Galloping in fast-growth natural merge sorts

Elahe Ghasemi^{2,3}, Vincent Jugé² & Ghazal Khalighinejad^{1,3}

1: Duke University

2: LIGM - Université Gustave Eiffel & CNRS

3: Sharif University of Technology

08/07/2022

Why don't people just use plain (DualPivot)QuickSort + Heapsort?

Sorting data

Heapsort and Mergesort have a worst-case time complexity of $\mathcal{O}(n \log(n))$ and we cannot do better, even on average. . .

Sorting data in a stable manner

Heapsort and Mergesort have a worst-case time complexity of $\mathcal{O}(n \log(n))$ and we cannot do better, even on average. . .

Sorting data in a stable manner

Heapsort and Mergesort have a worst-case time complexity of $\mathcal{O}(n \log(n))$ and we cannot do better, even on average. . . But, sometimes, we can!

Subdivide your array in monotonic (non-decreasing or decreasing) runs.

- Subdivide your array in monotonic (non-decreasing or decreasing) runs.
- **②** New parameters: Number of runs (ρ) and their lengths $(r_1,\ldots,r_{
 ho})$

4 runs of lengths 4, 3, 4 and 1

-		_								_		
	0	3	4	4	3	2	1	4	3	2	0	5

- Subdivide your array in monotonic (non-decreasing or decreasing) runs.
- ② New parameters: Number of runs (ρ) and their lengths $(r_1,\ldots,r_{
 ho})$

Run-length entropy:
$$\mathcal{H} = \sum_{i=1}^{\rho} (r_i/n) \log_2(n/r_i) \leqslant \log_2(\rho) \leqslant \log_2(n)$$

4 runs of lengths 4, 3, 4 and 1

- Subdivide your array in monotonic (non-decreasing or decreasing) runs.
- ② New parameters: Number of runs (
 ho) and their lengths $(r_1,\ldots,r_
 ho)$

Run-length entropy:
$$\mathcal{H} = \sum_{i=1}^{\rho} (r_i/n) \log_2(n/r_i) \leqslant \log_2(\rho) \leqslant \log_2(n)$$

Theorem^[5]

Powersort uses $\mathcal{O}(n + n\mathcal{H})$ element moves and $\mathcal{O}(n) + n\mathcal{H}$ comparisons.

We cannot do better than $\mathcal{O}(n) + n\mathcal{H}$ comparisons!^[4]

There are X possible reorderings, with $X \geqslant 2^{1-\rho} \binom{n}{r_1 \dots r_p} \geqslant 2^{(\mathcal{H}-5)n}$.

The principles of Timsort, Trotsort, Powersort et al.

Algorithms based on merging adjacent runs

Stable algorithms (good for composite types)

The principles of Timsort, Trotsort, Powersort et al.

Algorithms based on merging adjacent runs

Stable algorithms (good for composite types)

- **1** Extend small runs to save time $\mathcal{O}(n)$, and make them non-decreasing
- 2 Run merging sub-routine: naïve (Trotsort) or optimised (Timsort & Powersort)
- Policy for choosing runs to merge:
 - depends on run lengths and positions only

The principles of Timsort, Trotsort, Powersort et al.

Algorithms based on merging adjacent runs

- **1 Extend small runs** to save time $\mathcal{O}(n)$, and make them non-decreasing
- Q Run merging sub-routine: naïve (Trotsort) or optimised (Timsort & Powersort)
- Policy for choosing runs to merge:
 - depends on run lengths and positions only
- Complexity analysis:
 - Evaluate the total merge cost
 - Just work with run lengths

Stable algorithms

(good for composite types)

Timsort merges

Timsort merges

Timsort merge tree

Timsort merges

Timsort merge tree

Timsort merges

Timsort merge tree

merge cost

Timsort merges

Timsort merge branch

merge cost

Fast growth and merge cost

Fast growth^[6]

An natural merge sort is **fast-growing** if node sizes grow exponentially fast on its branches:

$$r_{i+j} \geqslant a^{j-b} \times r_i$$
 for some constants $a > 1$ and $b \geqslant 0$.

