Uniform generation of infinite concurrent runs The case of trace monoids Samy Abbes¹ & Vincent Jugé² 1: Université Paris Cité (IRIF) — 2: Université Gustave Eiffel (LIGM) 13/06/2022 ### Contents - 1 Introduction: Heaps of pieces and trace monoids - 2 Simulating Bernoulli distributions - Step-by-step simulation and pyramids - 4 Conclusion ### Heap of pieces^[2] Trace monoid^[1] • Pieces: а b С d • Alphabet: $$\Sigma = \{a, b, c, d\}$$ ### Heap of pieces^[2] ### • Pieces: • Horizontal layout: Vertical heaps: ### Trace monoid^[1] • Alphabet: $$\Sigma = \{a, b, c, d\}$$ ### Heap of pieces^[2] Pieces: Horizontal layout: • Vertical heaps: ### Trace monoid^[1] Alphabet: $$\Sigma = \{a, b, c, d\}$$ ### Heap of pieces^[2] • Pieces: c d • Horizontal layout: • Vertical heaps: ### Trace monoid^[1] • Alphabet: $$\Sigma = \{a, b, c, d\}$$ ### Heap of pieces^[2] • Pieces: Horizontal layout: Vertical heaps: ### Trace monoid^[1] Alphabet: $$\Sigma = \{a, b, c, d\}$$ Dependence relation: $$D = \{\{a, b\}, \{b, c\}, \{c, d\}\}\$$ • Trace monoid: $$\mathcal{M} = \left\langle a, b, c, d \middle| \begin{array}{c} ac = ca \\ ad = da \\ bd = db \end{array} \right\rangle^{+}$$ # Heaps of pieces and dependency graph ### Dependency graph ### Heap of pieces # Heaps of pieces and dependency graph ### Dependency graph ### Heap of (disconnected) pieces - Define your preferred notion of heap length - Focus on finite-horizon / stopping-time events - **3** Study uniform distributions μ_k on heaps of length k: what if $k \to \infty$? - **1** Heap length $|\xi| = \#$ pieces in the heap ξ - **2** Consider events $E_x = \{\xi \text{ starts with } x\}$ - Weak convergence of distributions: $$\mu_k \to \nu \Leftrightarrow (\forall x \in \mathcal{M}, \mathbb{P}_{\mu_k}[E_x] \to \mathbb{P}_{\nu}[E_x])$$ - Heap length $|\xi| = \#$ pieces in the heap ξ - 2 Consider events $E_x = \{x \le \xi\}$ - Weak convergence of distributions: $$\mu_k \to \nu \Leftrightarrow (\forall x \in \mathcal{M}, \mathbb{P}_{\mu_k}[E_x] \to \mathbb{P}_{\nu}[E_x])$$ What do random large heaps of pieces look like? - **1** Heap length $|\xi| = \#$ pieces in the heap ξ - 2 Consider events $E_x = \{x \le \xi\}$ - Weak convergence of distributions: $$\mu_k \to \nu \Leftrightarrow (\forall x \in \mathcal{M}, \mathbb{P}_{\mu_k}[E_x] \to \mathbb{P}_{\nu}[E_x])$$ ### Theorem^[3] — not constructive! If μ_k is the uniform measure on $\mathcal{M}_k = \{\xi \in \mathcal{M} : |\xi| = k\}$, ν exists and is the critical Bernoulli distribution of \mathcal{M} . ### Definition A probability measure μ on $\mathcal M$ is: • uniform Bernoulli of parameter p if $$\forall x \in \mathcal{M}, \forall \sigma \in \Sigma, \mathbb{P}_{\mu}[x \sigma \leqslant \xi \mid x \leqslant \xi] = p$$ ### Definition A probability measure μ on $\mathcal M$ is: • uniform Bernoulli of parameter p if $$\forall x \in \mathcal{M}, \forall \sigma \in \Sigma, \mathbb{P}_{\mu}[x \, \sigma \leqslant \xi \mid x \leqslant \xi] = p$$ ### Definition A probability measure μ on $\mathcal M$ is: • uniform Bernoulli of parameter p if $$\forall x \in \mathcal{M}, \forall \sigma \in \Sigma, \mathbb{P}_{\mu}[x \, \sigma \leqslant \xi \mid x \leqslant \xi] = p$$ Uniform Bernoulli $$\Rightarrow \mathbb{P}_{\mu}[x = \xi] \propto p^{|x|}$$. ### Definition A probability measure μ on $\mathcal M$ is: • uniform Bernoulli of parameter p if $$\forall x \in \mathcal{M}, \forall \sigma \in \Sigma, \mathbb{P}_{\mu}[x \, \sigma \leqslant \xi \mid x \leqslant \xi] = p$$ $$0 \leqslant p < p_c$$ Uniform Bernoulli $$\Rightarrow \mathbb{P}_{\mu}[x = \xi] = \rho^{|x|}\mathcal{H}(p)$$. ### Definition A probability measure μ on $\overline{\mathcal{M}}$ is: • uniform Bernoulli of parameter p if $$\forall x \in \mathcal{M}, \forall \sigma \in \Sigma, \mathbb{P}_{\mu}[x \, \sigma \leqslant \xi \mid x \leqslant \xi] = p$$ • critical Bernoulli if $p = p_c$ (requires infinite heaps) $$0 \leqslant p \leqslant p_c$$ Uniform Bernoulli $$\Rightarrow \mathbb{P}_{\mu}[x = \xi] = p^{|x|}\mathcal{H}(p)$$. # Infinite heaps ### Heap of pieces # Infinite heaps ### Heap of pieces ### Sets of interest Fact #1^[3] The limit ν is a distribution on the set $\overline{\mathcal{M}}$ with support $\partial \mathcal{M}$. ### Contents - 1 Introduction: Heaps of pieces and trace monoids - 2 Simulating Bernoulli distributions - Step-by-step simulation and pyramids - 4 Conclusion Idea #1: Pick $\xi_k \sim \mu_k$, pick a piece x wisely and set $\xi_{k+1} = \xi_k \cdot x$ Idea #1: Pick $\xi_k \sim \mu_k$, pick a piece x wisely and set $\xi_{k+1} = \xi_k \cdot x$ Problem: In general, ξ_{k+1} cannot be distributed according to μ_{k+1} **Example** in the monoid $\langle a, b, c \mid ac = ca \rangle^+$ Dependency graph Idea #2: Simulate $\xi \sim \nu$, floor by floor Fact #2^[3] This approach works because ν is Bernoulli! Idea #2: Simulate $\xi \sim \nu$, floor by floor Fact #2^[3] This approach works because ν is Bernoulli! Problem: Huge state space (exponential number of possible floors) ### Contents - Introduction: Heaps of pieces and trace monoids - 2 Simulating Bernoulli distributions - 3 Step-by-step simulation and pyramids - 4 Conclusion # Simulating the limit ν piece by piece \triangle Idea #3: Decompose heaps recursively by using pyramids # Simulating the limit ν piece by piece \triangle Idea #3: Decompose heaps recursively by using pyramids # Simulating the limit ν piece by piece $^{\triangle}$ Idea #3: Decompose heaps recursively by using pyramids **Example:** Recursive decomposition using *b*-pyramids # Simulating the limit ν piece by piece \triangle Idea #3: Decompose heaps recursively by using pyramids **Example:** Recursive decomposition using *b*-pyramids # Simulating the limit ν piece by piece $^{\triangle}$ Idea #3: Decompose heaps recursively by using pyramids Example: Recursive decomposition using b-pyramids, then a-pyramids... # Simulating the limit ν piece by piece \triangle Idea #3: Decompose heaps recursively by using independent pyramids ### Theorem^[4] If $a \in \Sigma$ and ν is Bernoulli on $\overline{\mathcal{M}}(\Sigma)$, then where right-hand side random variables are independent. # Simulating the limit ν piece by piece \wedge Idea #3: Decompose heaps recursively by using independent pyramids ### Theorem^[4] If $a \in \Sigma$ and ν is Bernoulli on $\overline{\mathcal{M}}(\Sigma)$, then where right-hand side random variables are independent. a-pyramid a-free heap ξ s.t. - $R(\xi) = \{ \sigma \in \Sigma : \xi \in \mathcal{M} \cdot \sigma \}$ - $D(a) = \{ \sigma \in \Sigma : \sigma \cdot a \neq a \cdot \sigma \}$ # Simulating the limit ν piece by piece \wedge Idea #3: Decompose heaps recursively by using independent pyramids ### Theorem^[4] If $X \subseteq \Sigma$, $a \in \Sigma$ and ν is Bernoulli on $\overline{\mathcal{M}}(\Sigma)$, then $$=\sum_{k=1}^{\infty}$$ Heap ξ s.t. $R(\xi) \subseteq X$ a-pyramid $$R(a \cdot \xi) \subseteq X$$ $$R(\xi) \subseteq X$$ where right-hand side random variables are independent. - $R(\xi) = \{ \sigma \in \Sigma : \xi \in \mathcal{M} \cdot \sigma \}$ - $D(a) = {\sigma \in \Sigma : \sigma \cdot a \neq a \cdot \sigma}$ - a-pyramid - a-free heap ξ s.t. - $R(\xi) \subseteq D(a)$ ## Our algorithm: Generating heaps distributed according to u ### **Refined goal:** Generate a heap $\xi \in \mathcal{M}$ with $R(\xi) \subseteq X$: - Generate an a-free heap $\xi \in \mathcal{M}$ with $R(\xi) \subseteq X$ - **②** How many pieces a should ξ contain? $(k \leftarrow \text{Geometric law})$ - if k = 0: output $\xi = \xi$ - if $k \ge 1$ and $R(a \cdot \xi) \nsubseteq X$: go back to step #1 (anticipated rejection) - if $k \geqslant 1$ and $R(a \cdot \xi) \subseteq X$: generate a-pyramids ξ_1, \dots, ξ_k and output $\xi = \xi_1 \cdot \xi_2 \cdots \xi_k \cdot \xi$ ## Our algorithm: Generating heaps distributed according to u **Refined goal:** Generate a heap $\xi \in \mathcal{M}$ with $R(\xi) \subseteq X$: - Generate an a-free heap $\xi \in \mathcal{M}$ with $R(\xi) \subseteq X$ - **②** How many pieces a should ξ contain? $(k \leftarrow \text{Geometric law})$ - if k = 0: output $\xi = \xi$ - if $k \ge 1$ and $R(a \cdot \xi) \nsubseteq X$: go back to step #1 (anticipated rejection) - if $k \geqslant 1$ and $\mathsf{R}(\mathsf{a} \cdot \xi) \subseteq X$: generate a-pyramids ξ_1, \dots, ξ_k and output $\xi = \xi_1 \cdot \xi_2 \cdots \xi_k \cdot \xi$ **Variant:** Choose $a \in X$ and avoid rejection ## Our algorithm: Generating heaps distributed according to u **Refined goal:** Generate a heap $\xi \in \mathcal{M}$ with $R(\xi) \subseteq X$: - Generate an a-free heap $\xi \in \mathcal{M}$ with $R(\xi) \subseteq X$ - **2** How many pieces a should ξ contain? $(k \leftarrow \text{Geometric law})$ - if k = 0: output $\xi = \xi$ - if $k \ge 1$ and $R(a \cdot \xi) \nsubseteq X$: go back to step #1 (anticipated rejection) - if $k \ge 1$ and $\mathsf{R}(\mathsf{a} \cdot \xi) \subseteq X$: generate a-pyramids ξ_1, \dots, ξ_k and output $\xi = \xi_1 \cdot \xi_2 \cdots \xi_k \cdot \xi$ **Variant:** Choose $a \in X$ and avoid rejection Running time/piece: $n \ q$ or n Read-only memory usage: n or 2^n where $\mathcal{M}' = \mathcal{M}(\Sigma \setminus \{a\})$ and $q = \mathcal{G}_{\mathcal{M}'}(p_c) \leqslant 1/p_c^n$ $(q = n^{\Theta(n)} \text{ is possible})$ #### Contents - 1 Introduction: Heaps of pieces and trace monoids - 2 Simulating Bernoulli distributions - Step-by-step simulation and pyramids - 4 Conclusion ### A distributed simulation algorithm ### Algorithm based on: - precomputing and storing Möbius polynomials of sub-monoids - decomposing heaps into independent pyramids/heaps in sub-monoids - outputting pieces one by one with little synchronisation ### A distributed simulation algorithm #### Algorithm based on: - precomputing and storing Möbius polynomials of sub-monoids - decomposing heaps into independent pyramids/heaps in sub-monoids - outputting pieces one by one with little synchronisation ### Two variants (mixtures are possible): - small storage anticipated rejection rather low efficiency - huge storage no rejection high, guaranteed efficiency ### A distributed simulation algorithm #### Algorithm based on: - precomputing and storing Möbius polynomials of sub-monoids - decomposing heaps into independent pyramids/heaps in sub-monoids - outputting pieces one by one with little synchronisation ### Two variants (mixtures are possible): - small storage anticipated rejection rather low efficiency - huge storage no rejection high, guaranteed efficiency ### Very efficient on graphs with: - few cycles (small storage/high efficiency for a mix between variants) - small tree-width (no preprocessing/storage) ### Some references | [1] Problèmes combinatoires de commutation et réarrangements, | | |---|--------| | Cartier & Foata | (1969) | | [2] Heaps of pieces I, Viennot | (1986) | | [3] Uniform generation in trace monoids, Abbes & Mairesse | (2015) | | [4] Uniform generation of infinite traces, Abbes & Jugé | (2022) |