## On the Worst-Case Complexity of Timsort

Nicolas Auger, Vincent Jugé, Cyril Nicaud & Carine Pivoteau

LIGM - Université Paris-Est Marne-la-Vallée & CNRS

20/08/2018

#### Contents

- Efficient Merge Sorts
- 2 Timsort
- Java Timsort, Bugs and Fixes

## Sorting data



## Sorting data – in a stable manner



## Sorting data – in a stable manner



Mergesort has a worst-case time complexity of  $O(n \log(n))$ 

Can we do better?

## Sorting data – in a stable manner



Mergesort has a worst-case time complexity of  $O(n \log(n))$ 

### Can we do better? No!

#### Proof:

- There are *n*! possible reorderings
- Each element comparison gives a 1-bit information
- Thus  $\log_2(n!) \sim n \log_2(n)$  tests are required

### Cannot we ever do better?

In some cases, we should...





Chunk your data in monotonic runs



| 0 | 1 | 4 | 3 | 1 | 5 | 4 | 3 | 2 | 2 | 0 | 2 |
|---|---|---|---|---|---|---|---|---|---|---|---|

- Chunk your data in monotonic runs
- **2** New parameters: Number of runs  $(\rho)$  and their lengths  $(r_1, \ldots, r_{\rho})$

4 runs of lengths 3, 2, 6 and 1

| 0 | 1 | 4 | 3 | 1 | 5 | 4 | 3 | 2 | 2 | 0 | 2 |
|---|---|---|---|---|---|---|---|---|---|---|---|

- Chunk your data in monotonic runs
- ② New parameters: Number of runs  $(\rho)$  and their lengths  $(r_1, \ldots, r_{\rho})$

Run-length entropy: 
$$\mathcal{H} = \sum_{k=1}^{\rho} (r_i/n) \log_2(n/r_i)$$
  
 $\leq \log_2(\rho) \leq \log_2(n)$ 

4 runs of lengths 3, 2, 6 and 1

| 0 | 1 | 4 | 3 | 1 | 5 | 4 | 3 | 2 | 2 | 0 | 2 |
|---|---|---|---|---|---|---|---|---|---|---|---|

- Chunk your data in monotonic runs
- ② New parameters: Number of runs  $(\rho)$  and their lengths  $(r_1, \ldots, r_{\rho})$

Run-length entropy: 
$$\mathcal{H} = \sum_{k=1}^{\rho} (r_i/n) \log_2(n/r_i)$$
  
 $\leq \log_2(\rho) \leq \log_2(n)$ 

Theorem (Auger – Jugé – Nicaud – Pivoteau 2018)

Timsort has a worst-case time complexity of  $O(n + n \log(\rho))$ 

4 runs of lengths 3, 2, 6 and 1

| 0 | 1 | 4 | 3 | 1 | 5 | 4 | 3 | 2 | 2 | 0 | 2 |
|---|---|---|---|---|---|---|---|---|---|---|---|

- Chunk your data in monotonic runs
- **2** New parameters: Number of runs  $(\rho)$  and their lengths  $(r_1, \ldots, r_{\rho})$

Run-length entropy: 
$$\mathcal{H} = \sum_{k=1}^{\rho} (r_i/n) \log_2(n/r_i)$$
  
 $\leq \log_2(\rho) \leq \log_2(n)$ 

Theorem (Auger – Jugé – Nicaud – Pivoteau 2018)

Timsort has a worst-case time complexity of  $\mathcal{O}(n+n\mathcal{H})$ 

4 runs of lengths 3, 2, 6 and 1

| 0 | 1 | 4 | 3 | 1 | 5 | 4 | 3 | 2 | 2 | 0 | 2 |
|---|---|---|---|---|---|---|---|---|---|---|---|

- Chunk your data in monotonic runs
- **2** New parameters: Number of runs  $(\rho)$  and their lengths  $(r_1, \ldots, r_{\rho})$

