Uniform generation of infinite concurrent runs

The case of trace monoids

Samy Abbes! & Vincent Jugé?

1: Université Paris Cité (IRIF) — 2: Université Gustave Eiffel (LIGM)

13/06/2022

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Contents

@ Introduction: Heaps of pieces and trace monoids

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Heaps of pieces and trace monoids

Heap of pieces!?] Trace monoidlll

o Pieces: o Alphabet:
=1 [B1 [ [ S~ {abc.d)

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Heaps of pieces and trace monoids

Heap of pieces!?] Trace monoidlll

@ Pieces:

o Alphabet:
lal 1b] fcl 1d]

z = {a7b7c7d}

@ Horizontal layout:

[a] [5]

12345 12345

Samy Abbes & Vincent Jugé

Uniform generation in infinite concurrent runs — The case of trace monoids



Heaps of pieces and trace monoids

Heap of piecesl?] Trace monoidlll
o Pieces: o Alphabet:
[2]1 [B1 [<1 [d] S — (a.b.c.d)

@ Horizontal layout:

[a] [5]

12345 12345
C | |
TS TS5

@ Vertical heaps:

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Heaps of pieces and trace monoids

Heap of piecesl?] Trace monoidlll
o Pieces: o Alphabet:
21 [51 [1 [4] S {abc.d)

@ Horizontal layout:

[a] [5]

12345 12345
C | |
TS TS5

@ Vertical heaps:

12345 12345

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Heaps of pieces and trace monoids

Heap of pieces!?]

@ Pieces:
lal 1b] 1cl 141

@ Horizontal layout:

12345 12345
c |d|
TS TS5

12345 12345

Samy Abbes & Vincent Jugé

Trace monoid!]

o Alphabet:
z = {37 b’ C7 d}

@ Dependence relation:

D= {{37 b}v {bv C}7 {Cv d}}

ac = ca
M = <abcd ad = da>
bd = db

[ b 4]
Dependency graph

@ Trace monoid:

Uniform generation in infinite concurrent runs — The case of trace monoids



Heaps of pieces and dependency graph

Dependency graph Heap of pieces

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Heaps of pieces and dependency graph

Dependency graph Heap of (disconnected) pieces

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Fragments of large heaps

What do random large heaps of pieces look like?

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Fragments of large heaps

What do random large heaps of pieces look like?
@ Define your preferred notion of heap length
@ Focus on finite-horizon / stopping-time events
© Study uniform distributions p on heaps of length k: what if kK — 07

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Fragments of large heaps

What do random large heaps of pieces look like?
© Heap length || = #pieces in the heap ¢
@ Consider events E, = {¢ starts with x}
© Weak convergence of distributions:

pk — v < (Vxe M, P, [E] — P,[E])

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Fragments of large heaps

What do random large heaps of pieces look like?

© Heap length || = #pieces in the heap ¢
@ Consider events E, = {x < &}
© Weak convergence of distributions:

pk — v < (Yxe M, P, [E] — P,[E])

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Fragments of large heaps

What do random large heaps of pieces look like?

© Heap length || = #pieces in the heap ¢
@ Consider events E, = {x < &}
© Weak convergence of distributions:

pk — v < (Yxe M, P, [E] — P,[E])

B B d |

al c| al c|

12345 12345
Theorem — not constructive!

If y1x is the unifom measure on My = {¢€ € M : [{| = k},
v exists and is the critical Bernoulli distribution of M.

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Bernoulli distributions
Definition
A probability measure i on M is:

@ uniform Bernoulli of parameter p if
Vxe M,Voe L, Py[xo <& |x<&=p

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Bernoulli distributions
Definition
A probability measure i on M is:
@ uniform Bernoulli of parameter p if
Vxe M,Voe L, Py[xo <& |x<&=p

Which are the possible values of the parameter p?

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids




Bernoulli distributions
Definition
A probability measure i on M is:
@ uniform Bernoulli of parameter p if
Vxe M,Voe L, Py[xo <& |x<&=p

Which are the possible values of the parameter p?

Uniform Bernoulli = P,[x = ¢] oc pP.

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids




Bernoulli distributions
Definition
A probability measure i on M is:
o uniform Bernoulli of parameter p if

Vxe M,Voe L, Py[xo <& |x<&=p

v

Which are the possible values of the parameter p? 0<p<pc

Uniform Bernoulli = P,[x = ¢] = p¥7(p).

