Finding automatic sequences with few correlations

Vincent Jugé¹ & Irène Marcovici²

1: Université Gustave Eiffel (LIGM) — 2: Université de Lorraine (IECL)

14/06/2022

What does this title mean?

Our goal today:

Find simple deterministic algorithms for computing sequences $(u_n)_{n\geqslant 0}$

that share similarities with i.i.d. symbol sequences

What does this title mean?

Our goal today:

Find simple deterministic algorithms for computing sequences $(u_n)_{n\geq 0}$ $(u_n)_{n\geq 0}$ generated by finite automata

that share similarities with i.i.d. symbol sequences

terms $(u_n)_{n\geq 0}$ should be equidistributed

What does this title mean?

Our goal today:

Find simple deterministic algorithms for computing sequences $(u_n)_{n\geqslant 0}$ $(u_n)_{n\geqslant 0}$ generated by finite automata

that share similarities with i.i.d. symbol sequences

terms $(u_n)_{n\geqslant 0}$ should be equidistributed pairs $(u_n,u_{n+a})_{n\geqslant 0}$ should be equidistributed triples $(u_n,u_{n+a},u_{n+a+b})_{n\geqslant 0}$ should be equidistributed

٠.

Example #1: Thue-Morse sequence

$$u_n = \begin{cases} 0 & \text{if the binary digit expansion of } n \text{ contains an even number of 1s} \\ 1 & \text{otherwise} \end{cases}$$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

Example #1: Thue-Morse sequence

$$u_n = \begin{cases} 0 & \text{if the binary digit expansion of } n \text{ contains an even number of 1s} \\ 1 & \text{otherwise} \end{cases}$$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

Computing u_{23} with an automaton:

• Write 23 in base 2 (little-endian convention): $\langle 23 \rangle_2 = 111010000...$

Example #1: Thue-Morse sequence

 $u_n = \begin{cases} 0 & \text{if the binary digit expansion of } n \text{ contains an even number of 1s} \\ 1 & \text{otherwise} \end{cases}$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

- Write 23 in base 2 (little-endian convention): $\langle 23 \rangle_2 = 111010000...$
- **2** Feed $\langle 23 \rangle_2$ to the **Thue–Morse automaton** and output the state label you get stuck seeing

Example #1: Thue–Morse sequence

 $u_n = \begin{cases} 0 & \text{if the binary digit expansion of } n \text{ contains an even number of 1s} \\ 1 & \text{otherwise} \end{cases}$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

- Write 23 in base 2 (little-endian convention): $\langle 23 \rangle_2 = 111010000...$
- **2** Feed $\langle 23 \rangle_2$ to the **Thue–Morse automaton** and output the state label you get stuck seeing

Example #1: Thue-Morse sequence

 $u_n = \begin{cases} 0 & \text{if the binary digit expansion of } n \text{ contains an even number of 1s} \\ 1 & \text{otherwise} \end{cases}$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

- Write 23 in base 2 (little-endian convention): $\langle 23 \rangle_2 = 111010000...$
- **2** Feed $\langle 23 \rangle_2$ to the **Thue–Morse automaton** and output the state label you get stuck seeing

Example #1: Thue–Morse sequence

 $u_n = \begin{cases} 0 & \text{if the binary digit expansion of } n \text{ contains an even number of 1s} \\ 1 & \text{otherwise} \end{cases}$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

- Write 23 in base 2 (little-endian convention): $\langle 23 \rangle_2 = 111010000...$
- ② Feed $\langle 23 \rangle_2$ to the Thue–Morse automaton and output the state label you get stuck seeing

Example #1: Thue-Morse sequence

 $u_n = \begin{cases} 0 & \text{if the binary digit expansion of } n \text{ contains an even number of 1s} \\ 1 & \text{otherwise} \end{cases}$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

- Write 23 in base 2 (little-endian convention): $\langle 23 \rangle_2 = 111010000...$
- **2** Feed $\langle 23 \rangle_2$ to the **Thue–Morse automaton** and output the state label you get stuck seeing

Example #1: Thue–Morse sequence

 $u_n = \begin{cases} 0 & \text{if the binary digit expansion of } n \text{ contains an even number of 1s} \\ 1 & \text{otherwise} \end{cases}$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

- Write 23 in base 2 (little-endian convention): $\langle 23 \rangle_2 = 111010000...$
- **2** Feed $\langle 23 \rangle_2$ to the **Thue–Morse automaton** and output the state label you get stuck seeing