Run-length entropy: 
$$\mathcal{H} = \sum_{k=1}^{\rho} (r_i/n) \log_2(n/r_i)$$
  
 $\leq \log_2(\rho) \leq \log_2(n)$ 

Theorem (Auger – Jugé – Nicaud – Pivoteau 2018)

Timsort has a worst-case time complexity of  $\mathcal{O}(n + n\mathcal{H})$ 

### We cannot do better than $\Omega(n + n\mathcal{H})!^{[2]}$

- Reading the whole input requires a time  $\Omega(n)$
- There are **X** possible reorderings, with  $X \geqslant 2^{1-\rho} \binom{n}{r_1 \dots r_\rho} \geqslant 2^{n \mathcal{H}/2}$

### Contents

- Efficient Merge Sorts
- 2 Timsort
- Java Timsort, Bugs and Fixes





1 Invented by Tim Peters<sup>[1]</sup>



- Invented by Tim Peters<sup>[1]</sup>
- 2 Standard algorithm in Python



- Invented by Tim Peters<sup>[1]</sup>
- Standard algorithm in Python
- for non-primitive arrays in Android, Java, Octave



- Invented by Tim Peters<sup>[1]</sup>
- Standard algorithm in Python
- for non-primitive arrays in Android, Java, Octave
- Stack size bug uncovered a provably correct fix is suggested: [3]
  - suggested fix implemented in Python

(true Timsort)

custom fix implemented in Java

(Java Timsort)



- Invented by Tim Peters<sup>[1]</sup>
- 2 Standard algorithm in Python
- for non-primitive arrays in Android, Java, Octave
- Stack size bug uncovered a provably correct fix is suggested: [3]
  - suggested fix implemented in Python

(true Timsort)

custom fix implemented in Java

(Java Timsort)

**5**  $1^{\text{st}}$  worst-case complexity analysis [4] – Timsort works in time  $\mathcal{O}(n \log n)$ 



- Invented by Tim Peters<sup>[1]</sup>
- Standard algorithm in Python
- for non-primitive arrays in Android, Java, Octave
- Stack size bug uncovered a provably correct fix is suggested: [3]
  - suggested fix implemented in Python

(true Timsort)

custom fix implemented in Java

(Java Timsort)

- Another stack size bug uncovered (Java version)

  Refined worst-case analysis: both versions work in time  $\mathcal{O}(n + n\mathcal{H})$

Algorithm based on merging adjacent runs



Algorithm based on merging adjacent runs



- Run merging algorithm: standard + many optimizations
  - ▶ time  $\mathcal{O}(k + \ell)$
  - ▶ memory  $\mathcal{O}(\min(k,\ell))$

Algorithm based on merging adjacent runs



- Quantity Run merging algorithm: standard + many optimizations
  - ▶ time  $\mathcal{O}(k + \ell)$
  - ▶ memory  $\mathcal{O}(\min(k,\ell))$
- Policy for choosing runs to merge:
  - depends on run lengths only

Algorithm based on merging adjacent runs

$$\begin{array}{c|ccccc}
 & & & & & & \ell \\
\hline
0 & 1 & 4 & 3 & 1 & = & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & \\
\hline
 & & & & & \\
\hline
 &$$

- Run merging algorithm: standard + many optimizations
  - ▶ time  $\mathcal{O}(k + \ell)$
  - ▶ memory  $\mathcal{O}(\min(k, \ell))$
- Policy for choosing runs to merge:
  - depends on run lengths only

Let us forget array values – only remember run lengths!

**STACK** 

- Maintain a stack of runs
- Until the array is sorted, either:
  - discover & push a new run length onto the stack
  - 2 merge the top  $1^{st}$  and  $2^{nd}$  runs
  - 3 merge the top 2<sup>nd</sup> and 3<sup>nd</sup> runs



STACK

- Maintain a stack of runs
- Until the array is sorted, either:
  - discover & push a new run length onto the stack
  - 2 merge the top 1<sup>st</sup> and 2<sup>nd</sup> runs
  - 3 merge the top 2<sup>nd</sup> and 3<sup>nd</sup> runs



