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Equivalence and Decidability
Computational Complexity

Is the equivalence of two algorithms decidable ?
In the general case, no :

Undecidability of the Halting Theorem.
In some particular cases, yes :

f : n → 0
f : n → 1

Vincent Jugé Complexity of Decision Problems in Computational Logic
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How can we evaluate the computational complexity of a problem ?
Look for lower bounds :

Evaluate the computational complexity of the problem for
particular instances.

Look for upper bounds :
Find an algorithm solving the problem and evaluate its
complexity.
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What is a Datalog program ?
A set of Horn rules without function symbols.
A goal predicate.

Example of Datalog program
Program Π :

Z(X ) ⇒ E(X )

E(X ) ∧ S(X ,Y ) ⇒ O(Y )

O(X ) ∧ S(X ,Y ) ⇒ E(Y )

O(X ) ⇒ O(X )

Goal predicate : O.

Vincent Jugé Complexity of Decision Problems in Computational Logic
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Datalog programs work on deductive databases

D = ({0, 1, 2, 3}, {Z(0),S(0, 1),S(1, 2),S(2, 3)})

Π(D) = ({0, 1, 2, 3}, {Z(0),S(0, 1),S(1, 2),S(2, 3)})

Solutions of O(X ) : {(1), (3)}.
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Datalog programs work on deductive databases

D = ({0, 1, 2, 3}, {Z(0),S(0, 1),S(1, 2),S(2, 3)})

Π(D) = ({0, 1, 2, 3}, {Z(0),S(0, 1),S(1, 2),S(2, 3),
E(0)})

Solutions of O(X ) : {(1), (3)}.
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Datalog programs work on deductive databases

D = ({0, 1, 2, 3}, {Z(0),S(0, 1),S(1, 2),S(2, 3)})

Π(D) = ({0, 1, 2, 3}, {Z(0),S(0, 1),S(1, 2),S(2, 3),
E(0),O(1)})

Solutions of O(X ) : {(1), (3)}.
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Datalog programs work on deductive databases

D = ({0, 1, 2, 3}, {Z(0),S(0, 1),S(1, 2),S(2, 3)})

Π(D) = ({0, 1, 2, 3}, {Z(0),S(0, 1),S(1, 2),S(2, 3),
E(0),O(1),O(1),E(2)})

Solutions of O(X ) : {(1), (3)}.
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How can we prove that Π(D) contains a given atom ?

By exhibiting proofs for this atom.

Proof that O(3) is contained in Π(D)

O(3),O(3) ⇒ O(3)
↓

O(3),E(2) ∧ S(2, 3) ⇒ O(3)
↓

E(2),O(1) ∧ S(1, 2) ⇒ E(2)
↓

O(1),E(0) ∧ S(0, 1) ⇒ O(1)
↓

E(0),Z(0) ⇒ E(0)

Vincent Jugé Complexity of Decision Problems in Computational Logic



Introduction
Datalog, Trees, Automata

Containment in Monadic Programs
Containment in Transitive Programs

Conclusion

Datalog Programs
Unfolding Trees
Proof Trees
Containment of Datalog Programs
Automata

How can we prove that Π(D) contains a given atom ?

By exhibiting proofs for this atom.

Proof that O(3) is contained in Π(D)

O(3),O(3) ⇒ O(3)
↓

O(3),E(X ) ∧ S(X , 3) ⇒ O(3)
↓

E(X ),O(Y ) ∧ S(Y ,X ) ⇒ E(X )
↓

O(Y ),E(W ) ∧ S(W ,Y ) ⇒ O(Y )
↓

E(W ),Z(W ) ⇒ E(W )
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Problem
We may use an unbounded number of variables.

The proof of O(2n + 1) involves 2n + 1 variables.

Solution
We may re-use forgotten variables.
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Proof that O(3) is contained in Π(D)

O(3),O(3) ⇒ O(3)
↓

O(3),E(2) ∧ S(2, 3) ⇒ O(3)
↓

E(2),O(1) ∧ S(1, 2) ⇒ E(2)
↓

O(1),E(0) ∧ S(0, 1) ⇒ O(1)
↓

E(0),Z(0) ⇒ E(0)
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When are two Datalog programs A and B equivalent ?
When A is contained in B :

When all the solutions of α(v) in A(D) are solutions of β(v) in
B(D), for every finite database D.

When B is contained in A.

How can we check that A is contained in B ?
For every proof of an atom α(v), we must find a proof of β(v).
We must find containment mappings.

Vincent Jugé Complexity of Decision Problems in Computational Logic
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Containment : Example
Program A

Z(X ) ⇒ E(X )

E(X )∧S(X ,Y ) ⇒ O(Y )

O(X )∧S(X ,Y ) ⇒ E(Y )

O(X ) ⇒ O(X )

Goal predicate : O.

Program B
Z(X ) ⇒ I(X )

I(X ) ∧ S(X ,Y ) ⇒ I(Y )

I(X ) ⇒ I(X )

Goal predicate : I.

Containment relations
A is contained in B .
B is not contained in A.

Vincent Jugé Complexity of Decision Problems in Computational Logic
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Unfolding tree of A

O(X ),O(X ) ⇒ O(X )
↓

O(X ),E(Y ) ∧ S(Y ,X ) ⇒ O(X )
↓

E(Y ),O(V ) ