
Enforceable Security Policies
Revisited

David Basin1 Vincent Jugé2

Felix Klaedtke1 Eugen Zălinescu1

1Institute of Information Security, ETH Zurich, Switzerland

2MINES ParisTech, France

POST 2012

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 1 / 16



Security Policies Come in all Shapes and Sizes

History-Based Access Control

Chinese
Wall Information

Flow

Separation of Duty

Business
Regulations

Data Usage

Privacy
Estonian Law

. . .

Which of these are enforceable?

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 2 / 16



Security Policies Come in all Shapes and Sizes

History-Based Access Control

Chinese
Wall Information

Flow

Separation of Duty

Business
Regulations

Data Usage

Privacy
Estonian Law

. . .

Which of these are enforceable?

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 2 / 16



Enforcement by Execution Monitoring

Enforceable Security Policies
F. Schneider, TISSEC 2000

Abstract Setting

System iteratively executes actions

Enforcement mechanism intercepts them
(prior to their execution)

Enforcement mechanism terminates
system in case of violation

Main Concerns

match with reality?

enforceable
⇒⇒⇒
666⇐⇐⇐ safety

System

Enforcement
Mechanism

allowed
action?

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 3 / 16



Follow-Up Work

SASI Enforcement of Security Policies
Ú. Erlingsson and F. Schneider, NSPW 1999

IRM Enforcement of Java Stack Inspection
Ú. Erlingsson and F. Schneider, S&P 2000

Access Control by Tracking Shallow Execution History
P. Fong, S&P 2004

Edit Automata: Enforcement Mechanisms for Run-Time Security Properties
J. Ligatti, L. Bauer, and D. Walker, IJIS 2005

Computability classes for enforcement mechanisms
K. Hamlen, G. Morrisett, and F. Schneider, TISSEC 2006

Run-Time Enforcement of Nonsafety Policies
J. Ligatti, L. Bauer, and D. Walker, TISSEC 2009

A Theory of Runtime Enforcement, with Results
J. Ligatti and S. Reddy, ESORICS 2010

Do you really mean what you actually enforced?
N. Bielova and F. Massacci, IJIS 2011

Runtime Enforcement Monitors: Composition, Synthesis and Enforcement Abilities
Y. Falcone, L. Mounier, J.-C. Fernandez, and J.-L. Richier, FMSD 2011

Service Automata
R. Gay, H. Mantel, and B. Sprick, FAST 2011

Enforceable Policies Revisited
D. Basin, V. Jugé, F. Klaedtke, and E. Zălinescu, POST 2012

. . .

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 4 / 16



Enforcement by Execution Monitoring
(Fundamental Open Question)

Match with Reality

Can we refine Schneider’s
abstraction?

Limited Understanding

Schneider: enforceable ⇒ safety

Necessary and sufficient condition?

Our Solution

Refined abstract setting by distinguishing between observable and
controllable actions:

clock tick

administrative actions

user actions

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 5 / 16



Contributions

1 Formalization and Characterization of Enforceability

2 Realizability of Enforcement Mechanisms

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 6 / 16



Refined Abstract Setting

Actions

Set of actions Σ = O ∪ C:

O = {observable actions}
C = {controllable actions}

Traces

Trace universe U ⊆ Σ∞:

U 6= ∅
U prefix-closed

Example: request · tick · deliver · tick · tick · request · deliver · tick . . . ∈ U

Requirements (on the Enforcement Mechanism)

Computability: Make decisions

Soundness: Prevent policy-violating traces

Transparency: Allow policy-compliant traces

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 7 / 16



Refined Abstract Setting

Actions

Set of actions Σ = O ∪ C:

O = {observable actions}
C = {controllable actions}

Traces

Trace universe U ⊆ Σ∞:

U 6= ∅
U prefix-closed

Example: request · tick · deliver · tick · tick · request · deliver · tick . . . ∈ U

Requirements (on the Enforcement Mechanism)

Computability: Make decisions

Soundness: Prevent policy-violating traces

Transparency: Allow policy-compliant traces

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 7 / 16



Formalization

System

Enforcement Mechanism

action

an

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒ exists DTM M with

1 ε ∈ L(M)
“M accepts the empty trace”

