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Hybrid systems

warm

cold
Θoutside t

0

Θ

Θtarget

Two modes:
1 Heater on: dΘ/dt = α(Θtarget −Θ)

2 Heater off: dΘ/dt = β(Θoutside −Θ)

Duality between:
1 Discrete set of system modes
2 Continuous system evolution warm

cold
ON OFF
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Dynamical systems

How do hybrid systems behave?

In this talk: Focus on the special case of dynamical systems

Dynamical system = Mode-less hybrid system:
1 Observable guards
2 Several possible trajectories
3 One system mode only:

I Non-deterministic choice when several trajectories are available

Guard #1

Guard #2
Θoutside

Θ

Θ = system state

Θtarget
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Bisimulation in dynamical systems – 1/2
Dynamical system: Labelled graph induced by

Trajectories: Functions f : Time parameters → System states
I Underlying graph: Edges f (t)→ f (t ′) for all t 6 t ′

Guards: Vertex labelling (disjoint guards, finitely many labels)

2 types of edges:
1 Θ→ Θ′ if Θ 6 Θ′

2 Θ→ Θ′ if Θ′ 6 Θ

6 Θ?

3 labels: cold, normal and warm

“Time” parameter

Θ

Θ?

Θ4

Θ3

Θ2

Θ1

Bisimulation: Splitting states by possible behaviours

Θi ≈ Θj ⇔ i = j or {i , j} = {2, 3}

– Θi
1
≈ Θj ⇔ i = j

Induced partition: {Θ1}, {Θ2,Θ3}, {Θ4}
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Bisimulation in dynamical systems – 1/2
Dynamical system: Labelled graph induced by

Trajectories: Functions f : Time parameters → System states
I Underlying graph: Edges f (t)→ f (t ′) for all t 6 t ′

Guards: Vertex labelling (disjoint guards, finitely many labels)

2 types of edges:
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2 Θ→ Θ′ if Θ′ 6 Θ 6 Θ?
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“Time” parameter
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k-step Bisimulation: Splitting states by possible k-step behaviours

Θi
0
≈ Θj ⇔ i = j or {i , j} = {2, 3} – Θi

1
≈ Θj ⇔ i = j

Induced partitions: {Θ1}, {Θ2,Θ3}, {Θ4} – {Θ1}, {Θ2}, {Θ3}, {Θ4}
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Bisimulation in dynamical systems – 2/2

Theorem (Folklore)
1 Bisimulation is undecidable in general
2 For all k > 0, k-step bisimulation is decidable (under mild assumptions)

Theorem (Lafferriere, Pappas & Sastry, ’00)
Bisimulation is decidable and induces a finite
partition whenever:

1 Parameters = R, System states = Rn

2 Trajectories are
I solutions of dγ(x , t)/dt = F (γ(x , t))
I definable in an o-minimal theory of R

o-mi
nima

l

theo
ries
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O-minimal structures: Definitions

Definition #1
A First-Order theory is o-minimal if:

it concerns a linearly ordered set (M,6)–with additional predicates.
every definable set is a finite union of intervals with bounds inM±∞.

A few examples: (R,6,+,×), (Q,6, 1,+), (Z>0,6), (R,6,+,×, exp)

. . . and counter-examples: (Q,6,+,×)

, (Z>0,6,+), (R,6, sin)

∃ ⇔6 sin(
√
2)Zx2 6 2⇔ −

√
2 6 x 6

√
2∃ ⇔6 sin(

√
2)Z

Definition #2
A dynamical system is o-minimal if it is definable in an o-minimal theory:
Trajectory γ~p maps time parameter t to system state ~z iff (~p, t, ~z) |= ϕ
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O-minimal structures: Key properties

Key property #1 (Pillay & Steinhorn, ’88)
Let (M,6, . . .) be o-minimal and f :M→M be definable. There exists
a finite partition (I1, . . . , Ik) ofM into intervals s.t., for all j 6 k :

1 f |Ij is constant, or
2 f |Ij is one-to-one and monotonic, and f (Ij) is an interval.