Example #1: Thue-Morse sequence

 $u_n = \begin{cases} 0 & \text{if the binary digit expansion of } n \text{ contains an even number of 1s} \\ 1 & \text{otherwise} \end{cases}$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

- Write 23 in base 2 (little-endian convention): $\langle 23 \rangle_2 = 111010000...$
- **2** Feed $\langle 23 \rangle_2$ to the **Thue–Morse automaton** and output the state label you get stuck seeing

Example #1: Thue-Morse sequence

2-automatic

 $u_n = \begin{cases} 0 & \text{if the binary digit expansion of } n \text{ contains an even number of 1s} \\ 1 & \text{otherwise} \end{cases}$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

Computing u_{23} with an automaton: $u_{23} = 0$

- Write 23 in base 2 (little-endian convention): $\langle 23 \rangle_2 = 111010000...$
- $\ \ \,$ Feed $\langle 23\rangle_2$ to the Thue–Morse automaton and output the state label you get stuck seeing

Example #2: Mod2

$$u_n = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{otherwise} \end{cases}$$

$$u_n = 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \dots$$

Example #2: Mod2

2-automatic

$$u_n = \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{otherwise} \end{cases}$$

$$u_n = 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \dots$$

- Write *n* in base 2 (little-endian convention)
- **②** Feed $\langle n \rangle_2$ to the following automaton and output the state label you get stuck seeing

Example #3: Powers of 3

$$u_n = \begin{cases} 1 & \text{if } n \text{ is a power of 3} \\ 0 & \text{otherwise} \end{cases}$$

Example #3: Powers of 3

3-automatic

$$u_n = \begin{cases} 1 & \text{if } n \text{ is a power of 3} \\ 0 & \text{otherwise} \end{cases}$$

- Write *n* in base 3 (little-endian convention)
- **②** Feed $\langle n \rangle_3$ to the following automaton and output the state label you get stuck seeing

Automatic sequences: Big-endian variant

- Write *n* in base *k* (big-endian convention): $\langle \langle 23 \rangle \rangle_2 = \dots 000010111$
- ② Feed $\langle\!\langle n \rangle\!\rangle_{\it k}$ to your favourite automaton and output the last state label you see

Example #1: Thue–Morse sequence (in \mathbb{Z}_2)

$$u_n = egin{cases} 0 & ext{if } n = 0 \ u_{\lfloor n/2
floor} & ext{if } n \geqslant 1 ext{ is even} \ u_{\lfloor n/2
floor} + 1 & ext{if } n \geqslant 1 ext{ is odd} \end{cases}$$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

Example #1: Thue–Morse sequence (in \mathbb{Z}_2)

$$u_n = egin{cases} 0 & ext{if } n = 0 \ u_{\lfloor n/2
floor} & ext{if } n \geqslant 1 ext{ is even} \ u_{\lfloor n/2
floor} + 1 & ext{if } n \geqslant 1 ext{ is odd} \end{cases}$$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-1 window with function $f: x \mapsto x$

$$\langle 23 \rangle_2 = \boxed{1} \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots$$

$$f \downarrow$$

$$u_{23} = 1 +$$

Example #1: Thue–Morse sequence (in \mathbb{Z}_2)

$$u_n = egin{cases} 0 & ext{if } n = 0 \ u_{\lfloor n/2
floor} & ext{if } n \geqslant 1 ext{ is even} \ u_{\lfloor n/2
floor} + 1 & ext{if } n \geqslant 1 ext{ is odd} \end{cases}$$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-1 window with function $f: x \mapsto x$

$$\langle 23 \rangle_2 = 1 \quad \boxed{1} \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots$$

$$f \downarrow$$

$$u_{23} = 1 + 1 + \dots$$

Example #1: Thue–Morse sequence (in \mathbb{Z}_2)

$$u_n = egin{cases} 0 & ext{if } n = 0 \ u_{\lfloor n/2
floor} & ext{if } n \geqslant 1 ext{ is even} \ u_{\lfloor n/2
floor} + 1 & ext{if } n \geqslant 1 ext{ is odd} \end{cases}$$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-1 window with function $f: x \mapsto x$

$$\langle 23 \rangle_2 = 1 \quad 1 \quad \boxed{1} \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots$$

$$f \downarrow$$

$$u_{23} = 1 + 1 + 1 + 1 + \dots$$

Example #1: Thue–Morse sequence (in \mathbb{Z}_2)

