of Π, κ = U(Σ) ∈ u_trees(Q,Π),
(N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈ NΣ × L(γ,Π) such that IN(l) ≡ >, (N, l, φ) a posi-
tive instance of (N, l) and Λϕ,κ a κ-mapping.

Let N ⊆ Nκ be a set of nodes in κ, N = Nκ\N ⊆ Nκ, and NV ⊆ var(κ) (resp.
NV ⊆ var(κ)) the set of variables that have an occurrence appearing in the rule of some
node n ∈ N (resp. n ∈ N). The eccentric part of S is the set SN of atoms G�(x, y) ∈ S
that are in one of the following two cases:

• φ(Λϕ,κ(x)) /∈ NV and φ(Λϕ,κ(y)) /∈ NV .
• φ(Λϕ,κ(x)) /∈ NV and φ(Λϕ,κ(y)) /∈ NV .

(N, l, φ) is said eccentric relatively to N if SN 6= ∅.

We define now the concept of smooth partition of a positive instance and of smooth
positive instance, that are analogous to the concepts of natural partition and natural label
introduced in the Definitions A.4.15 and A.4.16, but in the context of the existence of a
sub-tree of particular interest.

Definition A.4.20.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog
program. Let Σ ∈ p_trees(Q,Π) be a proof tree of Π, κ = U(Σ) ∈ u_trees(Q,Π),
(N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈ NΣ×L(γ,Π) such that IN(l) ≡ >, (N, l, φ) a positive
instance of (N, l), Λϕ,κ a κ-mapping, N ⊆ Nκ be a set of nodes in κ, N = Nκ\N ⊆ Nκ,
and NV ⊆ var(κ) (resp. NV ⊆ var(κ) the set of variables that have an occurrence
appearing in the rule of some node n ∈ N (resp. n ∈ N).

We define the symmetric relationship ≈(N,l,φ),N between variables a, b ∈ ϕ−1(var�(γ
�))

by: a ≈(N,l,φ),N b ⇔ ∃P (v) ∈ S\SN, ∃c, d ∈ var(v) such that ϕ(a) = ϕ(c) and ϕ(b) =
ϕ(d). Then, we define the equivalence relationship ≡(N,l,φ),N between variables a, b ∈
ϕ−1(var�(γ

�)) as the reflexive transitive closure of ≈(N,l,φ),N. This lets us define classes
of equivalence C1, . . . , Ck ⊆ ϕ−1(var�(γ

�)) such that ∀i ∈ {1, . . . , k},∀a ∈ Ci,∀b ∈
ϕ−1(var�(γ

�)), b ∈ Ci ⇔ a ≡(N,l,φ),N b.

We can now split S into sets S0, S1, . . . , Sk ⊆ S such that S0 = {P (v) ∈ Si|var(v) ⊆ V }
and ∀i ∈ {1, . . . , k}, Si = {P (v) ∈ Si|var(v) ∩ Ci 6= ∅}. This partition (S0, . . . , Sk) of S
is called smooth partition of (N, l, φ) relatively to N.

Definition A.4.21.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog
program. Let Σ ∈ p_trees(Q,Π) be a proof tree of Π, κ = U(Σ) ∈ u_trees(Q,Π),
(N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈ NΣ×L(γ,Π) such that IN(l) ≡ >, (N, l, φ) a positive
instance of (N, l), Λϕ,κ a κ-mapping, N ⊆ Nκ be a set of nodes in κ, N = Nκ\N ⊆ Nκ,
and NV ⊆ var(κ) (resp. NV ⊆ var(κ) ) the set of variables that have an occurrence
appearing in the rule of some node n ∈ N (resp. n ∈ N).
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We say that (N, l, φ) is smooth relatively to N if, whenever τ contains a node n whose
rule is

ρ = E1(x0, x1) ∧ E2(x1, x2) ∧ . . . ∧ En(xn−1, xn)⇒ G∗(x0, xn)

• if n ≥ 2;
• if Ei = G� for some i ∈ {1, . . . , n};
• if, for some j ∈ {1, . . . , i}, v = xj−1 or v ∈ var(τ ′), where the head predicate in the

root of τ ′ is Ej(xj−1, xj);
• if w = xi or, for some j ∈ {i + 1, . . . , n}, w = xj or v ∈ var(τ ′′), where the head

predicate in the root of τ ′′ is Ej(xj−1, xj);

then v 6≡(N,l′,φ),N w, where l′ = (τ, S\{Ei(xi−1, xi)}, ρ, V, ϕ).

Then, we introduce the concept of regularisable positive instances, which denote the
positive instances for which, in every diamond-rule containing two diamond-predicates,
the variables of one of the diamond-predicates are in the considered sub-tree and the
variables of the other diamond-predicate are not.

Definition A.4.22.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog
program. Let Σ ∈ p_trees(Q,Π) be a proof tree of Π, κ = U(Σ) ∈ u_trees(Q,Π),
(N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈ NΣ×L(γ,Π) such that IN(l) ≡ >, (N, l, φ) a positive
instance of (N, l), Λϕ,κ a κ-mapping, N ⊆ Nκ be a set of nodes in κ, N = Nκ\N ⊆ Nκ,
and NV ⊆ var(κ) (resp. NV ⊆ var(κ)) the set of variables that have an occurrence
appearing in the rule of some node n ∈ N (resp. n ∈ N).

Let us assume that

∃n = (G∗(x0, xk), E1(x0, x1) ∧ E2(x1, x2) ∧ . . . ∧ Ek(xk−1, xk)⇒ G∗(x0, xk)) ∈ Nτ

such that ∃i, j ∈ {1, . . . , n} verifying

• i < j and Ei = Ej = G�

• Ei(xi−1, xi), Ej(xj−1, xj) ∈ S

If we are in none of the following cases:

• φ(Λϕ,κ(xi−1)), φ(Λϕ,κ(xi)) ∈ NV and φ(Λϕ,κ(xj−1)), φ(Λϕ,κ(xj)) ∈ NV .
• φ(Λϕ,κ(xi−1)), φ(Λϕ,κ(xi)) ∈ NV and φ(Λϕ,κ(xj−1)), φ(Λϕ,κ(xj)) ∈ NV .

or if we are not in the two following cases:

• φ(Λϕ,κ(xi−1)), φ(Λϕ,κ(xj)) /∈ NV ∩NV .
• if j 6= i+ 1, then φ(Λϕ,κ(xi)), φ(Λϕ,κ(xj−1)) /∈ NV ∩NV .

then (N, l, φ) is said to be not regularisable relatively to N.

Every positive instance (N, l, φ) that is not in such a case is said to be regularisable
relatively to N.
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Now, we define a smoothing mapping, which is an application that transforms a posi-
tive instance (N, l, φ) in a positive instance (N, lk, φk) such that (N, l) ∈ Ψω

Σ({(N, lk)}),
(N, lk, φk) ≤W (N, l, φ) and (N, lk, φk) is not eccentric relatively to a given sub-tree.

Definition A.4.23.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog
program. Let Σ ∈ p_trees(Q,Π) be a proof tree of Π, κ = U(Σ) ∈ u_trees(Q,Π),
(N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈ NΣ×L(γ,Π) such that IN(l) ≡ >, Λϕ,κ a κ-mapping,
N ⊆ Nκ, N = Nκ\N ⊆ Nκ and (N, l, φ) a positive instance of (N, l) which is smooth and
regularisable relatively to N.

If (N, l, φ) is not eccentric relatively to N , we set RN((N, l, φ)) = (N, l, φ).

If (N, l, φ) is eccentric relatively to N, let G�(x, y) be an atom in SN. Let be z ∈ N
such that G = Pz and k = W(N,l,φ)(G

�(x, y)). ∃w0, . . . , wk ∈ var(κ) such that w0 =
φ(Λϕ,κ(x)), wk = φ(Λϕ,κ(y)) and

> ≡ (∀P1, . . . ,Pn) (∀v1, . . . , vm)‖γ‖∧
i=1

Fi(P1, . . . ,Pn) ∧
a∧
i=1

Psi(vi)

⇒ k−1∧
i=0

Pz(wi, wi+1)


• If ∃i ∈ {0, . . . , k−1} such that wi ∈ NV ∩NV , we choose some z ∈ var�(γ�)\var(τ).

Let ρ0 be a rule containing G�(x, y) and n0 ∈ Nτ the node whose rule is ρ0. We
define:

– The set S1 = {G�(x, z), G�(z, y)} ∪ S\{G�(x, y)}.
– The rule ρ1, obtained from ρ0 by replacing, in the body of ρ0, the atom G�(x, y)

by the conjunction of atoms G�(x, z), G�(z, y).
– The tree τ1 ∈ u_trees(Γ, γ∇), obtained from τ by replacing the node n0 by a

node n1 whose rule is ρ1.
– A total mapping ϕ1 : var �(γ

�) → var �(γ
�) ∪ V , such that ϕ1|var(S) = ϕ|var(S),

ϕ(z) ∈ var�(γ�) and ϕ(z) /∈ ϕ(var(τ)).
– The couple (N, l1) ∈ NΣ × L(γ,Π), where l1 = (τ1, S1, ρ, V, ϕ1).
– A total mapping φ1 : var(κ)∪var�(γ�)→ var(κ), such that φ1|var(κ) = Idvar(κ),
φ1|var(S) = φ|var(S) and φ1(ϕ(z)) = wi.

It appears that (N, l1, φ1) is a positive instance of (N, l1), which is why IN(l1) ≡ >.
We set RN((N, l, φ)) = (N, l1, φ1).
By rule 12., (N, (τ, S, ρ, V, ϕ1)) ∈ Ψω

Σ({(N, l1)}).
By rule 9., (N, l) = (N, (τ, S, ρ, V, ϕ)) ∈ Ψω

Σ({(N, l1)}).
• If, ∀i ∈ {0, . . . , k − 1}, wi /∈ NV ∩NV , we still know that ∃i ∈ {0, . . . , k − 1} such

that

– if w0 ∈ NV and wk ∈ NV , then wi ∈ NV and wi+1 ∈ NV

– if w0 ∈ NV and wk ∈ NV , then wi ∈ NV and wi+1 ∈ NV

Let ρ0 be a rule containing G�(x, y) and n0 ∈ Nτ the node whose rule is ρ0. γ
contains an instance of a star-free rule R = E1(v1) ∧ . . . ∧ Ek(vk) ∧ G∗1(x1

1, x
1
2) ∧

. . . ∧G∗l (xl1, xl2)⇒ G(x0
1, x

0
2) such that ∃S1, S2, S3, ρ1, τ1, τ2, ϕ1, φ1 satisfying:
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– var(R) ∩ var(τ) = ∅.
– S1 = {G�(x, x0

1), G�(x0
2, y), E1(v1), . . . , Ek(vk), G∗1(x1

1, x
1
2), . . . , G∗l (x

l
1, x

l
2)}.

