Unbounded Product-Form Petri Nets

Patricia Bouyer-Decitre¹, Serge Haddad¹ & Vincent Jugé^{1,2}

1: LSV (CNRS, ENS Paris-Saclay & Inria) — 2: LIGM (Univ. Paris-Est Marne-la-Vallée)

07/09/2017

This work has been supported by ERC project EQualIS (FP7-308087)

In the last decades, interest in quantitative systems rose dramatically.

Efficient quantitative analysis of high-level, expressive systems with infinite underlying state space was a major difficulty.

From the performance evaluation community arose the idea of studying "product forms"....

Contents

- Markov Chains & Invariant Measures
- 2 Π²-Nets & Π³-Nets: Stochastic Petri Nets
- 3 Invariant Measures in Live Π³-Nets
- 4 Conclusion

Discrete-time Markov chain

Stochastic dynamical system evolving at integer time-points: $(X_n)_{n \in \mathbb{Z}_{\geqslant 0}}$ **Example**: Random walk

Discrete-time Markov chain

Stochastic dynamical system evolving at integer time-points: $(X_n)_{n \in \mathbb{Z}_{\geq 0}}$ **Example**: Random walk — $(X_n)_{n \geq 0} = 0$

Discrete-time Markov chain

Stochastic dynamical system evolving at integer time-points: $(X_n)_{n \in \mathbb{Z}_{\geq 0}}$ **Example**: Random walk — $(X_n)_{n \geq 0} = 0$, 1

Discrete-time Markov chain

Stochastic dynamical system evolving at integer time-points: $(X_n)_{n \in \mathbb{Z}_{\geq 0}}$ **Example**: Random walk — $(X_n)_{n \geq 0} = 0, 1, 2$

Discrete-time Markov chain

Stochastic dynamical system evolving at integer time-points: $(X_n)_{n \in \mathbb{Z}_{\geqslant 0}}$ **Example**: Random walk — $(X_n)_{n \geqslant 0} = 0, 1, 2, 1, ...$

Discrete-time Markov chain

Stochastic dynamical system evolving at integer time-points: $(X_n)_{n\in\mathbb{Z}_{\geqslant 0}}$

Example: Random walk — $(X_n)_{n\geqslant 0} = 0, 1, 2, 1, \dots$

Markov Property: $\{(X_k)_{k \ge n} \mid (X_k)_{k \le n}\} = \{(X_k)_{k \ge n} \mid X_n\}$

Discrete-time Markov chain

Stochastic dynamical system evolving at integer time-points: $(X_n)_{n\in\mathbb{Z}_{\geqslant 0}}$

Example: Random walk — $(X_n)_{n\geqslant 0} = 0, 1, 2, 1, \dots$

Markov Property: $\{(X_k)_{k\geqslant n}\mid (X_k)_{k\leqslant n}\}=\{(X_k)_{k\geqslant n}\mid X_n\}$

Continuous-time Markov chain

Random dynamical system evolving at real time-points: $(X_t)_{t\in\mathbb{R}_{\geqslant 0}}$

Example: Counting bus arrivals

Discrete-time Markov chain

Stochastic dynamical system evolving at integer time-points: $(X_n)_{n\in\mathbb{Z}_{\geqslant 0}}$

Example: Random walk — $(X_n)_{n\geqslant 0} = 0, 1, 2, 1, \dots$

Markov Property: $\{(X_k)_{k\geqslant n}\mid (X_k)_{k\leqslant n}\}=\{(X_k)_{k\geqslant n}\mid X_n\}$

Continuous-time Markov chain

Random dynamical system evolving at real time-points: $(X_t)_{t\in\mathbb{R}_{\geqslant 0}}$

Example: Counting bus arrivals

Markov Property: $\{(X_s)_{s \ge t} \mid (X_s)_{s \le t}\} = \{(X_s)_{s \ge t} \mid X_t\}$

Discrete-time Markov chain

Stochastic dynamical system evolving at integer time-points: $(X_n)_{n\in\mathbb{Z}_{\geqslant 0}}$

Example: Random walk — $(X_n)_{n\geqslant 0} = 0, 1, 2, 1, \dots$

Markov Property: $\{(X_k)_{k\geqslant n}\mid (X_k)_{k\leqslant n}\}=\{(X_k)_{k\geqslant n}\mid X_n\}$

Continuous-time Markov chain ≠ Markov process

Random dynamical system evolving at real time-points: $(X_t)_{t\in\mathbb{R}_{\geqslant 0}}$

Example: Counting bus arrivals

Markov Property: $\{(X_s)_{s\geqslant t}\mid (X_s)_{s\leqslant t}\}=\{(X_s)_{s\geqslant t}\mid X_t\}$

Ergodic Markov chains

What does a Markov chain look like after a long time?

