Finite bisimulations for dynamical systems with overlapping trajectories

Béatrice Bérard¹, Patricia Bouyer^{2,3} & Vincent Jugé⁴

1: Sorbonne Université – 2: CNRS – 3: ENS Paris-Saclay – 4: Université Paris-Est Marne-la-Vallée

07/09/2018

Contents

- Bisimulation in dynamical systems
- O-minimal theories
- The result

Two modes:

- **1** Heater on: $d\Theta/dt = \alpha(\Theta_{target} \Theta)$
- **2** Heater off: $d\Theta/dt = \beta(\Theta_{\text{outside}} \Theta)$

Two modes:

- **1** Heater on: $d\Theta/dt = \alpha(\Theta_{target} \Theta)$
- **2** Heater off: $d\Theta/dt = \beta(\Theta_{\text{outside}} \Theta)$

Two modes:

- **1** Heater on: $d\Theta/dt = \alpha(\Theta_{target} \Theta)$
- **2** Heater off: $d\Theta/dt = \beta(\Theta_{\text{outside}} \Theta)$

Duality between:

- Discrete set of system modes
- 2 Continuous system evolution

How do hybrid systems behave?

How do hybrid systems behave?

In this talk: Focus on the special case of dynamical systems

How do hybrid systems behave?

In this talk: Focus on the special case of dynamical systems

- Observable guards
- Several possible trajectories
- One system mode only:
 - Non-deterministic choice when several trajectories are available

How do hybrid systems behave?

In this talk: Focus on the special case of dynamical systems

- Observable guards
- Several possible trajectories
- One system mode only:
 - Non-deterministic choice when several trajectories are available

How do hybrid systems behave?

In this talk: Focus on the special case of dynamical systems

- Observable guards
- Several possible trajectories
- One system mode only:
 - Non-deterministic choice when several trajectories are available

How do hybrid systems behave?

In this talk: Focus on the special case of dynamical systems

- Observable guards
- ② Several possible trajectories
- One system mode only:
 - Non-deterministic choice when several trajectories are available

How do hybrid systems behave?

In this talk: Focus on the special case of dynamical systems

- Observable guards
- Several possible trajectories
- One system mode only:
 - Non-deterministic choice when several trajectories are available

Dynamical system: Labelled graph induced by

- Trajectories: Functions f: Time parameters \rightarrow System states
 - ▶ Underlying graph: Edges $f(t) \rightarrow f(t')$ for all $t \leq t'$

Dynamical system: Labelled graph induced by

- Trajectories: Functions f: Time parameters \rightarrow System states
 - ▶ Underlying graph: Edges $f(t) \rightarrow f(t')$ for all $t \leq t'$

2 types of edges:

$$\bullet \Theta \to \Theta' \text{ if } \Theta \leqslant \Theta'$$

Dynamical system: Labelled graph induced by

- Trajectories: Functions f: Time parameters \rightarrow System states
 - ▶ Underlying graph: Edges $f(t) \rightarrow f(t')$ for all $t \leq t'$

2 types of edges:

2
$$\Theta \to \Theta'$$
 if $\Theta' \leqslant \Theta$

Dynamical system: Labelled graph induced by

- Trajectories: Functions f: Time parameters \rightarrow System states
 - ▶ Underlying graph: Edges $f(t) \rightarrow f(t')$ for all $t \leq t'$
- Guards: Vertex labelling

(disjoint guards, finitely many labels)

2 types of edges:

3 labels: cold, normal and warm

Dynamical system: Labelled graph induced by

- Trajectories: Functions f: Time parameters \rightarrow System states
 - ▶ Underlying graph: Edges $f(t) \rightarrow f(t')$ for all $t \leq t'$
- Guards: Vertex labelling

(disjoint guards, finitely many labels)

2 types of edges:

3 labels: cold, normal and warm

Bisimulation: Splitting states by possible behaviours

- $\Theta_i \approx \Theta_j \Leftrightarrow i = j \text{ or } \{i, j\} = \{2, 3\}$
- Induced partition: $\{\Theta_1\}, \{\Theta_2, \Theta_3\}, \{\Theta_4\}$

