Complexity of the Adaptive ShiversSort Algorithm
and of its sibling TimSort

Vincent Jugé
LIGM — Université Paris-Est Marne-la-Vallée, ESIEE, ENPC & CNRS

07/01,/2020

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Contents

© Efficient Merge Sorts

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Sorting data

Lof2fof4foft]s]4f1]3]2]3]

l

Lofof1]1faf2]2]3[3]a]4]5]

Complexity of the Adaptive ShiversSort Algorithm

Sorting data

Lof2fof4foft]s]4f1]3]2]3]

l

Lofof1]1faf2]2]3[3]a]4]5]

MergeSort has a worst-case time complexity of O(nlog(n))

Can we do better?

Complexity of the Adaptive ShiversSort Algorithm

Sorting data

Lof2fof4foft]s]4f1]3]2]3]

l

Lofof1]1faf2]2]3[3]a]4]5]

MergeSort has a worst-case time complexity of O(nlog(n))

Can we do better? No!

Proof:
@ There are n! possible reorderings
o Each element comparison gives a 1-bit information

@ Thus log,(n!) ~ nlog,(n) tests are required

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Cannot we ever do better?

In some cases, we should. ..

[of1]2[3]45]6]7]8]9]10f11]

LIVLELT L

[of1]2[3]45]6]7]8]9]10f11]

Complexity of the Adaptive ShiversSort Algorithm

Let us do better!

Lof2]2]4fof1]fs]af1fs]2]3]

© Chunk your data in non-decreasing runs

Complexity of the Adaptive ShiversSort Algorithm

Let us do better!

5 runs of lengths 4, 3, 1, 2 and 2
[of2]2]4fof1]s5[a]1]3]2]3]

© Chunk your data in non-decreasing runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Let us do better!

5 runs of lengths 4, 3, 1, 2 and 2
[of2]2]4fof1]s5[a]1]3]2]3]

© Chunk your data in non-decreasing runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >"¢_(ri/n)logy(n/r:)
< logy(p) < log,(n)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Let us do better!

5 runs of lengths 4, 3, 1, 2 and 2
[of2]2]4fof1]s5[a]1]3]2]3]

© Chunk your data in non-decreasing runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >"¢_(ri/n)logy(n/r:)
< logy(p) < log,(n)

TimSort has a worst-case time complexity of O(n+ nH)

Theorem [7] J

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Let us do better!

5 runs of lengths 4, 3, 1, 2 and 2
[of2]2]4fof1]s5[a]1]3]2]3]

© Chunk your data in non-decreasing runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >"¢_(ri/n)logy(n/r:)
< logy(p) < log,(n)

TimSort has a worst-case time complexity of O(n+ nH)

Theorem [7] J

We cannot do better than Q(n + n#)!l
@ Reading the whole input requires a time Q(n)
@ There are X possible reorderings, with X > 21_/’(r1 " r,,) > onH/2

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Contents

© TimSort

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

A brief history of TimSort

>
T T T T T T T T T T T T T T T T T T 2

2001 '02'03'04 '05 '06 '07 '08 '09 '10 '11 '12°'13'14'15'16 '17 '18 '1

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

A brief history of TimSort

2001 '02'03'04 '05 '06 '07 '08 '09 '10 '11 '12°'13'14'15'16 '17 '18 '1

>
>

@ Invented by Tim Petersl®!

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

A brief history of TimSort

P
Q0

2001 '02'03'04 '05 '06 '07 '08 '09 '10 '11 '12°'13'14'15'16 '17 '18 '1

>
>

@ Invented by Tim Petersl®!
@ Standard algorithm in Python

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

A brief history of TimSort

P A J 0]
L) o O 2]

2001 '02'03'04 '05 '06 '07 '08 '09 '10 '11 '12°'13'14'15'16 '17 '18 '1

>
>

@ Invented by Tim Petersl®!
@ Standard algorithm in Python

o for non-primitive arrays in Android, Java, Octave

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

A brief history of TimSort

P A J 0]
L) o O 2])

2001 '02'03'04 '05 '06 '07 '08 '09 '10 '11 '12°'13'14'15'16 '17 '18 '1

>
>

@ Invented by Tim Petersl®!
@ Standard algorithm in Python

o for non-primitive arrays in Android, Java, Octave

Q 15t worst-case complexity analysisl® — TimSort works in time O(nlog n)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