H 12H(p) = 1/G(p)

8 g §
6 g w 0.75 =
o0 .2 i
4 g% 0.5 9
2 s 0.25 £
0 T T | 0 T T |
0 01 02 034/3=p 0 01 02 034/3=p
Generating function G(p) n M@bius polynomiall?l #(p)

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Bernoulli distributions
Definition
A probability measure p on M is:
@ uniform Bernoulli of parameter p if
Vxe M,Voe L, Py[xo <& |x<&=p

o critical Bernoulli if p = p. (requires infinite heaps)
Which are the possible values of the parameter p? 0<p<pc

Uniform Bernoulli = P,[x = ¢] = p¥7(p).

H 12 H(p) = 1/6(p)

g B
S 0.75 e
o0 .2 i
g% 0.5 2
c o]
S 0.25 £
T T 0 T T P
0 01 02 034/3=p 0 o1 02 03 4/3 = p,
Generating function G(p) n Mabius polynomiall?l #(p)

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids




Infinite heaps

Heap of pieces

40 (v —

Samy Abbes & Vincent Jugé

Uniform generation in infinite concurrent runs — The case of trace monoids



Infinite heaps

Heap of pieces Sets of interest
S M
[aTc] M oM
[ b finite || infinite
3 d | heaps heaps
alc | . all heaps

The limit v is a distribution on the set M with support oM.

Fact #10] J

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Contents

© Simulating Bernoulli distributions

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v

Idea #1: Pick & ~ ug, pick a piece x wisely and set &1 = &-x

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v

Idea #1: Pick & ~ pux, pick a piece x wisely and set {x11 = &k x
Problem: In general, {1 cannot be distributed according to 41

Example in the monoid {a, b, c | ac = cay™

Dependency graph

pi(fra v fec)=2/3 > pa(fra v fc)=5/8

[ S v A v N B = N 2 il

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor

qu o
10

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor

Fact #20

This approach works because v is Bernoulli!

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v

Idea #2: Simulate ¢ ~ v, floor by floor

Fact #20

This approach works because v is Bernoulli!

Problem: Huge state space (exponential number of possible floors)

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Contents

© Step-by-step simulation and pyramids

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v piece by piece®

Idea #3: Decompose heaps ecursivé_ly by using pyramids

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v piece by pieceA

Idea #3: Decompose heaps recursively by using pyramids

ot

a d |

alcl

a-pyramid 3 b-pyramid ~ c-pyramid
:;'.‘-*’: el L T

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v piece by piece

A

Idea #3: Decompose heaps recursively by using pyramids

I_I_I_a c ] a]c ;I__c_l |$|_7_|
b b b
a d | a d | a d a d |
alc]| alc| a alc
N Td] [aF]dF fa]lld] [
a-pyramid b-pyramid c-pyramid d-pyramid

Example: Recursive decomposition using b-pyramids

| b | d ]
[ a]c

b

a

d |

ad C

Samy Abbes & Vincent Jugé



Simulating the limit v piece by piece

A

Idea #3: Decompose heaps recursively by using pyramids

I_I_I_a c ] a]c ;I__c_l |$|_7_|
b b b
a d | a d | a d a d |
alc]| alc| a alc
N Td] [aF]dF fa]lld] [
a-pyramid b-pyramid c-pyramid - d-pyramid

Example: Recursive decomposition using b-pyramids

Samy Abbes & Vincent Jugé

c]

B~ G| GE



Simulating the limit v piece by piece

A

Idea #3: Decompose heaps recursively by using pyramids

ot

a

d |

alcl
1 . BN

' a d a d |
c | a alc
[ d | a d a

a-pyramid

b—lpyralmlidl c-pyramid - d:pyramid

Example: Recursive decomposition using b-pyramids, then a-pyramids. . .

B ]
-reTrT ol . N  E p e e

[a]c]

Samy Abbes & Vincent Jugé

B~ G| GE



Simulating the limit v piece by pieceA

Idea #3: Decompose heaps recursively by using independent pyramids
Theorem!*!

If ae X and v is Bernoulli on ﬂ():) then

a-pyramid Heap

Heap

a-free heap

where right-hand side random variables are independent.

Samy Abbes & Vincent Jugé

Uniform generation in infinite concurrent runs — The case of trace monoids




Simulating the limit v piece by pieceA

Idea #3: Decompose heaps recursively by using independent pyramids

Theorem!!