Dynamical system: Labelled graph induced by

- Trajectories: Functions f: Time parameters \rightarrow System states
 - ▶ Underlying graph: Edges $f(t) \rightarrow f(t')$ for all $t \leq t'$
- Guards: Vertex labelling

(disjoint guards, finitely many labels)

2 types of edges:

$$\bigcirc \ominus \rightarrow \ominus'$$
 if $\Theta' \leqslant \Theta \leqslant \Theta^*$

3 labels: cold, normal and warm

Bisimulation: Splitting states by possible behaviours

- $\Theta_i \approx \Theta_j \Leftrightarrow i = j$
- Induced partition: $\{\Theta_1\}, \{\Theta_2\}, \{\Theta_3\}, \{\Theta_4\}$

Dynamical system: Labelled graph induced by

- Trajectories: Functions f: Time parameters \rightarrow System states
 - ▶ Underlying graph: Edges $f(t) \rightarrow f(t')$ for all $t \leq t'$
- Guards: Vertex labelling

(disjoint guards, finitely many labels)

2 types of edges:

3 labels: cold, normal and warm

k-step Bisimulation: Splitting states by possible k-step behaviours

- $\Theta_i \stackrel{0}{\approx} \Theta_j \Leftrightarrow i = j \text{ or } \{i, j\} = \{2, 3\} \Theta_i \stackrel{1}{\approx} \Theta_j \Leftrightarrow i = j$
- Induced partitions: $\{\Theta_1\}, \{\Theta_2, \Theta_3\}, \{\Theta_4\} \{\Theta_1\}, \{\Theta_2\}, \{\Theta_3\}, \{\Theta_4\}$

Theorem (Folklore)

- Bisimulation is undecidable in general
- ② For all $k \ge 0$, k-step bisimulation is decidable (under mild assumptions)

Theorem (Folklore)

- Bisimulation is undecidable in general
- **②** For all $k \ge 0$, k-step bisimulation is **decidable** (under mild assumptions)

Theorem (Folklore)

- Bisimulation is undecidable in general
- **②** For all $k \ge 0$, k-step bisimulation is **decidable** (under mild assumptions)

Theorem (Lafferriere, Pappas & Sastry, '00)

Bisimulation is **decidable** and induces a **finite** partition whenever:

- **1** Parameters = \mathbb{R} , System states = \mathbb{R}^n
- Trajectories are
 - solutions of $d\gamma(x,t)/dt = F(\gamma(x,t))$
 - ightharpoonup definable in an **o-minimal theory** of $\mathbb R$

Contents

- Bisimulation in dynamical systems
- O-minimal theories
- The result

Definition #1

- it concerns a linearly ordered set (\mathcal{M}, \leqslant) with additional predicates.
- ullet every definable set is a finite union of intervals with bounds in $\mathcal{M}_{\pm\infty}.$

Definition #1

A First-Order theory is o-minimal if:

- it concerns a linearly ordered set (\mathcal{M}, \leqslant) with additional predicates.
- \bullet every definable set is a finite union of intervals with bounds in $\mathcal{M}_{\pm\infty}.$

A few examples: $(\mathbb{R},\leqslant,+,\times)$, $(\mathbb{Q},\leqslant,1,+)$, $(\mathbb{Z}_{\geqslant 0},\leqslant)$, $(\mathbb{R},\leqslant,+,\times,\exp)$

Definition #1

- it concerns a linearly ordered set (\mathcal{M}, \leqslant) with additional predicates.
- ullet every definable set is a finite union of intervals with bounds in $\mathcal{M}_{\pm\infty}.$

A few examples:
$$(\mathbb{R}, \leq, +, \times)$$
, $(\mathbb{Q}, \leq, 1, +)$, $(\mathbb{Z}_{\geqslant 0}, \leq)$, $(\mathbb{R}, \leq, +, \times, exp)$... and counter-examples: $(\mathbb{Q}, \leq, +, \times)$

$$x^2 \leqslant 2 \Leftrightarrow -\sqrt{2} \leqslant x \leqslant \sqrt{2}$$

Definition #1

- it concerns a linearly ordered set (\mathcal{M}, \leqslant) with additional predicates.
- every definable set is a finite union of intervals with bounds in $\mathcal{M}_{\pm\infty}$.

