Finite bisimulations for dynamical systems with
overlapping trajectories

Béatrice Bérard!, Patricia Bouyer?3 & Vincent Jugé*

1: Sorbonne Université — 2: CNRS — 3: ENS Paris-Saclay — 4: Université Paris-Est
Marne-la-Vallée

07/09/2018

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



Contents

@ Bisimulation in dynamical systems

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



Hybrid systems

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



Hybrid systems o

A

@target

A 4
~

@outside

Two modes:
© Heater on: dO©/dt = a(Otarget — ©)
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Hybrid systems
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Two modes:
© Heater on: dO©/dt = a(Otarget — ©)
@ Heater off: d©/dt = S(Ooutside — ©)

Duality between: cold
@ Discrete set of system modes ON OFF

@ Continuous system evolution warm
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Dynamical systems

How do hybrid systems behave?
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In this talk: Focus on the special case of dynamical systems
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Dynamical systems

How do hybrid systems behave?
In this talk: Focus on the special case of dynamical systems

Dynamical system = Mode-less hybrid system:
© Observable guards

@ Several possible trajectories
© One system mode only:
» Non-deterministic choice when several trajectories are available
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Bisimulation in dynamical systems — 1/2

Dynamical system: Labelled graph induced by
@ Trajectories: Functions f : Time parameters — System states
» Underlying graph: Edges f(t) — f(t') for all t < t/

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



Bisimulation in dynamical systems — 1/2

Dynamical system: Labelled graph induced by
@ Trajectories: Functions f : Time parameters — System states
» Underlying graph: Edges f(t) — f(t') for all t < t/
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Bisimulation in dynamical systems — 1/2

Dynamical system: Labelled graph induced by
@ Trajectories: Functions f : Time parameters — System states
» Underlying graph: Edges f(t) — f(t') for all t < t/
@ Guards: Vertex labelling (disjoint guards, finitely many labels)

S)

2 types of edges:
Q0 0—-0ifoge
Q@ 0-0ife<o

3 labels: cold, normal and warm

“Time" parameter

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



Bisimulation in dynamical systems — 1/2

Dynamical system: Labelled graph induced by
@ Trajectories: Functions f : Time parameters — System states
» Underlying graph: Edges f(t) — f(t') for all t < t/

@ Guards: Vertex labelling (disjoint guards, finitely many labels)
©
2 types of edges: o,
Qo0 ifege o,
Q00 ife<o O3
O4

3 labels: cold, normal and warm

“Time” parameter

Bisimulation: Splitting states by possible behaviours
e Q0O i=jor{ij}=1{23}
@ Induced partition: {©1},{©2,03},{04}
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Bisimulation in dynamical systems — 1/2

Dynamical system: Labelled graph induced by
@ Trajectories: Functions f : Time parameters — System states
» Underlying graph: Edges f(t) — f(t') for all t < t/

@ Guards: Vertex labelling (disjoint guards, finitely many labels)
94
2 types of edges: o,
9@—>9’|f@<@’ @2 or
Q O-0ife<e<o* O3
O4

3 labels: cold, normal and warm

“Time” parameter

Bisimulation: Splitting states by possible behaviours
0 O~ @j Si=j
@ Induced partition: {©1},{02},{O3},{O4}
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Bisimulation in dynamical systems — 1/2

Dynamical system: Labelled graph induced by
e Trajectories: Functions f : Time parameters — System states
» Underlying graph: Edges f(t) — f(t') for all t < t/

@ Guards: Vertex labelling (disjoint guards, finitely many labels)
94
2 types of edges: o,
9@—>9’|f@<@’ @2 or
Q O-0ife<e<o* O3
O4

3 labels: cold, normal and warm

“Time” parameter

k-step Bisimulation: Splitting states by possible k-step behaviours
o@;%@j@)i:jor{i,j}:{Zﬁ} - @;é@j@i:j‘
@ Induced partitions: {©1},{©2,03},{0s} — {01},{O2},{O3},{O4}
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Bisimulation in dynamical systems — 2/2