If ae X and v is Bernoulli on ﬂ():) then

Heap a-pyramid Heap a-free heap

where right-hand side random variables are independent.

« o R(¢)={cex:{eM- o}
@ D(a)={ceX:c-a#a o}

a-pyramid a-free heap ¢ s.t.

R(§) < D(a)

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Simulating the limit v piece by pieceA

Idea #3: Decompose heaps recursively by using independent pyramids

Theorem!*!
If X £ ¥, aeX and v is Bernoulli on M(X), then
© Tk
= Z X +
k=1 R 4 4
Heap ¢ s.t. a-pyramid a-free heap £ s.t.  a-free heap £ s.t.
R(¢) = X R(a-§) = X R(¢) = X

where right-hand side random variables are independent.

« o R(¢)={cex:{eM- o}
@ D(a)={ceX:c-a#a o}

a-pyramid a-free heap ¢ s.t.

R(§) < D(a)

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Our algorithm: Generating heaps distributed according to v

Refined goal: Generate a heap £ € M with R(¢) < X:
© Generate an a-free heap £ € M with R(§) € X
@ How many pieces a should £ contain? (k < Geometric law)
» if k=0: output £ =¢
» if k> 1and R(a-§) & X: go back to step #1  (anticipated rejection)
» if k> 1 and R(a-§) < X: generate a-pyramids &1, ..., &

and output & = &;-&-+- &€

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Our algorithm: Generating heaps distributed according to v

Refined goal: Generate a heap £ € M with R(¢) < X:
© Generate an a-free heap £ € M with R(§) € X
@ How many pieces a should £ contain? (k < Geometric law)
» if k=0: output £ =¢
» if k> 1and R(a-§) & X: go back to step #1  (anticipated rejection)
» if k> 1 and R(a-§) < X: generate a-pyramids &1, ..., &

and output & = &;-&-+- &€

Variant: Choose a € X and avoid rejection

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Our algorithm: Generating heaps distributed according to v

Refined goal: Generate a heap £ € M with R(¢) < X:
© Generate an a-free heap £ € M with R(§) € X
@ How many pieces a should £ contain? (k — Geometric law)
» if k=0: output £ =¢
» if k> 1and R(a-§) & X: go back to step #1  (anticipated rejection)
» if k> 1 and R(a-§) < X: generate a-pyramids &1, ..., &
and output § = &1-& &k

Variant: Choose a € X and avoid rejection

Running time/piece: nq or n Read-only memory usage: n or 2"
where M’ = M(X\{a}) and g = Grr(pc) < 1/p2 (g = n®" is possible)

Samy Abbes & Vincent Jugé

Uniform generation in infinite concurrent runs — The case of trace monoids



Contents

@ Conclusion

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



A distributed simulation algorithm

Algorithm based on:
@ precomputing and storing Mdbius polynomials of sub-monoids
e decomposing heaps into independent pyramids/heaps in sub-monoids

@ outputting pieces one by one with little synchronisation

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



A distributed simulation algorithm

Algorithm based on:
@ precomputing and storing Mdbius polynomials of sub-monoids
e decomposing heaps into independent pyramids/heaps in sub-monoids

@ outputting pieces one by one with little synchronisation

Two variants (mixtures are possible):
@ small storage — anticipated rejection — rather low efficiency

@ huge storage — no rejection — high, guaranteed efficiency

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



A distributed simulation algorithm

Algorithm based on:
@ precomputing and storing Mdbius polynomials of sub-monoids
e decomposing heaps into independent pyramids/heaps in sub-monoids

@ outputting pieces one by one with little synchronisation

Two variants (mixtures are possible):
@ small storage — anticipated rejection — rather low efficiency

@ huge storage — no rejection — high, guaranteed efficiency

Very efficient on graphs with:
o few cycles (small storage/high efficiency for a mix between variants)

@ small tree-width (no preprocessing/storage)

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Some references

[1] Problémes combinatoires de commutation et réarrangements,

Cartier & Foata (1969)
[2] Heaps of pieces I, Viennot (1986)
[3] Uniform generation in trace monoids, Abbes & Mairesse (2015)
[4] Uniform generation of infinite traces, Abbes & Jugé (2022)

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



Thark
SN =

Samy Abbes & Vincent Jugé Uniform generation in infinite concurrent runs — The case of trace monoids



	Introduction: Heaps of pieces and trace monoids
	Simulating Bernoulli distributions
	Step-by-step simulation and pyramids
	Conclusion