$$u_n = egin{cases} 0 & ext{if } n = 0 \ u_{\lfloor n/2
floor} & ext{if } n \geqslant 1 ext{ is even} \ u_{\lfloor n/2
floor} + 1 & ext{if } n \geqslant 1 ext{ is odd} \end{cases}$$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-1 window with function $f: x \mapsto x$

$$\langle 23 \rangle_2 = 1 \quad 1 \quad 1 \quad \boxed{0} \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots$$

$$f \downarrow$$

$$u_{23} = 1 + 1 + 1 + 0 +$$

Example #1: Thue–Morse sequence (in \mathbb{Z}_2) rank-1 block-additive

$$u_n = egin{cases} 0 & ext{if } n = 0 \ u_{\lfloor n/2
floor} & ext{if } n \geqslant 1 ext{ is even} \ u_{\lfloor n/2
floor} + 1 & ext{if } n \geqslant 1 ext{ is odd} \end{cases}$$

$$u_n = 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, \dots$$

Computing u_{23} with a sliding window: $u_{23} = 0$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-1 window with function $f: x \mapsto x$

Example #2: Generalised Golay–Rudin–Shapiro sequence (in \mathbb{Z}_p)

$$u_n = \begin{cases} 0 & \text{if } n = 0 \\ u_{\lfloor n/p \rfloor} + ij & \text{if } n \geqslant 1 \text{ and } n \equiv i + pj \text{ mod } p^2 \end{cases}$$

$$u_n = 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, \dots$$
 for $p = 2$

Example #2: Generalised Golay–Rudin–Shapiro sequence (in \mathbb{Z}_p)

$$u_n = \begin{cases} 0 & \text{if } n = 0 \\ u_{\lfloor n/p \rfloor} + ij & \text{if } n \geqslant 1 \text{ and } n \equiv i + pj \mod p^2 \end{cases}$$

$$u_n = 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, \dots$$
 for $p = 2$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-2 window with function $f: (x,y) \mapsto xy$

$$\langle 23 \rangle_2 = \begin{bmatrix} 1 & 1 \\ \end{bmatrix} 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots$$

$$f \downarrow$$

$$u_{23} = 1 +$$

Example #2: Generalised Golay–Rudin–Shapiro sequence (in \mathbb{Z}_p)

$$u_n = \begin{cases} 0 & \text{if } n = 0 \\ u_{\lfloor n/p \rfloor} + ij & \text{if } n \geqslant 1 \text{ and } n \equiv i + pj \mod p^2 \end{cases}$$

$$u_n = 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, \dots$$
 for $p = 2$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-2 window with function $f: (x,y) \mapsto xy$

$$\langle 23 \rangle_2 = 1 \quad \boxed{1} \quad \boxed{1} \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots$$

$$f \downarrow$$

$$u_{23} = 1 + 1 + \dots$$

Example #2: Generalised Golay–Rudin–Shapiro sequence (in \mathbb{Z}_p)

$$u_n = \begin{cases} 0 & \text{if } n = 0 \\ u_{\lfloor n/p \rfloor} + ij & \text{if } n \geqslant 1 \text{ and } n \equiv i + pj \mod p^2 \end{cases}$$

$$u_n = 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, \dots$$

for $p = 2$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-2 window with function $f: (x,y) \mapsto xy$

$$\langle 23 \rangle_2 = 1 \quad 1 \quad \boxed{1 \quad 0} \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots$$

$$f \downarrow$$

$$u_{23} = 1 + 1 + 0 +$$

Example #2: Generalised Golay–Rudin–Shapiro sequence (in \mathbb{Z}_p)

$$u_n = \begin{cases} 0 & \text{if } n = 0 \\ u_{\lfloor n/p \rfloor} + ij & \text{if } n \geqslant 1 \text{ and } n \equiv i + pj \mod p^2 \end{cases}$$

$$u_n = 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, \dots$$
 for $p = 2$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-2 window with function $f: (x,y) \mapsto xy$

$$\langle 23 \rangle_2 = 1 \quad 1 \quad 1 \quad \boxed{0 \quad 1} \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots$$

$$f \downarrow$$

$$u_{23} = 1 + 1 + 0 + 0 + \dots$$

Example #2: Generalised Golay–Rudin–Shapiro sequence (in \mathbb{Z}_p) rank-2 block-additive

$$u_n = \begin{cases} 0 & \text{if } n = 0 \\ u_{\lfloor n/p \rfloor} + ij & \text{if } n \geqslant 1 \text{ and } n \equiv i + pj \text{ mod } p^2 \end{cases}$$

$$u_n = 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, \dots$$

for $p = 2$

Computing u_{23} with a sliding window: $u_{23} = 0$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-2 window with function $f: (x,y) \mapsto xy$

