Dynamic Complexity of the Dyck Reachability

Patricia Bouyer-Decitre & Vincent Jugé

CNRS, LSV & ENS Paris-Saclay

25/04/2017

Contents

- 1 Dynamic Complexity of Decision Problems
- 2 Reachability and its Variants
- 3 The Result
- 4 Conclusion and Future Work

Modulo 3 Decision

- Input: Bit vector $b_1 \cdot b_2 \cdot \ldots \cdot b_n \in \mathbb{F}_3^n$
- Output: **Yes** if $b_1 + b_2 + \ldots + b_n = 0$ **No** otherwise

Modulo 3 Decision

- Input: Bit vector $b_1 \cdot b_2 \cdot \ldots \cdot b_n \in \mathbb{F}_3^n$
- Output: **Yes** if $b_1 + b_2 + \ldots + b_n = 0$ **No** otherwise

Solving this problem...

Static world: membership in a regular language

Modulo 3 Decision

- Input: Bit vector $b_1 \cdot b_2 \cdot \ldots \cdot b_n \in \mathbb{F}_3^n$
- Output: **Yes** if $b_1 + b_2 + \ldots + b_n = 0$ **No** otherwise

Solving this problem...

- Static world: membership in a regular language
- Dynamic world: what if some bit b_k changes?
 - ▶ Maintain predicates $\mathbf{Aux}_i \equiv (b_1 + b_2 + \ldots + b_n = i)$ for $i \in \mathbb{F}_3$
 - Update the values of \mathbf{Aux}_0 , \mathbf{Aux}_1 , \mathbf{Aux}_2 when b_k changes
 - ightharpoonup Use the new value of \mathbf{Aux}_0 and answer the problem

Modulo 3 Decision

- Input: Bit vector $b_1 \cdot b_2 \cdot \ldots \cdot b_n \in \mathbb{F}_3^n$
- Output: **Yes** if $b_1 + b_2 + \ldots + b_n = 0$ **No** otherwise

Solving this problem...

- Static world: membership in a regular language
- Dynamic world: what if some bit b_k changes?
 - ▶ Maintain predicates $\mathbf{Aux}_i \equiv (b_1 + b_2 + \ldots + b_n = i)$ for $i \in \mathbb{F}_3$
 - Update the values of Aux_0 , Aux_1 , Aux_2 when b_k changes
 - Use the new value of \mathbf{Aux}_0 and answer the problem

How complex is it?

- Static world: linear time
- Dynamic world:
 - **Easy** initial instance $(b_1 = b_2 = ... = b_n = 0)$: constant time
 - Each update: constant time

Reachability in DAGs

- Input: Directed acyclic graph G = (V, E) & two vertices $s, t \in V$
- Output: **Yes** if \exists path from s to t in G **No** otherwise

Reachability in DAGs

- Input: Directed acyclic graph G = (V, E) & two vertices $s, t \in V$
- Output: **Yes** if \exists path from s to t in G **No** otherwise

Solving this problem...

- Static world: use your favorite graph exploration algorithm
- **Dynamic world**: what if edge $u \rightarrow v$ is inserted/deleted?
 - ▶ Maintain a predicate $\mathbf{E}^*(x,y) \equiv (\exists \text{ path from } x \text{ to } y \text{ in } G) \text{ for } x,y \in V$
 - ▶ Update the values of $\mathbf{E}^{\star}(x,y)$ when $u \to v$ is inserted/deleted
 - Use the new value of $\mathbf{E}^{\star}(s,t)$ and answer the problem

Reachability in DAGs

- Input: Directed acyclic graph G = (V, E) & two vertices $s, t \in V$
- Output: **Yes** if \exists path from s to t in G **No** otherwise

Solving this problem...

- Static world: use your favorite graph exploration algorithm
- Dynamic world: what if edge $u \rightarrow v$ is inserted/deleted?
 - ▶ Maintain a predicate $\mathbf{E}^*(x,y) \equiv (\exists \text{ path from } x \text{ to } y \text{ in } G) \text{ for } x,y \in V$
 - ▶ Update the values of $\mathbf{E}^{\star}(x,y)$ when $u \to v$ is inserted/deleted
 - Use the new value of $\mathbf{E}^{\star}(s,t)$ and answer the problem

How complex is it?

- Static world: linear time
- Dynamic world:
 - Easy initial edgeless instance: FO formulas
 - Each update: FO formulas

Reachability in DAGs

- Input: Directed acyclic graph G = (V, E) & two vertices $s, t \in V$
- Output: **Yes** if \exists path from s to t in G **No** otherwise

Solving this problem...