A few examples:
$$(\mathbb{R},\leqslant,+,\times)$$
, $(\mathbb{Q},\leqslant,1,+)$, $(\mathbb{Z}_{\geqslant 0},\leqslant)$, $(\mathbb{R},\leqslant,+,\times,\text{exp})$... and counter-examples: $(\mathbb{Q},\leqslant,+,\times)$, $(\mathbb{Z}_{\geqslant 0},\leqslant,+)$

$$\exists z, x = z + z \Leftrightarrow x \text{ is even}$$

Definition #1

- it concerns a linearly ordered set (\mathcal{M}, \leqslant) with additional predicates.
- \bullet every definable set is a finite union of intervals with bounds in $\mathcal{M}_{\pm\infty}.$

A few examples:
$$(\mathbb{R}, \leqslant, +, \times)$$
, $(\mathbb{Q}, \leqslant, 1, +)$, $(\mathbb{Z}_{\geqslant 0}, \leqslant)$, $(\mathbb{R}, \leqslant, +, \times, \exp)$... and counter-examples: $(\mathbb{Q}, \leqslant, +, \times)$, $(\mathbb{Z}_{\geqslant 0}, \leqslant, +)$, $(\mathbb{R}, \leqslant, \sin)$ $(\exists t, t = \sin(t) = \sin(x)) \Leftrightarrow x \in \pi \mathbb{Z}$

Definition #1

A First-Order theory is o-minimal if:

- it concerns a linearly ordered set (\mathcal{M}, \leqslant) with additional predicates.
- every definable set is a finite union of intervals with bounds in $\mathcal{M}_{\pm\infty}$.

A few examples:
$$(\mathbb{R}, \leqslant, +, \times)$$
, $(\mathbb{Q}, \leqslant, 1, +)$, $(\mathbb{Z}_{\geqslant 0}, \leqslant)$, $(\mathbb{R}, \leqslant, +, \times, \exp)$... and counter-examples: $(\mathbb{Q}, \leqslant, +, \times)$, $(\mathbb{Z}_{\geqslant 0}, \leqslant, +)$, $(\mathbb{R}, \leqslant, \sin)$

Definition #2

A dynamical system is o-minimal if it is definable in an o-minimal theory: Trajectory $\gamma_{\vec{p}}$ maps time parameter t to system state \vec{z} iff $(\vec{p}, t, \vec{z}) \models \varphi$

Key property #1 (Pillay & Steinhorn, '88)

Let $(\mathcal{M}, \leqslant, \ldots)$ be o-minimal and $f : \mathcal{M} \to \mathcal{M}$ be definable. There exists a **finite** partition $(\mathcal{I}_1, \ldots, \mathcal{I}_k)$ of \mathcal{M} into **intervals** s.t., for all $j \leqslant k$:

- $oldsymbol{0}$ $f_{|\mathcal{I}_i}$ is constant, or
- ② $f_{|\mathcal{I}_j}$ is one-to-one and monotonic, and $f(\mathcal{I}_j)$ is an interval.

Key property #1 (Pillay & Steinhorn, '88)

Let $(\mathcal{M}, \leqslant, \ldots)$ be o-minimal and $f : \mathcal{M} \to \mathcal{M}$ be definable. There exists a **finite** partition $(\mathcal{I}_1, \ldots, \mathcal{I}_k)$ of \mathcal{M} into **intervals** s.t., for all $j \leqslant k$:

- $oldsymbol{0}$ $f_{|\mathcal{I}_i}$ is constant, or
- ② $f_{|\mathcal{I}_j}$ is one-to-one and monotonic, and $f(\mathcal{I}_j)$ is an interval.