Example #3: Mod2 (in \mathbb{Z}_2)

$$u_n = \begin{cases} 0 & \text{if } n = 0 \\ u_{\lfloor n/2 \rfloor} & \text{if } n \geqslant 1 \text{ and } n \equiv 0 \text{ or } 3 \text{ mod } 4 \\ u_{\lfloor n/2 \rfloor} + 1 & \text{if } n \geqslant 1 \text{ and } n \equiv 1 \text{ or } 2 \text{ mod } 4 \end{cases}$$

$$u_n = 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \dots$$

Example #3: Mod2 (in \mathbb{Z}_2)

$$u_n = \begin{cases} 0 & \text{if } n = 0 \\ u_{\lfloor n/2 \rfloor} & \text{if } n \geqslant 1 \text{ and } n \equiv 0 \text{ or } 3 \text{ mod } 4 \\ u_{\lfloor n/2 \rfloor} + 1 & \text{if } n \geqslant 1 \text{ and } n \equiv 1 \text{ or } 2 \text{ mod } 4 \end{cases}$$

$$u_n = 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \dots$$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-2 window with function $f: (x,y) \mapsto x+y$

$$\langle 23 \rangle_2$$
 to the size-2 window with function $f: (x,y) \mapsto x$

$$\langle 23 \rangle_2 = \boxed{1 \quad 1} \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots$$

$$f \downarrow$$

$$u_{23} = 0 +$$

Example #3: Mod2 (in \mathbb{Z}_2)

$$u_n = \begin{cases} 0 & \text{if } n = 0 \\ u_{\lfloor n/2 \rfloor} & \text{if } n \geqslant 1 \text{ and } n \equiv 0 \text{ or } 3 \text{ mod } 4 \\ u_{\lfloor n/2 \rfloor} + 1 & \text{if } n \geqslant 1 \text{ and } n \equiv 1 \text{ or } 2 \text{ mod } 4 \end{cases}$$

$$u_n = 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \dots$$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-2 window with function $f: (x,y) \mapsto x+y$

$$\langle 23 \rangle_2 = 1 \quad \boxed{1 \quad 1} \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots$$

$$f \downarrow$$

$$u_{23} = 0 + 0 + \dots$$

Example #3: Mod2 (in \mathbb{Z}_2)

$$u_n = \begin{cases} 0 & \text{if } n = 0 \\ u_{\lfloor n/2 \rfloor} & \text{if } n \geqslant 1 \text{ and } n \equiv 0 \text{ or } 3 \text{ mod } 4 \\ u_{\lfloor n/2 \rfloor} + 1 & \text{if } n \geqslant 1 \text{ and } n \equiv 1 \text{ or } 2 \text{ mod } 4 \end{cases}$$

$$u_n = 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \dots$$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-2 window with function $f: (x,y) \mapsto x+y$

$$\langle 23 \rangle_2 = 1 \quad 1 \quad \boxed{1 \quad 0} \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots$$

$$f \downarrow$$

$$u_{23} = 0 + 0 + 1 + \dots$$

Example #3: Mod2 (in \mathbb{Z}_2)

$$u_n = \begin{cases} 0 & \text{if } n = 0 \\ u_{\lfloor n/2 \rfloor} & \text{if } n \geqslant 1 \text{ and } n \equiv 0 \text{ or } 3 \text{ mod } 4 \\ u_{\lfloor n/2 \rfloor} + 1 & \text{if } n \geqslant 1 \text{ and } n \equiv 1 \text{ or } 2 \text{ mod } 4 \end{cases}$$

$$u_n = 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \dots$$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-2 window with function $f: (x,y) \mapsto x+y$

$$\langle 23 \rangle_2 = 1 \quad 1 \quad 1 \quad \boxed{0 \quad 1} \quad 0 \quad 0 \quad 0 \quad 0 \quad \dots$$

$$f \downarrow$$

$$u_{23} = 0 + 0 + 1 + 1 + \dots$$

Automatic sequences and block-additive sequences

Example #3: Mod2 (in \mathbb{Z}_2)