- Static world: use your favorite graph exploration algorithm
- Dynamic world: what if edge $u \rightarrow v$ is inserted/deleted?
 - ▶ Maintain a predicate $\mathbf{E}^{\star}(x,y) \equiv (\exists \text{ path from } x \text{ to } y \text{ in } G) \text{ for } x,y \in V$
 - ▶ Update the values of $\mathbf{E}^*(x,y)$ when $u \to v$ is inserted/deleted
 - Use the new value of $\mathbf{E}^{\star}(s,t)$ and answer the problem

How complex is it?

- Static world: linear time
- Dynamic world:
 - ► Easy initial edgeless instance: FO formulas (parallel ≈constant time)
 - ► Each update: FO formulas (parallel ≈constant time)

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

$$\psi(e_1, e_1) \ \psi(e_1, e_2) \ \psi(e_2, e_1) \ \psi(e_2, e_2)$$

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

$$\psi(e_1, e_1) \ \psi(e_1, e_2) \ \psi(e_2, e_1) \ \psi(e_2, e_2)$$

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

FO formulas ⇒ parallel ≈constant time

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

Reachability in DAGs with FO formulas

ullet Initialization (on the edgeless graph): \checkmark

$$\mathbf{E}^{\star}(x,y) \leftarrow (x=y)$$

- Initialization (on the edgeless graph): √
- ullet Update after inserting the edge $u \rightarrow v$

$$\mathbf{E}^{\star}(x,y) \leftarrow \mathbf{E}^{\star}(x,y)$$

- Initialization (on the edgeless graph): √
- Update after **inserting** the edge $u \rightarrow v$: \checkmark

$$\mathbf{E}^{\star}(x,y) \leftarrow \mathbf{E}^{\star}(x,y) \vee \\ (\mathbf{E}^{\star}(x,u) \wedge \mathbf{E}^{\star}(v,y))$$

- Initialization (on the edgeless graph): √
- Update after **inserting** the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$

$$\mathsf{E}^{\star}(x,y) \leftarrow (\mathsf{E}^{\star}(x,y) \land \neg \mathsf{E}^{\star}(x,u))$$

- Initialization (on the edgeless graph): √
- Update after **inserting** the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$

$$\mathsf{E}^{\star}(x,y) \leftarrow (\mathsf{E}^{\star}(x,y) \land \neg \mathsf{E}^{\star}(x,u)) \lor \\ (\mathsf{E}^{\star}(x,y) \land \mathsf{E}^{\star}(y,u))$$

- Initialization (on the edgeless graph): √
- Update after **inserting** the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$: \checkmark

$$\mathbf{E}^{\star}(x,y) \leftarrow (\mathbf{E}^{\star}(x,y) \land \neg \mathbf{E}^{\star}(x,u)) \lor \\ (\mathbf{E}^{\star}(x,y) \land \mathbf{E}^{\star}(y,u)) \lor \\ (\exists a. \exists b. \mathbf{E}^{\star}(x,a) \land \mathbf{E}^{\star}(b,y) \land \\ (a \rightarrow b) \land (a,b) \neq (u,v) \land \\ \mathbf{E}^{\star}(a,u) \land \neg \mathbf{E}^{\star}(b,u))$$

Reachability in DAGs with FO formulas

- ullet Initialization (on the edgeless graph): \checkmark
- Update after **inserting** the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$: \checkmark

Definition (Patnaik & Immerman 97, Dong & Su & Topor 93)

A decision problem with updates is in C-DynFO if \exists predicates s.t.:

- ullet every predicate can be initialized in ${\mathcal C}$
- every predicate can be updated in FO
- one predicate is the goal predicate

Reachability in DAGs with FO formulas

- ullet Initialization (on the edgeless graph): \checkmark
- Update after **inserting** the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$: \checkmark

Definition (Patnaik & Immerman 97, Dong & Su & Topor 93)

A decision problem with updates is in DynFO if \exists predicates s.t.:

- every predicate can be initialized in FO
- every predicate can be updated in FO
- one predicate is the goal predicate

Reachability in DAGs with FO formulas

- Initialization (on the edgeless graph): √
- Update after **inserting** the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$: \checkmark

Definition (Patnaik & Immerman 97, Dong & Su & Topor 93)

A decision problem with updates is in DynFO if \exists predicates s.t.:

- every predicate can be initialized in FO
- every predicate can be updated in FO
- one predicate is the goal predicate