Key property #1 (Pillay & Steinhorn, '88)

Let $(\mathcal{M}, \leq, \ldots)$ be o-minimal and $f : \mathcal{M} \to \mathcal{M}$ be definable. There exists a **finite** partition $(\mathcal{I}_1, \ldots, \mathcal{I}_k)$ of \mathcal{M} into **intervals** s.t., for all $j \leq k$:

- $oldsymbol{0}$ $f_{|\mathcal{I}_i}$ is constant, or
- ② $f_{|\mathcal{I}_j}$ is one-to-one and monotonic, and $f(\mathcal{I}_j)$ is an interval.

Key property #2 (Pillay & Steinhorn, '88)

Let φ be an ℓ -variable formula. There exists $\mathbf{N}_{\varphi} \in \mathbb{Z}$ s.t., for all $b_2, \ldots, b_{\ell} \in \mathcal{M}$, the set $\{a \in \mathcal{M} \mid (a, b_2, \ldots, b_{\ell}) \models \varphi\}$ is a union of \mathbf{N}_{φ} intervals.

Key property #1 (Pillay & Steinhorn, '88)

Let $(\mathcal{M}, \leq, \ldots)$ be o-minimal and $f : \mathcal{M} \to \mathcal{M}$ be definable. There exists a **finite** partition $(\mathcal{I}_1, \ldots, \mathcal{I}_k)$ of \mathcal{M} into **intervals** s.t., for all $j \leq k$:

- $oldsymbol{0}$ $f_{|\mathcal{I}_i}$ is constant, or
- ② $f_{|\mathcal{I}_j}$ is one-to-one and monotonic, and $f(\mathcal{I}_j)$ is an interval.

Key property #2 (Pillay & Steinhorn, '88)

Let φ be an ℓ -variable formula. There exists $\mathbf{N}_{\varphi} \in \mathbb{Z}$ s.t., for all $b_2, \ldots, b_{\ell} \in \mathcal{M}$, the set $\{a \in \mathcal{M} \mid (a, b_2, \ldots, b_{\ell}) \models \varphi\}$ is a union of \mathbf{N}_{φ} intervals.

Contents

- Bisimulation in dynamical systems
- O-minimal theories
- The result

Result framework

Generalising Lafferriere et al.:

- ullet o-minimal real theory o any o-minimal theory
- ullet trajectories partition $\mathbb{R}^n o$ trajectories may cross each other

Generalising Lafferriere et al.:

- ullet o-minimal real theory o any o-minimal theory
- ullet trajectories partition $\mathbb{R}^n o$ trajectories may cross each other

Generalising Lafferriere et al.:

- o-minimal real theory → any o-minimal theory
- ullet trajectories partition $\mathbb{R}^n o$ trajectories may cross each other

$$\gamma_{p}(\mathcal{M}) \cap \gamma_{q}(\mathcal{M}) \neq \emptyset
\gamma_{p}(\mathcal{M}) \cap \gamma_{r}(\mathcal{M}) = \emptyset
\gamma_{q}(\mathcal{M}) \cap \gamma_{r}(\mathcal{M}) \neq \emptyset$$

Generalising Lafferriere et al.:

- ullet o-minimal real theory o any o-minimal theory
- ullet trajectories partition $\mathbb{R}^n o$ trajectories may cross each other

Generalising Lafferriere et al.:

- ullet o-minimal real theory \to any o-minimal theory
- ullet trajectories partition $\mathbb{R}^n o$ trajectories may cross each other

Theorem (Bérard, Bouyer & Jugé, '18)

In an o-minimal dynamical system such that:

• $V_1^*(x) \stackrel{\text{def}}{=} \{x' \mid x \sim^* x'\}$ is finite for all x, (FINITE CROSSING) the bisimulation relation is **decidable**; (if the theory is decidable)

Generalising Lafferriere et al.:

