Reduction ratio of the IS-algorithm: worst and random cases

Vincent Jugé

Université Gustave Eiffel (LIGM)

28/06/2022

Contents

- Induced-sorting algorithm for computing the suffix array of a word
- Worst-case reduction ratio
- 3 Average reduction ratio: Letters generated by a nice Markov chain
- 4 Number of recursive calls: Letters generated by a finite Markov chain

Suffix array: permutation that orders lexicographically suffixes of a word

BALALAIKA

Suffix array: permutation that orders lexicographically suffixes of a word

Suffix array: permutation that orders lexicographically suffixes of a word

BALALAIKA A I K A
A L A I K A
A L A L A I K A
B A L A L A I K A

Suffix array: permutation that orders lexicographically suffixes of a word

```
A I K A
A L A I K A
A L A L A I K A
B A L A L A I K A
```

Suffix array: permutation that orders lexicographically suffixes of a word

Useful for longest common factors, Burrows-Wheeler transform^[2], ...

Goal: Computing the suffix array of a word w with letters in $\{0,1,\ldots,|w|\}$ or in a finite alphabet

BALALAIKA

If no symbol of w occurs twice, just sort them

Goal: Computing the suffix array of a word w with letters in $\{0,1,\ldots,|w|\}$ or in a finite alphabet

BALALAI KA\$

- If no symbol of w occurs twice, just sort them
- lacktriangle Append a \$ symbol (minimal symbol) to w

Goal: Computing the suffix array of a word w with letters in $\{0, 1, \dots, |w|\}$ or in a finite alphabet

- If no symbol of w occurs twice, just sort them
- Append a \$ symbol (minimal symbol) to w
- **2** Subdivide $w \cdot \$$ into unimodal (LMS) factors

Goal: Computing the suffix array of a word w with letters in $\{0, 1, \dots, |w|\}$ or in a finite alphabet

B A L A L A I K A \$

1 A L A 1 A L A 0 A I K A \$

- If no symbol of w occurs twice, just sort them
- Append a \$ symbol (minimal symbol) to w
- ② Subdivide $w \cdot \$$ into unimodal (LMS) factors
- 3 Sort these and relabel them in increasing order

(gives you w')

Goal: Computing the suffix array of a word w with letters in $\{0, 1, \dots, |w|\}$ or in a finite alphabet

- If no symbol of w occurs twice, just sort them
- Append a \$ symbol (minimal symbol) to w
- ② Subdivide $w \cdot \$$ into unimodal (LMS) factors
- Sort these and relabel them in increasing order
- Compute the suffix array of w'

(gives you w')

Goal: Computing the suffix array of a word w

with letters in $\{0,1,\ldots,|w|\}$ or in a finite alphabet

- If no symbol of w occurs twice, just sort them
- Append a \$ symbol (minimal symbol) to w
- ② Subdivide $w \cdot \$$ into unimodal (LMS) factors
- Sort these and relabel them in increasing order
- **4** Compute the suffix array of w'
- \odot Finish computing the suffix array of w

(gives you w')

Induced sorting (SA-IS) algorithm

Theorem

IS algorithm computes the suffix array of w in time linear in |w|.

Proof elements:

- ullet Steps ullet and ullet can be performed in time $\mathcal{O}(|w|)$
- Step is performed on a word of length $|w'| \leq (|w|-1)/2$

Suffix array computed in time $\mathcal{O}(|w|+|w|/2+|w|/4+\cdots)=\mathcal{O}(|w|)$

Induced sorting (SA-IS) algorithm

Theorem

IS algorithm computes the suffix array of w in time linear in |w|.

Proof elements:

- Steps $oldsymbol{0}$ and $oldsymbol{0}$ can be performed in time $\mathcal{O}(|w|)$
- Unimodal words of total length ℓ and their suffixes can be sorted in time $\mathcal{O}(\ell)$: Steps ③ and ⑤ can be performed in time $\mathcal{O}(|w|)$
- Step is performed on a word of length $|w'| \leq (|w|-1)/2$

Suffix array computed in time $\mathcal{O}(|w|+|w|/2+|w|/4+\cdots)=\mathcal{O}(|w|)$

Further questions:

- Can we repeatedly have |w'| = (|w| 1)/2?
- What is the reduction ratio |w'|/|w| in practice?
- How many recursive calls shall we expect?