\$1000000 question

 $P \stackrel{?}{=} NP$

Reachability in DAGs with FO formulas

- Initialization (on the edgeless graph): √
- Update after inserting the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$: \checkmark

Definition (Patnaik & Immerman 97, Dong & Su & Topor 93)

A decision problem with updates is in DynFO if ∃ predicates s.t.:

- every predicate can be initialized in FO
- every predicate can be updated in FO
- one predicate is the goal predicate

Some more problems in DynFO

- Reachability in undirected graphs
- Integer multiplication
- Dyck reachability in DAGs
- Context-free language membership
- Distance in undirected graphs
- Reachability in directed graphs
- Context-free reachability in DAGs

(Patnaik & Immerman 97)

(Patnaik & Immerman 97)

(Weber & Schwentick 07)

(Gelade et al. 08)

(Grädel & Siebertz 12)

(Datta et al. 15)

(Muñoz et al. 16)

Some more problems in DynFO

- Reachability in undirected graphs
- Integer multiplication
- Dyck reachability in DAGs
- Context-free language membership
- Distance in undirected graphs
- Reachability in directed graphs
- Context-free reachability in DAGs

(Patnaik & Immerman 97)

(Patnaik & Immerman 97)

(Weber & Schwentick 07)

(Gelade et al. 08)

(Grädel & Siebertz 12)

(Datta et al. 15)

(Muñoz et al. 16)

Some problems that are **probably not** in PTime-DynFO

Reachability in 2-player games

(Bouy

(Patnaik & Immerman 97)

Dyck reachability in (un)directed graphs

(Bouyer & Jugé 17)

Contents

- 1 Dynamic Complexity of Decision Problems
- Reachability and its Variants
- The Result
- 4 Conclusion and Future Work

Moving a token on a finite directed graph

- Input: Directed graph G = (V, E), a partition $V_A \uplus V_B = V$, two vertices $s, t \in V$
 - A token is first placed in s
 - * Alice controls V_A , Barbara controls V_B
 - \triangleright Players move the token along edges of G (when they can)
- Alice wins if either:
 - the token reaches a vertex $x \in V_B$ without outgoing edge
 - the token reaches the vertex t
- Output: Yes if Alice has a winning strategy No otherwise

- O Alice's vertices
- Barbara's vertices

- O Alice's vertices
 - ☐ Barbara's vertices
- Alice's winning vertices

- O Alice's vertices
 - ☐ Barbara's vertices
- ☐ Alice's winning vertices

- O Alice's vertices
 - ☐ Barbara's vertices
- Alice's winning vertices

- O Alice's vertices
 - ☐ Barbara's vertices
- ☐ Alice's winning vertices

Who wins?
Alice!

- O Alice's vertices
 - ☐ Barbara's vertices
- Alice's winning vertices

Who wins? Alice!

- O Alice's vertices
 - ☐ Barbara's vertices
- ☐ Alice's winning vertices

Theorem (Patnaik & Immerman 97)

Reachability in 2-player games is in PTime-DynFO iff

PTime = PTime-DynFO

Who wins? Alice!

- O Alice's vertices
 - ☐ Barbara's vertices
- Alice's winning vertices

Theorem (Patnaik & Immerman 97)

Reachability in 2-player games is in PTime-DynFO iff

PTime = PTime-DynFO

PTime-complete

for LogSpace reductions

Who wins?
Alice!

- O Alice's vertices
 - ☐ Barbara's vertices
- Alice's winning vertices

Theorem (Patnaik & Immerman 97)

Reachability in 2-player games is in PTime-DynFO iff

PTime = PTime-DynFO

for **LogSpace** reductions

dynamic-adapted reductions

Who wins?
Alice!

- O Alice's vertices
 - ☐ Barbara's vertices
- Alice's winning vertices

Theorem (Patnaik & Immerman 97)

Reachability in 2-player games is in PTime-DynFO iff

PTime = PTime-DynFO

for **LogSpace** reductions

PTime-complete^{dyn} **dynamic-adapted** reductions

Dyck words = Well-parenthesized words

Are these words Dyck?

Dyck words = Well-parenthesized words

Are these words Dyck?

Dyck words = Well-parenthesized words

Are these words Dyck?

Dyck paths = Paths labeled with Dyck words

V4

Dyck words = Well-parenthesized words

Are these words Dyck?

Dyck words = Well-parenthesized words

Are these words Dyck?