Key property #2 (Pillay & Steinhorn, ’88)
Let ϕ be an `-variable formula. There exists Nϕ ∈ Z s.t., for all b2, . . . ,
b` ∈M, the set {a ∈M | (a, b2, . . . , b`) |= ϕ} is a union of Nϕ intervals.

I1 I2 I3 I4 I5
t

f (t)

a

b2

ϕ

Nϕ = 6
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Result framework
Generalising Lafferriere et al.:

o-minimal real theory → any o-minimal theory
trajectories partition Rn → trajectories may cross each other

Theorem (Bérard, Bouyer & Jugé, ’18)
In an o-minimal dynamical system such that:

V ∗1 (x)
def
== {x ′ | x ∼∗ x ′} is finite for all x , (Finite Crossing)

the bisimulation relation is decidable; (if the theory is decidable)

the sizes |V ∗1 (x)| are uniformly bounded, (Uniform Crossing)
the bisimulation relation is definable and induces finite partition.

t

γp

γq

γr

γp(M) ∩ γq(M) 6= ∅
γp(M) ∩ γr (M) = ∅
γq(M) ∩ γr (M) 6= ∅

p ∼ q(

p 6∼ r(

q ∼ r(

p ∼∗ r(

y

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



Result framework
Generalising Lafferriere et al.:

o-minimal real theory → any o-minimal theory
trajectories partition Rn → trajectories may cross each other

Theorem (Bérard, Bouyer & Jugé, ’18)
In an o-minimal dynamical system such that:

V ∗1 (x)
def
== {x ′ | x ∼∗ x ′} is finite for all x , (Finite Crossing)

the bisimulation relation is decidable; (if the theory is decidable)

the sizes |V ∗1 (x)| are uniformly bounded, (Uniform Crossing)
the bisimulation relation is definable and induces finite partition.

t

γp

γq

γr

γp(M) ∩ γq(M) 6= ∅
γp(M) ∩ γr (M) = ∅
γq(M) ∩ γr (M) 6= ∅

p ∼ q(

p 6∼ r(

q ∼ r(

p ∼∗ r(

y

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



Result framework
Generalising Lafferriere et al.:

o-minimal real theory → any o-minimal theory
trajectories partition Rn → trajectories may cross each other

Theorem (Bérard, Bouyer & Jugé, ’18)
In an o-minimal dynamical system such that:

V ∗1 (x)
def
== {x ′ | x ∼∗ x ′} is finite for all x , (Finite Crossing)

the bisimulation relation is decidable; (if the theory is decidable)

the sizes |V ∗1 (x)| are uniformly bounded, (Uniform Crossing)
the bisimulation relation is definable and induces finite partition.

t

γp

γq

γr

γp(M) ∩ γq(M) 6= ∅
γp(M) ∩ γr (M) = ∅
γq(M) ∩ γr (M) 6= ∅

p ∼ q(

p 6∼ r(

q ∼ r(

p ∼∗ r(

y

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



Result framework
Generalising Lafferriere et al.:

o-minimal real theory → any o-minimal theory
trajectories partition Rn → trajectories may cross each other

Theorem (Bérard, Bouyer & Jugé, ’18)
In an o-minimal dynamical system such that:

V ∗1 (x)
def
== {x ′ | x ∼∗ x ′} is finite for all x , (Finite Crossing)

the bisimulation relation is decidable; (if the theory is decidable)

the sizes |V ∗1 (x)| are uniformly bounded, (Uniform Crossing)
the bisimulation relation is definable and induces finite partition.

t

γp

γq

γr

γp(M) ∩ γq(M) 6= ∅
γp(M) ∩ γr (M) = ∅
γq(M) ∩ γr (M) 6= ∅

p ∼ q(

p 6∼ r(

q ∼ r(

p ∼∗ r(

y

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



Result framework
Generalising Lafferriere et al.:

o-minimal real theory → any o-minimal theory
trajectories partition Rn → trajectories may cross each other

Theorem (Bérard, Bouyer & Jugé, ’18)
In an o-minimal dynamical system such that:

