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Sorting data
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Sorting data — in a stable manner
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Sorting data — in a stable manner

[0n] 11 41[31] 1251 4] 32 21 22] 02] 2]

l

[01] 0a[ 1] 12] 21 25] 25 31| 32 41 42] 51

Mergesort has a worst-case time complexity of O(nlog(n))

Can we do better?
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Sorting data — in a stable manner

[0n] 11 41[31] 1251 4] 32 21 22] 02] 2]

l

[01] 0a[ 1] 12] 21 25] 25 31| 32 41 42] 51

Mergesort has a worst-case time complexity of O(nlog(n))

Can we do better? No!

Proof:
@ There are n! possible reorderings
o Each element comparison gives a 1-bit information

@ Thus logy(n!) ~ nlog,(n) tests are required
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Cannot we ever do better?

In some cases, we should. ..

[of1]2[3]45]6]7]8]9]10f11]
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[of1]2[3]45]6]7]8]9]10f11]
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Let us do better!

Lof1]4fsfufs]4]3[of2]0]2]

© Chunk your data in monotonic runs

N. Auger, V. Jugé, C. Nicaud & C. Pivoteau On the Worst-Case Complexity of Timsort



Let us do better!

4 runs of lengths 3, 2, 6 and 1
[of1[a3f1]s[4a[3]2]2]0]2]

© Chunk your data in monotonic runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
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Let us do better!

4 runs of lengths 3, 2, 6 and 1
[of1[a3f1]s[4a[3]2]2]0]2]

© Chunk your data in monotonic runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >} _,(ri/n)logy(n/ri)
< logy(p) < log,(n)
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Let us do better!

4 runs of lengths 3, 2, 6 and 1
[of1[a3f1]s[4a[3]2]2]0]2]

© Chunk your data in monotonic runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >} _,(ri/n)logy(n/ri)
< logy(p) < log,(n)

Theorem (Auger — Jugé — Nicaud — Pivoteau 2018)

Timsort has a worst-case time complexity of O(n + nlog(p))
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Let us do better!

4 runs of lengths 3, 2, 6 and 1
[of1[a3f1]s[4a[3]2]2]0]2]

© Chunk your data in monotonic runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >} _,(ri/n)logy(n/ri)
< logy(p) < log,(n)

Theorem (Auger — Jugé — Nicaud — Pivoteau 2018)

Timsort has a worst-case time complexity of O(n+ nH)
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Let us do better!

4 runs of lengths 3, 2, 6 and 1
[of1[a3f1]s[4a[3]2]2]0]2]

© Chunk your data in monotonic runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >} _,(ri/n)logy(n/ri)
< logy(p) < log,(n)

Theorem (Auger — Jugé — Nicaud — Pivoteau 2018)
Timsort has a worst-case time complexity of O(n+ nH) J

We cannot do better than Q(n + n#)!1?
@ Reading the whole input requires a time Q(n)
@ There are X possible reorderings, with X > 21_/’(r1 " r,,) > onH/2
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A brief history of Timsort

>
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A brief history of Timsort

2001 '02'03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15'16 '17 '18 '19

>
>

@ Invented by Tim Peters!!]
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A brief history of Timsort

P
L)

2001 '02'03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15'16 '17 '18 '19

>
>

@ Invented by Tim Peters!!]
@ Standard algorithm in Python
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A brief history of Timsort

P A J 0]
L) QO 2]
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>
>

@ Invented by Tim Peters!!]
@ Standard algorithm in Python

o for non-primitive arrays in Android, Java, Octave
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A brief history of Timsort

P A J 0]
L) QO 2] ) .

2001 '02'03'04 '05 '06 '07 '08 '09 '10 '11 '12'13'14 '15 '16 '17 '18 '19

@ Invented by Tim Peters!!]
@ Standard algorithm in Python

o for non-primitive arrays in Android, Java, Octave
Q@ Stack size bug uncovered — a provably correct fix is suggested:!3!
» suggested fix implemented in Python (true Timsort)
» custom fix implemented in Java (Java Timsort)
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A brief history of Timsort

P A J 0] o
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@ Invented by Tim Peters!!]
@ Standard algorithm in Python

o for non-primitive arrays in Android, Java, Octave
Q@ Stack size bug uncovered — a provably correct fix is suggested:!3!
» suggested fix implemented in Python (true Timsort)
» custom fix implemented in Java (Java Timsort)

Q 1% worst-case complexity analysis[¥l — Timsort works in time O(nlog n)
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A brief history of Timsort

P A J 0] o
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@ Invented by Tim Peters!!]
@ Standard algorithm in Python
o for non-primitive arrays in Android, Java, Octave
Q@ Stack size bug uncovered — a provably correct fix is suggested:!3!
» suggested fix implemented in Python (true Timsort)
» custom fix implemented in Java (Java Timsort)