- Maintain a stack of runs
- Until the array is sorted, either:
  - discover & push a new run length onto the stack
  - 2 merge the top  $1^{st}$  and  $2^{nd}$  runs
  - 3 merge the top 2<sup>nd</sup> and 3<sup>nd</sup> runs



- Maintain a stack of runs
- Until the array is sorted, either:
  - discover & push a new run length onto the stack
  - 2 merge the top  $1^{st}$  and  $2^{nd}$  runs
  - 3 merge the top 2<sup>nd</sup> and 3<sup>nd</sup> runs



- Maintain a stack of runs
- Until the array is sorted, either:
  - discover & push a new run length onto the stack
  - 2 merge the top  $1^{st}$  and  $2^{nd}$  runs
  - 3 merge the top 2<sup>nd</sup> and 3<sup>nd</sup> runs



- Maintain a stack of runs
- Until the array is sorted, either:
  - discover & push a new run length onto the stack
  - 2 merge the top  $1^{st}$  and  $2^{nd}$  runs
  - merge the top 2<sup>nd</sup> and 3<sup>nd</sup> runs



- Maintain a stack of runs
- Until the array is sorted, either:
  - discover & push a new run length onto the stack
  - 2 merge the top 1<sup>st</sup> and 2<sup>nd</sup> runs
  - 3 merge the top 2<sup>nd</sup> and 3<sup>nd</sup> runs



- Maintain a stack of runs
- Until the array is sorted, either:
  - discover & push a new run length onto the stack
  - 2 merge the top 1<sup>st</sup> and 2<sup>nd</sup> runs
  - 3 merge the top 2<sup>nd</sup> and 3<sup>nd</sup> runs



- Maintain a stack of runs
- Until the array is sorted, either:
  - ① discover & push a new run length onto the stack
  - 2 merge the top  $1^{st}$  and  $2^{nd}$  runs
  - 3 merge the top 2<sup>nd</sup> and 3<sup>nd</sup> runs



- Maintain a stack of runs
- Until the array is sorted, either:
  - discover & push a new run length onto the stack
  - 2 merge the top 1<sup>st</sup> and 2<sup>nd</sup> runs
  - 3 merge the top 2<sup>nd</sup> and 3<sup>nd</sup> runs



- Maintain a stack of runs
- Until the array is sorted, either:
  - discover & push a new run length onto the stack
  - 2 merge the top 1<sup>st</sup> and 2<sup>nd</sup> runs
  - 3 merge the top 2<sup>nd</sup> and 3<sup>nd</sup> runs



#### Run merge policy:

- Maintain a stack of runs
- Until the array is sorted, either:
  - discover & push a new run length onto the stack
  - 2 merge the top 1<sup>st</sup> and 2<sup>nd</sup> runs
  - 3 merge the top 2<sup>nd</sup> and 3<sup>nd</sup> runs

#### Key ideas:

- Each run r pays  $\mathcal{O}(r)$  to
  - enter the stack (before its 1<sup>st</sup> merge)
  - ▶ go down 1 floor (after its 1<sup>st</sup> merge)

Pushed run  $r_{\ell}$  $r_{i+1}$ **r**3  $r_2$ **STACK** 

- Each run r pays  $\mathcal{O}(r)$  to
  - enter the stack (before its 1<sup>st</sup> merge)
  - ▶ go down 1 floor (after its 1<sup>st</sup> merge)
- Stack height  $h = \mathcal{O}(\log(n/r))$  when the run entry phase ends



- Each run r pays  $\mathcal{O}(r)$  to
  - enter the stack (before its 1<sup>st</sup> merge)
  - ▶ go down 1 floor (after its 1<sup>st</sup> merge)
- Stack height  $h = \mathcal{O}(\log(n/r))$  when the run entry phase ends



- Each run r pays  $\mathcal{O}(r)$  to
  - ▶ enter the stack (before its 1<sup>st</sup> merge)
  - ▶ go down 1 floor (after its 1<sup>st</sup> merge)
- Stack height  $h = \mathcal{O}(\log(n/r))$  when the run entry phase ends
- Ensure that
  - $(r_i)_{i\geq 1}$  has **exponential** decay when r is pushed
  - $ightharpoonup r = r_h \leqslant r_{h-\mathcal{O}(1)}$  when the **run entry phase** ends



