Reduction ratio of the IS-algorithm:
worst and random cases

Vincent Jugé

Université Gustave Eiffel (LIGM)

28,/06,/2022

Vincent Jugé Reduction ratio of the IS-algorithm

Contents

@ Induced-sorting algorithm for computing the suffix array of a word

© Worst-case reduction ratio

© Average reduction ratio: Letters generated by a nice Markov chain

@ Number of recursive calls: Letters generated by a finite Markov chain

Vincent Jugé Reduction ratio of the IS-algorithm

Suffix arrays!!!

Suffix array: permutation that orders lexicographically suffixes of a word

B A L A L A | K A

Vincent Jugé Reduction ratio of the IS-algorithm

Suffix arraysl!!

Suffix array: permutation that orders lexicographically suffixes of a word

B A L A L A | K A
A

K A

I K A

A I K A

L A | K A

A L A | K A

L A L A | K A
AL A L A I K A
B A L A L A | K A

Vincent Jugé Reduction ratio of the IS-algorithm

Suffix arraysl!!

Suffix array: permutation that orders lexicographically suffixes of a word

B A L A L A | K A
A

A I K A
AL A I K A
AL A L A I K A
B A L A L A I K A
I K A

K A

L A | K A

L A L A | K A

Vincent Jugé Reduction ratio of the IS-algorithm

Suffix arraysl!!

Suffix array: permutation that orders lexicographically suffixes of a word

B A L A L A | K A
4 3 8 2 7 1 5 6 0

A

A I K A
AL A I K A
AL A L A I K A
B A L A L A I K A
I K A

K A

L A | K A

L A L A | K A

Vincent Jugé Reduction ratio of the IS-algorithm

Suffix arraysl!!

Suffix array: permutation that orders lexicographically suffixes of a word

B A L A L A | K A
4 3 8 2 7 1 5 6 0

A

A I K A
AL A I K A
AL A L A I K A
B A L A L A I K A
I K A

K A

L A | K A

L A L A | K A

Useful for longest common factors, Burrows-Wheeler transform!@, . ..

Vincent Jugé Reduction ratio of the IS-algorithm

Induced-sorting (SA-IS) algorithm!?!

Goal: Computing the suffix array of a word w
with letters in {0,1,...,|w|} or in a finite alphabet

B A L A L A | K A

@ If no symbol of w occurs twice, just sort them

Vincent Jugé Reduction ratio of the IS-algorithm

Induced-sorting (SA-IS) algorithm!?!

Goal: Computing the suffix array of a word w
with letters in {0,1,...,|w|} or in a finite alphabet

B A L A L A I K AS

@ If no symbol of w occurs twice, just sort them
© Append a $ symbol (minimal symbol) to w

Vincent Jugé Reduction ratio of the IS-algorithm

Induced-sorting (SA-IS) algorithm!?!

Goal: Computing the suffix array of a word w

with letters in {0,1,...,|w|} or in a finite alphabet
B A L A L A I K A $
A L A
A L A
A I K A §

@ If no symbol of w occurs twice, just sort them

© Append a $ symbol (minimal symbol) to w M
@ Subdivide w - $ into unimodal (LMS) factors

Vincent Jugé Reduction ratio of the IS-algorithm

Induced-sorting (SA-IS) algorithm!?!

Goal: Computing the suffix array of a word w

with letters in {0,1,...,|w|} or in a finite alphabet
B A L A L A I K A $
1 A L A
1 A L A
A I K A §

@ If no symbol of w occurs twice, just sort them
© Append a $ symbol (minimal symbol) to w M
@ Subdivide w - $ into unimodal (LMS) factors

© Sort these and relabel them in increasing order (gives you w')

Vincent Jugé Reduction ratio of the IS-algorithm

Induced-sorting (SA-IS) algorithm!?!

Goal: Computing the suffix array of a word w

with letters in {0,1,...,|w|} or in a finite alphabet
B A L A L A I K A $
2 1 0
1 A L A
1 A L A
A I K A §

@ If no symbol of w occurs twice, just sort them
© Append a $ symbol (minimal symbol) to w M
@ Subdivide w - $ into unimodal (LMS) factors
© Sort these and relabel them in increasing order (gives you w')

@ Compute the suffix array of w’

Vincent Jugé Reduction ratio of the IS-algorithm

Induced-sorting (SA-IS) algorithm!?!

