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Suffix arrays[1]

Suffix array: permutation that orders lexicographically suffixes of a word

B A L A L A I K A

4 3 8 2 7 1 5 6 0

A
K A
I K A
A I K A
L A I K A
A L A I K A
L A L A I K A
A L A L A I K A
B A L A L A I K A

Useful for longest common factors, Burrows-Wheeler transform[2], . . .
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Induced-sorting (SA-IS) algorithm[3]

Goal: Computing the suffix array of a word w
with letters in {0, 1, . . . , |w |} or in a finite alphabet

B A L A L A I K A

$

1

A L A

1

A L A

0

A I K A $

0 If no symbol of w occurs twice, just sort them

1 Append a $ symbol (minimal symbol) to w

2 Subdivide w · $ into unimodal (LMS) factors
3 Sort these and relabel them in increasing order (gives you w ′)
4 Compute the suffix array of w ′

5 Finish computing the suffix array of w
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Induced sorting (SA-IS) algorithm

Theorem
IS algorithm computes the suffix array of w in time linear in |w |.

Proof elements:
Steps 1 and 2 can be performed in time O(|w |)
Unimodal words of total length ` and their suffixes can be sorted in
time O(`): Steps 3 and 5 can be performed in time O(|w |)
Step 4 is performed on a word of length |w ′| 6 (|w | − 1)/2

Suffix array computed in time O(|w |+ |w |/2+ |w |/4+ · · · ) = O(|w |)

Further questions:
Can we repeatedly have |w ′| = (|w | − 1)/2?
What is the reduction ratio |w ′|/|w | in practice?
How many recursive calls shall we expect?
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Reduction ratio: worst case

Worst-case scenario[5]

We can keep having |w ′| = (|w | − 1)/2 for log2(|w |) recursive steps

Example:

2 1 2 0 4 1 4 0 2 1 4 0 4 1 3 $

2 1 4 0 4 1 3
1 2 0 1 4 0 1 4 0 1 3 $

0 4 1 0 2 1 0 4 1

Word obtained by applying the increasing morphism

0 7→ 02 1 7→ 04 2 7→ 12 3 7→ 13 4 7→ 14

k times on the letter 3, and then deleting the first letter
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Infinitely many independent letters
Sample the letters of w : Z 7→ {0, 1} independently uniformly at random:

Ends of unimodal factors are the subwords 10: |w ′| ∼ |w |/4
Unimodal factors of w are independent words, with P[0a1b0] = 2−a−b

I Infinite alphabet! (countable, not isomorphic to Z or N)

Unimodal factors of w ′ are not independent, and |w ′′| ∼ 0.353 . . . |w ′|
Things keep getting more complicated after further recursive calls

Example:

. . . 1 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 . . .

. . . 1 0 0 1 0 0 0 1 1 0
0 1 1 0 0 1 1 0 0 1 1 . . .

. . . 01120 02120 01110 02110 02120 02120 03110 01140 . . .

. . . 01120 02120 02110 02120 02120 03110
02120 01110 02110 03110 01140 . . .
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Main challenges
Questions:

What about relabelling (in step 2 )?
What about letters that are not independent?
What when leftmost and rightmost letters are eventually reached?

Answers:
Relabelling is useful for actual computations, not here
Assume that letters are given (from left to right or right to left) by a
nice Markov chain
Truncate your Markov chain when you have enough symbols!

1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 . . .
0 1 1 0 0 1 1 0 0 0 . . .

0 1 0 0 0 1 1 0
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Nice Markov chains
Contraints to satisfy:

i.i.d. Markov chains are nice
Unimodular factors of a nice Markov chain are nice
Ends of unimodular factors must have some density of occurrence

EPRI Markov chain[5]

A countable Markov chain M is almost surely eventually positive,
recurrent and irreducible if it has a terminal component X that is almost
surely reached, and on which M is positive recurrent.

Example:

0 213

1/41/2

1/4
1/2

1
2/31/2

1/3

0 213

1/41/2

1/4
1/2

1 1

1/2
2 310 · · ·

1

1/2

1/2

1/2

1/2

1/2

2 310 · · ·

1

2/3

1/3

2/3

1/3

2/3
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Letters generated by a nice Markov chain

Theorem[5]

Let w be a word whose letters are generated by an EPRI Markov chain,
and let w (k) be the word obtained after k recursive calls. The ratios

|w (k)|
|w |

converge, in probability, towards a constant γ(k).

Bonus result[4,5]

If the letters of w are i.i.d, γ(1) < 1/3.
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Number of recursive calls
Step 0 (direct letter sorting if possible) is very useful!

Theorem[5]

Let w be a word whose letters are generated by a finite Markov chain.
There exists a constant k such that, for all ` > 0, the SA-IS algorithm has
a probability

P 6 k/|w |2`

of performing more than 2 log2(log2(|w |)) + ` recursive calls.

Proof elements:
Each letter of w (i) represents at least 2i letters of w
Letters of w reach a terminal component X in expected time O(1)
If X is a cycle, end up with a one-letter word in O(1) recursive calls
Otherwise, factors of w of length 2`(log2(|w |))2 are likely to be distinct
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