#### Key ideas:

- Each run r pays  $\mathcal{O}(r)$  to
  - enter the stack (before its 1<sup>st</sup> merge)
  - ▶ go down 1 floor (after its 1<sup>st</sup> merge)
- Stack height  $h = \mathcal{O}(\log(n/r))$  when the run entry phase ends
- Ensure that
  - ▶  $(r_i)_{i \ge 1}$  has **exponential** decay when r is pushed
  - ▶  $r = r_h \leqslant r_{h-2}$  when the **run entry phase** ends

#### Implementation in Timsort:

- Fibonacci constraints  $r_i > r_{i+1} + r_{i+2}$  on run push<sup>[1]</sup>
- Merge  $r_{h-2}$  and  $r_{h-1}$  whenever  $r_{h-2} \leqslant r_h$



#### Key ideas:

- Each run r pays  $\mathcal{O}(r)$  to
  - ▶ enter the stack (before its 1<sup>st</sup> merge) ✓
  - ▶ go down 1 floor (after its 1<sup>st</sup> merge) >
- Stack height h = O(log(n/r)) when the run entry phase ends ✓
- Ensure that
  - ▶  $(r_i)_{i \ge 1}$  has **exponential** decay when r is pushed  $\checkmark$
  - ▶  $r = r_h \leqslant r_{h-2}$  when the **run entry phase** ends ✓

#### Implementation in Timsort:

- Fibonacci constraints  $r_i > r_{i+1} + r_{i+2}$  on run push<sup>[1]</sup>  $\triangleright$
- Merge  $r_{h-2}$  and  $r_{h-1}$  whenever  $r_{h-2} \leqslant r_h \checkmark$



### Choice rules for options

- discover & push a new run length onto the stack
- merge the top 1<sup>st</sup> and 2<sup>nd</sup> runs
- $\odot$  merge the top  $2^{nd}$  and  $3^{nd}$  runs

### Choice algorithm

```
if r_{h-2} \leqslant r_h: choose ③ else if r_{h-1} \leqslant r_h, r_{h-2} \leqslant r_{h-1} + r_h or r_{h-3} \leqslant r_{h-2} + r_{h-1}: choose ② else: choose ① (or ② if ① is unavailable)
```

### Choice rules for options

- discover & push a new run length onto the stack
- merge the top 1<sup>st</sup> and 2<sup>nd</sup> runs
- $\odot$  merge the top  $2^{nd}$  and  $3^{nd}$  runs

### Choice algorithm

```
if r_{h-2} \leqslant r_h: choose ③ else if r_{h-1} \leqslant r_h, r_{h-2} \leqslant r_{h-1} + r_h or r_{h-3} \leqslant r_{h-2} + r_{h-1}: choose ② else: choose ① (or ② if ① is unavailable)
```

#### Fibonacci constraints:

- $r_i > r_{i+1} + r_{i+2}$  for all  $i \leqslant h 4$  (induction)
- $r_i > r_{i+1} + r_{i+2}$  for  $i \ge h-3$  on run push

#### Choice rules for options

- discover & push a new run length onto the stack
- merge the top 1<sup>st</sup> and 2<sup>nd</sup> runs
- $\odot$  merge the top  $2^{nd}$  and  $3^{nd}$  runs

### Choice algorithm

```
if \underline{r_{h-2}} \leqslant \underline{r_h}: choose ③ else if \underline{r_{h-1}} \leqslant \underline{r_h}, \underline{r_{h-2}} \leqslant \underline{r_{h-1}} + \underline{r_h} or \underline{r_{h-3}} \leqslant \underline{r_{h-2}} + \underline{r_{h-1}}: choose ② else: choose ① (or ② if ① is unavailable)
```