- ullet o-minimal real theory o any o-minimal theory
- ullet trajectories partition $\mathbb{R}^n o$ trajectories may cross each other

Theorem (Bérard, Bouyer & Jugé, '18)

In an o-minimal dynamical system such that:

- $V_1^*(x) \stackrel{\text{def}}{=} \{x' \mid x \sim^* x'\}$ is finite for all x, (FINITE CROSSING) the bisimulation relation is **decidable**; (if the theory is decidable)
- the sizes $|V_1^*(x)|$ are uniformly bounded, (UNIFORM CROSSING) the bisimulation relation is definable and induces finite partition.

Staticity: \mathcal{I} is x-static if

$$ullet$$
 $|\mathcal{I}|=\infty$ and $|\gamma_{\mathsf{x}}(\mathcal{I})|=1$

Staticity: \mathcal{I} is x-static if

•
$$|\mathcal{I}|\geqslant 2$$
 and $|\gamma_{\mathsf{x}}(\mathcal{I})|=1$

Staticity: \mathcal{I} is x-static if

- $|\mathcal{I}| \geqslant 2$ and $|\gamma_{\mathsf{x}}(\mathcal{I})| = 1$, or
- there exist x' and \mathcal{I}' s.t. \mathcal{I}' is x'-static and $\gamma_x(\mathcal{I}) = \gamma_{x'}(\mathcal{I}')$.

Staticity: \mathcal{I} is x-static if

- $|\mathcal{I}| \geqslant 2$ and $|\gamma_{\mathsf{x}}(\mathcal{I})| = 1$, or
- there exist x' and \mathcal{I}' s.t. \mathcal{I}' is x'-static and $\gamma_x(\mathcal{I}) = \gamma_{x'}(\mathcal{I}')$.

Adaptability: \mathcal{I}_1 is x_1 -adaptable if \mathcal{I}_1 contains no x_1 -static sub-interval, $\gamma_{x_1}(\mathcal{I}_1)$ is included in one guard, and if there exist $(x_2, \mathcal{I}_2), \ldots, (x_k, \mathcal{I}_k)$ s.t.

• every $z \in \gamma_{x_1}(\mathcal{I}_1)$ has k antecedents by $(x, t) \to \gamma_x(t)$:

one in each set $\{x_j\} \times \mathcal{I}_j$

Staticity: \mathcal{I} is x-static if

- ullet $|\mathcal{I}|\geqslant 2$ and $|\gamma_{\mathsf{x}}(\mathcal{I})|=1$, or
- there exist x' and \mathcal{I}' s.t. \mathcal{I}' is x'-static and $\gamma_x(\mathcal{I}) = \gamma_{x'}(\mathcal{I}')$.

- for all $j \leqslant k$, γ_{x_j} is one-to-one on \mathcal{I}_j , and $\gamma_{x_1}(\mathcal{I}_1) = \ldots = \gamma_{x_k}(\mathcal{I}_k)$;
- for all $j < \ell \leqslant k$, $x_i = x_\ell \Rightarrow \mathcal{I}_i \cap \mathcal{I}_\ell = \emptyset$;
- for all x and t, $\gamma_x(t) \in \gamma_{x_1}(\mathcal{I}_1) \Leftrightarrow (\exists j \leqslant k \text{ s.t. } x = x_j \text{ and } t \in \mathcal{I}_j)$;

Staticity: \mathcal{I} is x-static if

- ullet $|\mathcal{I}|\geqslant 2$ and $|\gamma_{\mathsf{x}}(\mathcal{I})|=1$, or
- there exist x' and \mathcal{I}' s.t. \mathcal{I}' is x'-static and $\gamma_x(\mathcal{I}) = \gamma_{x'}(\mathcal{I}')$.