– S2 = S1 ∪ S\{G�(x, y)}.
– S3 = {G(x0

1, x
0
2), G�(x, x0

1), G�(x0
2, y)} ∪ S\{G�(x, y)}.

– ρ1 is obtained from ρ0 by replacing, in the body of ρ0, the atom G�(x, y) by
the conjunction of atoms G�(x, x0

1), G(x0
1, x

0
2), G�(x0

2, y).
– τ2 ∈ u_trees(G, γ∇) has a root n2 whose rule is R and l other nodes n′1, . . . , n′l

which are leaves, children of n2, and whose rules are G�i (xi1, xi2)⇒ G∗i (x
i
1, x

i
2).

– τ1 ∈ u_trees(Γ, γ∇) is the tree built from τ by replacing the node n0 by a
node n1 whose rule is ρ1, and by giving to n1, in addition to the children of
n0, a new child, which is n2.

– ϕ1 : var �(γ
�) → var �(γ

�) ∪ V verifies ϕ1|var(S) = ϕ|var(S), ϕ1(v) ∈ var�(γ�) if
v /∈ var(S) and ∀v, v′ ∈ var�(γ�), (v 6= v′ ∧ ϕ1(v) = ϕ1(v′))⇒ v, v′ ∈ var(S).

– (N, l1) ∈ NΣ × L(γ,Π), where l1 = (τ1, S2, ρ, V, ϕ1), and IN(l1) ≡ >.
– φ1 : var(κ)∪ var�(γ�)→ var(κ) verifies φ1|var(κ) = Idvar(κ), φ1|var(S) = φ|var(S),
φ1(x0

1) = wi and φ1(x0
2) = wi+1.

– (N, l1, φ1) is a positive instance of (N, l1).

Then, we set RN((N, l, φ)) = (N, l1, φ1).
By rule 10., (N, (τ1, S2 ∪ {G(x0

1, x
0
2)}, ρ, V, ϕ1)) ∈ Ψω

Σ({(N, l1)}).
By rule 4, (N, (τ1, S3, ρ, V, ϕ1)) ∈ Ψω

Σ({(N, l1)}).
By rules 11., 12. and 12. again, (N, (τ, S, ρ, V, ϕ1)) ∈ Ψω

Σ({(N, l1)}).
By rule 9., (N, l) = (N, (τ, S, ρ, V, ϕ)) ∈ Ψω

Σ({(N, l1)}).

It follows directly from this definition that RN((N, l, φ)) is regularisable and smooth
relatively to N, and that RN((N, l, φ)) ≤W (N, l, φ), with equality if and only if (N, l, φ)
is not eccentric relatively to N. Let now (N, li, φi) be the sequence defined by:

• (N, l0, φ0) = (N, l, φ).
• ∀i ∈ N, (N, li+1, φi+1) = RN((N, li, φi)).

We know that ∃k ∈ N such that ∀i ≥ k, (N, li, φi) = (N, lk, φk). The smoothing mapping
relatively to N is the partial mapping SN such that SN((N, l, φ)) = (N, lk, φk).

It is straightforward that (N, lk, φk) = SN((N, l, φ)) is regularisable and smooth rela-
tively toN, that (N, l) ∈ Ψω

Σ({(N, lk)}) and thatSN((N, l, φ)) ≤W (N, l, φ), with equality
if and only if (N, l, φ) is not eccentric relatively to N.

A very interesting class of labels is the class of labels that, locally, look like labels
(τ, S, ρ, V, ϕ) whose tree τ would be in u_trees(Γ, γ∇). Indeed, this local property has
effects on a global way. The only problem is that, in order to avoid an explosion of
the number of indices used, I had to work on a disjunction of cases, which remained
possible here, but appears to be particularly heavy to manipulate. However, at least,
the properties that will be proved later in this section, so far they concern the hereafter
defined locally triangular labels, will often be quite easy to prove, since each case of the
disjunction is quite simple.
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Definition A.4.24.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog pro-
gram. Let Σ ∈ p_trees(Q,Π) be a proof tree of Π and (N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈
NΣ × L(γ,Π).

(N, l) is said do be locally triangular if τ does not contain any rule ρ′ containing more
than 2 diamond predicates, and if the 8 following properties are verified:

1. If the rule ρ′ of a node n ∈ Nτ is of the type

G(x, z1) ∧G�(z1, z2) ∧G(z2, z3) ∧G�(z3, z4), G(z4, y)⇒ G∗(x, y)

andG(x, z1), G(z2, z3), G(z4, y) are respectively the atoms in the head of the children
n1, n2, n3 of n, then we are in one of the following 2 cases:

• var(τ(n1)) ∩ var(S) = ∅ and z2 /∈ var(S).
• var(τ(n3)) ∩ var(S) = ∅ and z3 /∈ var(S).

2. If the rule ρ′ of a node n ∈ Nτ is of the type

G�(x, z1) ∧G(z1, z2) ∧G�(z2, z3) ∧G(z3, y)⇒ G∗(x, y)

and G(z1, z2), G(z3, y) are respectively the atoms in the head of the children n1, n2

of n, then we are in one of the following 2 cases:

• z1 /∈ var(S).
• var(τ(n2)) ∩ var(S) = ∅ and z2 /∈ var(S).

3. If the rule ρ′ of a node n ∈ Nτ is of the type

G(x, z1) ∧G�(z1, z2) ∧G(z2, z3) ∧G�(z3, y)⇒ G∗(x, y)

and G(x, z1), G(z2, z3) are respectively the atoms in the head of the children n1, n2

of n, then we are in one of the following 2 cases:

• var(τ(n1)) ∩ var(S) = ∅ and z2 /∈ var(S).
• z3 /∈ var(S).

4. If the rule ρ′ of a node n ∈ Nτ is of the type

G�(x, z1) ∧G(z1, z2) ∧G�(z2, y)⇒ G∗(x, y)

and G(z1, z2) is the atom in the head of the child n1 of n, then we are in one of the
following 2 cases:

• z1 /∈ var(S).
• z2 /∈ var(S).

5. If the rule ρ′ of a node n ∈ Nτ is of the type

G(x, z1) ∧G�(z1, z2) ∧G�(z2, z3) ∧G(z3, y)⇒ G∗(x, y)

and G(x, z1), G(z2, y) are respectively the atoms in the head of the children n1, n2

of n, then we are in one of the following 2 cases:

• var(τ(n1)) ∩ var(S) = ∅.
• var(τ(n2)) ∩ var(S) = ∅.
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6. If the rule ρ′ of a node n ∈ Nτ is of the type

G�(x, z1) ∧G�(z1, z2) ∧G(z2, y)⇒ G∗(x, y)

and G(z2, y) is the atom in the head of the child n1 of n, then we are in one of the
following 2 cases:

• x /∈ var(S).
• var(τ(n1)) ∩ var(S) = ∅.

7. If the rule ρ′ of a node n ∈ Nτ is of the type

G(x, z1) ∧G�(z1, z2) ∧G�(z2, y)⇒ G∗(x, y)

and G(x, z1) is the atom in the head of the child n1 of n, then we are in one of the
following 2 cases:

• var(τ(n1)) ∩ var(S) = ∅.
• y /∈ var(S).

8. If the rule ρ′ of a node n ∈ Nτ is of the type

G�(x, z1) ∧G�(z1, y)⇒ G∗(x, y)

then we are in one of the following 2 cases:

• x /∈ var(S).
• y /∈ var(S).

Now, as I told just above, lies a global property on locally triangular labels:

Proposition A.4.25.
Let Π be a Datalog Program with goal predicate Q and γ a transitive Datalog program
with goal predicate Γ. Let Σ ∈ p_trees(Q,Π) be a proof tree of Π, (N, l) be a label
(N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈ NΣ × L(γ,Π) such that IN(l) ≡ >, and (N, l, φ) a
positive instance of (N, l).

If (N, l) is locally triangular, ∃τ ′ ∈ u_trees(Γ, γ∇) such that l′ = (τ ′, S, ρ, V, ϕ) verify
(N, l′) ∈ NΣ × L(γ,Π), IN(l′) ≡ > and (N, l′, φ) is a positive instance of (N, l′).

Proof. Let us assume that (N, (τ ′, S, ρ, V, ϕ)) is a triangular label for some tree τ ′ ∈
u_trees(Γ, γ) which contains k ≥ 1 occurrences of diamond rules where 2 diamond
predicates are present. Let n be a node whose rule ρ′ is such a rule.

1. If ρ′ is of the type

G(x, z1) ∧G�(z1, z2) ∧G(z2, z3) ∧G�(z3, z4) ∧G(z4, y)⇒ G∗(x, y)

andG(x, z1), G(z2, z3), G(z4, y) are respectively the atoms in the head of the children
n1, n2, n3 of n, then we are in one of the following 2 cases:
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• var(τ(n1)) ∩ var(S) = ∅ and z2 /∈ var(S).
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G(x, z3) ∧ G�(z3, z4) ∧ G(z4, y) ⇒ G∗(x, y), by erasing τ ′(n1) and
by replacing every occurrence of z2 in τ ′(n2) by an occurrence of x.

• var(τ(n3)) ∩ var(S) = ∅ and z3 /∈ var(S).
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G(x, z1) ∧ G�(z1, z2) ∧ G(z2, y) ⇒ G∗(x, y), by erasing τ ′(n3) and
by replacing every occurrence of z3 in τ ′(n2) by an occurrence of y.

2. If ρ′ is of the type

G�(x, z1) ∧G(z1, z2) ∧G�(z2, z3) ∧G(z3, y)⇒ G∗(x, y)

and G(z1, z2), G(z3, y) are respectively the atoms in the head of the children n1, n2

of n, then we are in one of the following 2 cases:

• z1 /∈ var(S).
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G(x, z2)∧G�(z3, z3)∧G(z3, y)⇒ G∗(x, y) and by replacing every
occurrence of z1 in τ ′(n1) by an occurrence of x.

• var(τ(n2)) ∩ var(S) = ∅ and z2 /∈ var(S).
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G�(x, z1)∧G(z1, y)⇒ G∗(x, y), by erasing τ ′(n2) and by replacing
every occurrence of z2 in τ ′(n1) by an occurrence of y.

3. If ρ′ is of the type

G(x, z1) ∧G�(z1, z2) ∧G(z2, z3) ∧G�(z3, y)⇒ G∗(x, y)

and G(x, z1), G(z2, z3) are respectively the atoms in the head of the children n1, n2

of n, then we are in one of the following 2 cases:

• var(τ(n1)) ∩ var(S) = ∅ and z2 /∈ var(S).
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G(x, z3)∧G�(z3, y)⇒ G∗(x, y), by erasing τ ′(n1) and by replacing
every occurrence of z2 in τ ′(n2) by an occurrence of x.