Theorem (Folklore)

@ Bisimulation is undecidable in general

@ For all kK > 0, k-step bisimulation is decidable (under mild assumptions)
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Bisimulation in dynamical systems — 2/2

Theorem (Folklore)
@ Bisimulation is undecidable in general

@ For all kK > 0, k-step bisimulation is decidable (under mild assumptions)

Theorem (Lafferriere, Pappas & Sastry, '00)

Bisimulation is decidable and induces a finite
partition whenever:

© Parameters = R, System states = R”

© Trajectories are

solutions of dvy(x, t)/dt = F(v(x, t))
definable in an o-minimal theory of R

y
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O-minimal structures: Definitions

Definition #1
A First-Order theory is o-minimal if:
@ it concerns a linearly ordered set (M, <)—with additional predicates.

@ every definable set is a finite union of intervals with bounds in M .
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O-minimal structures: Definitions

Definition #1
A First-Order theory is o-minimal if:
@ it concerns a linearly ordered set (M, <)—with additional predicates.

@ every definable set is a finite union of intervals with bounds in M .

A few exampleS: (Ra <7 +7 X)' (Qa <7 17 +)' (ZZOa g)v (Ra <7 +7 Xanp)
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O-minimal structures: Definitions

Definition #1
A First-Order theory is o-minimal if:
@ it concerns a linearly ordered set (M, <)—with additional predicates.

@ every definable set is a finite union of intervals with bounds in M .

A few exampIeS: (Ra <7 +7 X)' (Qa <7 17 +)' (ZZOa g)v (Ra <7 +7 Xanp)

...and counter-examples: (Q, <, +, x)

X2 <28 —/2<x< V2
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O-minimal structures: Definitions

Definition #1
A First-Order theory is o-minimal if:
@ it concerns a linearly ordered set (M, <)—with additional predicates.

@ every definable set is a finite union of intervals with bounds in M .

A few exampIeS: (Ra <7 +7 X)' (Qa <7 17 +)' (ZZOa g)v (Ra <7 +7 Xanp)

...and counter-examples: (Q, <, +, x), (Zx0,<,+)

dz,x =z+ z < x is even
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O-minimal structures: Definitions

Definition #1
A First-Order theory is o-minimal if:
@ it concerns a linearly ordered set (M, <)—with additional predicates.

@ every definable set is a finite union of intervals with bounds in M .

A few exampIeS: (Ra <7 +7 X)' (Qa <7 17 +)' (ZZOa g)v (Ra <7 +7 Xanp)

...and counter-examples: (Q, <, +, X), (Z>0, <, +), (R, <,sin)

(3t, t =sin(t) =sin(x)) & x € 1Z
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O-minimal structures: Definitions

Definition #1
A First-Order theory is o-minimal if:
@ it concerns a linearly ordered set (M, <)—with additional predicates.

@ every definable set is a finite union of intervals with bounds in M .

A few exampIeS: (Ra <7+7 X)' (@a <7 17+)' (Z ag)' ( a\v-l' X exp)
+)

.and counter-examples: (Q, <, +, X), (Zxo, <, +), (R, <, sin)

~»

Definition #2

A dynamical system is o-minimal if it is definable in an o-minimal theory:
Trajectory vz maps time parameter t to system state 7 iff (p,t,2) = ¢
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O-minimal structures: Key properties

Key property #1 (Pillay & Steinhorn, '88)

Let (M, <,...) be o-minimal and f : M — M be definable. There exists
a finite partition (Zy,...,Zx) of M into intervals s.t., for all j < k:

Q f|zj is constant, or

@ f|z, is one-to-one and monotonic, and f(Z;) is an interval.
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O-minimal structures: Key properties

Key property #1 (Pillay & Steinhorn, '88)

Let (M, <,...) be o-minimal and f : M — M be definable. There exists
a finite partition (Zy,...,Zx) of M into intervals s.t., for all j < k:

o f|Ij is constant, or

@ f|z, is one-to-one and monotonic, and f(Z;) is an interval.