Goal: Computing the suffix array of a word w

with letters in {0,1,...,|w|} or in a finite alphabet
B A L A L A I K A $
4 3 8 2 7 1 5 6 0
1 A L A
1 A L A

@ If no symbol of w occurs twice, just sort them
© Append a $ symbol (minimal symbol) to w M
@ Subdivide w - $ into unimodal (LMS) factors
© Sort these and relabel them in increasing order (gives you w')

@ Compute the suffix array of w’
@ Finish computing the suffix array of w

Vincent Jugé Reduction ratio of the IS-algorithm

Induced sorting (SA-IS) algorithm

IS algorithm computes the suffix array of w in time linear in |w|.

Theorem J

Proof elements:
@ Steps @ and @ can be performed in time O(|w|)

@ Unimodal words of total length £ and their suffixes can be sorted in
time O(¢): Steps @ and @ can be performed in time O(|w|)

o Step @ is performed on a word of length |w/| < (Jw| — 1)/2
Suffix array computed in time O(|w| + |w|/2 + |w|/4+---) = O(|w|)

Vincent Jugé Reduction ratio of the IS-algorithm

Induced sorting (SA-IS) algorithm

Theorem

IS algorithm computes the suffix array of w in time linear in |w|. J

Proof elements:
@ Steps @ and @ can be performed in time O(|w|)

@ Unimodal words of total length £ and their suffixes can be sorted in
time O(¢): Steps @ and @ can be performed in time O(|w|)

o Step @ is performed on a word of length |w/| < (Jw| — 1)/2
Suffix array computed in time O(|w| + |w|/2 + |w|/4+---) = O(|w|)

Further questions:
o Can we repeatedly have |w'| = (Jw|—1)/27
e What is the reduction ratio |w’'|/|w| in practice?

@ How many recursive calls shall we expect?

Vincent Jugé Reduction ratio of the IS-algorithm

Reduction ratio: worst case

Worst-case scenario[5]

We can keep having |w'| = (Jw| — 1)/2 for log,(|w|) recursive steps J

Example:

21 2 0 41 40214041 3%

Vincent Jugé Reduction ratio of the IS-algorithm

Reduction ratio: worst case

Worst-case scenario[5]

We can keep having |w'| = (Jw| — 1)/2 for log,(|w|) recursive steps J

Example:

21 2 0 41 40214041 3%

Vincent Jugé Reduction ratio of the IS-algorithm

Reduction ratio: worst case

Worst-case scenariol’
We can keep having |w’| = (Jw| — 1)/2 for log,(|w|) recursive steps
Example:
21 2 0 41 4 0 21 4 0 41 3%
120 1 40 1 4 0 1 3§
0 4 1 02 1 0 4 1

Vincent Jugé Reduction ratio of the IS-algorithm

Reduction ratio: worst case

Worst-case scenariol®!
We can keep having |w'| = (Jw| — 1)/2 for log,(|w]|) recursive steps
Example:
21 2 0 41 4021 4041 3°%
2 1 4 0 4 1 3
1 20 1 40 1 4 0 1 359
0 4 1 0 21 0 4 1

Word obtained by applying the increasing morphism
0+— 02 1— 04 212 3—13 4— 14

k times on the letter 3, and then deleting the first letter

Vincent Jugé Reduction ratio of the IS-algorithm

Infinitely many independent letters
Sample the letters of w: Z +— {0,1} independently uniformly at random:

Example:
101 1 01 0 1 1 0011 011

Vincent Jugé Reduction ratio of the IS-algorithm

Infinitely many independent letters
Sample the letters of w: Z +— {0,1} independently uniformly at random:
e Ends of unimodal factors are the subwords 10: |w'| ~ |w|/4

Example:
101 1 01 0 1 1 0011 011
1 0 0 1 0 0 01 10
0 1 1 0 0 1.1 0 0 1 1

Vincent Jugé Reduction ratio of the IS-algorithm

Infinitely many independent letters

Sample the letters of w: Z +— {0,1} independently uniformly at random:
e Ends of unimodal factors are the subwords 10: |w'| ~ |w|/4
o Unimodal factors of w are independent words, with P[0?1°0] = 2=~

Example:
101 1 01 0 1 1 0011 011
1 0 0 1 0 0 01 10
0 1 1 0 0 1.1 0 0 1 1

Vincent Jugé Reduction ratio of the IS-algorithm

Infinitely many independent letters

Sample the letters of w: Z +— {0,1} independently uniformly at random:
e Ends of unimodal factors are the subwords 10: |w'| ~ |w|/4
o Unimodal factors of w are independent words, with P[0?1°0] = 2=~