• z3 /∈ var(S).
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G(x, z1)∧G�(z1, z2)∧G(z2, y)⇒ G∗(x, y) and by replacing every
occurrence of z3 in τ ′(n2) by an occurrence of y.

4. If ρ′ is of the type

G�(x, z1) ∧G(z1, z2) ∧G�(z2, y)⇒ G∗(x, y)

and G(z1, z2) is the atom in the head of the child n1 of n, then we are in one of the
following 2 cases:

• z1 /∈ var(S).
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node whose
rule is G(x, z2)∧G�(z2, y)⇒ G∗(x, y) and by replacing every occurrence of z1

in τ ′(n1) by an occurrence of x.
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• z2 /∈ var(S).
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G�(x, z1)∧G(z1, y)⇒ G∗(x, y) and by replacing every occurrence
of z2 in τ ′(n1) by an occurrence of y.

5. If ρ′ is of the type

G(x, z1) ∧G�(z1, z2) ∧G�(z2, z3) ∧G(z3, y)⇒ G∗(x, y)

and G(x, z1), G(z2, y) are respectively the atoms in the head of the children n1, n2

of n, then we are in one of the following 2 cases:

• var(τ(n1)) ∩ var(S) = ∅.
Let τ1 ∈ u_trees(G, γ∇) such that var(τ1) ∩ var(τ ′) = {x, z2} and such that
G(x, z2) is the atom in the head of the rule of the root n′1 of τ1.
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G(x, z2) ∧ G�(z2, z3) ∧ G(z3, y) ⇒ G∗(x, y) and by setting n′1 to
be a new child of n′.
• var(τ(n2)) ∩ var(S) = ∅.

Let τ1 ∈ u_trees(G, γ∇) such that var(τ1) ∩ var(τ ′) = {z2, y} and such that
G(z2, y) is the atom in the head of the rule of the root n′1 of τ1.
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G(x, z1) ∧ G�(z1, z2) ∧ G(z2, y) ⇒ G∗(x, y) and by setting n′1 to
be a new child of n′.

6. If ρ′ is of the type

G�(x, z1) ∧G�(z1, z2) ∧G(z2, y)⇒ G∗(x, y)

and G(z2, y) is the atom in the head of the child n1 of n, then we are in one of the
following 2 cases:

• x /∈ var(S).
Let τ1 ∈ u_trees(G, γ∇) such that var(τ1) ∩ var(τ ′) = {x, z1} and such that
G(x, z1) is the atom in the head of the rule of the root n′1 of τ1.
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G(x, z1) ∧ G�(z1, z2) ∧ G(z2, y) ⇒ G∗(x, y) and by setting n′1 to
be a new child of n′.
• var(τ(n1)) ∩ var(S) = ∅.

Let τ1 ∈ u_trees(G, γ∇) such that var(τ1) ∩ var(τ ′) = {z1, y} and such that
G(z1, y) is the atom in the head of the rule of the root n′1 of τ1.
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G�(x, z1) ∧ G(z1, y) ⇒ G∗(x, y) and by setting n′1 to be a new
child of n′.

7. If ρ′ is of the type

G(x, z1) ∧G�(z1, z2) ∧G�(z2, y)⇒ G∗(x, y)

and G(x, z1) is the atom in the head of the child n1 of n, then we are in one of the
following 2 cases:

• var(τ(n1)) ∩ var(S) = ∅.
Let τ1 ∈ u_trees(G, γ∇) such that var(τ1) ∩ var(τ ′) = {x, z2} and such that
G(x, z2) is the atom in the head of the rule of the root n′1 of τ1.



Appendix A. Detailed Proofs 69

Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G(x, z2) ∧ G�(z2, y) ⇒ G∗(x, y) and by setting n′1 to be a new
child of n′.
• y /∈ var(S).

Let τ1 ∈ u_trees(G, γ∇) such that var(τ1) ∩ var(τ ′) = {z2, y} and such that
G(z2, y) is the atom in the head of the rule of the root n′1 of τ1.
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G(x, z1) ∧ G�(z1, z2) ∧ G(z2, y) ⇒ G∗(x, y) and by setting n′1 to
be a new child of n′.

8. If ρ′ is of the type
G�(x, z1) ∧G�(z1, y)⇒ G∗(x, y)

then we are in one of the following 2 cases:

• x /∈ var(S).
Let τ1 ∈ u_trees(G, γ∇) such that var(τ1) ∩ var(τ ′) = {x, z1} and such that
G(x, z1) is the atom in the head of the rule of the root n′1 of τ1.
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G(x, z1) ∧ G�(z1, y) ⇒ G∗(x, y) and by setting n′1 to be a new
child of n′.
• y /∈ var(S).

Let τ1 ∈ u_trees(G, γ∇) such that var(τ1) ∩ var(τ ′) = {z1, y} and such that
G(z1, y) is the atom in the head of the rule of the root n′1 of τ1.
Let τ ′′ ∈ u_trees(Γ, γ) be the tree built from τ ′ by replacing n by a node n′
whose rule is G�(x, z1) ∧ G(z1, y) ⇒ G∗(x, y) and by setting n′1 to be a new
child of n′.

In each case, we have built a tree τ ′′ ∈ u_trees(Γ, γ) such that l′′ = (τ ′′, S, ρ, V, ϕ) verify
(N, l′′) ∈ NΣ × L(γ,Π), (N, l′′) be locally triangular, IN(l′′) ≡ >, (N, l′′, φ) be a positive
instance of (N, l′′) and τ ′′ contain at most k − 1 occurrences of diamond rules where 2
diamond predicates are present.

Thus, by a direct induction, ∃τ ′′′ ∈ u_trees(Γ, γ) such that l′′′ = (τ ′′′, S, ρ, V, ϕ) verify
(N, l′′′) ∈ NΣ×L(γ,Π), (N, l′′′) be locally triangular, IN(l′′′) ≡ >, (N, l′′′, φ) be a positive
instance of (N, l′′′) and τ ′′′ contain no occurrence of diamond rules where 2 diamond
predicates are present. This means that τ ′′′ ∈ u_trees(Γ, γ∇), which was the statement
of the above proposition.

Here comes the last definition of this part of the proof. In order to prove that the labels
that must be contained in every fixpoint γ-labelled proof tree are sufficiently numerous,
we look at a subset of those labels that are not committed to be contained in every fixpoint
γ-labelled proof tree. We want to show that this subset is empty, and to that extent we
will successively find more and more properties of its supposed minimal element, to finally
reach a point where these properties cannot hold at the same time, this showing that the
minimal element does not exist.

Definition A.4.26.
Let Π be a Datalog program with goal predicateQ and γ a transitive Datalog program
with goal predicate Γ. If Σ ∈ p_trees(Q,Π), let S(Σ) be the set of couples (N, l) =
((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈ NΣ × L(γ,Π) such that
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• IN(l) ≡ >.
• τ ∈ u_trees(Γ, γ∇).
• S is descendant-free in τ .
• (N, l) is natural.
• (N, l) /∈ Ψω

Σ(∅).

If S(Σ) 6= ∅, since S(Σ) is finite, we can, without ambiguity, select a couple (N, l) =
((R(t), ρ), (τ, S, ρ, V, ϕ)) ∈ S(Σ) such that (N, l) has a positive instance (N, l, φ) of min-
imal weight among the positive instances of elements in S(Σ). This couple is denoted
min(S(Σ)).

As said just above, here starts the length list of properties that must hold on the
supposedly existing min(S(Σ)).

First, we prove that min(S(Σ)) does not contain any star-free IDB predicate:

Lemma A.4.27.
If Σ ∈ p_trees(Q,Π), S(Σ) 6= ∅ and (N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) = min(S(Σ)), then
S does not contain any star-free IDB predicate.

Proof. We prove the above statement by reductio ad absurdum.

Let us assume that S contains an atom P (v), where P is a star-free IDB predicate.
Let n0 be a node of τ whose rule r0 contains an occurrence P(v) of P (v) such that P(v)
is not overwhelmed by S in τ . Let n be a child of n0 such that P (v) is the atom in the
head of the rule r of n.

Since IN(l) ≡ >, there exists an instance of a rule R = E1(v1) ∧ . . . ∧ Ek(vk) ∧
G∗1(x1

1, x
1
2) ∧ . . . ∧G∗l (xl1, xl2)⇒ P (v) in γ such that ∃S1, τ1, h, ϕ1 satisfying:

• var(R) ∩ var(S) = var(v).
• S1 = {E1(v1), . . . , Ek(vk), G∗1(x1

1, x
1
2), . . . , G∗l (x

l
1, x

l
2)}.

• τ1 ∈ u_trees(Γ, γ∇) is the tree built from τ by replacing τ(n) by a tree τ2 such that
R is the rule of the root n′ of τ2, var(τ2)∩var(τ) = var(v) and every diamond-rule
in τ2 is of the type G�(x, y)⇒ P (v).
• ϕ1 : var �(γ

�) → var �(γ
�) ∪ V verifies ϕ1|var(S) = ϕ|var(S), ϕ1(v) ∈ var�(γ

�) if
v /∈ var(S) and ∀v, v′ ∈ var�(γ�), (v 6= v′ ∧ ϕ1(v) = ϕ1(v′))⇒ v, v′ ∈ var(S).
• (N, l1) ∈ NΣ × L(γ,Π), where l1 = (τ1, S1 ∪ S\{P (v)}, ρ, V ′, ϕ1).
• IN(l1) ≡ >.

Let (N, l, φ) be a positive instance of (N, l) of minimal weight. (N, l1) has a positive
instance (N, l1, φ) such that (N, l1, φ) <W (N, l, φ). Moreover, if Q(u) ∈ S1, then the
occurrence Q(u) of Q(u) is not overwhelmed by S in τ1. Every atom Q(u) ∈ S\{P (v)}
had an occurrence Q(u) that was not overwhelmed by S in τ ; therefore, this occurrence
was not in τ(n), and still exists in τ1, being not overwhelmed by S in τ1. Therefore,
S1∪S\{P (v)} is descendant-free in τ1 and, since (N, l) is natural, so is (N, l1). Therefore,
(N, l1) ∈ Ψω

Σ(∅).
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Then, by rule 10., (N, (τ1, S1 ∪ S, ρ, V, ϕ1)) ∈ Ψω
Σ(∅).

By rule 4., (N, (τ1, S, ρ, V, ϕ1)) ∈ Ψω
Σ(∅).

By rule 6., (N, (τ, S, ρ, V, ϕ1)) ∈ Ψω
Σ(∅).

By rule 9., (N, (τ, S, ρ, V, h ◦ ϕ)) ∈ Ψω
Σ(∅).

But, by definition of S(Σ), this is impossible. Therefore, our first assumption was false,
which proves the statement of the above lemma.