Key property #2 (Pillay & Steinhorn, '88)

Let ¢ be an f-variable formula. There exists N, € Z s.t., for all by, ...,
by € M, the set {a € M | (a,bo,...,bs) = ¢} is a union of N, intervals.
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© The result
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Result framework
Generalising Lafferriere et al.:
e o-minimal real theory ~— any o-minimal theory
@ trajectories partition R" — trajectories may cross each other
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Result framework
Generalising Lafferriere et al.:
e o-minimal real theory ~— any o-minimal theory
@ trajectories partition R" — trajectories may cross each other

’YP(M) m’Yq(M)
Yp(M) Ny (M)

\\ - 5 vaM)Nv(M)

{

RIS
SRS
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Result framework
Generalising Lafferriere et al.:
e o-minimal real theory ~— any o-minimal theory
@ trajectories partition R" — trajectories may cross each other

p~q
por

Vr qn~r
p~*r

{
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Result framework
Generalising Lafferriere et al.:
e o-minimal real theory ~— any o-minimal theory
@ trajectories partition R" — trajectories may cross each other

Theorem (Bérard, Bouyer & Jugé, '18)

In an o-minimal dynamical system such that:
o Vi(x) def {x" | x ~* x'} is finite for all x, (FINITE CROSSING)
the bisimulation relation is decidable; (if the theory is decidable)
y
3
\fp p~q
por

Vr q~r
p~*r
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Result framework
Generalising Lafferriere et al.:
e o-minimal real theory ~— any o-minimal theory
@ trajectories partition R" — trajectories may cross each other

Theorem (Bérard, Bouyer & Jugé, '18)

In an o-minimal dynamical system such that:
o Vi(x) def {x" | x ~* x'} is finite for all x, (FINITE CROSSING)
the bisimulation relation is decidable; (if the theory is decidable)
o the sizes | V{*(x)| are uniformly bounded, (UNIFORM CROSSING)
the bisimulation relation is definable and induces finite partition.
y

3 Y
vp p~q
pr
Vr q~r
p~*r

Vq

~

>
>
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Interval partition

y
< Guard #1
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<« Guard #2
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Interval partition
y Tp

y ’Yq y Yr
|\ ’\ |
>t >t = >t
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Interval partition
y Tp y Yq y Yr

— >t - >t —bt

Staticity: Z is x-static if
e |Z| =0 and [ (Z)| =1
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Interval partition

y Tp y Yq y Yr
W) | |\m> . A e
Staticity: Z is x-static if
e |Z| >2 and |[\(Z) =1
Dense time Vs Discrete time
Y Y o
(o) o o . . o o (@] (o) o
g i i t
s ” L >
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Interval partition

y Tp y Yq y r
A
\ \ \/ X
— >t >t & —bt

Staticity: Z is x-static if
@ |Z| 22 and [w(Z)| =1, or
o there exist X’ and 7’ s.t. 7' is x’-static and 7x(Z) = v (Z').
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Interval partition
y Tp y Yq y Yr

) t T T >
®

Staticity: Z is x-static if
@ |Z| 22 and [w(Z)| =1, or
o there exist x" and Z' s.t. 7' is x'-static and Vx(Z) = v« (Z').

Adaptability: 77 is x;-adaptable if Z; contains no xj-static sub-interval,
Vs, (Z1) is included in one guard, and if there exist (x2,Z2),. .., (xk, Zk) s.t.
@ every z € 7y, (Z1) has k antecedents by (x, t) — ~x(t):
one in each set {x;} x Z;
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Interval partition

y Tp y Yq y Yr

>t

Staticity: Z is x-static if
@ |Z| 22 and [w(Z)| =1, or
o there exist x" and Z' s.t. 7' is x'-static and Vx(Z) = v« (Z').