- for all $j \leqslant k$, γ_{x_j} is one-to-one on \mathcal{I}_j , and $\gamma_{x_1}(\mathcal{I}_1) = \ldots = \gamma_{x_k}(\mathcal{I}_k)$;
- for all $j < \ell \leqslant k$, $x_j = x_\ell \Rightarrow \mathcal{I}_j \cap \mathcal{I}_\ell = \emptyset$;
- for all x and t, $\gamma_x(t) \in \gamma_{x_1}(\mathcal{I}_1) \Leftrightarrow (\exists j \leqslant k \text{ s.t. } x = x_j \text{ and } t \in \mathcal{I}_j)$;
- for all $j \leqslant k$, the induced bijection $\gamma_{x_1}^{-1} \circ \gamma_{x_j} : \mathcal{I}_j \to \mathcal{I}_1$ is monotonic.

Staticity: \mathcal{I} is x-static if

- $|\mathcal{I}| \geqslant 2$ and $|\gamma_{\mathsf{x}}(\mathcal{I})| = 1$, or
- there exist x' and \mathcal{I}' s.t. \mathcal{I}' is x'-static and $\gamma_x(\mathcal{I}) = \gamma_{x'}(\mathcal{I}')$.

- for all $j \leqslant k$, γ_{x_j} is one-to-one on \mathcal{I}_j , and $\gamma_{x_1}(\mathcal{I}_1) = \ldots = \gamma_{x_k}(\mathcal{I}_k)$;
- for all $j < \ell \leqslant k$, $x_j = x_\ell \Rightarrow \mathcal{I}_j \cap \mathcal{I}_\ell = \emptyset$;
- for all x and t, $\gamma_x(t) \in \gamma_{x_1}(\mathcal{I}_1) \Leftrightarrow (\exists j \leqslant k \text{ s.t. } x = x_j \text{ and } t \in \mathcal{I}_j)$;
- for all $j \leqslant k$, the induced bijection $\gamma_{x_1}^{-1} \circ \gamma_{x_j} : \mathcal{I}_j \to \mathcal{I}_1$ is monotonic.

Staticity: \mathcal{I} is *x*-static if

- for all $j \leqslant k$, γ_{x_j} is one-to-one on \mathcal{I}_j , and $\gamma_{x_1}(\mathcal{I}_1) = \ldots = \gamma_{x_k}(\mathcal{I}_k)$;
- for all $j < \ell \leqslant k$, $x_i = x_\ell \Rightarrow \mathcal{I}_i \cap \mathcal{I}_\ell = \emptyset$;
- for all x and t, $\gamma_x(t) \in \gamma_{x_1}(\mathcal{I}_1) \Leftrightarrow (\exists j \leqslant k \text{ s.t. } x = x_j \text{ and } t \in \mathcal{I}_j)$;
- for all $j \leqslant k$, the induced bijection $\gamma_{x_1}^{-1} \circ \gamma_{x_j} : \mathcal{I}_j \to \mathcal{I}_1$ is monotonic.

sponsored by

Staticity: \mathcal{I} is x-static if

- for all $j \leqslant k$, γ_{x_j} is one-to-one on \mathcal{I}_j , and $\gamma_{x_1}(\mathcal{I}_1) = \ldots = \gamma_{x_k}(\mathcal{I}_k)$;
- for all $j < \ell \leqslant k$, $x_j = x_\ell \Rightarrow \mathcal{I}_j \cap \mathcal{I}_\ell = \emptyset$;
- for all x and t, $\gamma_x(t) \in \gamma_{x_1}(\mathcal{I}_1) \Leftrightarrow (\exists j \leqslant k \text{ s.t. } x = x_j \text{ and } t \in \mathcal{I}_j)$;
- for all $j \leqslant k$, the induced bijection $\gamma_{x_1}^{-1} \circ \gamma_{x_j} : \mathcal{I}_j \to \mathcal{I}_1$ is monotonic.

sponsored by

Staticity: \mathcal{I} is x-static if...

Adaptability: \mathcal{I}_1 is x_1 -adaptable if. . .

