Galloping in fast-growth natural merge sorts

Elahe Ghasemi?3, Vincent Jugé? & Ghazal Khalighinejad!3

1: Duke University
2: LIGM — Université Gustave Eiffel & CNRS
3: Sharif University of Technology

08/07/2022

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Library sorting algorithms in a few languages (for composite-type arrays)

>
T >

2001 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16 '17 '18 '19 '20 '21 '22

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Library sorting algorithms in a few languages (for composite-type arrays)

[e Timsortl3! I é (‘ \:4

2001 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16 '17 '18 '19 '20 '21 '22

>
>

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Library sorting algorithms in a few languages (for composite-type arrays)

[e Timsortl3! I é (‘ \:4
2001 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16 '17 '18 '19 '20 '21 '22

D)

A& 5

Galloping in fast-growth natural merge sorts

E. Ghasemi, V. Jugé & G. Khalighinejad

Library sorting algorithms in a few languages (for composite-type arrays)

[Trotsort[® Y @
[e Timsortl3! é (_4 \:4
2001 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16 '17 '18 '19 '20 '21 '22
D)
&L &

Galloping in fast-growth natural merge sorts

E. Ghasemi, V. Jugé & G. Khalighinejad

Library sorting algorithms in a few languages (for composite-type arrays)

Powersort[®] [e
[Trotsort[® Y @
[e Timsortl3! é (_‘ \:4 x

>
>

2001 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16 '17 '18 '19 '20 '21 '22
-2 N

A g S

Galloping in fast-growth natural merge sorts

E. Ghasemi, V. Jugé & G. Khalighinejad

Library sorting algorithms in a few languages (for composite-type arrays)

Powersort[®] [e
[Trotsort[® Y @
[e Timsortl3! é (_4 \:4 x

>
>

2001 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16 '17 '18 '19 '20 '21 '22
-2 N

P ‘—:_(_:g) ':S—g)

Why don't people just use plain (DualPivot)QuickSort + Heapsort?

Galloping in fast-growth natural merge sorts

E. Ghasemi, V. Jugé & G. Khalighinejad

Sorting data

lof2f2]3fafof1]s[af1]2]3]

l

Lofofi]sfof2f2]3[sf4ala]s]

Heapsort and Mergesort have a worst-case time complexity of O(nlog(n))
and we cannot do better, even on average. ..

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Sorting data in a stable manner
lol2]2]3]4of1|s[af1[2]3]

| —|

Lofofi]sfof2f2]3[sf4ala]s]

Heapsort and Mergesort have a worst-case time complexity of O(nlog(n))
and we cannot do better, even on average. ..

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Sorting data in a stable manner
o[2f2]3]4of1[5]4[1]2]3]

| —|

Lofofi]sfof2f2]3[sf4ala]s]

Mergesort have a worst-case time complexity of O(nlog(n))
and we cannot do better, even on average. ..
But, sometimes, we can!

lofuf2]3f4]s]6[7]8fofuofrs] [ofififof2f1]of2fof2]0f1]
¥
l 5XE 4>< 3><
¥
lofi[2]3f4]5]6[7]8foftof1s] [ofofofofofsfi]afs]2fo]2]

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Let us do better!

Lofsf4afsfaf1]a[s]2]0]5]

@ Subdivide your array in monotonic (non-decreasing or decreasing) runs.

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Let us do better!

4 runs of lengths 4, 3, 4 and 1

Lofs[4afsfaf1]a[s]2]0]5]

@ Subdivide your array in monotonic (non-decreasing or decreasing) runs.

@ New parameters: Number of runs (p) and their lengths (ri,...,r,)

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Let us do better!

4 runs of lengths 4, 3, 4 and 1

Lofs[4afsfaf1]a[s]2]0]5]

@ Subdivide your array in monotonic (non-decreasing or decreasing) runs.

@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >"7_(ri/n)logy(n/r;) < logy(p) < logy(n)

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Let us do better!

4 runs of lengths 4, 3, 4 and 1

Lofs[4afsfaf1]a[s]2]0]5]

@ Subdivide your array in monotonic (non-decreasing or decreasing) runs.