A brief history of TimSort

P A J 0]
L) o O 2]) 5]

T T T T T T T T T T T T T T T T T T 2

2001 '02'03'04 '05 '06 '07 '08 '09 '10 '11 '12°'13'14'15'16 '17 '18 '1

@ Invented by Tim Petersl®!
@ Standard algorithm in Python

o for non-primitive arrays in Android, Java, Octave

Q 15t worst-case complexity analysisl® — TimSort works in time O(nlog n)

O Refined worst-case analysisl”l — TimSort works in time O(n + n'H)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

A brief history of TimSort

P A J 0]
L) o O 9% %

T T T T T T T T T T T T T T T T T T 2

2001 '02'03'04 '05 '06 '07 '08 '09 '10 '11 '12'13'14'15'16 '17 '18 '1

@ Invented by Tim Petersl®!
@ Standard algorithm in Python

o for non-primitive arrays in Android, Java, Octave

Q 15t worst-case complexity analysisl® — TimSort works in time O(nlog n)
O Refined worst-case analysisl”l — TimSort works in time O(n + n'H)
A Bugs uncovered in Python & Java implementations!® 7]

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of TimSort and of adaptive ShiversSort (1/2)

Algorithm based on merging adjacent runs

[of2]2]4]of1]s]

Lofof1]2]2f4]5]

Complexity of the Adaptive ShiversSort Algorithm

The principles of TimSort and of adaptive ShiversSort (1/2)

Algorithm based on merging adjacent runs @ Stable algorithm
(good for composite types)

[of2]2]4]of1]s]

Lofof1]2]2f4]5]

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of TimSort and of adaptive ShiversSort (1/2)

Algorithm based on merging adjacent runs @ Stable algorithm
(good for composite types)

k l
lof2]2]4]0]1]5]

Lofof1]2]2f4]5]

@ Run merging algorithm: standard + many optimizations
> time O(k + ¢)

» memory O(min(k,¥¢)) } Merge cost: k+ ¢

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of TimSort and of adaptive ShiversSort (1/2)

Algorithm based on merging adjacent runs @ Stable algorithm
(good for composite types)

k 14
[of2]2]4fo]1]s]|=[4]3]

Lofof1]afofafs]|=] 7 |

@ Run merging algorithm: standard + many optimizations
> time O(k + ¢)
» memory O(min(k,¥¢))
@ Policy for choosing runs to merge:
» depends on run lengths only

} Merge cost: k + ¢

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of TimSort and of adaptive ShiversSort (1/2)

Algorithm based on merging adjacent runs @ Stable algorithm
(good for composite types)

k 14
[of2]2]4fo]1]s]|=[4]3]

Lofof1]afofafs]|=] 7 |

@ Run merging algorithm: standard + many optimizations
> time O(k + ¢)
» memory O(min(k, £))
@ Policy for choosing runs to merge:
» depends on run lengths only
© Complexity analysis:
@ Evaluate the total merge cost
@ Forget array values and only work with run lengths

} Merge cost: k + ¢

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Some results about merge costs

Best-case merge costs:

o Every algorithm has a best-case merge cost of at least n [+ 1]

Worst-case merge costs:

L _ merge
I T > cost

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Some results about merge costs

Best-case merge costs:

o Every algorithm has a best-case merge cost of at least n [+ 1]

Worst-case merge costs:

o TimSort has a worst-case merge cost of 3/2 nH + O(n)l"°

A

TimSort > merge

| >
I ! ~ cost
0 nH 3/2nH + O(n)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Some results about merge costs

Best-case merge costs:

o Every algorithm has a best-case merge cost of at least n [+ 1]

Worst-case merge costs:

[7.9]

@ TimSort has a worst-case merge cost of 3/2nH + O(n)
o Adaptive ShiversSort has a worst-case merge cost of n# + O(n)!]