Dyck words = Well-parenthesized words

Are these words Dyck?

$$v_3 \xrightarrow{1} v_4 \xrightarrow{\bar{1}} v_2 \xrightarrow{0} v_3 \xrightarrow{1} v_4 \xrightarrow{\bar{1}} v_2 \xrightarrow{\bar{0}} v_1$$

Dyck words = Well-parenthesized words

Are these words Dyck?

Dyck paths = Paths labeled with Dyck words

Theorem (Weber & Schwentick 05)

Computing endpoints of Dyck paths in acyclic graphs is in DynFO.

Contents

- Dynamic Complexity of Decision Problems
- 2 Reachability and its Variants
- 3 The Result
- Conclusion and Future Work

Dyck Reachability in Directed Graphs is Hard

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime-PTime-DynFO}$

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

- Alice
- Barbara

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

- Alice
- ☐ Barbara

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

L1 Stack

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

LLL Stack

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff PTime = PTime-DynFO

Use a dynamic-adapted reduction from Reachability in 2-player games!

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

Stack

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

☐ Barbara

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

____2 _____ Stack

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

L² Stack

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

3 _____ Stack

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

LLL Stack

Theorem #1 (Bouyer & Jugé 17)

2-letter Dyck reachability in directed graphs is in PTime-DynFO iff ${\sf PTime} = {\sf PTime-DynFO}$

Use a dynamic-adapted reduction from Reachability in 2-player games!

- Alice
- ☐ Barbara

LLL Stack

Use binary label encoding & achieve 2-letter Dyck reachability ©

Theorem #2 (Bouyer & Jugé 17)

2-letter Dyck reachability in $\frac{\text{undirected}}{\text{praphs}}$ is in PTime-DynFO iff PTime = PTime-DynFO

Theorem #2 (Bouyer & Jugé 17)

2-letter Dyck reachability in $\frac{\text{undirected}}{\text{praphs}}$ is in PTime-DynFO iff PTime = PTime-DynFO

Theorem #2 (Bouyer & Jugé 17)

2-letter Dyck reachability in $\frac{\text{undirected}}{\text{praphs}}$ is in PTime-DynFO iff PTime = PTime-DynFO

Theorem #2 (Bouyer & Jugé 17)

2-letter Dyck reachability in $\frac{\text{undirected}}{\text{praphs}}$ is in PTime-DynFO iff PTime = PTime-DynFO

Theorem #2 (Bouyer & Jugé 17)

2-letter Dyck reachability in $\frac{\text{undirected}}{\text{praphs}}$ is in PTime-DynFO iff PTime = PTime-DynFO

Theorem #2 (Bouyer & Jugé 17)

2-letter Dyck reachability in $\frac{\text{undirected}}{\text{praphs}}$ is in PTime-DynFO iff PTime = PTime-DynFO

$$\boxed{\mathbb{V}} \xrightarrow{0} \boxed{\mathbb{W}} \qquad \boxed{\mathbb{V}} \xrightarrow{\overline{0}} \boxed{\mathbb{Q}} \xrightarrow{\overline{0}} \boxed{\mathbb{Q}} \xrightarrow{1} \boxed{\mathbb{Q}} \xrightarrow{1} \boxed{\mathbb{Q}} \xrightarrow{0} \boxed{\mathbb{Q}} \xrightarrow{0} \boxed{\mathbb{Q}} \xrightarrow{1} \boxed{\mathbb{Q}} \xrightarrow{1}$$

Theorem #2 (Bouyer & Jugé 17)

2-letter Dyck reachability in $\frac{\text{undirected}}{\text{praphs}}$ is in PTime-DynFO iff PTime = PTime-DynFO

And With One Letter Only?

Dynamic complexity of Dyck reachability problems

• With ≥ 2 letters: PTime-complete^{dyn}

in (un)directed graphs

And With One Letter Only?

Dynamic complexity of Dyck reachability problems

- With ≥ 2 letters: PTime-complete^{dyn}
- With 1 letter:
 - ▶ in DynFO (and not NLogSpace-hard^{dyn})
 - in NLogSpace

in (un)directed graphs

in **undirected** graphs in **directed** graphs

Contents

- Dynamic Complexity of Decision Problems
- 2 Reachability and its Variants
- The Result
- 4 Conclusion and Future Work

Future work

Some problems to investigate:

- 1-letter Dyck reachability in directed graphs
- Dyck reachability in Cayley graphs

Future work

Some problems to investigate:

- 1-letter Dyck reachability in directed graphs
- Dyck reachability in Cayley graphs