Fast growth and merge cost

Fast growth^[6]

An natural merge sort is fast-growing if node sizes grow exponentially fast on its branches:

$$r_{i+j} \geqslant a^{j-b} \times r_i$$
 for some constants $a > 1$ and $b \geqslant 0$.

- ightharpoonup Each leaf of size r lies at depth $d \leq \log_a(n/r) + b$.
- **▼** Such an algorithm has a merge cost $\leq \log_a(2)n\mathcal{H} + bn$.

Fast growth and merge cost

Fast growth^[6]

An natural merge sort is **fast-growing** if node sizes grow exponentially fast on its branches:

$$r_{i+j} \geqslant a^{j-b} \times r_i$$
 for some constants $a > 1$ and $b \geqslant 0$.

- ightharpoonup Each leaf of size r lies at depth $d \leq \log_a(n/r) + b$.
- **☞** Such an algorithm has a merge cost $\leq \log_a(2)n\mathcal{H} + bn$.
- Fast-growing algorithms work in time $\mathcal{O}(n + n\mathcal{H})$. Examples: Timsort, α -Mergesort, Powersort, Peeksort, adaptive Shiverssort
- **Powersort** performs no more than $n(\mathcal{H}+4)$ comparisons (because a=2 and b=4).
- Peeksort and adaptive Shiverssort perform only $\mathcal{O}(n) + n\mathcal{H}$ comparisons (but a > 2).

Few runs vs few values vs few dual runs:

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3

- Subdivide your data in non-decreasing, non-overlapping dual runs
- ② New parameters: Number of dual runs (ρ^*) and their lengths (r_i^*)

Dual-run entropy:
$$\mathcal{H}^{\star} = \sum_{i=1}^{\rho^{\star}} (r_i^{\star}/n) \log_2(n/r_i^{\star}) \leqslant \log_2(\rho^{\star}) \leqslant \log_2(n)$$

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3

- Subdivide your data in non-decreasing, non-overlapping dual runs
- ② New parameters: Number of dual runs (ρ^*) and their lengths (r_i^*)

Dual-run entropy:
$$\mathcal{H}^{\star} = \sum_{i=1}^{\rho^{\star}} (r_i^{\star}/n) \log_2(n/r_i^{\star}) \leqslant \log_2(\rho^{\star}) \leqslant \log_2(n)$$

Theorem^[6]

Fast-growing merge sorts require $O(n + n\mathcal{H}^*)$ comparisons if they use Timsort's galloping run-merging routine*.

and we cannot use less than $\mathcal{O}(n) + n \mathcal{H}^*$ comparisons in general.

Merging runs \approx finding an integer (several times)^[1,2]

Finding an integer x by asking y and being told whether $y \ge x$:

1 Ask
$$y = 1, 2, 3, 4...$$

(time x)

Merging runs \approx finding an integer (several times)^[1,2]

Finding an integer x by asking y and being told whether $y \ge x$:

• Ask y = 1, 2, 3, 4...

(time x)

2 First ask y = 1, 2, 4, 8, ..., then find the bits of x

(time $2\log_2(x)$)

Merging runs \approx finding an integer (several times)^[1,2]

Finding an integer x by asking y and being told whether $y \ge x$:

1 Ask y = 1, 2, 3, 4...

(time x)

② First ask y = 1, 2, 4, 8, ..., then find the bits of xFind $log_2(x)$ with method 1, then find the bits of x (time $2\log_2(x)$)

Merging runs \approx finding an integer (several times)^[1,2]

Finding an integer x by asking y and being told whether $y \ge x$:

• Ask y = 1, 2, 3, 4...