rank-2 block-additive

$$u_n = \begin{cases} 0 & \text{if } n = 0 \\ u_{\lfloor n/2 \rfloor} & \text{if } n \geqslant 1 \text{ and } n \equiv 0 \text{ or } 3 \text{ mod } 4 \\ u_{\lfloor n/2 \rfloor} + 1 & \text{if } n \geqslant 1 \text{ and } n \equiv 1 \text{ or } 2 \text{ mod } 4 \end{cases}$$

$$u_n = 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \dots$$

Computing u_{23} with a sliding window: $u_{23} = 1$

- Write 23 in base 2 (little-endian convention)
- **2** Feed $\langle 23 \rangle_2$ to the size-2 window with function $f: (x,y) \mapsto x+y$

Automatic sequence

A sequence $(u_n)_{n\geqslant 0}$ is **k-automatic** if there exists a labelled DFA that, upon reading the base-k digits of n, gets stuck in states labelled u_n .

Automatic sequence

A sequence $(u_n)_{n\geqslant 0}$ is **k-automatic** if there exists a labelled DFA that, upon reading the base-k digits of n, gets stuck in states labelled u_n .

Examples: Thue-Morse, Mod2, Powers of 3, Generalised GRS

Counter-examples: Squares, Primes

Automatic sequence

A sequence $(u_n)_{n\geqslant 0}$ is **k-automatic** if there exists a labelled DFA that, upon reading the base-k digits of n, gets stuck in states labelled u_n .

Examples: Thue-Morse, Mod2, Powers of 3, Generalised GRS

Counter-examples: Squares, Primes

Block-additive sequence

A sequence $(u_n)_{n\geqslant 0}$ is rank-r block-additive in \mathbb{Z}_k if there exists a function $\varphi\colon \mathbb{Z}_{k^r}\mapsto \mathbb{Z}_k$ such that $u_n=\begin{cases} 0 & \text{if } n=0\\ u_{\lfloor n/k\rfloor}+\varphi(n \bmod k^r) & \text{if } n\geqslant 0 \end{cases}$

Automatic sequence

A sequence $(u_n)_{n\geqslant 0}$ is **k-automatic** if there exists a labelled DFA that, upon reading the base-k digits of n, gets stuck in states labelled u_n .

Examples: Thue-Morse, Mod2, Powers of 3, Generalised GRS

Counter-examples: Squares, Primes

Block-additive sequence

A sequence $(u_n)_{n\geqslant 0}$ is rank-r block-additive in \mathbb{Z}_k if there exists a function $\varphi\colon \mathbb{Z}_{k^r}\mapsto \mathbb{Z}_k$ such that $u_n=\begin{cases} 0 & \text{if } n=0\\ u_{\lfloor n/k\rfloor}+\varphi(n \bmod k^r) & \text{if } n\geqslant 0 \end{cases}$

Examples: Mod2, Thue-Morse, Generalised GRS, Non-multiples of 3

Counter-examples: Powers of 3, Multiples of 3

Proposition: Every block-additive sequence is automatic.

You should have no idea of what you will find!

You should have no idea of what you will find!

Equidistributed terms

A sequence $(u_n)_{n\geqslant 0}\in S^{\mathbb{N}}$ is 1-uncorrelated if

$$|S| \cdot |\{k \leqslant n \colon u_k = s\}| \sim n$$

for all symbols $s \in S$.

You should have no idea of what you will find!

Equidistributed terms

A sequence $(u_n)_{n\geqslant 0}\in S^{\mathbb{N}}$ is 1-uncorrelated if

$$|S| \cdot |\{k \leqslant n \colon u_k = s\}| \sim n$$

for all symbols $s \in S$.

Examples:

Mod2

Thue-Morse

Generalised GRS (for all p)

 $0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,\dots$

 $0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, \dots$

 $0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, \dots$

You should have no idea of what you will find!

Equidistributed terms

A sequence $(u_n)_{n\geqslant 0}\in S^{\mathbb{N}}$ is 1-uncorrelated if

$$|S| \cdot |\{k \leqslant n \colon u_k = s\}| \sim n$$

for all symbols $s \in S$.

Examples:

Mod2 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,

Thue–Morse $0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, \dots$

Generalised GRS (for all p) 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, ...