<«— Adaptive ShiversSort —

&
1 <

TimSort > . merge
T
0 nH

T | ~ cost
nH + O(n) 3/2nH + O(n)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Contents

© Adaptive ShiversSort

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

lo[2]2f4]of1]5[4]1[3]2[3]=[2]3]1[2]2]

STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2™ runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:

ol2]2]a]of1]5]4l1]3]2]3]|=]a[3]1]2]2]

STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2™ runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)
Discovered runs:
—ia

[o]2]2]afo]1]5]a]1]3]2]3]|=|a]3]1]2]2]

fa]

STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2™ runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:
v —9

[o]2]2]afo]1]s]a]1]3]2]3]|=|a]3]1]2]2]

STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2™ runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:
v — 3
lof2f2f4]o]1]s]af1[3[2]3]|=[af3[1]2]2]
4]

STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2™ runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:
y

e
lo[2]2f4]of1]5[4]1[3]2[3]=[2]3]1][2]2] EE{
>

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2™ runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:
' — 9 2]
lof2f2f4fof1]s]af1[3]2]3]|=[al3[1]2]2] V[1]
4
STACK

ble
part

VISI

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2™ runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:
v v

lo[2]2f4]of1]5[4]1[3]2[3]=[2]3]1[2]2]
— =
lof2]2]4fof1]a[5]1]3[2[3]=[2] 4 [2[2] |4
STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2™ runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:
v v

lo]2]2f4]of1]sf4]1[3]2[3]=[4]3]1][2]2] V[2]
— =
lof2]2]4fof1]a[5]1]3[2[3]=[2] 4 |2[2] _[4

STACK

Run merge policy:

@ Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2™ runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:
v v

[o]2]2]afo]1]s]a]1]3]2]3]|=|a]3]1]2]2]
.

—~_ H
lof2]2]4fof1]a[5]1]3[2[3]=[2] 4 |2[2] |8
v \Z STACK
lojol1f2]2[4]af5]1[3]2[3]=[_8 [2]2]

Run merge policy:

e Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1% and 2™ runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:
't 't
lof2]2]4fof1]s[4]1]3[2[3]|=[4]3]1]2]2
—_—

v _
lof2]2]4fof1]a[5]1]3[2[3]=[2] 4 [2[2] |8
v \Z STACK
lojol1f2]2[4]af5]1[3]2[3]=_ 8 [2]2]

Run merge policy:

e Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1% and 2™ runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:
v v
[ol2f2[4]of1fs]4]1f3[2][3]|=[4]3]1]2]2] 2]
—_—

v _
lof2]2]4fof1]a[5]1]3[2[3]=[2] 4 [2[2] |8
v \Z STACK
lojol1f2]2[4]af5]1[3]2[3]=_ 8 [2]2]

Run merge policy:

e Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:
1 1
lo]2]2f4fo]1]5]4]1[3]2]3]=[4a[3]1]2]2
—_—

maalln
lof2[2]4lol1lals]1]3]2]3]=[4a] 4 [2]2] s

v \Z STACK
lojol1f2]2[4]af5]1[3]2[3]=_ 8 [2]2]
— 2
lofof1]2[2f4]4a5]1]2]3[3]=]_8 | 4 |

Run merge policy:

e Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:
1 1
lo]2]2f4fo]1]5]4]1[3]2]3]=[4a[3]1]2]2
—_—

1
lof2]2]4fof1]a[5]1]3[2[3]=[2] 4 |2[2] |8

v \Z STACK
lojol1f2]2[4]af5]1[3]2[3]=_ 8 [2]2]
— 2
lofof1]2[2f4]4a5]1]2]3[3]=]_8 | 4 |

Run merge policy:

e Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The principles of adaptive ShiversSort and of TimSort (2/2)

Discovered runs:
1 1
lo]2]2f4fo]1]5]4]1[3]2]3]=[4a[3]1]2]2
—_—

==

[o2]2T4Jo 145 1[3]2]3]=[2] 4 [2]2] _[i7]

v \Z STACK
lojol1f2]2[4]af5]1[3]2[3]=_ 8 [2]2]
— 2
lofof1]2[2f4]4a5]1]2]3[3]=]_8 | 4 |

v L Z

lofofa]1f2f2]2[3]3]4]4[5]=| 12 I

Run merge policy:

e Maintain a stack of runs

@ Until the array is sorted, either:
@ discover & push a new run onto the stack
@ merge the top 1%t and 2" runs
© merge the top 2" and 3™ runs

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Intermezzo: Intelligent design & amortized analysis