(time x)

② First ask y = 1, 2, 4, 8, ..., then find the bits of xFind $log_2(x)$ with method 1, then find the bits of x (time $2\log_2(x)$)

3 Find $log_2(x)$ with method 2, then find the bits of x

(time $log_2(x)$)

Merging runs \approx finding an integer (several times)^[1,2]

Finding an integer x by asking y and being told whether $y \ge x$:

- Ask y = 1, 2, 3, 4... (time x)
- ② First ask y = 1, 2, 4, 8, ..., then find the bits of x (time $2 \log_2(x)$) Find $\log_2(x)$ with method 1, then find the bits of x
- Find $\log_2(x)$ with method 1, then find the bits of xSolution Find $\log_2(x)$ with method 2, then find the bits of x (time $\log_2(x)$)

Timsort merging procedure \approx methods 1 + 2 with threshold $t^{[2,3]}$:

- **4** Ask y = 1, 2, ..., t + 1, t + 2, t + 4, t + 8, ..., then find the bits of x t
- **► Merge cost:** $\sum_{i} \min\{(1+t^{-1})(k_{\rightarrow i}+\ell_{\rightarrow i}), 6t+4\log_2(k_{\rightarrow i}+\ell_{\rightarrow i}+1)\}$ \geqslant #comparisons

Conclusions (after a few more computations)

- For fixed thresholds t, fast-growth natural merge sorts require $\mathcal{O}(n + n \mathcal{H}^*)$ comparisons.
- Choosing adequate choices of t, Powersort requires $\mathcal{O}(n) + (1 + o(1))n\mathcal{H}^*$ comparisons.

Choose $\mathbf{t} \approx \log(k + \ell)$ to merge runs of lengths k and ℓ

Conclusions (after a few more computations)

- For fixed thresholds t, fast-growth natural merge sorts require $\mathcal{O}(n + n \mathcal{H}^*)$ comparisons.
- Choosing adequate choices of t, Powersort requires $\mathcal{O}(n) + (1 + o(1))n\mathcal{H}^*$ comparisons. Choose $\mathbf{t} \approx \log(k + \ell)$ to merge runs of lengths k and ℓ
- Timsort updates t in a way that makes the $\mathcal{O}(n + n \mathcal{H}^*)$ upper bound look dubious.
- Trotsort requires $\Omega(n \log(n))$ comparisons to sort 010101010101010101...

Conclusions (after a few more computations)

- lacktriangle For fixed thresholds f t, fast-growth natural merge sorts require $\mathcal{O}(n+n\,\mathcal{H}^\star)$ comparisons.
- Choosing adequate choices of t, Powersort requires $\mathcal{O}(n) + (1 + o(1))n\mathcal{H}^*$ comparisons. Choose $\mathbf{t} \approx \log(k + \ell)$ to merge runs of lengths k and ℓ
- Timsort updates t in a way that makes the $\mathcal{O}(n + n \mathcal{H}^*)$ upper bound look dubious.
- Trotsort requires $\Omega(n \log(n))$ comparisons to sort 010101010101010101...
- Studying widely-used algorithms/heuristics rocks!

Conclusions (after a few more computations) and references

- \bullet For fixed thresholds t, fast-growth natural merge sorts require $\mathcal{O}(n+n\mathcal{H}^*)$ comparisons.
- Choosing adequate choices of t, Powersort requires $\mathcal{O}(n) + (1 + o(1))n \mathcal{H}^*$ comparisons. Choose $\mathbf{t} \approx \log(k + \ell)$ to merge runs of lengths k and ℓ
- \blacksquare Timsort updates t in a way that makes the $\mathcal{O}(n+n\mathcal{H}^*)$ upper bound look dubious.
- ightharpoonup Trotsort requires $\Omega(n \log(n))$ comparisons to sort 010101010101010101...
- Studying widely-used algorithms/heuristics rocks!

[1]	An	alr	nos	t opi	timal	algorit	hm f	or ι	unbound	ded s	sear	ching,	В	entley & Ya	0	(1976)
F - 7	_			_			_				_					()

- [2] Optimistic Sorting and Information Theoretic Complexity, McIlroy (1993)
- [3] Description of TimSort. Peters eyn nython org/projects/python/trunk/Objects/listsort tyt

svii.py thoi.org/ projects/ py thoi/ trunk/ objects/ ristsort.txt	(2001)
[4] On compressing permutations and adaptive sorting Barbay & Navarro	(2013)

- On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
- Nearly-optimal mergesorts. Munro & Wild (2018)
- [6] Galloping in natural merge sorts. Ghasemi, Jugé & Khalighinejad (2022)

(2001)