» Infinite alphabet! (countable, not isomorphic to Z or N)
Example:
101101 0110W0T1T1O0T11
1 0 0 1 0 0 01 1 0
0 1.1 0 0 1.1 0 0 1 1

0120 02120 o0'1'0 021'0 021%0 021%0 031'0 0'1%0

Vincent Jugé Reduction ratio of the IS-algorithm

Infinitely many independent letters
Sample the letters of w: Z +— {0,1} independently uniformly at random:
e Ends of unimodal factors are the subwords 10: |w'| ~ |w|/4

o Unimodal factors of w are independent words, with P[0?1°0] = 2=~
» Infinite alphabet! (countable, not isomorphic to Z or N)

@ Unimodal factors of w’ are not independent, and |w”| ~ 0.353...|w/|
@ Things keep getting more complicated after further recursive calls

Example:
101 1 01 0 1 1 001 1 011
1 0 0 1 0 0 01 1 0
0 1.1 0 0 1 1 0 0 1 1

0120 02120 o0'1'0 021'0 021%0 021%0 031'0 0'1%0
0120 02120 02110 02120 02120 031'0
02120 o'1'o o02%1'0 0310 o'1%o

Vincent Jugé Reduction ratio of the IS-algorithm

Main challenges

Questions:
o What about relabelling (in step @)7
@ What about letters that are not independent?

@ What when leftmost and rightmost letters are eventually reached?

Vincent Jugé Reduction ratio of the IS-algorithm

Main challenges

Questions:
e What about relabelling (in step @)7
@ What about letters that are not independent?
@ What when leftmost and rightmost letters are eventually reached?

Answers:
@ Relabelling is useful for actual computations, not here
@ Assume that letters are given (from left to right or right to left) by a
nice Markov chain
@ Truncate your Markov chain when you have enough symbols!

Vincent Jugé Reduction ratio of the IS-algorithm

Main challenges

Questions:
e What about relabelling (in step @)7
@ What about letters that are not independent?
@ What when leftmost and rightmost letters are eventually reached?

Answers:
@ Relabelling is useful for actual computations, not here
@ Assume that letters are given (from left to right or right to left) by a
nice Markov chain
@ Truncate your Markov chain when you have enough symbols!

o O O
o o

Vincent Jugé Reduction ratio of the IS-algorithm

Main challenges

Questions:
e What about relabelling (in step @)7
@ What about letters that are not independent?
@ What when leftmost and rightmost letters are eventually reached?

Answers:
@ Relabelling is useful for actual computations, not here
@ Assume that letters are given (from left to right or right to left) by a
nice Markov chain
@ Truncate your Markov chain when you have enough symbols!

O A O

Vincent Jugé Reduction ratio of the IS-algorithm

Nice Markov chains
Contraints to satisfy:
@ i.i.d. Markov chains are nice
@ Unimodular factors of a nice Markov chain are nice
@ Ends of unimodular factors must have some density of occurrence

Vincent Jugé Reduction ratio of the IS-algorithm

Nice Markov chains
Contraints to satisfy:
@ i.i.d. Markov chains are nice
@ Unimodular factors of a nice Markov chain are nice
@ Ends of unimodular factors must have some density of occurrence

EPRI Markov chainl®!

A countable Markov chain M is almost surely eventually positive,
recurrent and irreducible if it has a terminal component X that is almost
surely reached, and on which M is positive recurrent.

Vincent Jugé Reduction ratio of the IS-algorithm

Nice Markov chains
Contraints to satisfy:
@ i.i.d. Markov chains are nice
@ Unimodular factors of a nice Markov chain are nice
@ Ends of unimodular factors must have some density of occurrence

EPRI Markov chainl®!

A countable Markov chain M is almost surely eventually positive,
recurrent and irreducible if it has a terminal component X that is almost
surely reached, and on which M is positive recurrent.

Example: E[1 —»3]=2
. 1/2 /4 1 23
O D
1/2 1/3

Vincent Jugé Reduction ratio of the IS-algorithm

Nice Markov chains
Contraints to satisfy:
@ i.i.d. Markov chains are nice
@ Unimodular factors of a nice Markov chain are nice
@ Ends of unimodular factors must have some density of occurrence

EPRI Markov chainl®!