We prove now that min(S(Σ)) does not contain any star IDB predicate:

Lemma A.4.28.
If Σ ∈ p_trees(Q,Π), S(Σ) 6= ∅ and (N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) = min(S(Σ)), then
S does not contain any star IDB predicate.

Proof. Similarly to how we proved the precedent lemma, we prove the above statement
by reductio ad absurdum.

Let us assume that S contains an atom G∗(v1, v2), where G∗ is a star IDB predicate.
Let n0 be a node of τ whose rule r0 contains an occurrence G∗(v1, v2) of G∗(v1, v2) such
that G∗(v1, v2) is not overwhelmed by S in τ . Let n be a child of n0 such that G∗(v1, v2)
is the atom in the head of the rule r of n.

We introduce:

• a rule R = G�(v1, v2)⇒ G∗(v1, v2) in γ∇.
• the set S1 = {G�(v1, v2)}.
• the tree τ1 ∈ u_trees(Γ, γ∇) built from τ by replacing τ(n) by a tree τ2 such that
R is the rule of the root n′ of τ2 and every diamond-rule in τ2 is of the type
G�(x, y)⇒ G∗(x, y).
• the labelling (N, l1) ∈ NΣ × L(γ,Π), where l1 = (τ1, S1 ∪ S\{G∗(v1, v2)}, ρ, V, ϕ).

Then, IN(l1) ≡ IN(l) ≡ >. Let (N, l, φ) be a positive instance of (N, l) of minimal
weight. (N, l1, φ) is a positive instance of (N, l1) such that (N, l1, φ) <W (N, l, φ). More-
over, the occurrence G�(v1, v2) of G�(v1, v2) is not overwhelmed by S in τ1. Every atom
Q(u) ∈ S\{G∗(v1, v2)} had an occurrence Q(u) that was not overwhelmed by S in τ ;
therefore, this occurrence was not in τ(n), and still exists in τ1, being not overwhelmed by
S in τ1. Therefore, S1 ∪ S\{P (v)} is descendant-free in τ1 and, since (N, l) is natural, so
is (N, l1). Therefore, (N, l1) ∈ Ψω

Σ(∅).
Then, by rule 10., (N, (τ1, S1 ∪ S, ρ, V, ϕ)) ∈ Ψω

Σ(∅).
By rule 4., (N, (τ1, S, ρ, V, ϕ)) ∈ Ψω

Σ(∅).
By rule 6., (N, l) = (N, (τ, S, ρ, V, ϕ)) ∈ Ψω

Σ(∅).

But, by definition of S(Σ), this is impossible. Therefore, our first assumption was false,
which proves the statement of the above lemma.

We prove now that min(S(Σ)) cannot consist in a unique EDB atom whose variables
would be all identified:
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Lemma A.4.29.
If Σ ∈ p_trees(Q,Π), S(Σ) 6= ∅, (N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) = min(S(Σ)) and if P
is an EDB predicate of γ, then S is not a singleton {P (v)} such that ϕ(var(v)) ⊆ V .

Proof. We prove the above statement by reductio ad absurdum.

Let us assume that S = {P (v)}, where V ′ = ϕ(var(v)) ⊆ V and P is an EDB predicate
of γ. IN(l) ≡ >, which proves that ∃N0 = (R0(t0), ρ0), N1 = (R1(t1), ρ1), . . . , Nk =
(Rk(tk), ρk) ∈ NΣ such that

• N = Nk.
• the body of ρ0 contains P (v).
• ∀i ∈ {0, . . . , k − 1}, Ni is the father or a child of Ni+1.
• ∀i ∈ {0, . . . , k}, var(v) ∈ var(ρi).

Let ϕ1 : var �(γ
�) → var �(γ

�) ∪ V ′ be a total mapping such that ϕ1|var(v) = ϕ|var(v),
ϕ1(v) ∈ var�(γ�) if v /∈ var(v).
By rule 14., (N0, (τ, S, ρ0, V

′, ϕ1)) ∈ Ψω
Σ(∅).

Then, ∀i ∈ {1, . . . , k} , by rules 2. and 3., (Ni, (τ, S, ρi, V
′, ϕ1)) ∈ Ψω

Σ(∅).
By rule 7., (N, (τ, S, ρ, V, ϕ1)) ∈ Ψω

Σ(∅).
By rule 9., (N, l) = (N, (τ, S, ρ, V, ϕ)) ∈ Ψω

Σ(∅).

But, by definition of S(Σ), this is impossible. Therefore, our first assumption was false,
which proves the statement of the above lemma.

We prove now that min(S(Σ)) cannot consist in a unique diamond atom whose variables
would be all identified:

Lemma A.4.30.
If Σ ∈ p_trees(Q,Π), S(Σ) 6= ∅, (N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) = min(S(Σ)) and P is
a diamond atom of γ�, then S is not a singleton {P (v)} such that ϕ(v) ⊆ V .

Proof. We prove the above statement by reductio ad absurdum.

Let us assume that S = {G�(v1, v2)}, where ϕ({v1, v2}) ⊆ V and G� is a diamond
atom. Let (N, l, φ) be a positive interpretation of (N, l) of least weight.

• If ϕ(v1) = ϕ(v2), then, by rule 13., (N, l) ∈ Ψω
Σ(∅), which is impossible by definition

of S(Σ).
• If W(N,l,φ)(G

�(v1, v2)) = 1, let τ1 ∈ u_trees(Γ, γ∇) be a tree containing a node n
whose rule ρ is G�(v1, v2) ⇒ G∗(v1, v2), and such that no diamond-rule ρ′ whose
head predicate is G∗(v1, v2) and whose body is not G�(v1, v2) ⇒ G∗(v1, v2) may
appear in τ1. We set l1 = (τ1, {G(v1, v2)}, ρ, V, ϕ).
SinceW(N,l,φ)(G

�(v1, v2)) = 1, (N, l1, φ) is a positive instance of (N, l1) (N, l1, φ) <W
(N, l, φ), {G(v1, v2)} is descendant-free in τ1, IN(l1) ≡ > and (N, l1) is natural.
Therefore, (N, l1) /∈ S(Σ), and (N, l1) ∈ Ψω

Σ(∅).
By rule 11., (N, l) ∈ Ψω

Σ(∅), which is impossible by definition of S(Σ).
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• If k = W(N,l,φ)(G
�(v1, v2)) ≥ 2, let be κ = U(Σ). If Py = G, then ∃w0, . . . , wk ∈

var(κ) such that w0 = φ(Λϕ,κ(v1)), wk = φ(Λϕ,κ(v2)) and

> ≡ (∀P1, . . . ,Pn) (∀v1, . . . , vm)‖γ‖∧
i=1

Fi(P1, . . . ,Pn) ∧
a∧
i=1

Psi(vi)

⇒ k−1∧
i=0

Py(wi, wi+1)


Let be v3 ∈ var�(γ�)\{v1, v2}, and ϕ1 : var�(γ

�)→ var�(γ
�)∪V such that ϕ1(v1) =

ϕ(v1), ϕ1(v2) = ϕ(v2) and ϕ1(v3) = v3. Let τ2 ∈ u_trees(Γ, γ∇) be a tree containing
a node n2 whose rule is G(v1, v3)∧G�(v3, v2)⇒ G∗(v1, v2) and τ3 ∈ u_trees(Γ, γ∇)
be a tree containing a node n3 whose rule is G�(v1, v3)∧G�(v3, v2)⇒ G∗(v1, v3). We
also want that every diamond-rule in τ2(n2) be of the type G�(x, y)⇒ G∗(x, y). We
set l2 = (τ2, {G(v1, v3), G�(v3, v2)}, ρ, V ′, ϕ1) and φ2 : var�(γ

�) ∪ var(κ) → var(κ),
a total mapping such that φ2(v3) = w1.
{G(v1, v3), G�(v3, v2)} is descendant-free in τ2, (N, l2) is natural, (N, l2, φ2) is a
positive instance of (N, l2) and (N, l2, φ) <W (N, l, φ). Therefore, (N, l2) /∈ S(Σ),
and (N, l2) ∈ Ψω

Σ(∅).
By rule 11., (N, (τ3, {G�(v1, v3), G�(v3, v2)}, ρ, V, ϕ1)) ∈ Ψω

Σ(∅).
By rule 12., (N, (τ, S, ρ, V, ϕ1)) ∈ Ψω

Σ(∅).
By rule 9., (N, l) = (N, (τ, S, ρ, V, ϕ)) ∈ Ψω

Σ(∅), which is impossible by definition of
S(Σ).

No integer value of W(N,l,φ)(G
�(v1, v2)) is possible: therefore, our first assumption was

false, which proves the statement of the above lemma.

We prove now that min(S(Σ)) cannot contain any atom whose variables would be all
identified:

Proposition A.4.31.
If Σ ∈ p_trees(Q,Π), S(Σ) 6= ∅ and (N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) = min(S(Σ)), then
S does not contain any atom P (v) such that ϕ(v) ⊆ V .

Proof. We prove the above statement by reductio ad absurdum.

Let us assume that S contains an atom P (v) such that ϕ(v) ⊆ V . Let (N, l, φ)
be an interpretation of (N, l) of least weight. Let be l1 = (τ, {P (v)}, ρ, V, ϕ) and l2 =
(τ, S\{P (v)}, ρ, V, ϕ): (N, l1), (N, l2) ∈ NΣ×L(γ,Π). Since {P (v)} ⊆ S and S\{P (v)} (
S, we know that

• {P (v)} and S\{P (v)} are descendant-free in τ .
• IN(l)⇒ IN(l1) and IN(l)⇒ IN(l2). Therefore, > ≡ IN(l1) ≡ IN(l2).
• (N, l1) and (N, l2) are natural.
• (N, l2, φ) is a positive instance of (N, l2) and (N, l2, φ) <W (N, l, φ).

Therefore, (N, l2) /∈ S(σ), and (N, l2) ∈ Ψω
Σ(∅).

If S 6= {P (v)}, (N, l1, φ) is also an interpretation of (N, l1) such that (N, l1, φ) <W
(N, l, φ); then, (N, l1) /∈ S(σ), and (N, l1) ∈ Ψω

Σ(∅).
By rule 5., (N, l) ∈ Ψω

Σ(∅), which is impossible since (N, l) ∈ S(Σ).
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This is why S is the singleton {P (v)}. Then, by Lemma A.4.27, Lemma A.4.28,
Lemma A.4.29 and Lemma A.4.30, P cannot be a predicate in γ∇, which is a non-
sense. Therefore, our first assumption was false, which proves the statement of the above
proposition.

We prove now that min(S(Σ)) cannot have any positive instance ins which some non-
identified variable would be mapped to a variable of the current node:

Lemma A.4.32.
If Σ ∈ p_trees(Q,Π), S(Σ) 6= ∅ and (N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) = min(S(Σ)), let
(N, l, φ) be a positive instance of (N, l) of least weight, κ = U(Σ) ∈ u_trees(Q,Π) and θ
the unfolding mapping of Σ. ∀v ∈ Λϕ,κ(var(S)), φ(v) ∈ θ−1([var(ρ)])⇒ v ∈ var(κ).