Counter-examples:

 $\begin{array}{lll} \text{Squares} & 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, \dots \\ \text{Multiples of 3} & 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, \dots \\ \text{Non-multiples of 3} & 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, \dots \\ \end{array}$

Odd number of digits $1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, \dots$

No single past observation should help you!

No single past observation should help you!

Equidistributed pairs

A sequence $(u_n)_{n\geqslant 0}\in S^{\mathbb{N}}$ is **2-uncorrelated** if

$$|S^2|\cdot|\{k\leqslant n\colon (u_k,u_{k+a})=(s,t)\}|\sim n$$

for all symbols $s, t \in S$ and integers a > 0.

No single past observation should help you!

Equidistributed pairs

A sequence $(u_n)_{n\geqslant 0}\in S^{\mathbb{N}}$ is **2-uncorrelated** if

$$|S^2| \cdot |\{k \leqslant n : (u_k, u_{k+a}) = (s, t)\}| \sim n$$

for all symbols $s, t \in S$ and integers a > 0.

Examples:

Generalised
$$GRS^{[4]}$$
 (for all p)

$$0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, \dots$$

No single past observation should help you!

Equidistributed pairs

A sequence $(u_n)_{n\geq 0}\in S^{\mathbb{N}}$ is **2-uncorrelated** if

$$|S^2| \cdot |\{k \leqslant n : (u_k, u_{k+a}) = (s, t)\}| \sim n$$

for all symbols $s, t \in S$ and integers a > 0.

Examples:

Generalised $GRS^{[4]}$ (for all p)

 $0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, \dots$

Counter-examples:

Mod2

Thue-Morse

$$\mathbb{P}[01] = 1/2$$

$$\mathbb{P}[00] = 1/3$$

No finite-horizon observation should help you!

Equidistributed tuples

A sequence $(u_n)_{n\geqslant 0}\in S^{\mathbb{N}}$ is ℓ -uncorrelated if

$$|S^{\ell}| \cdot |\{k \leqslant n : (u_{k+a_1}, u_{k+a_2}, \dots, u_{k+a_{\ell}}) = (s_1, s_2, \dots, s_{\ell})\}| \sim n$$

for all symbols $s_1, s_2, \ldots, s_\ell \in S$ and integers $0 = a_1 < a_2 < \ldots < a_\ell$.

No finite-horizon observation should help you!

Equidistributed tuples

A sequence $(u_n)_{n\geq 0}\in S^{\mathbb{N}}$ is ℓ -uncorrelated if

$$|S^{\ell}| \cdot |\{k \leqslant n : (u_{k+a_1}, u_{k+a_2}, \dots, u_{k+a_{\ell}}) = (s_1, s_2, \dots, s_{\ell})\}| \sim n$$

for all symbols $s_1, s_2, \ldots, s_\ell \in S$ and integers $0 = a_1 < a_2 < \ldots < a_\ell$.

Example for $\ell = 3$:

Generalised GRS^[8] (for
$$p = 2$$
)

$$0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, \dots$$

Counter-example for $\ell = 3$:

Generalised GRS (for
$$p = 3$$
)

$$\mathbb{P}[000] = 5/81$$

No finite-horizon observation should help you!

Equidistributed tuples

A sequence $(u_n)_{n\geqslant 0}\in S^{\mathbb{N}}$ is ℓ -uncorrelated if

$$|S^{\ell}| \cdot |\{k \leqslant n : (u_{k+a_1}, u_{k+a_2}, \dots, u_{k+a_{\ell}}) = (s_1, s_2, \dots, s_{\ell})\}| \sim n$$

for all symbols $s_1, s_2, \ldots, s_\ell \in S$ and integers $0 = a_1 < a_2 < \ldots < a_\ell$.

```
Example for \ell = 3:
```

Generalised GRS^[8] (for
$$p = 2$$
)

$$0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, \dots$$

Counter-example for
$$\ell = 3$$
:

Generalised GRS (for
$$p = 3$$
)

$$\mathbb{P}[000] = 5/81$$

Counter-example for
$$\ell = 4$$
:

Generalised GRS (for
$$p = 2$$
)

$$\mathbb{P}[0000] = 3/32$$

Theorem^[2]

Every non-constant k-automatic sequence with an s-state big-endian DFA is k^{s+1} -correlated.

Theorem^[2]

Every non-constant k-automatic sequence with an s-state big-endian DFA is k^{s+1} -correlated.

