Uniform generation of infinite concurrent runs The case of trace monoids

Samy Abbes¹ & Vincent Jugé²

1: Université Paris Cité (IRIF) — 2: Université Gustave Eiffel (LIGM)

13/06/2022

Contents

- 1 Introduction: Heaps of pieces and trace monoids
- 2 Simulating Bernoulli distributions
- Step-by-step simulation and pyramids
- 4 Conclusion

Heap of pieces^[2]

Trace monoid^[1]

• Pieces:

а

b

С

d

• Alphabet:

$$\Sigma = \{a, b, c, d\}$$

Heap of pieces^[2]

• Pieces:

• Horizontal layout:

Vertical heaps:

Trace monoid^[1]

• Alphabet:

$$\Sigma = \{a, b, c, d\}$$

Heap of pieces^[2]

Pieces:

Horizontal layout:

• Vertical heaps:

Trace monoid^[1]

Alphabet:

$$\Sigma = \{a, b, c, d\}$$

Heap of pieces^[2]

• Pieces:

c d

• Horizontal layout:

• Vertical heaps:

Trace monoid^[1]

• Alphabet:

$$\Sigma = \{a, b, c, d\}$$

Heap of pieces^[2]

• Pieces:

Horizontal layout:

Vertical heaps:

Trace monoid^[1]

Alphabet:

$$\Sigma = \{a, b, c, d\}$$

Dependence relation:

$$D = \{\{a, b\}, \{b, c\}, \{c, d\}\}\$$

• Trace monoid:

$$\mathcal{M} = \left\langle a, b, c, d \middle| \begin{array}{c} ac = ca \\ ad = da \\ bd = db \end{array} \right\rangle^{+}$$

Heaps of pieces and dependency graph

Dependency graph

Heap of pieces

Heaps of pieces and dependency graph

Dependency graph

Heap of (disconnected) pieces

- Define your preferred notion of heap length
- Focus on finite-horizon / stopping-time events
- **3** Study uniform distributions μ_k on heaps of length k: what if $k \to \infty$?

- **1** Heap length $|\xi| = \#$ pieces in the heap ξ
- **2** Consider events $E_x = \{\xi \text{ starts with } x\}$
- Weak convergence of distributions:

$$\mu_k \to \nu \Leftrightarrow (\forall x \in \mathcal{M}, \mathbb{P}_{\mu_k}[E_x] \to \mathbb{P}_{\nu}[E_x])$$

- Heap length $|\xi| = \#$ pieces in the heap ξ
- 2 Consider events $E_x = \{x \le \xi\}$
- Weak convergence of distributions:

$$\mu_k \to \nu \Leftrightarrow (\forall x \in \mathcal{M}, \mathbb{P}_{\mu_k}[E_x] \to \mathbb{P}_{\nu}[E_x])$$

What do random large heaps of pieces look like?

- **1** Heap length $|\xi| = \#$ pieces in the heap ξ
- 2 Consider events $E_x = \{x \le \xi\}$
- Weak convergence of distributions:

$$\mu_k \to \nu \Leftrightarrow (\forall x \in \mathcal{M}, \mathbb{P}_{\mu_k}[E_x] \to \mathbb{P}_{\nu}[E_x])$$

Theorem^[3] — not constructive!

If μ_k is the uniform measure on $\mathcal{M}_k = \{\xi \in \mathcal{M} : |\xi| = k\}$, ν exists and is the critical Bernoulli distribution of \mathcal{M} .

Definition

A probability measure μ on $\mathcal M$ is:

• uniform Bernoulli of parameter p if

$$\forall x \in \mathcal{M}, \forall \sigma \in \Sigma, \mathbb{P}_{\mu}[x \sigma \leqslant \xi \mid x \leqslant \xi] = p$$

Definition

A probability measure μ on $\mathcal M$ is:

• uniform Bernoulli of parameter p if

$$\forall x \in \mathcal{M}, \forall \sigma \in \Sigma, \mathbb{P}_{\mu}[x \, \sigma \leqslant \xi \mid x \leqslant \xi] = p$$

Definition

A probability measure μ on $\mathcal M$ is:

• uniform Bernoulli of parameter p if

$$\forall x \in \mathcal{M}, \forall \sigma \in \Sigma, \mathbb{P}_{\mu}[x \, \sigma \leqslant \xi \mid x \leqslant \xi] = p$$

Uniform Bernoulli
$$\Rightarrow \mathbb{P}_{\mu}[x = \xi] \propto p^{|x|}$$
.

