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In the last decades, interest in quan-
titative systems rose dramatically.

Efficient quantitative analysis of
high-level, expressive systems with

infinite underlying state space was
a major difficulty.

From the performance evaluation
community arose the idea of

studying ‘‘product forms’’. . .
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Part I – Markov Chains & Invariant Measures

Discrete-time & continuous-time Markov chains

Discrete-time Markov chain
Stochastic dynamical system evolving at integer time-points: (Xn)n∈Z>0

Example: Random walk

— (Xn)n>0 = 0, 1, 2, 1, . . .
Markov Property: {(Xk)k>n | (Xk)k6n} = {(Xk)k>n | Xn}

. . . . . .
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Continuous-time Markov chain

6= Markov process

Random dynamical system evolving at real time-points: (Xt)t∈R>0

Example: Counting bus arrivals

Markov Property: {(Xs)s>t | (Xs)s6t} = {(Xs)s>t | Xt}
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Part I – Markov Chains & Invariant Measures

Ergodic Markov chains

What does a Markov chain look like after a long time?
The Markov chain is ergodic if it has a limit probability measure
µ = limt→+∞ Xt .

µ is the unique invariant probability measure.

Examples: Random walk on Z: not ergodic
Examples: Random walk on Z/7Z: ergodic
Examples: Communication networks: ?

Our goal: Check ergodicity & compute µ efficiently in relevant cases.
(undecidable in general)
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Part I – Markov Chains & Invariant Measures

Product-form Markov chains

Fixed-rate queuing systems (≈ Jackson networks)
Clients follow edges when fixed-rate exponential clocks ring.

Such systems have product-form invariant measures.

s1
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s3
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U

U
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U
x

xx

x

xxxxx

λ = 2

λ = 3

λ = 2

λ = 3

λ = 4

ni = #x in si

µ(n1,n2,n3) = Kpn1
1 pn2

2 pn3
3

ni = #x in si Ergodic Markov chain!

p1 = p2 = 2/3, p3 = 1/3, K = 27/2

Product-form invariant measures
Linear algebra gives us the coefficients pi in polynomial time.
It remains to compute the normalising constant K without enumerating the
reachability set. (easy in queuing systems, hard in general)
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Part I – Markov Chains & Invariant Measures

Beyond queuing systems

What about concurrency?
What if people interact with each other?
Example: Marrying people

Use stochastic Petri nets!

xx

x

xxxx

×2 ♥
♣

♠

×2
♥

♣

♠

λ = 1

λ = 2

λ = 4 λ = 5

Next step: Investigate qualitative & quantitative properties, e.g.:
boundedness,
liveness,
ergodicity,

reachability,
coverability,
invariant measure. . .
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Part II – Π2-Nets & Π3-Nets: Stochastic Petri Nets

Stochastic Petri nets & Π2-nets
In spite of their greater complexity. . .

Some classes of stochastic Petri nets are product form!

Coleman et al.’s condition (depends on firing rates)

Π2-nets (independent of firing rates)

Complexity results in Π2-nets
Checking that a net is a Π2-net: PTime ,
Coverability: ExpSpace-hard /
Liveness: PSpace-hard / (even in safe nets)

Reachability: PSpace-hard / (even in safe nets)

Efficiently computing normalising constants seems out of reach!
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Part II – Π2-Nets & Π3-Nets: Stochastic Petri Nets

Π2-nets & closed Π3-nets (≈ nested queuing systems)
Π2-nets are too general: let us focus on (closed) Π3-nets!

Layer 3 Layer 2 Layer 1

3

3

p1

p2

p3

q0p0

q1

q2

q3

r1 r0p0

q1

q2

q3

r1 r0

q3

0 3q2

q1

r1

r1

r1

0 0 0

Layers = Strongly connected finite-state machines
Every place requires resources in the previous layer
Resources must be the most resource-intensive within their layer
Creating/deleting a token releases/consumes its resources
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Part II – Π2-Nets & Π3-Nets: Stochastic Petri Nets

Closed Π3-nets & open Π3-nets
Closed Π3-nets cannot model open systems: can we handle them?
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Delete one place in the top layer and make your net open!

1-layer open/closed Π3-nets = open/closed (connected) Jackson networks
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Part II – Π2-Nets & Π3-Nets: Stochastic Petri Nets

Qualitative properties in (closed or open) Π3-Nets
Liveness: linear constraints — involves potential

Reachability in live nets: linear constraints — involves potential gap
Coverability in live nets: PTime , (NP hard in general /)
Boundedness in live nets: PTime , (co-NP hard in general /)
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Part III – Invariant Measures in Live Π3-Nets

Ergodicity

All (live or not) closed Π3-nets are bounded, hence ergodic!

This open Π3-net is ergodic if: (µ = K
∏

i 6=1 µ
pi

i

∏
k ν

qk

k

∏
` ρ

r`
` )

3

3

q0 r1 r0

p3p3

p0p2 p0p2

q1

q2

q3

q1

q2

q3

p1

2

3 0

2

0

0

0

1 0 0

if gap(pi ) = 2, then µi < 1;
if gap(pi ) > 2 > gap(pj), then µjgap(pi )−2µi

2−gap(pj ) < 1;
if 2 > gap(pj) & gap(qk) = 0, then νk2−gap(pj )µj < 1.
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Part III – Invariant Measures in Live Π3-Nets

Computing the invariant measure
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1 Computing µp: PTime using linear algebra
2 Computing K: key ideas

I Consider unbounded places & bounded places;
I Split K into a finite sum

∑
i Kunbounded,iKbounded,i ; (≈ convolution)

I Reachability set = lattice points in a finite-dimensional polytope;
I Use induction on the polytope’s dimension & size.

Theorem (Bouyer, Haddad & Jugé 2017)

One can check if a Π3-net is ergodic in polynomial time.
If yes, one can compute the invariant measure in pseudo-polynomial time.
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Conclusion & Future Work
A new class of stochastic Petri nets: (open) Π3-nets

allows handling resources in open queuing systems;
product-form Petri nets;
efficient characterisation of live Π3-nets and
efficient characterisation of their qualitative/quantitative properties.

Further goals:
handling multiple open layers; (done)
tight complexity bounds for general Π3-nets;
other generalisations?
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