Decomposition lemma

For all trajectories γ_x :

• if $V_1(x) \stackrel{\text{def}}{=} \{x' \mid x \sim x'\}$ is finite, then the time set is a finite, disjoint, definable union of maximal x-static and x-adaptable intervals;

sponsored by

Staticity: \mathcal{I} is x-static if...

Adaptability: \mathcal{I}_1 is x_1 -adaptable if...

Decomposition lemmas

For all trajectories γ_x :

- if $V_1(x) \stackrel{\text{def}}{=} \{x' \mid x \sim x'\}$ is finite, then the time set is a finite, disjoint, definable union of maximal x-static and x-adaptable intervals;
- ② if \mathcal{I} is x-static or x-adaptable, all states in $\gamma_x(\mathcal{I})$ are bisimilar.

The bismulation graph is sound & complete

Two states $\gamma_x(t)$ and $\gamma_{x'}(t')$ are (k-step) bisimilar iff there exist intervals $\mathcal{I} \ni t$ and $\mathcal{I}' \ni t'$ s.t. (x, \mathcal{I}) and (x', \mathcal{I}') are (k-step) bisimilar.

The result

Theorem (Bérard, Bouyer & Jugé, '18)

In an o-minimal dynamical system such that:

• $V_1^*(x) \stackrel{\text{def}}{=} \{x' \mid x \sim^* x'\}$ is finite for all x, (FINITE CROSSING) the bisimulation relation is **decidable**; (if the theory is decidable)

Proof ideas:

- compute k-step bisimulations on $\Gamma(x) \cup \Gamma(x')$ for all $k \ge 0$, where $\Gamma(x) = \{ \gamma_{\hat{x}}(\hat{t}) \mid \hat{x} \sim^* x \};$
- finite bisimulation graph fragment \Rightarrow convergent refinement process: κ -step bisimulation = $(\kappa + 1)$ -step bisimulation for some $\kappa \geqslant 0$;

The result

Theorem (Bérard, Bouyer & Jugé, '18)

In an o-minimal dynamical system such that:

- $V_1^*(x) \stackrel{\text{def}}{=} \{x' \mid x \sim^* x'\}$ is finite for all x, (FINITE CROSSING) the bisimulation relation is **decidable**; (if the theory is decidable)
- the sizes $|V_1^*(x)|$ are uniformly bounded, (UNIFORM CROSSING) the bisimulation relation is definable and induces finite partition.

Proof ideas:

- compute k-step bisimulations on $\Gamma(x) \cup \Gamma(x')$ for all $k \ge 0$, where $\Gamma(x) = \{ \gamma_{\hat{x}}(\hat{t}) \mid \hat{x} \sim^* x \};$
- finite bisimulation graph fragment \Rightarrow convergent refinement process: κ -step bisimulation = $(\kappa + 1)$ -step bisimulation for some $\kappa \geqslant 0$;
- some κ works for all x, x': κ -step bisimulation = bisimulation.

Conclusion

Going further:

- Refine the definition of $V_1^*(x)$, Crossing conditions, . . . ;
- Add modes with restricted transitions.

Conclusion

Going further:

- Refine the definition of $V_1^*(x)$, Crossing conditions, . . . ;
- Add modes with restricted transitions.

Some references:

Definable sets in ordered structures I-III, Knight, Pillay & Steinhorn, 1986–88 Tame topology and o-minimal structures, van den Dries, 1996 O-minimal hybrid systems, Lafferriere, Pappas & Sastry, 2000 PhD Thesis, Brihaye, 2006 Model theory: an introduction, Maker, 2006

B. Bérard, P. Bouyer & V. Jugé

Conclusion

Going further:

- Refine the definition of $V_1^*(x)$, Crossing conditions, . . . ;
- Add modes with restricted transitions.

Some references:

Definable sets in ordered structures I–III, Knight, Pillay & Steinhorn, 1986–88 Tame topology and o-minimal structures, van den Dries, 1996 O-minimal hybrid systems, Lafferriere, Pappas & Sastry, 2000 PhD Thesis, Brihaye, 2006

Model theory: an introduction, Maker, 2006