2 M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies intercepted action”

3 M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits intercepted observable action”

4 limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 8 / 16



Formalization

System

Enforcement Mechanism

action

an

DTM

. . .a1 a2 . . . an−1 an #

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒ exists DTM M with

1 ε ∈ L(M)
“M accepts the empty trace”

2 M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies intercepted action”

3 M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits intercepted observable action”

4 limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 8 / 16



Formalization

System

Enforcement Mechanism

action

an+1

DTM

. . .a1 a2 . . . an−1 an an+1

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒ exists DTM M with

1 ε ∈ L(M)
“M accepts the empty trace”

2 M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies intercepted action”

3 M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits intercepted observable action”

4 limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 8 / 16



Formalization

System

Enforcement Mechanism

action

an+1

DTM

. . .a1 a2 . . . an−1 an an+1

Definition

P ⊆ (O ∪ C)∞ is enforceable in U
def⇐⇒ exists DTM M with

1 ε ∈ L(M)
“M accepts the empty trace”

2 M halts on inputs in
(
trunc(L(M)) · (O ∪ C)

)
∩U

“M either permits or denies intercepted action”

3 M accepts inputs in
(
trunc(L(M)) ·O

)
∩U

“M permits intercepted observable action”

4 limitclosure
(
trunc(L(M))

)
∩U = P ∩U

“soundness (⊆) and transparency (⊇)”

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 8 / 16



Examples

Setting

Controllable actions: C = {login, request,deliver}
Observable actions: O = {tick, fail}
Set of actions: Σ = C ∪O

Trace universe: U = Σ∗ ∪ (Σ∗ · {tick})ω

Policies
1 “login must not happen within 3 time units after a fail.”

⇒ enforceable

2 “each request must be followed by a deliver within 3 time units.”

⇒ not enforceable

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 9 / 16



Examples

Setting

Controllable actions: C = {login, request,deliver}
Observable actions: O = {tick, fail}
Set of actions: Σ = C ∪O

Trace universe: U = Σ∗ ∪ (Σ∗ · {tick})ω

Policies
1 “login must not happen within 3 time units after a fail.”
⇒ enforceable

2 “each request must be followed by a deliver within 3 time units.”
⇒ not enforceable

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 9 / 16



Evolution of Safety

Early Definitions

L. Lamport, 1977: “A safety property is one which states that something
bad will not happen.”

B. Alpern and F. Schneider, 1986: A property P ⊆ Σω is ω-safety if
∀σ ∈ Σω. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P

)
Folklore: A property P ⊆ Σ∞ is ∞-safety if
∀σ ∈ Σ∞. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σ∞. σ<i · τ /∈ P

)
T. Henzinger, 1992: A property P ⊆ Σω is safety in U ⊆ Σω if
∀σ ∈ U. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P ∩ U

)

Refined Definition

A property P ⊆ Σ∞ is ∞-safety if
∀σ ∈ Σ∞. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σ∞. σ<i · τ /∈ P

)
Intuition: “P is safety in U and bad things are not caused by an O”

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 10 / 16



Evolution of Safety

Early Definitions

L. Lamport, 1977: “A safety property is one which states that something
bad will not happen.”

B. Alpern and F. Schneider, 1986: A property P ⊆ Σω is ω-safety if
∀σ ∈ Σω. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P

)
Folklore: A property P ⊆ Σ∞ is ∞-safety if
∀σ ∈ Σ∞. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σ∞. σ<i · τ /∈ P

)
T. Henzinger, 1992: A property P ⊆ Σω is safety in U ⊆ Σω if
∀σ ∈ U. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P ∩ U

)
Refined Definition

A property P ⊆ Σ∞ is ∞-safety if
∀σ ∈ Σ∞. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σ∞. σ<i · τ /∈ P

)

Intuition: “P is safety in U and bad things are not caused by an O”

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 10 / 16



Evolution of Safety

Early Definitions

L. Lamport, 1977: “A safety property is one which states that something
bad will not happen.”

B. Alpern and F. Schneider, 1986: A property P ⊆ Σω is ω-safety if
∀σ ∈ Σω. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P