@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >"7_(ri/n)logy(n/r;) < logy(p) < logy(n)

Theorem?! J

Powersort uses O(n + n7) element moves and O(n) + nH comparisons.

We cannot do better than O(n) 4+ nH comparisons![*!
There are X possible reorderings, with X >21=7(") > 2(H=5)n

rn..r

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

The principles of Timsort, Trotsort, Powersort et al.
Algorithms based on merging adjacent runs @ Stable algorithms

(good for composite types)

[o[2]2]3]afof1]s]

|

h’

Lofof1]2

2|3]4]5]

E. Ghasemi, V. Jugé & G. Khalighinejad

Galloping in fast-growth natural merge sorts

The principles of Timsort, Trotsort, Powersort et al.

Algorithms based on merging adjacent runs @ Stable algorithms
(good for composite types)

) k !
[of2]2[3]4fo]1]5]
I

Lofof1f2f2]3]a]5]

@ Extend small runs to save time O(n), and make them non-decreasing
@ Run merging sub-routine: naive (Trotsort) or optimised (Timsort & Powersort)
> time O(k + /)
» memory O(min(k, ¢))
@ Policy for choosing runs to merge:
» depends on run lengths and positions only

} Merge cost: k + ¢ > #comparisons

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

The principles of Timsort, Trotsort, Powersort et al.

Algorithms based on merging adjacent runs @ Stable algorithms
K , (good for composite types)
lol2]2f3[4]o]1]5]|=[5]3]
I v
lolofaf2f2[3]a]s5|=[8 |

@ Extend small runs to save time O(n), and make them non-decreasing
@ Run merging sub-routine: naive (Trotsort) or optimised (Timsort & Powersort)

> time O(k + /)
» memory O(min(k, ¢))
@ Policy for choosing runs to merge:

} Merge cost: k + ¢ > #comparisons

» depends on run lengths and positions only

© Complexity analysis:
@ Evaluate the total merge cost
@ Just work with run lengths

E. Ghasemi, V. Jugé & G. Khalighinejad

Galloping in fast-growth natural merge sorts

Merge trees and fast growth

Timsort merges

Lofsf4fa]sfafr]a[sf2]0]5]

[of3[4]efof1f2]2[3[3]4]5]

lofofi]2]2[3[3]3[af4a]4]5]

Lofof1f2]2]3

3[3]afafa]s]

E. Ghasemi, V. Jugé & G. Khalighinejad

Galloping in fast-growth natural merge sorts

Merge trees and fast growth

Timsort merges

Lofsf4fa]sfafr]a[sf2]0]5]

[of3[4]efof1f2]2[3[3]4]5]

lofofi]2]2[3[3]3[af4a]4]5]

Lofof1f2]2]3

3[3]afafa]s]

E. Ghasemi, V. Jugé & G. Khalighinejad

Timsort merge tree

@ @) (@ (U
(7)
P
L)

Galloping in fast-growth natural merge sorts

Merge trees and fast growth

Timsort merges Timsort merge tree
lolsfafa[s]2]1]4a[3]2]0]5] (12
I0I3I4I4I0I1I2IgI3I3I4I5I ®
I0I0I1I2I2I:I3I3I4I4I4I5I (7)

lofof1]2]2[s[3]3[af4a]4]5] (@ @ @ @

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Merge trees and fast growth

Timsort merges Timsort merge tree
lolsfafa[s]2]1]4a[3]2]0]5] (12
I0I3I4I4I0I1I2IgI3I3I4I5I ®
I0I0I1I2I2I:I3I3I4I4I4I5I (7)

lofof1f2f2]3]3]s[afa]4]5] (W @ @ @
X X X X
2+ 3+ 3+ 1

- +

merge cost

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Merge trees and fast growth

Timsort merges Timsort merge branch

Lofsf4fa]sfafr]a[sf2]0]5]

[of3[4]efof1f2]2[3[3]4]5]

lofofi]2]2[3[3]3[af4a]4]5]

Lofof1f2f2]3]3]s[afa]4]5]

merge cost

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Fast growth and merge cost

Fast growthl(®!