Definition

A probability measure μ on $\mathcal M$ is:

• uniform Bernoulli of parameter p if

$$\forall x \in \mathcal{M}, \forall \sigma \in \Sigma, \mathbb{P}_{\mu}[x \, \sigma \leqslant \xi \mid x \leqslant \xi] = p$$

$$0 \leqslant p < p_c$$

Uniform Bernoulli
$$\Rightarrow \mathbb{P}_{\mu}[x = \xi] = \rho^{|x|}\mathcal{H}(p)$$
.

Definition

A probability measure μ on $\overline{\mathcal{M}}$ is:

• uniform Bernoulli of parameter p if

$$\forall x \in \mathcal{M}, \forall \sigma \in \Sigma, \mathbb{P}_{\mu}[x \, \sigma \leqslant \xi \mid x \leqslant \xi] = p$$

• critical Bernoulli if $p = p_c$

(requires infinite heaps)

$$0 \leqslant p \leqslant p_c$$

Uniform Bernoulli
$$\Rightarrow \mathbb{P}_{\mu}[x = \xi] = p^{|x|}\mathcal{H}(p)$$
.

Infinite heaps

Heap of pieces

Infinite heaps

Heap of pieces

Sets of interest

Fact #1^[3]

The limit ν is a distribution on the set $\overline{\mathcal{M}}$ with support $\partial \mathcal{M}$.

Contents

- 1 Introduction: Heaps of pieces and trace monoids
- 2 Simulating Bernoulli distributions
- Step-by-step simulation and pyramids
- 4 Conclusion

Idea #1: Pick $\xi_k \sim \mu_k$, pick a piece x wisely and set $\xi_{k+1} = \xi_k \cdot x$

Idea #1: Pick $\xi_k \sim \mu_k$, pick a piece x wisely and set $\xi_{k+1} = \xi_k \cdot x$ Problem: In general, ξ_{k+1} cannot be distributed according to μ_{k+1}

Example in the monoid $\langle a, b, c \mid ac = ca \rangle^+$

Dependency graph

Idea #2: Simulate $\xi \sim \nu$, floor by floor

Fact #2^[3]

This approach works because ν is Bernoulli!

Idea #2: Simulate $\xi \sim \nu$, floor by floor

Fact #2^[3]

This approach works because ν is Bernoulli!

Problem: Huge state space (exponential number of possible floors)

Contents

- Introduction: Heaps of pieces and trace monoids
- 2 Simulating Bernoulli distributions
- 3 Step-by-step simulation and pyramids
- 4 Conclusion

Simulating the limit ν piece by piece \triangle Idea #3: Decompose heaps recursively by using pyramids

Simulating the limit ν piece by piece \triangle

Idea #3: Decompose heaps recursively by using pyramids

Simulating the limit ν piece by piece $^{\triangle}$

Idea #3: Decompose heaps recursively by using pyramids

Example: Recursive decomposition using *b*-pyramids

Simulating the limit ν piece by piece \triangle

Idea #3: Decompose heaps recursively by using pyramids

Example: Recursive decomposition using *b*-pyramids

Simulating the limit ν piece by piece $^{\triangle}$

Idea #3: Decompose heaps recursively by using pyramids

Example: Recursive decomposition using b-pyramids, then a-pyramids...

Simulating the limit ν piece by piece \triangle

Idea #3: Decompose heaps recursively by using independent pyramids

Theorem^[4]

If $a \in \Sigma$ and ν is Bernoulli on $\overline{\mathcal{M}}(\Sigma)$, then

where right-hand side random variables are independent.

Simulating the limit ν piece by piece \wedge

Idea #3: Decompose heaps recursively by using independent pyramids

Theorem^[4]

If $a \in \Sigma$ and ν is Bernoulli on $\overline{\mathcal{M}}(\Sigma)$, then

where right-hand side random variables are independent.

a-pyramid

a-free heap ξ s.t.

- $R(\xi) = \{ \sigma \in \Sigma : \xi \in \mathcal{M} \cdot \sigma \}$
- $D(a) = \{ \sigma \in \Sigma : \sigma \cdot a \neq a \cdot \sigma \}$

Simulating the limit ν piece by piece \wedge

Idea #3: Decompose heaps recursively by using independent pyramids

Theorem^[4]

If $X \subseteq \Sigma$, $a \in \Sigma$ and ν is Bernoulli on $\overline{\mathcal{M}}(\Sigma)$, then

$$=\sum_{k=1}^{\infty}$$

Heap ξ s.t. $R(\xi) \subseteq X$

a-pyramid

$$R(a \cdot \xi) \subseteq X$$

$$R(\xi) \subseteq X$$

where right-hand side random variables are independent.