)
Folklore: A property P ⊆ Σ∞ is ∞-safety if
∀σ ∈ Σ∞. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σ∞. σ<i · τ /∈ P

)
T. Henzinger, 1992: A property P ⊆ Σω is safety in U ⊆ Σω if
∀σ ∈ U. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P ∩ U

)
Refined Definition

A property P ⊆ Σ∞ is U-safety if
∀σ ∈ U. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σ∞. σ<i · τ /∈ P ∩U

)

Intuition: “P is safety in U and bad things are not caused by an O”

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 10 / 16



Evolution of Safety

Early Definitions

L. Lamport, 1977: “A safety property is one which states that something
bad will not happen.”

B. Alpern and F. Schneider, 1986: A property P ⊆ Σω is ω-safety if
∀σ ∈ Σω. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P

)
Folklore: A property P ⊆ Σ∞ is ∞-safety if
∀σ ∈ Σ∞. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σ∞. σ<i · τ /∈ P

)
T. Henzinger, 1992: A property P ⊆ Σω is safety in U ⊆ Σω if
∀σ ∈ U. σ /∈ P →

(
∃i ∈ N.∀τ ∈ Σω. σ<i · τ /∈ P ∩ U

)
Refined Definition

A property P ⊆ Σ∞ is (U, O)-safety if
∀σ ∈ U. σ /∈ P →

(
∃i ∈ N. σ<i /∈ Σ∗ ·O∧∀τ ∈ Σ∞. σ<i · τ /∈ P ∩U

)
Intuition: “P is safety in U and bad things are not caused by an O”

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 10 / 16



Safety and Enforceability

Theorem

Let P be a property and U a trace universe with U ∩ Σ∗ decidable.

P is (U,O)-enforceable ⇐⇒⇐⇒⇐⇒
1 P is (U,O)-safety,

2 pre∗(P ∩U) is a decidable set, and

3 ε ∈ P.

Schneider’s “characterization”: only ⇒ for (1), where U = Σ∞ and O = ∅

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 11 / 16



Contributions

1 Formalization and Characterization of Enforceability

2 Realizability of Enforcement Mechanisms

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 12 / 16



Realizability of Enforcement Mechanisms

Fundamental Algorithmic Problems

Given a specification of a policy.

Is this policy enforceable?

If yes, can we synthesize an enforcement mechanism for it?

With what complexity can we do so?

Some Results

Deciding if P is (U, O)-enforceable when both U and P are given as

PDAs is undecidable.

FSAs is PSPACE-complete.

LTL formulæ is PSPACE-complete.

MLTL formulæ is EXPSPACE-complete.

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 13 / 16



Checking Enforceability and Safety
(PDA and FSA)

Checking Enforceability

Let U and P be given as PDAs or FSAs AU and AP .

1 pre∗(L(AP) ∩ L(AU)) is known to be decidable

2 check whether ε ∈ L(AP)

3 check whether L(AP) is (L(AU), O)-safety

Checking Safety

Let U and P be given as PDAs or FSAs AU and AP .

PDAs: undecidable in general

FSAs: generalization of standard techniques

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 14 / 16



Checking Enforceability and Safety
(LTL and MLTL)

Checking Enforceability

Let U and P be given as LTL or MLTL formulæ ϕU and ϕP .

1 pre∗(L(ϕP) ∩ L(ϕU)) is known to be decidable

2 check whether ε ∈ L(ϕP)

3 check whether L(ϕP) is (L(ϕU), O)-safety

Checking Safety

Let U and P be given as LTL or MLTL formulæ ϕU and ϕP .

1 translate ϕU and ϕP into FSAs AU and AP

2 use the results of the previous slide on AU and AP

3 perform all these calculations on-the-fly

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 15 / 16



Conclusion

Summary

Formalization of enforceability in a refined abstract setting

Characterization of enforceability

Realizability problem for enforcement

Future Work

Investigate more powerful enforcement mechanisms

Investigate more expressive specification languages

Provide tool support

Basin, Jugé, Klaedtke, Zălinescu Enforceable Security Policies Revisited POST 2012 16 / 16