An natural merge sort is fast-growing if node sizes grow exponentially fast on its branches:

g al=b x r; for some constants a > 1 and b > 0.

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Fast growth and merge cost

Fast growthl(®!

An natural merge sort is fast-growing if node sizes grow exponentially fast on its branches:

g al=b x r; for some constants a > 1 and b > 0.

@ Each leaf of size r lies at depth d < log,(n/r) + b.
@ Such an algorithm has a merge cost < log,(2)nH + bn.

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Fast growth and merge cost

Fast growth!®l

An natural merge sort is fast-growing if node sizes grow exponentially fast on its branches:

g 2 a/=P x r; for some constants a > 1 and b > 0.

@ Each leaf of size r lies at depth d < log,(n/r) + b.
@ Such an algorithm has a merge cost < log,(2)nH + bn.

@ Fast-growing algorithms work in time O(n+ nH).
Examples: Timsort, a-Mergesort, Powersort, Peeksort, adaptive Shiverssort
® Powersort performs no more than n(H + 4) comparisons (because a =2 and b = 4).

@ Peeksort and adaptive Shiverssort perform only O(n) 4+ nH comparisons (but a > 2).

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

What about [o|1]1]of2]1fo]2|0]2]0]1]?

A
5XE 4>< 3><
A

Lofofofofofufs]sfrfaa]o]

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

What about [of1]1|o]2]1]o]2]0o]2f0]1]?

A
5XE 4>< 3><
A

Lofofofofofufs]sfrfaa]o]

Few runs vs few values vs few dual runs:

""“j\?—ﬁ“' |ex;__< inv &
)__

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3
[of1[z]of2]1]of2]of2]0]1]

@ Subdivide your data in non-decreasing, non-overlapping dual runs

@ New parameters: Number of dual runs (p*) and their lengths (r})

Dual-run entropy: H* = >%_,(r*/n)log,(n/r¥) < log,(p*) < logy(n)

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3
of1f1fof2]1fof2]02f0]1]

@ Subdivide your data in non-decreasing, non-overlapping dual runs
@ New parameters: Number of dual runs (p*) and their lengths (r})

Dual-run entropy: H* = f’;l(ri*/n) logy(n/r?) < log,(p*) < logy(n)
Theoreml!

Fast-growing merge sorts require O(n + n#H*) comparisons if they use Timsort's galloping

run-merging routine®. *we are slightly cheating

and we cannot use less than O(n) + nH* comparisons in general.

E. Ghasemi, V. Jugé & G. Khalighinejad

Galloping in fast-growth natural merge sorts

Galloping merging procedure

Merging runs ~ finding an integer (several times)[?]

Lofofofofofufufs]sfrfafa] [ofofo]s]1]

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Galloping merging procedure

Merging runs ~ finding an integer (several times)[?]

OO [z]2] [olefoli]1]
0

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Galloping merging procedure

Merging runs ~ finding an integer (several times)[?]

0000 o ANNANAD
1}

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Galloping merging procedure

Merging runs ~ finding an integer (several times)[?]

1

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Galloping merging procedure

Merging runs ~ finding an integer (several times)[?]

MR] 2 | 2| R]
t

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Galloping merging procedure

Merging runs ~ finding an integer (several times)[?]

00 000 1T 22 0 00 11

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Galloping merging procedure

Merging runs ~ finding an integer (several times)[?]

00 000 1T 22 0 00 11

Finding an integer x by asking y and being told whether y > x:
QO Asky=1,2,3,4... (time x)

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Galloping merging procedure

Merging runs ~ finding an integer (several times)[?]

00 000 1T 22 0 00 11

Finding an integer x by asking y and being told whether y > x:
QO Asky=1,2,3,4... (time x)
@ First ask y =1,2,4,8,..., then find the bits of x (time 2log,(x))

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Galloping merging procedure

Merging runs ~ finding an integer (several times)[?]

00 000 1T 22 0 00 11

Finding an integer x by asking y and being told whether y > x:
QO Asky=1,2,3,4... (time x)
@ First ask y =1,2,4,8,..., then find the bits of x (time 2log,(x))
Find log,(x) with method 1, then find the bits of x

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Galloping merging procedure

Merging runs ~ finding an integer (several times)[?]