1t worst-case complexity analysist* — Timsort works in time O(nlog n)

© 0

Another stack size bug uncovered (Java version)

Refined worst-case analysis: both versions work in time O(n+ nH)
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The principles of Timsort (1/3)

Algorithm based on merging adjacent runs

Lof1]4]3]1]
\Z
Lof1]1]3]4]
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The principles of Timsort (1/3)

Algorithm based on merging adjacent runs

k0

lofifaf3]1]
\Z

Lof1f1]3]4]

© Run merging algorithm: standard + many optimizations
> time O(k + /)
» memory O(min(k,{))
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The principles of Timsort (1/3)

Algorithm based on merging adjacent runs

kK ¢
L 30]-[12]

v ¥
L=

© Run merging algorithm: standard + many optimizations
> time O(k + /)
» memory O(min(k,{))

@ Policy for choosing runs to merge:
» depends on run lengths only
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The principles of Timsort (1/3)

Algorithm based on merging adjacent runs

kK ¢
L 30]-[12]

v ¥
L=

© Run merging algorithm: standard + many optimizations
> time O(k + /)
» memory O(min(k,{))

@ Policy for choosing runs to merge:
» depends on run lengths only

Let us forget array values — only remember run lengths!
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The principles of Timsort (2/3)

Lof1[4fa]r]sf4]3]2fofof2]=[3]2]6]1]

STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2"¢ and 3" runs
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The principles of Timsort (2/3)

Discovered runs ?

Lof1[4fa]r]sf4]3]2fofof2]=[3]2]6]1]

STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2"¢ and 3" runs
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The principles of Timsort (2/3)

Discovered runs —?

[o[:T4TsTaTs 4 322 0 2]=[53]2]6 1] [5]
STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2"¢ and 3" runs
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The principles of Timsort (2/3)

Discovered runs —?
3

lof1f4fa]r]sf4]3]2fofof2]=[3]2]6]1]

STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2"¢ and 3" runs
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The principles of Timsort (2/3) )

Discovered runs 4?

lofifafsfu]s]a]sfof2fof2]|=[3]2]6]1] |3
STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2"¢ and 3" runs
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The principles of Timsort (2/3)

Discovered runs 4? i

lofifafsfu]s]a]sfof2fof2]=[3]2]6f1] |3
STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2"¢ and 3" runs
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The principles of Timsort (2/3)

Discovered runs 4?

lof1fa[3]1]s5[4]3]2[2fof2]=[3]2]6]1] E‘
2 E 20 STACK

lofifs[3]4fs[4]3]2]2f0f2]|=[ 5 [6]1]

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2"¢ and 3" runs
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The principles of Timsort (2/3)

Discovered runs l
|0|1|4|3|1|5|4|3|2|2|0|2|—|3|2|6|1| |E‘
¥ STACK
|0|1|1|3|4|5|4|3|2|2|0|2|—| [6]1]

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run length onto the stack
@ merge the top 15t and 2" runs
© merge the top 2"¢ and 3" runs
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The principles of Timsort (2/3)

Discovered runs 4?

[of:T«[3a]s a3 22 o 2]=[3]26]a] _[i]

¥ 2 STACK
lof1[1]3]4]s]a]sfofafof2|=] 5 [6]1]
\Z 12
lofofufufofofsfsfafafsfaf=] 11 [1]

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run length onto the stack
@ merge the top 15t and 2" runs
© merge the top 2"¢ and 3" runs
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The principles of Timsort (2/3)

Discovered runs 4? .
1

[of1]4[3]1]5]4[3]2]2]02]|=]|3][2]6]1] 11
7 - STACK
lof1]1[3fafs[4]3]2]2]0f2]=[ 5 [6]1]
¥ ¥
lofofalaf2]2f3]3]afa]s[2]|=] 11 [1]

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2"¢ and 3" runs
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The principles of Timsort (2/3)

Discovered runs 4?
1K
11

lof1f4]s]t[sf4]3]2fofof2]=[3]2]6]1]

¥ 2 STACK
lof1[1]3]4]s]a]sfofafof2|=] 5 [6]1]
\Z 12
lofofufufofofsfsfafafsfaf=] 11 [i]

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run length onto the stack
@ merge the top 15t and 2" runs
© merge the top 2"¢ and 3" runs
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The principles of Timsort (2/3)

Discovered runs 4?