Key ideas:
@ Each run r pays its share of the total merge cost

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Intermezzo: Intelligent design & amortized analysis

Key ideas:
@ Each run r pays

» O(r) to enter the stack (entry phase)
» r to increase its bit length (growth phase)
bit length of r: £ = |log,(r)]

Cost analysis:
o Each run r pays

@ (O(r) during its own run entry phase
@ at most r[log,(n/r)] during the growth phases

e Total merge cost of nH + O(n)

Intermezzo: Intelligent design & amortized analysis

Key ideas: Rule ©@
@ Each run r pays Pushed run| r
» O(r) to enter the stack (entry phase) e
» r to increase its bit length (growth phase)
bit length of r: £ = |log,(r)]
o Entry phase:
rh—1
rh—2
. r3
Cost analysis: p
2
o Each run r pays p
@ (O(r) during its own run entry phase !

@ at most r[log,(n/r)] during the growth phases STACK
e Total merge cost of nH + O(n)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Intermezzo: Intelligent design & amortized analysis

Key ideas: Rule ©@
@ Each run r pays Pushed run| r
» O(r) to enter the stack (entry phase) e
» r to increase its bit length (growth phase) 2 @
bit length of r: £ = |log,(r)] S <
e Entry phase: 0‘:3_8
rh—1
rh—2
. r3
Cost analysis: p
2
o Each run r pays p
@ (O(r) during its own run entry phase !
STACK

@ at most r[log,(n/r)] during the growth phases
e Total merge cost of nH + O(n)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Intermezzo: Intelligent design & amortized analysis

Key ideas:
@ Each run r pays

» O(r) to enter the stack (entry phase)
» r to increase its bit length (growth phase)
bit length of r: £ = |log,(r)]

o Entry phase: Pushed run| rn
Merged run |ra—1
rh—2

. r

Cost analysis: p
2

o Each run r pays p
@ (O(r) during its own run entry phase !

@ at most r[log,(n/r)] during the growth phases STACK
e Total merge cost of nH + O(n)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Intermezzo: Intelligent design & amortized analysis

Key ideas:
@ Each run r pays Pushed run| r
» O(r) to enter the stack (entry phase) e
» r to increase its bit length (growth phase) 2 @
bit length of r: £ = |log,(r)] S <
e Entry phase: ensure that 0‘%_8
> r pays for every merge Fh—1
> (ri)i>1 has exponential decay when r is pushed rh—o
» runs smaller than r are merged
. r3
Cost analysis: p
2
@ Each run r pays p
@ (O(r) during its own run entry phase !

@ at most r[log,(n/r)] during the growth phases STACK
e Total merge cost of nH + O(n)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Intermezzo: Intelligent design & amortized analysis

Key ideas:
@ Each run r pays Pushed run| r
» O(r) to enter the stack (entry phase) e
» r to increase its bit length (growth phase) 2 @
bit length of r: £ = |log,(r)] S <
e Entry phase: ensure that 0‘%_8
> r pays for every merge Fh—1
> (ri)i>1 has exponential decay when r is pushed rh—o
» runs smaller than r are merged
@ Growth phase: ensure that
» r; and r; 1 are merged only if their bit lengths are equal
. r3
Cost analysis: p
2
@ Each run r pays p
@ (O(r) during its own run entry phase !

@ at most r[log,(n/r)] during the growth phases STACK
e Total merge cost of nH + O(n)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Intermezzo: Intelligent design & amortized analysis

Key ideas:
@ Each run r pays Pushed run| r
» O(r) to enter the stack (entry phase) e
» r to increase its bit length (growth phase) 2 @
bit length of r: £ = |log,(r)] S <
e Entry phase: ensure that 0%_8
> r pays for every merge Fh—1
> (¢;)i>1 is decreasing when r is pushed rh—o
> runs r; with ¢; < £ are merged
@ Growth phase: ensure that
» r; and r;y 1 are merged only if £; = (i1
. r3
Cost analysis: p
2
o Each run r pays p
@ (O(r) during its own run entry phase !