- $R(\xi) = \{ \sigma \in \Sigma : \xi \in \mathcal{M} \cdot \sigma \}$
- $D(a) = {\sigma \in \Sigma : \sigma \cdot a \neq a \cdot \sigma}$

- a-pyramid
- a-free heap ξ s.t.
 - $R(\xi) \subseteq D(a)$

Our algorithm: Generating heaps distributed according to u

Refined goal: Generate a heap $\xi \in \mathcal{M}$ with $R(\xi) \subseteq X$:

- Generate an a-free heap $\xi \in \mathcal{M}$ with $R(\xi) \subseteq X$
- **②** How many pieces a should ξ contain? $(k \leftarrow \text{Geometric law})$
 - if k = 0: output $\xi = \xi$
 - if $k \ge 1$ and $R(a \cdot \xi) \nsubseteq X$: go back to step #1 (anticipated rejection)
 - if $k \geqslant 1$ and $R(a \cdot \xi) \subseteq X$: generate a-pyramids ξ_1, \dots, ξ_k and output $\xi = \xi_1 \cdot \xi_2 \cdots \xi_k \cdot \xi$

Our algorithm: Generating heaps distributed according to u

Refined goal: Generate a heap $\xi \in \mathcal{M}$ with $R(\xi) \subseteq X$:

- Generate an a-free heap $\xi \in \mathcal{M}$ with $R(\xi) \subseteq X$
- **②** How many pieces a should ξ contain? $(k \leftarrow \text{Geometric law})$
 - if k = 0: output $\xi = \xi$
 - if $k \ge 1$ and $R(a \cdot \xi) \nsubseteq X$: go back to step #1 (anticipated rejection)
 - if $k \geqslant 1$ and $\mathsf{R}(\mathsf{a} \cdot \xi) \subseteq X$: generate a-pyramids ξ_1, \dots, ξ_k and output $\xi = \xi_1 \cdot \xi_2 \cdots \xi_k \cdot \xi$

Variant: Choose $a \in X$ and avoid rejection

Our algorithm: Generating heaps distributed according to u

Refined goal: Generate a heap $\xi \in \mathcal{M}$ with $R(\xi) \subseteq X$:

- Generate an a-free heap $\xi \in \mathcal{M}$ with $R(\xi) \subseteq X$
- **2** How many pieces a should ξ contain? $(k \leftarrow \text{Geometric law})$
 - if k = 0: output $\xi = \xi$
 - if $k \ge 1$ and $R(a \cdot \xi) \nsubseteq X$: go back to step #1 (anticipated rejection)
 - if $k \ge 1$ and $\mathsf{R}(\mathsf{a} \cdot \xi) \subseteq X$: generate a-pyramids ξ_1, \dots, ξ_k and output $\xi = \xi_1 \cdot \xi_2 \cdots \xi_k \cdot \xi$

Variant: Choose $a \in X$ and avoid rejection

Running time/piece: $n \ q$ or n Read-only memory usage: n or 2^n where $\mathcal{M}' = \mathcal{M}(\Sigma \setminus \{a\})$ and $q = \mathcal{G}_{\mathcal{M}'}(p_c) \leqslant 1/p_c^n$ $(q = n^{\Theta(n)} \text{ is possible})$

Contents

- 1 Introduction: Heaps of pieces and trace monoids
- 2 Simulating Bernoulli distributions
- Step-by-step simulation and pyramids
- 4 Conclusion

A distributed simulation algorithm

Algorithm based on:

- precomputing and storing Möbius polynomials of sub-monoids
- decomposing heaps into independent pyramids/heaps in sub-monoids
- outputting pieces one by one with little synchronisation

A distributed simulation algorithm

Algorithm based on:

- precomputing and storing Möbius polynomials of sub-monoids
- decomposing heaps into independent pyramids/heaps in sub-monoids
- outputting pieces one by one with little synchronisation

Two variants (mixtures are possible):

- small storage anticipated rejection rather low efficiency
- huge storage no rejection high, guaranteed efficiency

A distributed simulation algorithm

Algorithm based on:

- precomputing and storing Möbius polynomials of sub-monoids
- decomposing heaps into independent pyramids/heaps in sub-monoids
- outputting pieces one by one with little synchronisation

Two variants (mixtures are possible):

- small storage anticipated rejection rather low efficiency
- huge storage no rejection high, guaranteed efficiency

Very efficient on graphs with:

- few cycles (small storage/high efficiency for a mix between variants)
- small tree-width (no preprocessing/storage)

Some references

[1] Problèmes combinatoires de commutation et réarrangements,	
Cartier & Foata	(1969)
[2] Heaps of pieces I, Viennot	(1986)
[3] Uniform generation in trace monoids, Abbes & Mairesse	(2015)
[4] Uniform generation of infinite traces, Abbes & Jugé	(2022)