A countable Markov chain M is almost surely eventually positive,
recurrent and irreducible if it has a terminal component X that is almost
surely reached, and on which M is positive recurrent.

Counter-example: E[2 = 1] = +o0
1 1/2 1/4 1
o L
< 0 >(2
1/4
1/2

Vincent Jugé Reduction ratio of the IS-algorithm

Nice Markov chains
Contraints to satisfy:
@ i.i.d. Markov chains are nice
@ Unimodular factors of a nice Markov chain are nice
@ Ends of unimodular factors must have some density of occurrence

EPRI Markov chainl®!

A countable Markov chain M is almost surely eventually positive,
recurrent and irreducible if it has a terminal component X that is almost
surely reached, and on which M is positive recurrent.

Counter-example: E[l1 — 0] = +o0

1 1/2 1/2
1/2 1/2 1/2

Vincent Jugé Reduction ratio of the IS-algorithm

Nice Markov chains
Contraints to satisfy:
@ i.i.d. Markov chains are nice
@ Unimodular factors of a nice Markov chain are nice
@ Ends of unimodular factors must have some density of occurrence

EPRI Markov chainl®!

A countable Markov chain M is almost surely eventually positive,
recurrent and irreducible if it has a terminal component X that is almost
surely reached, and on which M is positive recurrent.

Example: E[1 —-0]=3

1 1/3 1/3
2/3 2/3 2/3

Vincent Jugé Reduction ratio of the IS-algorithm

Letters generated by a nice Markov chain

Theorem?!

Let w be a word whose letters are generated by an EPRI Markov chain,
and let w(k) be the word obtained after k recursive calls. The ratios

[w]

wl

converge, in probability, towards a constant ().

Vincent Jugé Reduction ratio of the IS-algorithm

Letters generated by a nice Markov chain

Theorem?!

Let w be a word whose letters are generated by an EPRI Markov chain,
and let w(k) be the word obtained after k recursive calls. The ratios

[w]

wl

converge, in probability, towards a constant ().

Bonus result*5]
If the letters of w are i.i.d, v(!) < 1/3. J

Vincent Jugé Reduction ratio of the IS-algorithm

Number of recursive calls
Step @ (direct letter sorting if possible) is very useful!

Vincent Jugé Reduction ratio of the IS-algorithm

Number of recursive calls
Step @ (direct letter sorting if possible) is very useful!

Theorem®!

Let w be a word whose letters are generated by a finite Markov chain.

There exists a constant k such that, for all £ > 0, the SA-IS algorithm has
a probability

P < k/|w[*

of performing more than 2log,(log,(|w|)) + ¢ recursive calls.

Vincent Jugé Reduction ratio of the IS-algorithm

Number of recursive calls
Step @ (direct letter sorting if possible) is very useful!

Theorem[]
Let w be a word whose letters are generated by a finite Markov chain.
There exists a constant k such that, for all £ > 0, the SA-IS algorithm has
a probability

P < k/|w|*

of performing more than 2 log,(log,(|w|)) + ¢ recursive calls.

Proof elements:

Each letter of w()) represents at least 2 letters of w

o Letters of w reach a terminal component X in expected time O(1)
o If X is a cycle, end up with a one-letter word in O(1) recursive calls
o Otherwise, factors of w of length 2¢(log,(|w|))? are likely to be distinct

Vincent Jugé Reduction ratio of the IS-algorithm

Some references

[1] Suffix arrays: a new method for on-line string searches,

U. Manber & G. Meyers (1993)
[2] A block-sorting lossless data compression algorithm

M. Burrows & D. Wheeler (1994)
[3] Two efficient algorithms for linear time suffix array construction

G. Nong, S. Zhang & W. H. Chan (2010)
[4] A probabilistic analysis of the reduction ratio in the suffix-array IS-algorithm

C. Nicaud (2015)
[5] Reduction ratio of the IS-algorithm: worst and random cases

V. Jugé (2022)

Vincent Jugé Reduction ratio of the IS-algorithm

THANK YOU FOR LISTENING!

DO YOU mm msv’nussnuusa

	Induced-sorting algorithm for computing the suffix array of a word
	Worst-case reduction ratio
	Average reduction ratio: Letters generated by a nice Markov chain
	Number of recursive calls: Letters generated by a finite Markov chain