Worst-case scenario^[5]

We can keep having |w'| = (|w| - 1)/2 for $\log_2(|w|)$ recursive steps

Example:

2 1 2 0 4 1 4 0 2 1 4 0 4 1 3 \$

Worst-case scenario^[5]

We can keep having |w'| = (|w| - 1)/2 for $\log_2(|w|)$ recursive steps

Worst-case scenario^[5]

We can keep having |w'| = (|w| - 1)/2 for $\log_2(|w|)$ recursive steps

Worst-case scenario^[5]

We can keep having |w'| = (|w| - 1)/2 for $\log_2(|w|)$ recursive steps

Example:

Word obtained by applying the increasing morphism

$$0\mapsto 02$$
 $1\mapsto 04$ $2\mapsto 12$ $3\mapsto 13$ $4\mapsto 14$

k times on the letter 3, and then deleting the first letter

Sample the letters of $w \colon \mathbb{Z} \mapsto \{0,1\}$ independently uniformly at random:

Example:

Sample the letters of $w : \mathbb{Z} \mapsto \{0,1\}$ independently uniformly at random:

ullet Ends of unimodal factors are the subwords 10: $|w'| \sim |w|/4$

Sample the letters of $w \colon \mathbb{Z} \mapsto \{0,1\}$ independently uniformly at random:

- Ends of unimodal factors are the subwords 10: $|w'| \sim |w|/4$
- Unimodal factors of w are independent words, with $\mathbb{P}[0^a 1^b 0] = 2^{-a-b}$

Sample the letters of $w : \mathbb{Z} \mapsto \{0,1\}$ independently uniformly at random:

- ullet Ends of unimodal factors are the subwords 10: $|w'| \sim |w|/4$
- Unimodal factors of w are independent words, with $\mathbb{P}[0^a 1^b 0] = 2^{-a-b}$
 - ▶ Infinite alphabet!

(countable, not isomorphic to $\mathbb Z$ or $\mathbb N$)

```
 \dots \quad 0^11^20 \quad 0^21^20 \quad 0^11^10 \quad 0^21^10 \quad 0^21^20 \quad 0^21^20 \quad 0^31^10 \quad 0^11^40 \quad \dots \\
```

Sample the letters of $w \colon \mathbb{Z} \mapsto \{0,1\}$ independently uniformly at random:

- Ends of unimodal factors are the subwords 10: $|w'| \sim |w|/4$
- Unimodal factors of w are independent words, with $\mathbb{P}[0^a 1^b 0] = 2^{-a-b}$ • Infinite alphabet! (countable, not isomorphic to \mathbb{Z} or \mathbb{N})
- ullet Unimodal factors of w' are **not** independent, and $|w''|\sim 0.353\ldots |w'|$
- Things keep getting more complicated after further recursive calls

Questions:

- What about relabelling (in step ②)?
- What about letters that are not independent?
- What when leftmost and rightmost letters are eventually reached?

Questions:

- What about relabelling (in step ②)?
- What about letters that are not independent?
- What when leftmost and rightmost letters are eventually reached?

Answers:

- Relabelling is useful for actual computations, not here
- Assume that letters are given (from left to right or right to left) by a nice Markov chain
- Truncate your Markov chain when you have enough symbols!

Questions:

- What about relabelling (in step ②)?
- What about letters that are not independent?
- What when leftmost and rightmost letters are eventually reached?

Answers:

- Relabelling is useful for actual computations, not here
- Assume that letters are given (from left to right or right to left) by a nice Markov chain
- Truncate your Markov chain when you have enough symbols!

Questions:

- What about relabelling (in step ②)?
- What about letters that are not independent?
- What when leftmost and rightmost letters are eventually reached?

Answers:

- Relabelling is useful for actual computations, not here
- Assume that letters are given (from left to right or right to left) by a nice Markov chain
- Truncate your Markov chain when you have enough symbols!

1	0	1	1	0	1	0	1	1	0	0	1	1	0	\$
	0	1	1	0		0	1	1	0				\$	
				0	1	0			0	0	1	1	0	

Contraints to satisfy:

- i.i.d. Markov chains are nice
- Unimodular factors of a nice Markov chain are nice
- Ends of unimodular factors must have some density of occurrence

Contraints to satisfy:

- i.i.d. Markov chains are nice
- Unimodular factors of a nice Markov chain are nice
- Ends of unimodular factors must have some density of occurrence

EPRI Markov chain^[5]

A countable Markov chain M is almost surely eventually positive, recurrent and irreducible if it has a terminal component \mathcal{X} that is almost surely reached, and on which M is positive recurrent.