00 000 1T 22 0 00 11

Finding an integer x by asking y and being told whether y > x:
QO Asky=1,2,3,4... (time x)
@ First ask y =1,2,4,8,..., then find the bits of x (time 2log,(x))
Find log,(x) with method 1, then find the bits of x

© Find log,(x) with method 2, then find the bits of x (time logy(x))

E. Ghasemi, V. Jugé & G. Khalighinejad

Galloping in fast-growth natural merge sorts

Galloping merging procedure

Merging runs ~ finding an integer (several times)[?]

k J4
0 0 0 00 L (L L (L (L2 2 0 0 0 11
k_o k-1 ko lao L

Finding an integer x by asking y and being told whether y > x:

QO Asky=1,2,3,4... (time x)

@ First ask y =1,2,4,8,..., then find the bits of x (time 2log,(x))
Find log,(x) with method 1, then find the bits of x

© Find log,(x) with method 2, then find the bits of x (time logy(x))

Timsort merging procedure ~ methods 1 + 2 with threshold t[23]:
Q Asky=12,....,t+1,t+2,t+4,t+8,..., then find the bits of x — t
@ Merge cost: > min{(L+t 1) (ko + (), 6t + 4logy (ki + {—; + 1)} > #Fcomparisons

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

Conclusions (after a few more computations)
@ For fixed thresholds t, fast-growth natural merge sorts require O(n+ nH*) comparisons.
@ Choosing adequate choices of t, Powersort requires O(n) + (1 + o(1))nH* comparisons.
Choose t ~ log(k + ¢) to merge runs of lengths k and ¢

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

svn.python.org/projects/python/trunk/Objects/listsort.txt

Conclusions (after a few more computations)
@ For fixed thresholds t, fast-growth natural merge sorts require O(n+ nH*) comparisons.
@ Choosing adequate choices of t, Powersort requires O(n) + (1 + o(1))nH* comparisons.
Choose t ~ log(k + ¢) to merge runs of lengths k and ¢

@ Timsort updates t in a way that makes the O(n + n’H*) upper bound look dubious.
@ Trotsort requires (nlog(n)) comparisons to sort 010101010101010101. ..

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

svn.python.org/projects/python/trunk/Objects/listsort.txt

Conclusions (after a few more computations)

@ For fixed thresholds t, fast-growth natural merge sorts require O(n+ nH*) comparisons.
@ Choosing adequate choices of t, Powersort requires O(n) + (1 + o(1))nH* comparisons.
Choose t ~ log(k + ¢) to merge runs of lengths k and ¢

@ Timsort updates t in a way that makes the O(n + n’H*) upper bound look dubious.
@ Trotsort requires (nlog(n)) comparisons to sort 010101010101010101. ..

@ Studying widely-used algorithms/heuristics rocks!

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

svn.python.org/projects/python/trunk/Objects/listsort.txt

Conclusions (after a few more computations) and references

@ For fixed thresholds t, fast-growth natural merge sorts require O(n + nH*) comparisons.
@ Choosing adequate choices of t, Powersort requires O(n) 4 (1 + o(1))nH* comparisons.
Choose t ~ log(k + ¢) to merge runs of lengths k and ¢

@ Timsort updates t in a way that makes the O(n+ nH*) upper bound look dubious.
@ Trotsort requires Q(nlog(n)) comparisons to sort 010101010101010101. ..

@ Studying widely-used algorithms/heuristics rocks!

[1] An almost optimal algorithm for unbounded searching, Bentley & Yao (1976)
[2] Optimistic Sorting and Information Theoretic Complexity, Mcllroy (1993)
[3] Description of TimSort, Peters
svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[4] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[5] Nearly-optimal mergesorts, Munro & Wild (2018)
[6] Galloping in natural merge sorts, Ghasemi, Jugé & Khalighinejad (2022)

E. Ghasemi, V. Jugé & G. Khalighinejad Galloping in fast-growth natural merge sorts

svn.python.org/projects/python/trunk/Objects/listsort.txt

THANK YOU FOR YOUR ATTENTION!

DOYOU HAVE ANY EASY QUESTIONS?