#### Making runs pay for going down:

$$\downarrow \begin{array}{c} r_h \\ \downarrow r_{h-1} \\ \downarrow r_{h-2} \end{array} \in$$

$$r_{h-2} \leqslant r_h$$

#### Choice rules for options

- discover & push a new run length onto the stack
- merge the top 1<sup>st</sup> and 2<sup>nd</sup> runs
- $\odot$  merge the top  $2^{nd}$  and  $3^{nd}$  runs

### Choice algorithm

if 
$$r_{h-2} \leqslant r_h$$
: choose ③ else if  $\underline{r_{h-1}} \leqslant r_h$ ,  $r_{h-2} \leqslant r_{h-1} + r_h$  or  $r_{h-3} \leqslant r_{h-2} + r_{h-1}$ : choose ② else: choose ① (or ② if ① is unavailable)

### Making runs pay for going down:



$$\begin{array}{c|c}
\downarrow & r_h \\
\hline r_{h-1} & \leqslant \epsilon \\
\hline r_{h-1} & \leqslant r_h
\end{array}$$

#### Choice rules for options

- discover & push a new run length onto the stack
- 2 merge the top 1<sup>st</sup> and 2<sup>nd</sup> runs
- $\odot$  merge the top  $2^{nd}$  and  $3^{nd}$  runs

### Choice algorithm

if  $r_{h-2} \leqslant r_h$ : choose ③ else if  $r_{h-1} \leqslant r_h$ ,  $\underline{r_{h-2}} \leqslant \underline{r_{h-1} + r_h}$  or  $\underline{r_{h-3}} \leqslant \underline{r_{h-2} + r_{h-1}}$ : choose ② else: choose ① (or ② if ① is unavailable)

### Making runs pay for going down:







### Choice rules for options

- discover & push a new run length onto the stack
- 2 merge the top 1<sup>st</sup> and 2<sup>nd</sup> runs
- $\odot$  merge the top  $2^{nd}$  and  $3^{nd}$  runs

### Choice algorithm

if  $r_{h-2} \leqslant r_h$ : choose ③ else if  $r_{h-1} \leqslant r_h$ ,  $\underline{r_{h-2} \leqslant r_{h-1} + r_h}$  or  $\underline{r_{h-3} \leqslant r_{h-2} + r_{h-1}}$ : choose ② else: choose ① (or ② if ① is unavailable)

### Making runs pay (with 1-step delay) for going down:







### Contents

- Efficient Merge Sorts
- 2 Timsort
- 3 Java Timsort, Bugs and Fixes

### Java choice algorithm

if  $r_{h-2} \leqslant r_h$ : choose ③ else if  $r_{h-1} \leqslant r_h$ ,  $r_{h-2} \leqslant r_{h-1} + r_h$  or  $r_{h-3} \leqslant r_{h-2} + r_{h-1}$ : choose ② else: choose ① (or ② if ① is unavailable)

## Java choice algorithm

```
if r_{h-2} \leqslant r_h: choose ③ else if r_{h-1} \leqslant r_h, r_{h-2} \leqslant r_{h-1} + r_h: choose ② else: choose ① (or ② if ① is unavailable)
```

### Fibonacci constraints fail!

## Java choice algorithm

```
if r_{h-2} \leqslant r_h: choose ③ else if r_{h-1} \leqslant r_h, r_{h-2} \leqslant r_{h-1} + r_h: choose ② else: choose ① (or ② if ① is unavailable)
```

### Fibonacci constraints fail!

Stack height may be higher than forecast

## Java choice algorithm

```
if r_{h-2} \leqslant r_h: choose ③ else if r_{h-1} \leqslant r_h, r_{h-2} \leqslant r_{h-1} + r_h: choose ② else: choose ① (or ② if ① is unavailable)
```

### Fibonacci constraints fail!

- Stack height may be higher than forecast
- Suggested fix: add the  $r_{h-3} \leqslant r_{h-2} + r_{h-1}$  test<sup>[3]</sup>

## Java choice algorithm

```
if r_{h-2} \leqslant r_h: choose ③ else if r_{h-1} \leqslant r_h, r_{h-2} \leqslant r_{h-1} + r_h: choose ② else: choose ① (or ② if ① is unavailable)
```

