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Sorting data

0 2 2 4 0 1 5 4 1 3 2 3

0 0 1 1 2 2 2 3 3 4 4 5

MergeSort has a worst-case time complexity of O(n log(n))

Can we do better?

No!

Proof:
There are n! possible reorderings
Each element comparison gives a 1-bit information
Thus log2(n!) ∼ n log2(n) tests are required
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Cannot we ever do better?

In some cases, we should. . .
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Let us do better!

5 runs of lengths 4, 3, 1, 2 and 2

0 2 2 4 0 1 5 4 1 3 2 3

1 Chunk your data in non-decreasing runs

2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)
New parameters: Run-length entropy: H =

∑ρ
i=1(ri/n) log2(n/ri )

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [7]
TimSort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![4]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
( n
r1 ... rρ

)
> 2nH/2
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A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19

1 2
P

3 3 3
A J O

4 5

1 Invented by Tim Peters[3]

2 Standard algorithm in Python
3 Standard algorithm———————— for non-primitive arrays in Android, Java, Octave
4 1st worst-case complexity analysis[6] – TimSort works in time O(n log n)

5 Refined worst-case analysis[7] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[5,7]
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The principles of TimSort and of adaptive ShiversSort (1/2)
Algorithm based on merging adjacent runs

* Stable algorithm
(good for composite types)

0 2 2 4 0 1 5

0 0 1 2 2 4 5

k `

≡

≡

4 3

7

1 Run merging algorithm: standard + many optimizations
I time O(k + `)
I memory O(min(k, `))

}
Merge cost: k + `

2 Policy for choosing runs to merge:
I depends on run lengths only

3 Complexity analysis:
* Evaluate the total merge cost
* Forget array values and only work with run lengths
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Some results about merge costs

Best-case merge costs:
Every algorithm has a best-case merge cost of at least nH[4,10]

Worst-case merge costs:

TimSort has a worst-case merge cost of 3/2 nH+O(n)[7,9]

Adaptive ShiversSort has a worst-case merge cost of nH+O(n)[10]

TimSortTimSort
Adaptive ShiversSort

merge
cost

0 nH

nH+O(n) 3/2 nH+O(n)
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The principles of adaptive ShiversSort and of TimSort (2/2)

0 2 2 4 0 1 5 4 1 3 2 3 ≡ 4

4

3

3

1

1

2

2

2

Discovered runs:

0 2 2 4 0 1 4 5 1 3 2 3 ≡ 44 44 2 2

0 0 1 2 2 4 4 5 1 3 2 3 ≡ 88 22 22

0 0 1 2 2 4 4 5 1 2 3 3 ≡ 88 44

0 0 1 1 2 2 2 3 3 4 4 5 ≡ 12

STACK

44

vi
si
bl
e

pa
rt

4
33
11
22

4
2

88
22
2
4
12

Run merge policy:
Maintain a stack of runs
Until the array is sorted, either:

1 discover & push a new run onto the stack
2 merge the top 1st and 2nd runs
3 merge the top 2nd and 3rd runs
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Intermezzo: Intelligent design & amortized analysis

Key ideas:
Each run r pays its share of the total merge cost

I O(r) to enter the stack (entry phase)
I r to increase its bit length (growth phase)

r to increase its bit length of r : ` = blog2(r)c
Entry phase:

I r pays for every merge
I (ri )i>1 has exponential decay when r is pushed
I runs smaller than r are merged

Growth phase: ensure that
I ri and ri+1 are merged only if their bit lengths are equal

Cost analysis:
Each run r pays

* O(r) during its own run entry phase
* at most rdlog2(n/r)e during the growth phases

Total merge cost of nH+O(n)

Rule 3

R
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en
tr

y
co
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ps

e

Merged run

STACK
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r2

r3

...

rh−2

rh−1

...

rk

rPushed run
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rhPushed run
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The details of Adaptive ShiversSort
Choice rules for options

1 discover & push a new run length onto the stack
2 merge the top 1st and 2nd runs
3 merge the top 2nd and 3rd runs

STACK

...

rh−2

rh−1

rh
2

3

1

Choice algorithm
if `h > `h−2 or `h−1 > `h−2: choose ®
else if `h > `h−1: choose ­
else: choose ¬ (or ­ if ¬ is unavailable) where `i = blog2(ri )c

Bit-length constraints:
`1 > `2 > . . . > `h−2 > `h−1 (induction)
`1 > `2 > . . . > `h on run push
`h−1 > `h and `h−2 > `h during growth (induction)

END OF PROOF!
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Conclusion

TimSort is good in practice and in theory: O(n + nH) merge cost
Adaptive ShiversSort is better than and very similar to TimSort

Some references:
[1] Optimal computer search trees and variable-length alphabetical codes,

Hu & Tucker (1971)
[2] A new algorithm for minimum cost binary trees, Garsia & Wachs (1973)
[3] Tim Peters’ description of TimSort,

svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[4] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[5] OpenJDK’s java.utils.Collection.sort() is broken, de Gouw et al. (2015)
[6] Merge strategies: from merge sort to TimSort, Auger et al. (2015)
[7] On the worst-case complexity of TimSort, Auger et al. (2018)
[8] Nearly-optimal mergesorts, Munro & Wild (2018)
[9] Strategies for stable merge sorting, Buss & Knop (2019)
[10] Adaptive ShiversSort: an alternative sorting algorithm, Jugé (2020)
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