Proof. We prove the above statement by reductio ad absurdum.

Let us assume that ∃v ∈ Λϕ,κ(var(S)) such that φ(v) ∈ θ−1([var(ρ)]) and v /∈ var(κ).
Then, v ∈ var�(γ�). We set V ′ = var(ρ) and ϕ1 : var�(γ

�) → var�(γ
�) ∪ V ′ such that

ϕ1(v) = θ(φ(v)) ∈ V ′, and ϕ1(w) = ϕ(w) if v 6= w. We also set l1 = (τ, S, ρ, V ′, ϕ1).

(N, l1, φ1) is a positive instance of (N, l1), and therefore IN(l1) ≡ >. Moreover, (N, l1) is
natural and (N, l1, φ1) <W (N, l, φ), which proves that (N, l1) /∈ S(Σ) and (N, l1) ∈ Φω

Σ(∅).
By rule 8., (N, (τ, S, ρ, V ′, ϕ)) ∈ Φω

Σ(∅).
By rule 7., (N, l) = (N, (τ, S, ρ, V, ϕ)) ∈ Φω

Σ(∅).

But, by definition of S(Σ), this is impossible. Therefore, our first assumption was false,
which proves the statement of the above lemma.

We prove now that min(S(Σ)) cannot be eccentric relatively to any sub-tree:

Proposition A.4.33.
If Σ ∈ p_trees(Q,Π), S(Σ) 6= ∅ and (N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) = min(S(Σ)), let
(N, l, φ) be an interpretation of (N, l) of least weight, κ = U(Σ) ∈ u_trees(Q,Π) and h
the unfolding node mapping of Σ.

By removing the node h−1(N) from κ, one splits Nκ\{h−1(N)} in connex parts. Let N
be one of these parts. Then, (N, l, φ) is not eccentric relatively to N.

Proof. Since (N, l, φ) is natural, (N, l, φ) is smooth relatively to N. Moreover, since
τ ∈ u_trees(Γ, γ�), (N, l, φ) is regularisable relatively to N. We set (N, l1, φ1) =
SN((N, l, φ)), and (τ1, S1, ρ, V, ϕ1) = l1. Let θ be the unfolding mapping of Σ, Λϕ1,κ

a κ-mapping and ϕ2 : var�(γ
�)→ var�(γ

�) ∪ V a total mapping such that
• if φ1(Λϕ1,κ(v)) ∈ θ−1([var(ρ)]), then ϕ2(v) = θ(φ1(Λϕ1,κ(v))) ∈ V .
• otherwise, ϕ2(v) = ϕ(v).
It is clear that φ1◦Λϕ1,κ = φ1◦Λϕ2,κ. We define now V1 = {v ∈ var�(γ�)|φ1(Λϕ1,κ(v)) ∈

NV } and V2 = {v ∈ var�(γ�)|φ1(Λϕ1,κ(v)) ∈ NV }: V1 ∪ V2 = var�(γ
�). This lets us split

S1 in two parts: S2 = {P (v) ∈ S1|var(v) 6⊆ V1} and S3 = {P (v) ∈ S1|var(v) ⊆ V1}.

Let us assume that some v ∈ var(S2) ∩ var(S3). Let be P (v) ∈ S2 and Q(w) ∈ S3

such that v ∈ var(v) ∩ var(w). v ∈ var(w)) ⊆ V1. Now, we have two possible cases:
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• if P is an EDB predicate of γ, then P (φ1(Λϕ1,κ(var(v)))) is an atom in κ. Therefore,
∃N ′ ∈ Nκ whose rule ρ′ contains P (φ1(Λϕ1,κ(v))). Since φ1(Λϕ1,κ(var(v))) 6⊆ NV ,
N ′ ∈ N, and φ1(Λϕ1,κ(var(v))) ⊆ NV : v ∈ var(v) ⊆ V2.
• if P is a diamond predicate G�, since (N, l1, φ1) is not eccentric relatively to N,

then we have P (v) = G�(x, y), where both φ1(Λϕ,κ(x)), φ(Λϕ,κ(y)) ∈ NV or both
φ1(Λϕ,κ(x)), φ(Λϕ,κ(y)) ∈ NV . Therefore, we know that φ1(Λϕ1,κ(var(v))) 6⊆ NV ,
and that φ1(Λϕ1,κ(var(v))) ⊆ NV , which means that v ∈ var(v) ⊆ V2.

In both cases, v ∈ V1 ∩ V2. Let S ⊆ Nκ be the set of nodes whose rules contain
φ1(Λϕ1,κ(v)). Since κ is an unfolding tree, S is connex. Furthermore, S ∩ N 6= ∅ and
S ∩ N 6= ∅. Therefore, h−1(N) ∈ S, φ(Λϕ1,κ(v)) ∈ θ−1([var(ρ)]) and ϕ2(v) ∈ V , which
implies that ϕ2(var(S2) ∩ var(S3)) ⊆ V .

That is why we can, in fact, split S1 in 3 parts:

• T1 = {P (v) ∈ S1|var(v) 6⊆ V1}.
• T2 = {P (v) ∈ S1|var(v) 6⊆ V2}.
• T3 = {P (v) ∈ S1|var(v) ⊆ V1 ∩ V2}.

such that ϕ2(var(T1) ∩ var(T2)) ⊆ V , T1 ∪ T3 = {P (v) ∈ S1|var(v) ⊆ V2} and T2 ∪ T3 =
{P (v) ∈ S1|var(v) ⊆ V1}.

Now, let be l2 = (τ1, S1, ρ, V, ϕ2) and (S ′0, . . . , S
′
n) be the natural partition of (N, l2).

We know that ∀i ∈ {i, . . . , n}, S ′i ⊆ T1, T2 or T3. Moreover, (N, l2, φ1) is still a positive
instance of (N, l2). Since (N, l1, φ1) is both smooth and not eccentric relatively to N , it
means that (N, l2, φ1) is natural, as well as each (N, l′i, φ1), where l′i = (τ1, S

′
i, ρ, V, ϕ2).

Now, let us assume that some rule ρ′ in τ1 contains 2 diamond predicates. Let us look
at the node n ∈ Nτ whose rule is ρ′ and at a set S ′i. Since (N, l1) is regularisable relatively
to N, we are in one of the 8 following cases:

1. If ρ′ is of the type

G(x, z1) ∧G�(z1, z2) ∧G(z2, z3) ∧G�(z3, z4) ∧G(z4, y)⇒ G∗(x, y)

andG(x, z1), G(z2, z3), G(z4, y) are respectively the atoms in the head of the children
n1, n2, n3 of n, then we know that ∃j ∈ {1, 2} such that z2 ∈ Vj\Vj′ and z3 ∈ Vj′\Vj,
where j′ = 3− j.

• If z2 ∈ var(S ′i), then S ′i ⊆ Tj′ , z3 /∈ var(S ′i), G�(z3, z4) /∈ S ′i and var(τ(n3)) ∩
var(S ′i) = ∅.
• If var(τ(n1)) ∩ var(S ′i) 6= ∅ and z2 /∈ var(S ′i), then G�(z1, z2) /∈ S ′i, z3 /∈ var(S ′i)

and var(τ(n3)) ∩ var(S ′i) = ∅.

Therefore, we must be in one of the following 2 cases:

• var(τ(n1)) ∩ var(S ′i) = ∅ and z2 /∈ var(S ′i).
• var(τ(n3)) ∩ var(S ′i) = ∅ and z3 /∈ var(S ′i).

2. If ρ′ is of the type

G�(x, z1) ∧G(z1, z2) ∧G�(z2, z3) ∧G(z3, y)⇒ G∗(x, y)



76 Appendix A. Detailed Proofs

and G(z1, z2), G(z3, y) are respectively the atoms in the head of the children n1, n2

of n, then we know that ∃j ∈ {1, 2} such that z1 ∈ Vj\Vj′ and z2 ∈ Vj′\Vj, where
j′ = 3− j.
If z1 ∈ var(S ′i), then S ′i ⊆ Tj′ , z2 /∈ var(S ′i), G

�(z2, z3) /∈ S ′i and var(τ(n2)) ∩
var(S ′i) = ∅.
Therefore, we must be in one of the following 2 cases:

• z1 /∈ var(S ′i).
• var(τ(n2)) ∩ var(S ′i) = ∅ and z2 /∈ var(S ′i).

3. If ρ′ is of the type

G(x, z1) ∧G�(z1, z2) ∧G(z2, z3) ∧G�(z3, y)⇒ G∗(x, y)

and G(x, z1), G(z2, z3) are respectively the atoms in the head of the children n1, n2

of n, then we know that ∃j ∈ {1, 2} such that z3 ∈ Vj\Vj′ and z2 ∈ Vj′\Vj, where
j′ = 3− j.
If z3 ∈ var(S ′i), then S ′i ⊆ Tj′ , z2 /∈ var(S ′i), G

�(z1, z2) /∈ S ′i and var(τ(n1)) ∩
var(S ′i) = ∅.
Therefore, we must be in one of the following 2 cases:

• var(τ(n1)) ∩ var(S ′i) = ∅ and z2 /∈ var(S ′i).
• z3 /∈ var(S ′i).

4. If ρ′ is of the type

G�(x, z1) ∧G(z1, z2) ∧G�(z2, y)⇒ G∗(x, y)

and G(z1, z2) is the atom in the head of the child n1 of n, then we know that
∃j ∈ {1, 2} such that z1 ∈ Vj\Vj′ and z2 ∈ Vj′\Vj, where j′ = 3− j.
If z1 ∈ var(S ′i), then S ⊆ Tj′ and z2 /∈ var(S ′i).
Therefore, we must be in one of the following 2 cases:

• z1 /∈ var(S ′i).
• z2 /∈ var(S ′i).

5. If ρ′ is of the type

G(x, z1) ∧G�(z1, z2) ∧G�(z2, z3) ∧G(z3, y)⇒ G∗(x, y)

and G(x, z1), G(z2, y) are respectively the atoms in the head of the children n1, n2

of n, then we know that ∃j ∈ {1, 2} such that z1 ∈ Vj\Vj′ and z3 ∈ Vj′\Vj, where
j′ = 3− j.

• If z1 ∈ var(S ′i), then S ′i ⊆ Tj′ , z3 /∈ var(S ′i), G�(z2, z3) /∈ S ′i and var(τ(n2)) ∩
var(S ′i) = ∅.
• If var(τ(n1)) ∩ var(S ′i) 6= ∅ and z2 /∈ var(S ′i), then G�(z1, z2) /∈ S ′i, z3 /∈ var(S ′i)

and var(τ(n2)) ∩ var(S ′i) = ∅.