V ∗1 (x)
def
== {x ′ | x ∼∗ x ′} is finite for all x , (Finite Crossing)

the bisimulation relation is decidable; (if the theory is decidable)

the sizes |V ∗1 (x)| are uniformly bounded, (Uniform Crossing)
the bisimulation relation is definable and induces finite partition.

t

γp

γq

γr

γp(M) ∩ γq(M) 6= ∅
γp(M) ∩ γr (M) = ∅
γq(M) ∩ γr (M) 6= ∅

p ∼ q(

p 6∼ r(

q ∼ r(

p ∼∗ r(

y

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



Result framework
Generalising Lafferriere et al.:

o-minimal real theory → any o-minimal theory
trajectories partition Rn → trajectories may cross each other

Theorem (Bérard, Bouyer & Jugé, ’18)
In an o-minimal dynamical system such that:

V ∗1 (x)
def
== {x ′ | x ∼∗ x ′} is finite for all x , (Finite Crossing)

the bisimulation relation is decidable; (if the theory is decidable)

the sizes |V ∗1 (x)| are uniformly bounded, (Uniform Crossing)
the bisimulation relation is definable and induces finite partition.

t

γp

γq

γr

γp(M) ∩ γq(M) 6= ∅
γp(M) ∩ γr (M) = ∅
γq(M) ∩ γr (M) 6= ∅

p ∼ q(

p 6∼ r(

q ∼ r(

p ∼∗ r(

y

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



Interval partition
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y γr
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Staticity: I is x-static if

. . . Adaptability: I1 is x1-adaptable if. . .

|I| =∞ and |γx(I)| = 1

, or
there exist x ′ and I ′ s.t. I ′ is x ′-static and γx(I) = γx ′(I ′).

Adaptability: I1 is x1-adaptable if I1 contains no x1-static sub-interval,
γx1(I1) is included in one guard, and if there exist (x2, I2), . . . , (xk , Ik) s.t.

every z ∈ γx1(I1) has k antecedents by (x , t)→ γx(t):
one in each set {xj} × Ij

for all x and t, γx(t) ∈ γx1(I1) ⇔ (∃j 6 k s.t. x = xj and t ∈ Ij);
for all j 6 k , the induced bijection γ−1x1 ◦ γxj : Ij → I1 is monotonic.

t

y

t

y

s s

Dense time Discrete timevs
Decomposition lemma

s

For all trajectories γx :

1 if V1(x)
def
== {x ′ | x ∼ x ′} is finite, then the time set is a finite, disjoint,

definable union of maximal x-static and x-adaptable intervals;

2 if I is x-static or x-adaptable, all states in γx(I) are bisimilar.
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Bisimulation graph

The bismulation graph is sound & complete
Two states γx(t) and γx ′(t ′) are (k-step) bisimilar iff there exist
intervals I 3 t and I ′ 3 t ′ s.t. (x , I) and (x ′, I ′) are (k-step) bisimilar.
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The result

Theorem (Bérard, Bouyer & Jugé, ’18)
In an o-minimal dynamical system such that:

V ∗1 (x)
def
== {x ′ | x ∼∗ x ′} is finite for all x , (Finite Crossing)

the bisimulation relation is decidable; (if the theory is decidable)

the sizes |V ∗1 (x)| are uniformly bounded, (Uniform Crossing)
the bisimulation relation is definable and induces finite partition.

Proof ideas:
compute k-step bisimulations on Γ(x) ∪ Γ(x ′) for all k > 0, where

Γ(x) = {γx̂(t̂) | x̂ ∼∗ x};
finite bisimulation graph fragment ⇒ convergent refinement process:

κ-step bisimulation = (κ+ 1)-step bisimulation for some κ > 0;

some κ works for all x , x ′: κ-step bisimulation = bisimulation.
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Conclusion
Going further:

Refine the definition of V ∗1 (x), Crossing conditions, . . . ;
Add modes with restricted transitions.

Some references:
Definable sets in ordered structures I–III, Knight, Pillay & Steinhorn, 1986–88
Tame topology and o-minimal structures, van den Dries, 1996
O-minimal hybrid systems, Lafferriere, Pappas & Sastry, 2000
PhD Thesis, Brihaye, 2006
Model theory: an introduction, Maker, 2006
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