Contraints to satisfy:

- i.i.d. Markov chains are nice
- Unimodular factors of a nice Markov chain are nice
- Ends of unimodular factors must have some density of occurrence

EPRI Markov chain^[5]

A countable Markov chain M is almost surely eventually positive, recurrent and irreducible if it has a terminal component \mathcal{X} that is almost surely reached, and on which M is positive recurrent.

$$\mathbb{E}[1 \to 3] = 2$$

Contraints to satisfy:

- i.i.d. Markov chains are nice
- Unimodular factors of a nice Markov chain are nice
- Ends of unimodular factors must have some density of occurrence

EPRI Markov chain^[5]

A countable Markov chain M is almost surely eventually positive, recurrent and irreducible if it has a terminal component $\mathcal X$ that is almost surely reached, and on which M is positive recurrent.

Counter-example:

$$\mathbb{E}[2\to 1]=+\infty$$

Contraints to satisfy:

- i.i.d. Markov chains are nice
- Unimodular factors of a nice Markov chain are nice
- Ends of unimodular factors must have some density of occurrence

EPRI Markov chain^[5]

A countable Markov chain M is almost surely eventually positive, recurrent and irreducible if it has a terminal component \mathcal{X} that is almost surely reached, and on which M is positive recurrent.

Counter-example:

$$\mathbb{E}[1 \to 0] = +\infty$$

Contraints to satisfy:

- i.i.d. Markov chains are nice
- Unimodular factors of a nice Markov chain are nice
- Ends of unimodular factors must have some density of occurrence

EPRI Markov chain^[5]

A countable Markov chain M is almost surely eventually positive, recurrent and irreducible if it has a terminal component \mathcal{X} that is almost surely reached, and on which M is positive recurrent.

$$\mathbb{E}[1 \to 0] = 3$$

Letters generated by a nice Markov chain

Theorem^[5]

Let w be a word whose letters are generated by an EPRI Markov chain, and let $w^{(k)}$ be the word obtained after k recursive calls. The ratios

$$\frac{|w^{(k)}|}{|w|}$$

converge, in probability, towards a constant $\gamma^{(k)}$.

Letters generated by a nice Markov chain

Theorem^[5]

Let w be a word whose letters are generated by an EPRI Markov chain, and let $w^{(k)}$ be the word obtained after k recursive calls. The ratios

$$\frac{|w^{(k)}|}{|w|}$$

converge, in probability, towards a constant $\gamma^{(k)}$.

Bonus result^[4,5]

If the letters of w are i.i.d, $\gamma^{(1)} < 1/3$.

Number of recursive calls

Step **(** (direct letter sorting if possible) is very useful!

Number of recursive calls

Step • (direct letter sorting if possible) is very useful!

Theorem^[5]

Let w be a word whose letters are generated by a finite Markov chain. There exists a constant k such that, for all $\ell \geqslant 0$, the SA-IS algorithm has a probability

$$\mathbb{P} \leqslant k/|w|^{2^{\ell}}$$

of performing more than $2\log_2(\log_2(|w|)) + \ell$ recursive calls.

Number of recursive calls

Step • (direct letter sorting if possible) is very useful!

Theorem^[5]

Let w be a word whose letters are generated by a finite Markov chain. There exists a constant k such that, for all $\ell \geqslant 0$, the SA-IS algorithm has a probability

$$\mathbb{P} \leqslant k/|w|^{2^{\ell}}$$

of performing more than $2\log_2(\log_2(|w|)) + \ell$ recursive calls.

Proof elements:

- Each letter of $w^{(i)}$ represents at least 2^i letters of w
- ullet Letters of w reach a terminal component ${\mathcal X}$ in expected time ${\mathcal O}(1)$
- ullet If ${\mathcal X}$ is a cycle, end up with a one-letter word in ${\mathcal O}(1)$ recursive calls
- Otherwise, factors of w of length $2^{\ell}(\log_2(|w|))^2$ are likely to be distinct

Some references

[1]	Suffix arrays: a new method for on-line string searches,	
	U. Manber & G. Meyers	(1993)
[2]	A block-sorting lossless data compression algorithm	
	M. Burrows & D. Wheeler	(1994)
[3]	Two efficient algorithms for linear time suffix array construction	
	G. Nong, S. Zhang & W. H. Chan	(2010)
[4]	A probabilistic analysis of the reduction ratio in the suffix-array IS-algor	rithm
	C. Nicaud	(2015)
[5]	Reduction ratio of the IS-algorithm: worst and random cases	
	V. Jugé	(2022)