Therefore, we must be in one of the following 2 cases:

• var(τ(n1)) ∩ var(S ′i) = ∅ and z1 /∈ var(S ′i).
• var(τ(n2)) ∩ var(S ′i) = ∅ and z3 /∈ var(S ′i).
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6. If ρ′ is of the type

G�(x, z1) ∧G�(z1, z2) ∧G(z2, y)⇒ G∗(x, y)

and G(z2, y) is the atom in the head of the child n1 of n, then we know that
∃j ∈ {1, 2} such that x ∈ Vj\Vj′ and z2 ∈ Vj′\Vj, where j′ = 3− j.
If x ∈ var(S ′i), then S ′i ⊆ Tj′ , z2 /∈ var(S ′i), G�(z1, z2) /∈ S ′i and var(τ(n1))∩var(S ′i) =
∅.
Therefore, we must be in one of the following 2 cases:

• x /∈ var(S ′i).
• var(τ(n1)) ∩ var(S ′i) = ∅ and z2 /∈ var(S ′i).

7. If ρ′ is of the type

G(x, z1) ∧G�(z1, z2) ∧G�(z2, y)⇒ G∗(x, y)

and G(x, z1) is the atom in the head of the child n1 of n, then we know that
∃j ∈ {1, 2} such that y ∈ Vj\Vj′ and z1 ∈ Vj′\Vj, where j′ = 3− j.
If y ∈ var(S ′i), then S ′i ⊆ Tj′ , z1 /∈ var(S ′i), G�(z1, z2) /∈ S ′i and var(τ(n1))∩var(S ′i) =
∅.
Therefore, we must be in one of the following 2 cases:

• var(τ(n1)) ∩ var(S ′i) = ∅ and z1 /∈ var(S ′i).
• y /∈ var(S ′i).

8. If ρ′ is of the type
G�(x, z1) ∧G�(z1, y)⇒ G∗(x, y)

then we know that ∃j ∈ {1, 2} such that x ∈ Vj\Vj′ and y ∈ Vj′\Vj, where j′ = 3−j.
If x ∈ var(S ′i), then S ⊆ Tj′ and y /∈ var(S ′i).
Therefore, we must be in one of the following 2 cases:

• x /∈ var(S ′i).
• y /∈ var(S ′i).

We have just proved that (N, l′i) is locally triangular: let τ ′i ∈ u_trees(Γ, γ∇) such
that, if l′′i = (τ ′i , S

′
i, ρ, V, ϕ2), then (N, l′′i ) ∈ NΣ × L(γ,Π), IN(l′′i ) ≡ > and (N, l′′i , φ1) is

a positive instance of (N, l′′i ). S ′i contains only EDB predicates of γ∇, so that (N, l′′i ) is
descendant-free. Moreover, since (N, l′i, φ1) is natural, so is (N, l′′i , φ1).

By rule 6., (N, l′i) ∈ Ψω
Σ({(N, l′′i , φ1)}).

Then, by applying n times the rule 5., (N, l2) ∈ Ψω
Σ({(N, l′′i , φ1)|0 ≤ i ≤ n}).

By rule 8., (N, l1) ∈ Ψω
Σ({(N, l′′i , φ1)|0 ≤ i ≤ n}).

By the property mentioned in Definition A.4.23, (N, l) ∈ Ψω
Σ({(N, l′′i , φ1)|0 ≤ i ≤ n}.

Therefore, ∃i ∈ {0, . . . , n} such that (N, l′′i , φ1) /∈ Ψω
Σ(∅), which means that (N, l, φ) ≤W

(N, l′′i , φ1). But, if (N, l, φ) were eccentric relatively to N, then, ∀i ∈ {0, . . . , n}, we would
have

(N, l′′i , φ1) ≤W (N, l′i, φ1) ≤W (N, l2, φ1) ≤W (N, l1, φ1) <W (N, l, φ)

That is why (N, l, φ) is not eccentric relatively to N, which is the statement of the
proposition above.



78 Appendix A. Detailed Proofs

Finally, we prove that min(S(Σ)) cannot exist, which means that S(Σ) is empty:

Proposition A.4.34.
∀Σ ∈ p_trees(Q,Π),S(Σ) = ∅.

Proof. We prove the above statement by reductio ad absurdum.

Let be Σ ∈ p_trees(Q,Π). If S(Σ) 6= ∅, we set (N, l) = ((R(t), ρ), (τ, S, ρ, V, ϕ)) =
min(S(Σ)). Let (N, l, φ) be a positive instance of (N, l) of least weight, κ = U(Σ) ∈
u_trees(Q,Π), θ the unfolding mapping of Σ, h the unfolding node mapping of Σ and
Λϕ,κ a κ-mapping.

(N, (τ, ∅, ρ, V, ϕ)) ∈ Ψω
Σ(∅), and therefore S 6= ∅. By Lemma A.4.32 and Proposi-

tion A.4.31, we know that ∃v ∈ var(S) such that φΛϕ,κ(v) /∈ θ−1([var(ρ)]).

By removing the node h−1(N) from κ, one splits Nκ\{h(N)} in connex parts. Then,
such a part, N, must verify φΛϕ,κ(v) ∈ NV \NV . Since (N, l, φ) is not eccentric relatively
to N, φΛϕ,κ(var(S)) ⊆ NV .

Here, we are in one of the 2 following cases:

• If the father n of h−1(N) verifies n ∈ N, then ϕ(var(S)) ∩ V ⊆ var(t). Let N ′ =
h(n) = (R′(t′), ρ′) be the father of N , V ′ = var(t) ⊆ V , ϕ′ : var�(γ�)→ var�(γ

�)∪
V ′ be a total mapping such that ϕ′|var(S) = ϕ|var(S) and ϕ′(var�(γ

�)\var(S)) ⊆
var�(γ

�) and l′ = (τ, S, ρ′, V ′, ϕ′). Then, (N ′, l′) ∈ NΣ × L(γ,Π), IN ′(l′) ≡ > and
(N ′, l′, φ) is a positive instance of (N ′, l′), with (N ′, l′, φ) <W (N, l, φ). Moreover,
since (N, l) is natural, so is (N ′, l′). Therefore, since (N ′, l′) /∈ S(Σ), we know that
(N ′, l′) ∈ Ψω

Σ(∅).
By rule 3., (N, (τ, S, ρ, V ′, ϕ′)) ∈ Ψω

Σ(∅).
By rule 7., (N, (τ, S, ρ, V, ϕ′)) ∈ Ψω

Σ(∅).
By rule 9., (N, l) = (N, (τ, S, ρ, V, ϕ)) ∈ Ψω

Σ(∅).
• If a child n of h−1(N) verifies n ∈ N, then ϕ(var(S)) ∩ V ⊆ var(t′). Let N ′ =
h(n) = (R′(t′), ρ′) be a child of N , V ′ = var(t′) ⊆ V , ϕ′ : var�(γ�)→ var�(γ

�)∪ V ′
be a total mapping such that ϕ′|var(S) = ϕ|var(S), ϕ′(var�(γ�)\var(S)) ⊆ var�(γ

�)

and l′ = (τ, S, ρ′, V ′, ϕ′). Then, (N ′, l′) ∈ NΣ × L(γ,Π), IN ′(l′) ≡ > and (N ′, l′, φ)
is a positive instance of (N ′, l′), with (N ′, l′, φ) <W (N, l, φ). Moreover, since (N, l)
is natural, so is (N ′, l′). Therefore, since (N ′, l′) /∈ S(Σ), we know that (N ′, l′) ∈
Ψω

Σ(∅).
By rule 2., (N, (τ, S, ρ, V ′, ϕ′)) ∈ Ψω

Σ(∅).
By rule 7., (N, (τ, S, ρ, V, ϕ′)) ∈ Ψω

Σ(∅).
By rule 9., (N, l) = (N, (τ, S, ρ, V, ϕ)) ∈ Ψω

Σ(∅).

In both cases, (N, l) ∈ Ψω
Σ(∅), which is impossible by definition of S(Σ). Therefore, our

first assumption was false, which proves the above proposition.

This emptiness directly implies the following theorem, which expresses the other of the
two implications Theorem 5.2.3 consists in:

Theorem A.4.35.
Let Π be a Datalog program with goal predicate Q, γ a transitive Datalog program
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with goal predicate Γ. Let be Σ ∈ p_trees(Q,Π), σ = lmin(Σ) ∈ p_labelfp(Σ, γ, Q,Π), and
r = (N,L) the root of σ. Let Γ(v) be an instance of Γ with variables among var�(γ�).
If there exists a containment mapping from a tree ν ∈ u_trees(Γ, γ) to κ = U(Σ) ∈
u_trees(Q,Π), then N = (R(t), ρ) is such that, for some tuple of variables v, and some
l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L verifies ϕ(v) = t.

Proof. Let be some l = (τ, {Γ(v)}, ρ, V, ϕ) such that ϕ(v) = t. Since there exists a
containment mapping from a tree ν ∈ u_trees(Γ, γ) to κ = U(Σ) ∈ u_trees(Q,Π),
IN(l) ≡ >. Let be τ ′ ∈ u_trees(Γ, γ∇) such that l′ = (τ ′, {Γ(v)}, ρ, V, ϕ}) ∈ L(γ,Π).
We know that

• IN(l′) ≡ >.
• τ ′ ∈ u_trees(Γ, γ∇).
• {Γ(v)} is descendant-free in τ ′.
• (N, l′) is natural.
• (N, l′) /∈ S(Σ) = ∅.

Therefore, (N, l) ∈ Ψω
Σ(∅), which proves the above theorem.

A.4.4 Proof of Theorem 5.2.3 : An Equivalent Condition

Both Theorems A.4.13 and A.4.35 are now sufficient to prove the following theorem,
which expresses a condition equivalent to the existence of a containment mapping.

Theorem A.4.36.
Let Π be a Datalog program with goal predicate Q, γ be a transitive Datalog pro-
gram with goal predicate Γ, Σ ∈ p_trees(Q,Π) be a proof tree of Π. The two following
conditions are equivalent:

• There exists a containment mapping from a tree ν ∈ u_trees(Γ, γ) to U(Σ).
• ∀σ ∈ p_labelfp(Σ, γ, Q,Π), the root (N,L) = ((R(t), ρ), L) of σ is such that, for
some tuple of variables v and some l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L, ϕ(v) = t.

Proof. If there exists a containment mapping from a tree ν ∈ u_trees(Γ, γ) to U(Σ),
then, by Theorem A.4.35, for some tuple of variables v and some l = (τ, {Γ(v)}, ρ, V, ϕ)
such that ϕ(v) = t, (N, l) ∈ Ψω

Σ(∅). Furthermore, i(σ) = (Σ, E) verifies E = Ψω
Σ(E) ⊇

Ψω
Σ(∅) 3 (N, l). Therefore, the root (N,L) if σ verifies l ∈ L.