Proof:

Let $\ell=k^{s+1}$. Our sequence $(u_n)_{n\geqslant 0}$ has at most ℓs^2 distinct subsequences of length ℓ :

Theorem^[2]

Every non-constant k-automatic sequence with an s-state big-endian DFA is k^{s+1} -correlated.

Proof:

Let $\ell=k^{s+1}$. Our sequence $(u_n)_{n\geqslant 0}$ has at most ℓs^2 distinct subsequences of length ℓ :

Theorem^[2]

Every non-constant k-automatic sequence with an s-state big-endian DFA is k^{s+1} -correlated.

Proof:

Let $\ell=k^{s+1}$. Our sequence $(u_n)_{n\geqslant 0}$ has at most ℓs^2 distinct subsequences of length ℓ :

Theorem^[2]

Every non-constant k-automatic sequence with an s-state big-endian DFA is k^{s+1} -correlated.

Proof:

Let $\ell=k^{s+1}$. Our sequence $(u_n)_{n\geqslant 0}$ has at most ℓs^2 distinct subsequences of length ℓ :

Thus, at least one of the $k^{\ell} \geqslant 2^{\ell} > \ell s^2$ sequences of length ℓ is missing.

Theorem^[8]

Every 2ℓ -uncorrelated block-additive sequence in \mathbb{Z}_2 is also $(2\ell+1)$ -uncorrelated.

Theorem^[8]

Every 2ℓ -uncorrelated block-additive sequence in \mathbb{Z}_2 is also $(2\ell+1)$ -uncorrelated.

Good side:

Many known 3-uncorrelated block-additive sequences in \mathbb{Z}_2 !

Theorem^[8]

Every 2ℓ -uncorrelated block-additive sequence in \mathbb{Z}_2 is also $(2\ell+1)$ -uncorrelated.

Good side:

Many known 3-uncorrelated block-additive sequences in $\mathbb{Z}_2!$

Bad sides:

Statement fails in \mathbb{Z}_p for $p \geqslant 3$.

Theorem^[8]

Every 2ℓ -uncorrelated block-additive sequence in \mathbb{Z}_2 is also $(2\ell+1)$ -uncorrelated.

Good side:

Many known 3-uncorrelated block-additive sequences in \mathbb{Z}_2 !

Bad sides:

Statement fails in \mathbb{Z}_p for $p \geq 3$.

No 4-uncorrelated block-additive sequences in \mathbb{Z}_2 are yet known.

Theorem^[8]

Every 2ℓ -uncorrelated block-additive sequence in \mathbb{Z}_2 is also $(2\ell+1)$ -uncorrelated.

Good side:

Many known 3-uncorrelated block-additive sequences in \mathbb{Z}_2 !

Bad sides:

Statement fails in \mathbb{Z}_p for $p \geq 3$.

No 4-uncorrelated block-additive sequences in \mathbb{Z}_2 are yet known.

Results so far:

Simple criteria for 2-/3-uncorrelated rank-3 block-additive sequences in \mathbb{Z}_2 . Rank-5 block-additive sequences in \mathbb{Z}_2 are 4-correlated.

Rank-3 block-additive sequences in \mathbb{Z}_3 are 3-correlated.

What is coming next?

- Extending our criteria to all 2-uncorrelated block-additive sequences in \mathbb{Z}_2 .
- Finding a 4-uncorrelated block-additive sequence or proving none exists.
- Finding a 4-uncorrelated automatic sequence or proving none exists.
- ullet Deciding whether an automaton ${\cal A}$ gives an ℓ -uncorrelated sequence.

Some references

[1] Une nouvelle propriété des suites de Rudin-Shapiro, Queffélec	(1987)
[2] Automatic sequences, Allouche & Shallit	(2003)
[3] Block-additive functions on the Gaussian integers,	,
Drmota, Grabner & Liardet	(2008)
[4] Bounds for the discrete correlations of infinite sequences on k symbols	
and generalized Rudin-Shapiro sequences, Grant, Shallit & Stoll	(2009)
[5] On a Golay-Shapiro-like sequence, Allouche	(2016)
[6] Discrete correlations of order 2 of generalized Rudin-Shapiro sequences	
on alphabets of arbitrary size, Tahay	(2020)
[7] Discrete correlations of order 2 of generalized Golay-Shapiro sequences:	
a combinatorial approach, Marcovici, Stoll & Tahay	(2021)
[8] Finding automatic sequences with few correlations Jugé & Marcovici	(2022)