@ at most r[log,(n/r)] during the growth phases STACK
e Total merge cost of nH + O(n)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Intermezzo: Intelligent design & amortized analysis

Key ideas:
@ Each run r pays Pushed run| r
» O(r) to enter the stack (entry phase) e

» r to increase its bit length (growth phase)
bit length of r: £ = |log,(r)]
@ Entry phase: ensure that
> r pays for every merge
> (¢;)i>1 is decreasing when r is pushed ©O rh—o
> runs r; with ¢; < £ are merged

Run entry
collapse

rh—1

@ Growth phase: ensure that
» r; and r;y 1 are merged only if ¢; = ¢;,1 OO

. r3

Cost analysis: p

2

o Each run r pays p

@ (O(r) during its own run entry phase !
STACK

@ at most r[log,(n/r)] during the growth phases
e Total merge cost of nH + O(n)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The details of Adaptive ShiversSort O

Choice rules for options (]
: 2])
@ discover & push a new run length onto the stack [["h-1 °
© merge the top 1%t and 2" runs 'h—21]
© merge the top 2" and 3" runs :
STACK

Choice algorithm

it b, > lp_oor b1 > Fp_o: choose ®

else if £, > £p_1: choose @

else: choose @ (or @ if @ is unavailable) where ¢; = |log,(ri)]

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The details of Adaptive ShiversSort O

Choice rules for options (]
: 2])
@ discover & push a new run length onto the stack [["h-1 °
© merge the top 1%t and 2" runs 'h—21]
© merge the top 2" and 3" runs :
STACK

Choice algorithm

if (h = ﬁh,Q or *t'ihfl = (ﬁ‘h,z: choose ©)

else if £, > £,_1: choose @

else: choose @ (or @ if @ is unavailable) where ¢; = |log,(ri)]

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The details of Adaptive ShiversSort O

Choice rules for options é Ih
@ discover & push a new run length onto the stack [["h-1]9
© merge the top 1%t and 2" runs 'h—21]
© merge the top 2" and 3" runs :

STACK

Choice algorithm

it b, > lp_oor b1 > Fp_o: choose ®

else if ¢, > ¢;_1: choose @

else: choose @ (or @ if @ is unavailable) where ¢; = |log,(ri)]

Bit-length constraints:
0l >l > ... >0 2 >=20h (induction)
@ /1 >10)>...>¥fyon run push ©
o lp_1 =4 and lp_p > Ly during growth (induction) 00

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

The details of Adaptive ShiversSort O

Choice rules for options é Ih
@ discover & push a new run length onto the stack [["h-1]9
© merge the top 1%t and 2" runs 'h—21]
© merge the top 2" and 3" runs :

STACK

Choice algorithm

it b, > lp_oor b1 > Fp_o: choose ®

else if ¢, > ¢;_1: choose @

else: choose @ (or @ if @ is unavailable) where ¢; = |log,(ri)]

Bit-length constraints:
0l >l > ... >0 2 >=20h (induction)
@ /1 >10)>...>¥fyon run push ©
o lp_1 =4 and lp_p > Ly during growth (induction) 00

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

Conclusion

e TimSort is good in practice and in theory: O(n+ nH) merge cost

e Adaptive ShiversSort is better than and very similar to TimSort

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

svn.python.org/projects/python/trunk/Objects/listsort.txt

Conclusion

e TimSort is good in practice and in theory: O(n+ n#H) merge cost

@ Adaptive ShiversSort is better than and very similar to TimSort

Some references:
[1] Optimal computer search trees and variable-length alphabetical codes,

Hu & Tucker (1971)
[2] A new algorithm for minimum cost binary trees, Garsia & Wachs (1973)
[3] Tim Peters’ description of TimSort,

svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[4] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[5] OpenJDK's java.utils.Collection.sort() is broken, de Gouw et al. (2015)
[6] Merge strategies: from merge sort to TimSort, Auger et al. (2015)
[7] On the worst-case complexity of TimSort, Auger et al. (2018)
[8] Nearly-optimal mergesorts, Munro & Wild (2018)
[9] Strategies for stable merge sorting, Buss & Knop (2019)
[10] Adaptive ShiversSort: an alternative sorting algorithm, Jugé (2020)

V. Jugé Complexity of the Adaptive ShiversSort Algorithm

svn.python.org/projects/python/trunk/Objects/listsort.txt

	Efficient Merge Sorts
	TimSort
	Adaptive ShiversSort