Conversely, if the root (N,L) = (R(t), ρ), L) of lmin(Σ) is such that, for some tuple of
variables v and some l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L, ϕ(v) = t, then, by Theorem A.4.13,
there exists a containment mapping from a tree ν ∈ u_trees(Γ, γ) to κ = U(Σ).

Finally, since the containment of a program in another one can be reduced to the
existence of containment mappings, we obtain a demonstration of Theorem 5.2.3:
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Theorem A.4.37. [Theorem 5.2.3]
Let Π be a Datalog program with goal predicate Q, γ be a transitive Datalog program
with goal predicate Γ.

Π is contained in γ if and only if, for every tree σ ∈ p_labelfp(γ,Q,Π), the root
(N,L) = ((R(t), ρ), L) of σ is such that, for some tuple of variables v and some l =
(τ, {Γ(v)}, ρ, V, ϕ) ∈ L, ϕ(v) = t.

Proof. If Π is contained in γ and σ ∈ p_labelfp(γ,Q,Π), let us look at i(σ) = (Σ, E)
and at κ = U(Σ) ∈ u_trees(Q,Π). Since Π is contained in γ, there exists a containment
mapping from a tree ν ∈ u_trees(Γ, γ) to κ = U(Σ). Therefore, by Theorem A.4.36,
the root (N,L) = ((R(t), ρ), L) of σ is such that, for some tuple of variables v and some
l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L, ϕ(v) = t.

Conversely, we suppose that, ∀σ ∈ p_labelfp(γ,Q,Π), the root (N,L) = ((R(t), ρ), L)
of σ is such that, for some tuple of variables v and some l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L,
ϕ(v) = t. Let be κ ∈ u_trees(Q,Π). ∃Σ ∈ p_trees(Q,Π) such that κ = U(Σ)
(up to a renaming of the variables). Furthermore, ∀σ ∈ p_labelfp(Σ, γ, Q,Π), the
root (N,L) = ((R(t), ρ), L) of σ is such that, for some tuple of variables v and some
l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L, ϕ(v) = t. Therefore, by Theorem A.4.36, there exists a
containment mapping from a tree ν ∈ u_trees(Γ, γ) to U(Σ); it becomes straightforward
that there exists also a containment mapping from a tree ν ∈ u_trees(Γ, γ) to κ. This
being true for every tree κ ∈ u_trees(Q,Π), we know that Π is contained in γ.

A.4.5 Tree Automata

Theorem A.4.38. [Theorem 5.3.2]
Let Π be a Datalog program with goal predicate Q, and γ be a transitive Datalog
program with goal predicate Γ. There is an automaton AQ,ΠΓ,γ , whose size is doubly expo-
nential in the size of Π and triply exponential in the size of γ, such that T (AQ,ΠΓ,γ ) = ∅ if
and only if Π is contained in Γ.

Proof. We describe hereafter the construction of the automaton

AQ,ΠΓ,γ = (A,E ∪ {accept}, I, δ, {accept})

• A is the set of couples (N,L) = ((R(t), ρ), L) such that ρ is a rule of Π with
variables over var(Π), R(t) is the atom in the head of ρ, L ⊆ L(γ,Π), Φ(L) = L
and, ∀ l = (τ, S, r, V, ϕ) ∈ L, r = ρ.
• E = A.
• I is the set of couples (N,L) = ((R(t), ρ), L) ∈ E such that R = Q and L does not

contain any tuple (τ, {Γ(v)}, ρ, V, ϕ) verifying ϕ(v) = t.

and where δ is constructed as follows:
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• Let ρ be a rule instance

R1(t1) ∧ . . . ∧Rm(tm)⇒ R(t)

in Π, with IDB atoms Ri1(ti1), . . . , Rik(tik) in its body.
Let be s = ((R(t), ρ), L), s1 = ((Ri1(ti1), ρ1), L1), . . . , sk = ((Rik(tik), ρk), Lk) ∈ E.
If, ∀j ∈ {1, . . . , k},

{(τ, S, V, ϕ)|V ⊆ var(tij), (τ, S, ρ, V, ϕ) ∈ L}

=

{(τ, S, V, ϕ)|V ⊆ var(tij), (τ, S, ρj, V, ϕ) ∈ Lj}
then 〈s1, . . . , sk〉 ∈ δ(s, s).
• Let ρ be a rule instance

R1(t1) ∧ . . . ∧Rm(tm)⇒ R(t)

in Π, with only EDB atoms in its body. Let be s = ((R(t), ρ), L) ∈ E. Then,
〈accept〉 ∈ δ(s, s).

It is straightforward to see that AQ,ΠΓ,γ accepts a subset of p_labelpf (γ,Q,Π), and that
a tree σ ∈ p_labelpf (γ,Q,Π) is in the accepted set if and only if the root (N,L) =
((R(t), ρ), L) of σ is such that L does not contain any tuple l = (τ, {Γ(v)}, ρ, V, ϕ) such
that ϕ(v) = t.

Therefore, AQ,ΠΓ,γ accepts the empty language if and only if Π is contained in γ.

Theorem A.4.39. [Theorem 5.3.3]
Containment of a Datalog program in a monadic Datalog program is in 3EXPTIME.

Proof. Let be Π a Datalog program with goal predicate Q, and γ a transitive Datalog
program with goal predicate Γ.

By an immediate induction, we prove that the number of rules that contains any tree
τ ∈ u_trees(γ�) is at most doubly exponential in the size of γ. Therefore, |var�(γ�)|
is also at most doubly exponential in the size of γ. Then, the number of trees τ ∈
u_trees(γ�) with variables among var�(γ�) is at most triply exponential in the size of γ.
And, almost immediately, it comes that the number of tuples (τ, S, ρ, V, ϕ) ∈ L(γ,Π) is
at most triply exponential in the size of Π and γ, and that the set of these tuples can be
calculated in time triply exponential in the sizes of Π and γ.

Moreover, the set {(R(t), ρ)} where R(t) is the head atom of a rule ρ with variables
among var(Π) A can be calculated in time exponential in the size of Π. Then, ∀L ∈
L(γ,Π), we can calculate whether φ(L) = L in time triply exponential in the sizes of Π
and γ. Therefore, A, E and I can be calculated in time triply exponential in the sizes of
Π and γ.

Finally, the computation of δ also takes a time triply exponential in the sizes of Π and
γ, and the emptiness of AQ,ΠΓ,γ is decidable in time triply exponential in the sizes of Π and
γ.
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All these assertions imply that our algorithm checks whether Π is contained in γ in
time and place triply exponential in the sizes of Π and γ.
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Appendix B

Decidability and Courcelle’s Theorem

B.1 Courcelle’s Theorem

We can view a conjunctive query φ(x1, . . . , xk) with free variables among x1, . . . , xk as a
2-sorted relational structure Aφ in the following sense:

The sorts V and F of Aφ denote the set of variables and atomic formulæ in φ, respec-
tively. For each l-ary predicate symbol P in the vocabulary of φ, we have a predicate
symbol P ′ in the vocabulary of Aφ of type F × V l. The vocabulary of Aφ also has con-
stant symbols x1, . . . ,xk. These constant and predicate symbols are interpreted in Aφ as
follows. First, the constant symbol xi is interpreted as xi. Second, if the atomic formula
ai is P (z1, . . . , zl) in φ, then we have a tuple 〈ai, z1, . . . , zl〉 in the interpretation of P ′.
Note that φ can have multiple occurrences of the same atomic formula, which explains
why we need the sort F in Aφ.

Since a conjunctive query φ can be viewed as a 2-sorted relational structure Aφ, we
can view u_trees(Q,Π) as a set of 2-sorted relational structures, which we denote as
str(Q,Π). If Q is k-ary, then we can assume that all conjunctive queries in u_trees(Q,Π)
have free variables among x1, . . . , xk. Thus, all structures in str(Q,Π) have the same
vocabulary, denoted vocab(Q,Π). We can now express properties of Datalog program
in terms of properties of the associated collection of 2-sorted structures. If ψ is a monadic
second-order (MSO) formula over vocab(Q,Π), then we say that the program Π with goal
predicate Q satisfies ψ if ψ holds in all structures in str(Q,Π).

For example, consider the property of strong non-redundancy defined hereafter: We
say that a Datalog program Π with goal predicate Q is strongly no-redundant if no
unfolding expansion tree contains two distinct occurrences of the same EDB atom. It is
easy to see that this property can be expressed as a first-order property of the structures
in str(Q,Π). For simplicity assume that there is a single EDB predicate P , which happens
to be k-ary. Then the desired property holds if the program Π with goal predicate Q
satisfies the sentence

(∀x1, x2 ∈ F )(∀y1, . . . , yk ∈ V )(P ′(x1, y1, . . . , yk)
∧P ′(x2, y1, . . . , yk)⇒ x1 = x2).
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Monadic second-order logic gives us a very powerful language to describe properties of
Datalog queries in terms of the associated set of structures. It is not clear, a priori,
whether such properties can be effectively tested. After all, to check whether a Datalog
program Π with a goal Q satisfies a monadic second-order sentence ψ we have to check
in principle the infinitely many structures in str(Q,Π). The following powerful result
by Courcelle asserts that, nevertheless, monadic second-order properties of Datalog
programs can be effectively tested.

Theorem B.1.1. [7, 8]
There is an algorithm to decide, given a Datalog program Π with goal predicate Q and
a monadic second-order sentence ψ over vocab(Q,Π), whether Π satisfies ψ.

B.2 Monadic Programs

The decidability of containment in monadic programs follows now from Theorem B.1.1.

Theorem B.2.1. Containment of Datalog programs in monadic Datalog programs
is decidable.