[of:Te[3a]s 4]32T2 o o]=[3]2]6]a] [i2]

¥ e 2N STACK
lolif1f3fafs5]4]3[2f2fof2]=] 5 [6]1]
¥ — v
lofofifs]2f2a[3]3]4fafs]2f=] 11 [1]
\Z \Z
lofof1]1[2]2]2]3]3]al4afs]=] 12 |

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run length onto the stack
@ merge the top 15t and 2" runs
© merge the top 2"¢ and 3" runs
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Intermezzo: Intelligent design & amortized analysis

Key ideas:
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Intermezzo: Intelligent design & amortized analysis

Key ideas: Pushed run| r
e Each run r pays O(r) to ry
» enter the stack (before its 15 merge)
» go down 1 floor (after its 15 merge)
Fit1
ri
r
r
rn
STACK
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Intermezzo: Intelligent design & amortized analysis

Key ideas: Pushed run| r

e Each run r pays O(r) to ry
» enter the stack (before its 15 merge)
» go down 1 floor (after its 15 merge)

e Stack height h = O(log(n/r)) when et
the run entry phase ends -

Run entry
collapse

r3

r
n
STACK

On the Worst-Case Complexity of Timsort
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Intermezzo: Intelligent design & amortized analysis

Key ideas:
e Each run r pays O(r) to

» enter the stack (before its 15 merge)

» go down 1 floor (after its 15 merge)
e Stack height h = O(log(n/r)) when
the run entry phase ends

N. Auger, V. Jugé, C. Nicaud & C. Pivoteau

Pushed run| ra
Merged run | ra—1

rh—2

r3

r

rn
STACK
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Intermezzo: Intelligent design & amortized analysis

Key ideas:
e Each run r pays O(r) to

» enter the stack (before its 15 merge)

» go down 1 floor (after its 15 merge)
e Stack height h = O(log(n/r)) when
the run entry phase ends
@ Ensure that

> (ri)i>1 has exponential decay when r is pushed
> r=ry < rp_o(1) when the run entry phase ends

N. Auger, V. Jugé, C. Nicaud & C. Pivoteau

Pushed run| ra
Merged run | ra—1

rh—2

r3

r

n
STACK
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Intermezzo: Intelligent design & amortized analysis

Key ideas:
e Each run r pays O(r) to

» enter the stack (before its 15 merge)

» go down 1 floor (after its 15 merge) Pushed run I 77
e Stack height h = O(log(n/r)) when Merged run [Th-1
the run entry phase ends oo
@ Ensure that
> (ri)i>1 has exponential decay when r is pushed
» r = rp < rp—2 when the run entry phase ends
r
Implementation in Timsort: rz
e Fibonacci constraints r; > riy1 + riz2 on run pushll] "
@ Merge ry_» and r,_1 whenever r,_s < rpy STACK
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Intermezzo: Intelligent design & amortized analysis

Key ideas:
e Each run r pays O(r) to

» enter the stack (before its 15 merge) v/

» go down 1 floor (after its 15* merge) O

e Stack height h = O(log(n/r)) when
the run entry phase ends v
@ Ensure that

> (ri)i>1 has exponential decay when r is pushed v/
> r = rp < rp—2 when the run entry phase ends v

Implementation in Timsort:

e Fibonacci constraints r; > riy1 + riz2 on run pushll] 0 "

Pushed run| ra
Merged run | ra—1

rh—2

r

r

@ Merge ry_» and r,_1 whenever rp_s> < rp v STACK

N. Auger, V. Jugé, C. Nicaud & C. Pivoteau
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The principles of Timsort (3/3)

Choice rules for options
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2" and 3™ runs

Choice algorithm

if rp_> < rp: choose ®

else if rp_1 <y, rh—o < rp—1+rpor rp_3 < rp_o+ rp_1: choose @
else: choose @ (or @ if @ is unavailable)
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The principles of Timsort (3/3)

Choice rules for options
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2" and 3™ runs

Choice algorithm

if rp_> < rp: choose ®

else if rp_1 <y, rh—o < rp—1+rpor rp_3 < rp_o+ rp_1: choose @
else: choose @ (or @ if @ is unavailable)

Fibonacci constraints:
@ ri > rip1 + riqp for all i < h —4 (induction)
@ r; > riy1+ rigp for i = h— 3 on run push
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The principles of Timsort (3/3)

Choice rules for options
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2" and 3™ runs

Choice algorithm

if rp_> < rp: choose ®

else if rp_1 <y, rh—o < rp—1+rpor rp_3 < rp_o+ rp_1: choose @
else: choose @ (or @ if @ is unavailable)

Making runs pay for going down:

l« rp |€
Y[rn—1]€
rh—2
rh—2 < rp
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The principles of Timsort (3/3)

Choice rules for options
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2" and 3™ runs

Choice algorithm

if rp_> < rp: choose ®

else if rp_1 <y, rh—o < rp—1+rpor rp_3 < rp_o+ rp_1: choose @
else: choose @ (or @ if @ is unavailable)

Making runs pay for going down:

l« rp |€

Y|rh-1€ [ |€€
rh—2 rh—1

rh—2 < rp rh—1 < rh
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The principles of Timsort (3/3)