### Fibonacci constraints fail!

- Stack height may be higher than forecast
- Suggested fix: add the  $r_{h-3} \leqslant r_{h-2} + r_{h-1}$  test<sup>[3]</sup>
- Custom Java fix: increase maximal stack size<sup>[3]</sup>

## Java choice algorithm

```
if r_{h-2} \leqslant r_h: choose ③ else if r_{h-1} \leqslant r_h, r_{h-2} \leqslant r_{h-1} + r_h: choose ② else: choose ① (or ② if ① is unavailable)
```

### Fibonacci constraints fail!

- Stack height may be higher than forecast
- Suggested fix: add the  $r_{h-3} \leqslant r_{h-2} + r_{h-1}$  test<sup>[3]</sup>
- Custom Java fix: increase maximal stack size<sup>[3]</sup>

#### The increase was not sufficient!

Bug raised by igm.univ-mlv.fr/~pivoteau/Timsort/TimSort.java

#### Key steps:

Study of the creation of consecutive Fibonacci constraint failures



- Study of the creation of consecutive Fibonacci constraint failures
- At most 6 consecutive contraint failures



- Study of the creation of consecutive Fibonacci constraint failures
- At most 6 consecutive contraint failures
- $(r_i)_{i\geqslant 1}$  has still exponential decay

- Study of the creation of consecutive Fibonacci constraint failures
- At most 6 consecutive contraint failures
- $(r_i)_{i\geqslant 1}$  has still exponential decay
- Tight upper bound on stack size!

- Study of the creation of consecutive Fibonacci constraint failures
- At most 6 consecutive contraint failures
- $(r_i)_{i\geqslant 1}$  has still exponential decay
- Tight upper bound on stack size!
- Suggested fix<sup>[3]</sup> now implemented in Java (JDK 11)!





• Timsort is good in practice

- Timsort is good in practice
- — in theory:  $\mathcal{O}(n+n\mathcal{H})$  worst-case time complexity

- Timsort is good in practice
- — in theory:  $\mathcal{O}(n+n\mathcal{H})$  worst-case time complexity
- Every algorithm deserves a proof of correctness and complexity

- Timsort is good in practice
- — in theory:  $\mathcal{O}(n + n\mathcal{H})$  worst-case time complexity
- Every algorithm deserves a proof of correctness and complexity

| Some references:                                                         |        |
|--------------------------------------------------------------------------|--------|
| [1] Tim Peters' description of Timsort,                                  |        |
| <pre>svn.python.org/projects/python/trunk/Objects/listsort.txt</pre>     | (2001) |
| [2] On compressing permutations and adaptive sorting, Barbay & Navarro   | (2013) |
| [3] OpenJDK's java.utils.Collection.sort() is broken, de Gouw et al.     | (2015) |
| [4] Merge Strategies: from Merge Sort to Timsort, Auger et al.           | (2015) |
| [5] Strategies for stable merge sorting, Buss & Knop                     | (2018) |
| [6] Nearly-optimal mergesorts, Munro & Wild – to be presented <b>now</b> | (2018) |

- Timsort is good in practice
- — in theory:  $\mathcal{O}(n+n\mathcal{H})$  worst-case time complexity
- Every algorithm deserves a proof of correctness and complexity

#### Some references:

| Some references.                                                         |             |
|--------------------------------------------------------------------------|-------------|
| [1] Tim Peters' description of Timsort,                                  |             |
| <pre>svn.python.org/projects/python/trunk/Objects/listsort.tx</pre>      | t (2001)    |
| [2] On compressing permutations and adaptive sorting, Barbay & Nava      | arro (2013) |
| [3] OpenJDK's java.utils.Collection.sort() is broken, de Gouw et al.     | (2015)      |
| [4] Merge Strategies: from Merge Sort to Timsort, Auger et al.           | (2015)      |
| [5] Strategies for stable merge sorting, Buss & Knop                     | (2018)      |
| [6] Nearly-optimal mergesorts, Munro & Wild – to be presented <b>now</b> | (2018)      |