Proof. Let us assume that Π is a Datalog program with goal predicate Q. Let ΠM be
an arbitrary monadic Datalog program, with internal IDB predicates is I1, . . . , In and
k-ary goal predicate QM. Let us assume that the internal rules of ΠM are Ri:

R1(v1) ∧ . . . ∧Rm(vm)⇒ R(v)

with IDB atoms R(v), Ri1(vi1), . . . , Ril′
(vil′ ) and EDB atoms Rj1(vj1), . . . , Rjl(v

jl). Each
internal rule can be translated into a monadic second-order formula

ϕi(I1, . . . , In) = (∀y1, . . . , ym)((
l∧

i=1

ai ∧
l′∧
i=1

bi)⇒ b0)

with free sets among I1, . . . , In and no free variable, where each aj is a first-order formula
pj(z1, . . . , zk) and each bj is a monadic second-order atomic formula Ij′(zj”), all these
formulæ being over the variables y1, . . . , ym. Let us assume now that the goal rules of
ΠM are Qi:

R1(v1) ∧ . . . ∧Rm(vm)⇒ QM(v)

with head predicate QM(v), internal IDB atoms Ri1(vi1), . . . , Ril′
(vil′ ) and EDB atoms

Rj1(vj1), . . . , Rjl(v
jl). Each goal rule can be translated into a monadic second-order

formula

ϕi(I1, . . . , In, x1, . . . , xk) = (∃y1, . . . , ym)(
l∧

i=1

ai ∧
l′∧
i=1

bi)

with free sets among I1, . . . , In and free variables among x1, . . . , xk, where each aj is a
first-order formula pj(z1, . . . , zk) and each bj is a monadic second-order atomic formula
Ij′(zj”), all these formulæ being over the variables y1, . . . , ym, x1, . . . , xk. ΠM itself can
be translated into a monadic second-order formula

ψ(x1, . . . , xk) = (∀I1, . . . , In)(
s∧
i=1

ϕi(I1, . . . , In)⇒
s′∨
i=1

ϕi(I1, . . . , In, x1, . . . , xk))
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with free variables among x1, . . . , xk and no free set. Given n sets I1, . . . , In ⊆ V , define
ϕ′i(I1, . . . , In) to be the sentence

(∀y1, . . . , ym ∈ V )(∃a1, . . . , al ∈ F )((
l∧

i=1

a′i ∧
l′∧
i=1

b′i)⇒ b′0)

where a′i is the atomic formula p′i(ai, z
′
1, . . . , z

′
l), b′j is the atomic formula z′j” ∈ Ij′ ,

and z′1, . . . , z
′
l are obtained from z1, . . . , zl by substituting xj for xj. We also define

ϕ′i(I1, . . . , In) to be the sentence

(∃y1, . . . , ym ∈ V )(∃a1, . . . , al ∈ F )(
l∧

i=1

a′i ∧
l′∧
i=1

b′i)

where a′i is the atomic formula p′i(ai, z′1, . . . , z′l), b′j is the atomic formula z′j” ∈ Ij′ , and
z′1, . . . , z

′
l are obtained from z1, . . . , zl by substituting xj for xj. Let now ψ′ be the MSO

formula

ψ′ = (∀I1, . . . , In ⊆ V )(
s∧
i=1

ϕ′i(I1, . . . , In)⇒
s′∨
i=1

ϕ′i(I1, . . . , In))

We claim that Π is contained in ΠM if and only if Π satisfies ψ′.

Let us assume that Π does not satisfy ψ′ but is contained in ΠM. There is a tree
τ ∈ u_trees(Q,Π) such that ψ′ does not hold over Aτ . Therefore, there exists subsets
I1, . . . , In of var(τ) such that each ϕi(I1, . . . , In) holds over Aτ , but no ϕ′i(I1, . . . , In) does.
Let L = {I1, . . . , In} and θ = {(x, Ik) ∈ {x1, . . . ,xk}×L|x ∈ Ik}. Then, τ dec = (τ,L, θ) ∈
u_dec(Q,Π). Since every ϕi(I1, . . . , In) holds over Aτ , τ dec ∈ u_decpf (Ri, QM,ΠM) for
every internal rule Ri of ΠM, so that τ dec ∈ u_decpf (ΠM, Q,Π). By Theorem 4.1.7,
∃σ ∈ u_trees(QM,Π∗M) whose root is a leaf and a decorating containment mapping
h : σ → τ dec. Let Qi be the rule of the root of σ: R1(v1), . . . , Rm(vm)⇒ QM(v). h maps
the variables in σ to variables in τ , and preserves the distinguished variables. Therefore,
ϕ′i(I1, . . . , In) holds on Aτ , and so does ψ′. This contradicting our first assumption, we
conclude that, if Π does not satisfy ψ′, it is not contained in ΠM.

Let us assume now that Π satisfies ψ′. Let τ dec = (τ,L, θ) ∈ u_decpf (ΠM, Q,Π)
and, ∀k, Ik = {v ∈ var(τ)|(v, Ik) ∈ θ} ⊆ var(τ). Since ψ′ holds on Aτ , so does∧s
i=1 ϕ

′
i(I1, . . . , In) ⇒

∨s′

i=1 ϕ
′
i(I1, . . . , In). τ dec ∈ u_decpf (Ri, Q,Π), which proves that,

for every internal ruleRi of ΠM, ϕ′i(I1, . . . , In) holds onAτ . Therefore,
∧s
i=1 ϕ

′
i(I1, . . . , In)

holds on Aτ , and so does
∨s′

i=1 ϕ
′
i(I1, . . . , In), as well as some ϕ′i(I1, . . . , In). Let Qi be

the corresponding rule of ΠM: R1(v1), . . . , Rm(vm) ⇒ QM(v), with internal IDB predi-
cates Ri1 , . . . , Ril . Then, let Q∗i be a rule of Π∗M: R′1(v1), . . . , R′m(vm)⇒ QM(v), where
R′i = R∗i if Ri is an internal IDB predicate of ΠM, and R′i = Ri if Ri is an EDB pred-
icate of ΠM. If σ∗ is the tree in u_trees(QM,Π∗M) whose only node is (QM(v),Q∗i ),
then some decorating containment mapping maps σ∗ to τ dec. This statement is true
∀τ dec ∈ u_decpf (Π2, Q,Π), and it follows from Theorem 4.1.7 that Π is contained in ΠM.
This completes our proof.

Corollary B.2.2. Equivalence of Datalog programs to monadic programs is decidable.
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B.3 Transitive Programs

Similarly, the decidability of containment in transitive programs follows from Theo-
rem B.1.1.

Theorem B.3.1. Containment of Datalog programs in transitive Datalog programs
is decidable.

Proof. Let us assume that Π is a Datalog program with goal predicate Q. Let γ be
an arbitrary transitive Datalog program, with predicates P1, . . . , Pn and with rules
R1, . . . ,R|γ‖.
• Let Pa be an EDB predicate. We associate Pa to the MSO formula

ϕa(v) ≡ Pa(v)

• Let Ri be a star rule Pb(x, z)∧Pa(z, y)⇒ Pa(x, y). We associate Pa to the monadic
second-order formula

ϕa(x, y) ≡ (∀S) (∃u, v) (x /∈ S ∨ y ∈ S ∨ (u ∈ S ∧ v /∈ S ∧ ϕb(u, v)))

• Let Ri be a star-free rule Pn1(v1) ∧ . . . ∧ Pnk(vk) ⇒ Pn0(v0). We associate Ri to
the monadic second-order formula

φi(v0) ≡ (∃y1, . . . , ym)

(
k∧
i=1

ϕni(v
i)

)
where y1, . . . , ym are the variables appearing in Ri but not in v0.
• Let Pa be a goal or star-free IDB predicate, and Rn1 , . . . ,Rnk the rules whose head

predicates are Pa. We associate Pa to the MSO formula

ϕa(v) ≡
k∨
i=1

φni(v)

It is straightforward that, if the goal predicate of γ is the k-ary predicate PΓ, then
γ(x1, . . . , xk) is equivalent to ϕΓ(x1, . . . , xk).

Now, we write the formula γ(x1, . . . , xk) in normal disjunctive form:

γ(x1, . . . , xk) ≡ (∀S1
1, . . . ,S

k1
1 )(∃v1

1, . . . , v
k′1
1 ) . . .

(∀S1
l , . . . ,S

kl
l )(∃v1

l , . . . , v
k′l
l )(Φ(S,v))

where Φ(S,v) is a MSO formula Φ(S,v) ≡
∨c
i=1

(∧di
j=1 θi,j(S,v)

)
with free sets among

S1
1, . . . ,S

k1
1 , . . . ,S

1
l , . . . ,S

kl
l , free variables among x1, . . . , xk, v

1
1, . . . , v

k′1
1 , . . . , v

1
l , . . . , v

k′l
l and

such that each atom θi,j(S,v) is an EDB atom Pa(w1, . . . , wl), an atom w ∈ Si or an atom
w /∈ Si.

Now, we translate γ(x1, . . . , xk) into a formula γ′(x1, . . . , xk) over vocab(Q,Π), where

γ′(x1, . . . ,xk) ≡ (∀S1
1, . . . ,S

k1
1 ⊆ V )(∃v1

1, . . . , v
k′1
1 ∈ V ) . . .

(∀S1
l , . . . ,S

kl
l ⊆ V )(∃v1

l , . . . , v
k′l
l ∈ V )(Φ′(S,v′))
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where Φ′(S,v′) is MSO a formula Φ′(S,v′) ≡
∨c
i=1

(∧di
j=1 θ

′
i,j(S,v′)

)
with free sets among

S1
1, . . . ,S

k1
1 , . . . ,S

1
l , . . . ,S

kl
l , free variables among x1, . . . ,xk, v1

1, . . . , v
k′1
1 , . . . , v

1
l , . . . , v

k′l
l and

• if θi,j(S,v) is an EDB atom Pa(w1, . . . , wl), then we set, ∀b ≤ l, w′b = xm if
wb is a variable xm, and w′b = wb if wb /∈ {x1, . . . , xk}. Then, θ′i,j(S,v′) ≡
P ′a(Pa, w

′
1, . . . , w

′
l).

• if θi,j(S,v) is an atom w ∈ Sl, then we set w′ = xm if w is a variable xm, and
w′ = w if w /∈ {x1, . . . , xk}. Then, θ′i,j(S,v′) ≡ w′ ∈ Sl.
• if θi,j(S,v) is an atom w /∈ Sl, then we set w′ = xm if w is a variable xm, and
w′ = w if w /∈ {x1, . . . , xk}. Then, θ′i,j(S,v′) ≡ w′ /∈ Sl.

We claim that Π is contained in γ if and only if Π satisfies γ′.

Indeed, let τ ∈ u_trees(Q,Π) be an unfolding expansion tree. It is straightforward that
γ′ holds on Aτ exactly ∃l = (τ, {Γ(v)}, ρ, V, ϕ) ∈ L(γ,Π) such that ϕ(v) = t and IN(l) ≡
>. Therefore, by Proposition A.4.11, and since U(p_trees(Q,Π)) = u_trees(Q,Π), Π is
contained in γ if and only if ∀τ ∈ u_trees(Q,Π), γ′ holds on Aτ , which means that Π
satisfies γ′.

Since γ′ is a monadic second-order formula over vocab(Q,Π),our proof is complete.

Corollary B.3.2. Equivalence of Datalog programs to transitive programs is decidable.

B.4 Comments

Unfortunately, Theorem B.1.1 yields a very high upper bound; the algorithm described
in [7] is of non-elementary time complexity, i.e., its time complexity cannot be bounded
by any finite stack of exponentials.

This is why the decidability of the containment problem in monadic Datalog pro-
grams and in transitive Datalog programs was indeed proved by Courcelle’s theo-
rem, but that we still had to look for the existence of algorithms that would give better
complexity bounds.
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