Choice rules for options
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2" and 3™ runs

Choice algorithm
if rp_> < rp: choose ®

else if rp_1 <y, rh—o < rp—1+rpor rp_3 < rp_o+ rp_1: choose @
else: choose @ (or @ if @ is unavailable)

Making runs pay for going down:

l« rp |€ »1« rp, |€

WG V| rn |e€ Y|ra-1]€
rh—2 rh—1 rh—2

rh—2 < rp rh—1 < rh the2 S th_1+ 1

rh—3 < rh2 + rh_1
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The principles of Timsort (3/3)

Choice rules for options
@ discover & push a new run length onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2" and 3™ runs

Choice algorithm
if rp_> < rp: choose ®

else if rp_1 <y, rh—o < rp—1+rpor rp_3 < rp_o+ rp_1: choose @
else: choose @ (or @ if @ is unavailable)

Making runs pay (with 1-step delay) for going down:

l« rp |€ »1« rp, |€

Y[rn—1le V| €€ Y| ra-1|€
rh—2 rh—1 rh—2

rh—2 < rp rh—1 < rh the2 S tho1+ 1

rh—3 < rh—2 + rh_1

N. Auger, V. Jugé, C. Nicaud & C. Pivoteau On the Worst-Case Complexity of Timsort



Contents

© Java Timsort, Bugs and Fixes
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Stack size bugs in Java Timsort

Java choice algorithm

if ro_o < rp: choose ®

elseif rp_q1 < rp, rho<rp_1+rporry3<ryo+rp_1: choose @
else: choose @ (or @ if @ is unavailable)
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igm.univ-mlv.fr/~pivoteau/Timsort/TimSort.java

Stack size bugs in Java Timsort

Java choice algorithm

if ro_o < rp: choose ®

else if rp_1 < ry, rh—o < rh—1 + rp: choose @
else: choose @ (or @ if @ is unavailable)

Fibonacci constraints fail!
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Stack size bugs in Java Timsort

Java choice algorithm

if rp_> < rp: choose ®

else if rp_1 < ry, rh—o < rh—1 + rp: choose @
else: choose @ (or @ if @ is unavailable)

Fibonacci constraints fail!

@ Stack height may be higher than forecast
o Suggested fix: add the rp_3 < rp_o + rp_1 testll

e Custom Java fix: increase maximal stack sizel3]
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Stack size bugs in Java Timsort

Java choice algorithm

if rp_> < rp: choose ®

else if rp_1 < ry, rh—o < rh—1 + rp: choose @
else: choose @ (or @ if @ is unavailable)

Fibonacci constraints fail!

@ Stack height may be higher than forecast
o Suggested fix: add the rp_3 < rp_o + rp_1 testll

e Custom Java fix: increase maximal stack sizel3]

The increase was not sufficient!

Bug raised by igm.univ-mlv.fr/~pivoteau/Timsort/TimSort. java
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Java Timsort complexity analysis
Key steps:

@ Study of the creation of consecutive Fibonacci constraint failures

ri—g + ri—3 < ri—2
ri—3+ri—2 = ri1

ficp+ric1 2t
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Java Timsort complexity analysis
Key steps:

@ Study of the creation of consecutive Fibonacci constraint failures
@ At most 6 consecutive contraint failures

ri—g + ri—3 < ri—2
ri—3+ri—2 = ri1

ficp+ric1 2t
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Java Timsort complexity analysis

Key steps:
@ Study of the creation of consecutive Fibonacci constraint failures
@ At most 6 consecutive contraint failures
@ (ri)i>1 has still exponential decay
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@ Study of the creation of consecutive Fibonacci constraint failures
@ At most 6 consecutive contraint failures
@ (ri)i>1 has still exponential decay
@ Tight upper bound on stack size!
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Java Timsort complexity analysis
Key steps:
@ Study of the creation of consecutive Fibonacci constraint failures
@ At most 6 consecutive contraint failures
@ (ri)i>1 has still exponential decay
@ Tight upper bound on stack size!

@ Suggested fix[®l now implemented in Java (JDK 11)!
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Conclusion

e Timsort is good in practice
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Conclusion

e Timsort is good in practice
° in theory: O(n+ nH) worst-case time complexity
e Every algorithm deserves a proof of correctness and complexity

Some references:
[1] Tim Peters' description of Timsort,

svn.python.org/projects/python/trunk/Objects/listsort.txt  (2001)
[2] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[3] OpendDK'’s java.utils. Collection.sort() is broken, de Gouw et al. (2015)
[4] Merge Strategies: from Merge Sort to Timsort, Auger et al. (2015)
[5] Strategies for stable merge sorting, Buss & Knop (2018)
[6] Nearly-optimal mergesorts, Munro & Wild — to be presented now (2018)
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