The Markov chain is **ergodic** if it has a **limit** probability measure $\mu = \lim_{t \to +\infty} X_t$.

Examples: Random walk on \mathbb{Z} : not ergodic Random walk on $\mathbb{Z}/7\mathbb{Z}$: ergodic

Communication networks: ?

Ergodic Markov chains

What does a Markov chain look like after a long time?

The Markov chain is ergodic if it has a limit probability measure $\mu = \lim_{t \to +\infty} X_t$: μ is the unique invariant probability measure.

Examples: Random walk on \mathbb{Z} : **not ergodic**

Random walk on $\mathbb{Z}/7\mathbb{Z}$: **ergodic**

Communication networks: ?

Our goal: Check ergodicity & compute μ efficiently in relevant cases.

(undecidable in general)

Fixed-rate queuing systems (≈ Jackson networks)

Fixed-rate queuing systems (≈ Jackson networks)

Fixed-rate queuing systems (≈ Jackson networks)

Clients follow edges when fixed-rate exponential clocks ring. Such systems have product-form invariant measures.

$$\mathbf{n}_i = \# \mathbf{\hat{\mathbf{n}}} \text{ in } \mathbf{s}_i$$

$$\mu(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3) = \mathsf{Kp}_1^{\mathbf{n}_1} \mathsf{p}_2^{\mathbf{n}_2} \mathsf{p}_3^{\mathbf{n}_3}$$

Fixed-rate queuing systems (≈ Jackson networks)

Clients follow edges when fixed-rate exponential clocks ring. Such systems have product-form invariant measures.

$$\mathbf{n}_i = \#\mathbf{n}$$
 in \mathbf{s}_i Ergodic Markov chain!
 $\mu(\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3) = \mathbf{K} \mathbf{p}_1^{\mathbf{n}_1} \mathbf{p}_2^{\mathbf{n}_2} \mathbf{p}_3^{\mathbf{n}_3}$

 $p_1 = p_2 = 2/3$, $p_3 = 1/3$, K = 27/2

Product-form invariant measures

Linear algebra gives us the coefficients p_i in polynomial time.

It remains to compute the normalising constant K without enumerating the reachability set. (easy in queuing systems, hard in general)

What about concurrency?

What if people interact with each other?

What about concurrency?

What if people interact with each other?

What about concurrency?

What if people interact with each other?

What about concurrency?

What if people interact with each other?

What about concurrency?

What if people interact with each other?

What about concurrency?

What if people interact with each other?

What about concurrency?

What if people interact with each other?

Example: Marrying people Use stochastic Petri nets!

What about concurrency?

What if people interact with each other?

Example: Marrying people Use stochastic Petri nets!

Next step: Investigate qualitative & quantitative properties, e.g.:

- boundedness.
- liveness.
- ergodicity,

- reachability,
- coverability,
- invariant measure. . .

Stochastic Petri nets & Π^2 -nets

In spite of their greater complexity. . .

Some classes of stochastic Petri nets are product form!

- Coleman et al.'s condition
- \bullet Π^2 -nets

(depends on firing rates)

(independent of firing rates)

Stochastic Petri nets & Π^2 -nets

In spite of their greater complexity. . .

Some classes of stochastic Petri nets are product form!

Coleman et al.'s condition

(depends on firing rates)

• Π^2 -nets

(independent of firing rates)

Complexity results in Π^2 -nets

• Checking that a net is a Π^2 -net: PTime

©

Coverability:

ExpSpace-hard ©

Liveness:

- PSpace-hard
 - (even in safe nets)

Reachability:

- PSpace-hard
- (even in safe nets)

Efficiently computing normalising constants seems out of reach!

 Π^2 -nets & closed Π^3 -nets (\approx nested queuing systems)

 $\Pi^2\text{-nets}$ are too general: let us focus on (closed) $\Pi^3\text{-nets}!$

Π^2 -nets & closed Π^3 -nets (\approx nested queuing systems)

 Π^2 -nets are too general: let us focus on (closed) Π^3 -nets!

• Layers = Strongly connected finite-state machines

Π^2 -nets & closed Π^3 -nets (\approx nested queuing systems)

 Π^2 -nets are too general: let us focus on (closed) Π^3 -nets!