Adaptability: 77 is x;-adaptable if Z; contains no xj-static sub-interval,
Vs, (Z1) is included in one guard, and if there exist (x2,Z2),. .., (xk, Zk) s.t.
o for all j < k, 7 is one-to-one on Z;, and 7 (71) = ... = 7, (Zk);

o forallj<l<k xi=x=TNI =0
o for all x and t, V(t) € 1 (Z1) & (3j < k s.t. x = xj and t € Z);
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Interval partition
y Tp y Yq y Yr

et e >t b —bt

Staticity: Z is x-static if
@ |Z| 22 and [w(Z)| =1, or
o there exist x" and Z' s.t. 7' is x'-static and Vx(Z) = v« (Z').

Adaptability: 77 is x;-adaptable if Z; contains no xj-static sub-interval,
Vs, (Z1) is included in one guard, and if there exist (x2,Z2),. .., (xk, Zk) s.t.
o for all j < k, 7 is one-to-one on Z;, and 7 (71) = ... = 7, (Zk);

o forallj<l<k xi=x=TNI =0
o for all x and t, V(t) € 1 (Z1) & (3j < k s.t. x = xj and t € Z);
o for all j < k, the induced bijection 75, 07, : Z; — I is monotonic.
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Staticity: Z is x-static if
@ |Z| 22 and [w(Z)| =1, or
o there exist x" and Z' s.t. 7' is x'-static and Vx(Z) = v« (Z').

Adaptability: 77 is x;-adaptable if Z; contains no xj-static sub-interval,
Vs, (Z1) is included in one guard, and if there exist (x2,Z2),. .., (xk, Zk) s.t.
o for all j < k, 7 is one-to-one on Z;, and 7 (71) = ... = 7, (Zk);

o forallj<l<k xi=x=TNI =0
o for all x and t, V(t) € 1 (Z1) & (3j < k s.t. x = xj and t € Z);
o for all j < k, the induced bijection 75, 07, : Z; — I is monotonic.
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Interval partition
y Tp y Yq y Yr

e s e d T e e e | | >
O s o ® ° ® s

Staticity: Z is x-static if

Adaptability: 77 is x;-adaptable if Z; contains no xj-static sub-interval,
Y%, (Z1) is included in one guard, and if there exist (x2,Z2),. .., (xk, Zk) s.t.
o for all j < k, 7 is one-to-one on Z;, and 7y (71) = ... = 7, (Zk);

° fora||j<€<k,><j:xe:IjﬂI[:@;
o for all x and t, V(t) € 1 (Z1) & (3j < kst. x = xj and t € Z);
o for all j < k, the induced bijection 75, o7, : Z; — I is monotonic.
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Interval partition sponsored by 112
y Tp y Vq y r

- SE —

Staticity: Z is x-static if

Adaptability: 77 is x;-adaptable if Z; contains no xj-static sub-interval,
Y%, (Z1) is included in one guard, and if there exist (x2,Z2),. .., (xk, Zk) s.t.
o for all j < k, 7 is one-to-one on Z;, and 7y (71) = ... = 7, (Zk);

° fora||j<€<k,><j:xe:IjﬂI[:@;
o for all x and t, V(t) € 1 (Z1) & (3j < kst. x = xj and t € Z);
o for all j < k, the induced bijection 75, o7, : Z; — I is monotonic.
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Interval partition

y Tp y Yq

Ir
6]

Staticity: 7 is x-static if.. . Adaptability: 7; is x;-adaptable if. ..

>t

Decomposition lemma

For all trajectories ~y:

O if Vi(x) 2L {x' | x ~ x'} is finite, then the time set is a finite, disjoint,
definable union of maximal x-static and x-adaptable intervals;
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Interval partition

y Tp y Yq

Ir
6]

Staticity: 7 is x-static if.. . Adaptability: 7; is x;-adaptable if. ..

