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Sorting data

– in a stable manner
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Mergesort has a worst-case time complexity of O(n log(n))

Can we do better?

No!

Proof:
There are n! possible reorderings
Each element comparison gives a 1-bit information
Thus log2(n!) ∼ n log2(n) tests are required
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Cannot we ever do better?

In some cases, we should. . .
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Let us do better!

4 runs of lengths 3, 2, 6 and 1

0 1 4 3 1 5 4 3 2 2 0 2

1 Chunk your data in monotonic runs

2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)
New parameters: Run-length entropy: H =

∑ρ
k=1(ri/n) log2(n/ri )

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem (Auger – Jugé – Nicaud – Pivoteau 2018)
Timsort has a worst-case time complexity of O(n + n log(ρ))

We cannot do better than Ω(n + nH)![2]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
( n
r1 ... rρ

)
> 2nH/2
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A brief history of Timsort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19

1 2
P

3 3 3
A J O

4

5

6

1 Invented by Tim Peters[1]

2 Standard algorithm in Python
3 Standard algorithm———————— for non-primitive arrays in Android, Java, Octave
4 Stack size bug uncovered – a provably correct fix is suggested:[3]

I suggested fix implemented in Python (true Timsort)
I custom fix implemented in Java (Java Timsort)

5 1st worst-case complexity analysis[4] – Timsort works in time O(n log n)

6 Another stack size bug uncovered (Java version)
Refined worst-case analysis: both versions work in time O(n + nH)
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The principles of Timsort (1/3)
Algorithm based on merging adjacent runs

0 1 4 3 1

0 1 1 3 4

k `

≡

≡

3 2

5

1 Run merging algorithm: standard + many optimizations
I time O(k + `)
I memory O(min(k, `))

2 Policy for choosing runs to merge:
I depends on run lengths only

Let us forget array values – only remember run lengths!
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The principles of Timsort (2/3)

0 1 4 3 1 5 4 3 2 2 0 2 ≡ 3

3

2

2

6

6

1

Discovered runs

0 1 1 3 4 5 4 3 2 2 0 2 ≡ 55 66 1

0 0 1 1 2 2 3 3 4 4 5 2 ≡ 1111 11

0 0 1 1 2 2 2 3 3 4 4 5 ≡ 12

STACK

33
22
66
6
5
6
1111
1
12

Run merge policy:
Maintain a stack of runs
Until the array is sorted, either:

1 discover & push a new run length onto the stack
2 merge the top 1st and 2nd runs
3 merge the top 2nd and 3nd runs
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Intermezzo: Intelligent design & amortized analysis

Key ideas:

Each run r pays O(r) to
I enter the stack (before its 1st merge)

3

I go down 1 floor (after its 1st merge)

Stack height h = O(log(n/r)) when
the run entry phase ends

3

Ensure that
I (ri )i>1 has exponential decay when r is pushed

3

I r = rh 6 rh−O(1) when the run entry phase ends

3

Implementation in Timsort:
Fibonacci constraints ri > ri+1 + ri+2 on run push[1]

Merge rh−2 and rh−1 whenever rh−2 6 rh

3

R
un
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The principles of Timsort (3/3)
Choice rules for options

1 discover & push a new run length onto the stack
2 merge the top 1st and 2nd runs
3 merge the top 2nd and 3nd runs

Choice algorithm
if rh−2 6 rh: choose ®
else if rh−1 6 rh, rh−2 6 rh−1 + rh or rh−3 6 rh−2 + rh−1: choose ­
else: choose ¬ (or ­ if ¬ is unavailable)

Fibonacci constraints:
ri > ri+1 + ri+2 for all i 6 h − 4 (induction)
ri > ri+1 + ri+2 for i > h − 3 on run push

Making runs pay for going down:(

rh−2
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rh

€

€

rh−2 6 rh

rh−1
rh €€

rh−1 6 rh

rh−2

rh−1
rh €
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Stack size bugs in Java Timsort

Java choice algorithm
if rh−2 6 rh: choose ®
else if rh−1 6 rh, rh−2 6 rh−1 + rh or rh−3 6 rh−2 + rh−1: choose ­
else: choose ¬ (or ­ if ¬ is unavailable)

Fibonacci constraints fail!

Stack height may be higher than forecast
Suggested fix: add the rh−3 6 rh−2 + rh−1 test[3]

Custom Java fix: increase maximal stack size[3]

The increase was not sufficient!

Bug raised by igm.univ-mlv.fr/~pivoteau/Timsort/TimSort.java
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Java Timsort complexity analysis
Key steps:

Study of the creation of consecutive Fibonacci constraint failures

At most 6 consecutive contraint failures
(ri )i>1 has still exponential decay
Tight upper bound on stack size!

7 Suggested fix[3] now implemented in Java (JDK 11)!
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Conclusion
Timsort is good in practice

Timsort is good——————— in theory: O(n + nH) worst-case time complexity
Every algorithm deserves a proof of correctness and complexity

Some references:
[1] Tim Peters’ description of Timsort,
svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[2] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[3] OpenJDK’s java.utils.Collection.sort() is broken, de Gouw et al. (2015)
[4] Merge Strategies: from Merge Sort to Timsort, Auger et al. (2015)
[5] Strategies for stable merge sorting, Buss & Knop (2018)
[6] Nearly-optimal mergesorts, Munro & Wild – to be presented now (2018)
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