- Layers = Strongly connected finite-state machines
- Every place requires resources in the previous layer

- Layers = Strongly connected finite-state machines
- Every place requires resources in the previous layer
- Resources must be the most resource-intensive within their layer

- Layers = Strongly connected finite-state machines
- Every place requires resources in the previous layer
- Resources must be the most resource-intensive within their layer
- Creating/deleting a token releases/consumes its resources

- Layers = Strongly connected finite-state machines
- Every place requires resources in the previous layer
- Resources must be the most resource-intensive within their layer
- Creating/deleting a token releases/consumes its resources

- Layers = Strongly connected finite-state machines
- Every place requires resources in the previous layer
- Resources must be the most resource-intensive within their layer
- Creating/deleting a token releases/consumes its resources

- Layers = Strongly connected finite-state machines
- Every place requires resources in the previous layer
- Resources must be the most resource-intensive within their layer
- Creating/deleting a token releases/consumes its resources

- Layers = Strongly connected finite-state machines
- Every place requires resources in the previous layer
- Resources must be the most resource-intensive within their layer
- Creating/deleting a token releases/consumes its resources

Closed Π^3 -nets & open Π^3 -nets

Closed Π^3 -nets cannot model open systems: can we handle them?

Closed Π^3 -nets & open Π^3 -nets

Closed Π^3 -nets cannot model open systems: can we handle them?

Delete one place in the top layer and make your net open!

Closed Π^3 -nets & open Π^3 -nets

Closed Π^3 -nets cannot model open systems: can we handle them?

Delete one place in the top layer and make your net open!

1-layer open/closed Π^3 -nets = open/closed (connected) Jackson networks

• Liveness: PTime ©

- Liveness: PTime ©
- Reachability in live nets: linear constraints involves potential gap

- Liveness: PTime ©
- Reachability in live nets: linear constraints involves potential gap

- Liveness: PTime ©
- Reachability in live nets: linear constraints involves potential gap

- Liveness: PTime ©
- Reachability in live nets: PTime ©

(NP hard in general ②)

- Liveness: PTime ©
- Reachability in live nets: PTime ©
- Coverability in live nets: PTime ©
- Boundedness in live nets: PTime ©

- (NP hard in general \odot)
- (NP hard in general ②)
- (co-NP hard in general ©)

All (live or not) closed Π^3 -nets are bounded, hence ergodic!

All (live or not) closed Π^3 -nets are bounded, hence ergodic!

This open Π^3 -net is ergodic if:

All (live or not) closed Π³-nets are bounded, hence ergodic!

This open Π^3 -net is ergodic if:

$$(\mu = \mathbf{K} \prod_{i \neq 1} \mu_i^{\mathbf{p}_i} \prod_k \nu_k^{\mathbf{q}_k} \prod_\ell \rho_\ell^{\mathbf{r}_\ell})$$

• if $gap(p_i) = 2$, then $\mu_i < 1$;

All (live or not) closed Π^3 -nets are bounded, hence ergodic!

This open Π^3 -net is ergodic if:

$$(\mu = \mathsf{K} \prod_{i \neq 1} \mu_i^{\mathsf{p}_i} \prod_k \nu_k^{\mathsf{q}_k} \prod_\ell \rho_\ell^{\mathsf{r}_\ell})$$

- if $gap(p_i) = 2$, then $\mu_i < 1$;
- if $gap(p_i) > 2 > gap(p_i)$, then $\mu_i^{gap(p_i)-2}\mu_i^{2-gap(p_j)} < 1$;

All (live or not) closed Π^3 -nets are bounded, hence ergodic!

This open Π^3 -net is ergodic if:

$$(\mu = \mathbf{K} \prod_{i \neq 1} \mu_i^{\mathbf{p}_i} \prod_k \nu_k^{\mathbf{q}_k} \prod_{\ell} \rho_\ell^{\mathbf{r}_\ell})$$

- if $gap(p_i) = 2$, then $\mu_i < 1$;
- if $gap(p_i) > 2 > gap(p_j)$, then $\mu_j^{gap(p_i)-2}\mu_i^{2-gap(p_j)} < 1$;
- if $2 > gap(p_j)$ & $gap(q_k) = 0$, then $\nu_k^{2-gap(p_j)}\mu_i < 1$.

All (live or not) closed Π^3 -nets are bounded, hence ergodic!