>t

Decomposition lemmas

For all trajectories ~y:

O if Vi(x) 2L {x' | x ~ x'} is finite, then the time set is a finite, disjoint,
definable union of maximal x-static and x-adaptable intervals;

@ if T is x-static or x-adaptable, all states in v,(Z) are bisimilar.
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Bisimulation graph
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Bisimulation graph

Tp Yq Yr

Y T TR T | |
2 3°4°'5°6 7 840 '1@3'4'5' 6 )
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Bisimulation graph

Lo R
G1,G1 Gl. Gy Gy Gy, Gy G2, G,

'1(25345 6 )
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Bisimulation graph

@% Yq (@) Vr

1,G1,G1, G2 'G2|') Gy, Gy G2, G,
st T | 5 3 5t
@ o
node labels B|S|mUIat|on graph node names

G1<J L>Gl

D ED DD DD~ D
@3@@@@@2

Gy Gy
@ B GB)
+ reflexive transitive closure along lines + monochromatic e-transitions
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Bisimulation graph

The bismulation graph is sound & complete

Two states ~,(t) and 7, (t’) are (k-step) bisimilar iff there exist
intervals Z > t and Z' 3 t’ s.t. (x,Z) and (x/,Z’) are (k-step) bisimilar.

Tp @P Yq @) Yr
Gy G1,Gy,Gy Gy Gy G1[Gy 1G1]G1,61,G1, G G Gy, G G2, G1
2'3'4'5'6'7 8110 '1@3'4'5' 6 e Oz' 3 o T
node labels Bisimulation graph node names
Gl") L>G1 Giv v Gy
GD G. GB GB GB G. GB (110
G
@D (q|2) (q|3) (q|4} (q|5> (q|6>
Gy
CD 2 CDf 3 GD)

+ reflexive transitive closure along lines + monochromatic e-transitions
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The result

Theorem (Bérard, Bouyer & Jugé, '18)
In an o-minimal dynamical system such that:

o Vi(x) gt {x"| x ~* x'} is finite for all x, (FINITE CROSSING)
the bisimulation relation is decidable; (if the theory is decidable)

Proof ideas:
e compute k-step bisimulations on I'(x) UT(x’) for all k > 0, where
F(x) = {r=(f) | £~ x};
o finite bisimulation graph fragment = convergent refinement process:
k-step bisimulation = (k + 1)-step bisimulation for some x > 0;

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



The result

Theorem (Bérard, Bouyer & Jugé, '18)

In an o-minimal dynamical system such that:

o Vi(x) gt {x"| x ~* x'} is finite for all x, (FINITE CROSSING)
the bisimulation relation is decidable; (if the theory is decidable)
o the sizes | V{*(x)| are uniformly bounded, (UN1FORM CROSSING)

the bisimulation relation is definable and induces finite partition.

v

Proof ideas:
e compute k-step bisimulations on I'(x) UT(x’) for all k > 0, where
F(x) = {r=(f) | £~ x};
o finite bisimulation graph fragment = convergent refinement process:
k-step bisimulation = (k + 1)-step bisimulation for some x > 0;

@ some k works for all x, x": k-step bisimulation = bisimulation.

B. Bérard, P. Bouyer & V. Jugé Finite bisimulations for o-minimal dynamical systems



Conclusion

Going further:
o Refine the definition of V;*(x), Crossing conditions, .. .;
@ Add modes with restricted transitions.
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Some references:

Definable sets in ordered structures 1-11l, Knight, Pillay & Steinhorn, 1986—88
Tame topology and o-minimal structures, van den Dries, 1996

O-minimal hybrid systems, Lafferriere, Pappas & Sastry, 2000

PhD Thesis, Brihaye, 2006

Model theory: an introduction, Maker, 2006
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@ Refine the definition of V*(x), Crossing conditions, .
@ Add modes with restricted transitions.

Some references:

Definable sets in ordered structures 1-11l, Knight, Pillay & Steinhorn, 1986—88
Tame topology and o-minimal structures, van den Dries, 1996

O-minimal hybrid systems, Lafferriere, Pappas & Sastry, 2000
PhD Thesis, Brihaye, 2006

Model theory: an introduction, Maker, 2006
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