This open Π^3 -net is ergodic if and only if: $(\mu = \mathbf{K} \prod_{i \neq 1} \mu_i^{\mathbf{p}_i} \prod_k \nu_k^{\mathbf{q}_k} \prod_\ell \rho_\ell^{\mathbf{r}_\ell})$

- if $gap(p_i) = 2$, then $\mu_i < 1$;
- if $gap(p_i) > 2 > gap(p_j)$, then $\mu_j^{gap(p_i)-2}\mu_i^{2-gap(p_j)} < 1$;
- if $2 > gap(p_j)$ & $gap(q_k) = 0$, then $\nu_k^{2-gap(p_j)}\mu_i < 1$.

$$\mu = \mathbf{K} \prod_{\mathrm{place} \ p} \mu_p^{\mathrm{tokens \ in} \ p}$$

- **①** Computing μ_p : PTime using linear algebra
- Computing K: key ideas

$$\mu = \mathbf{K} \prod_{\mathrm{place} \ p} \mu_{p}^{\mathrm{tokens \ in} \ p}$$

- **1** Computing μ_p : **PTime** using linear algebra
- 2 Computing K: key ideas
 - Consider unbounded places & bounded places;

$$\mu = \mathbf{K} \prod_{\mathrm{place} \ p} \mu_p^{\mathrm{tokens \ in} \ p}$$

- **1** Computing μ_p : PTime using linear algebra
- Computing K: key ideas
 - Consider unbounded places & bounded places;
 - ▶ Split **K** into a finite sum $\sum_{i} K_{unbounded,i} K_{bounded,i}$; (\approx convolution)

$$\mu = \mathbf{K} \prod_{\mathrm{place} \ p} \mu_{p}^{\mathrm{tokens \ in} \ p}$$

- Computing μ_p : PTime using linear algebra
- Computing K: key ideas
 - Consider unbounded places & bounded places;
 - ▶ Split **K** into a finite sum $\sum_{i} K_{unbounded,i} K_{bounded,i}$; (≈ convolution)
 - ▶ Reachability set = lattice points in a finite-dimensional polytope;

$$\mu = \mathbf{K} \prod_{\mathrm{place} \ p} \mu_p^{\mathrm{tokens \ in} \ p}$$

- **1** Computing μ_p : PTime using linear algebra
- Computing K: key ideas
 - Consider unbounded places & bounded places;
 - ▶ Split **K** into a finite sum $\sum_{i} K_{unbounded,i} K_{bounded,i}$; (≈ convolution)
 - ▶ Reachability set = lattice points in a finite-dimensional polytope;
 - Use induction on the polytope's dimension & size.

$$\mu = \mathbf{K} \prod_{\mathsf{place}\ p} \mu_{p}^{\mathsf{tokens\ in}\ p}$$

- **①** Computing μ_p : PTime using linear algebra
- 2 Computing K: key ideas
 - Consider unbounded places & bounded places;
 - ▶ Split **K** into a finite sum $\sum_{i} K_{unbounded,i} K_{bounded,i}$; (≈ convolution)
 - ▶ Reachability set = lattice points in a finite-dimensional polytope;
 - ▶ Use induction on the polytope's dimension & size.

Theorem (Bouyer, Haddad & Jugé 2017)

One can check if a Π^3 -net is ergodic in polynomial time. If yes, one can compute the invariant measure in pseudo-polynomial time.

Conclusion & Future Work

A new class of stochastic Petri nets: (open) Π^3 -nets

- allows handling resources in open queuing systems;
- product-form Petri nets;
- efficient characterisation of live Π^3 -nets and of their qualitative/quantitative properties.

Conclusion & Future Work

A new class of stochastic Petri nets: (open) Π^3 -nets

- allows handling resources in open queuing systems;
- product-form Petri nets;
- efficient characterisation of live Π³-nets and
 of their qualitative/quantitative properties.

Further goals:

handling multiple open layers;

(done)

- tight complexity bounds for general Π³-nets;
- other generalisations?

Conclusion & Future Work

A new class of stochastic Petri nets: (open) Π^3 -nets

- allows handling resources in open queuing systems;
- product-form Petri nets;
- efficient characterisation of live Π³-nets and
 of their qualitative/quantitative properties.

Further goals:

handling multiple open layers;

(done)

- tight complexity bounds for general Π^3 -nets;
- other generalisations?

A short bibliography

- J. Jackson, Jobshop-like queueing systems, Management Science, 1963.
- W. Gordon & G. Newell, *Closed queuing systems with exponential servers*, Operations Research, 1967.
- A. Lazar & T. Robertazzi, Markovian Petri net protocols with product form solution, Performance Evaluation, 1991.
- J. Coleman et al., Product form equilibrium distributions and a convolution algorithm for stochastic Petri nets, Performance Evaluation, 1996.
- S. Haddad et al., *Product-form and stochastic Petri nets: A structural approach*, Performance Evaluation, 2005.
- J. Mairesse & H.-T. Nguyen, Deficiency zero Petri nets and product form, Fundamenta Informaticae, 2010.
- S. Haddad et al., *Synthesis and analysis of product-form Petri nets*, Fundamenta Informaticae, 2013.
- P. Bouyer et al., Unbounded product-form Petri nets, CONCUR, 2017.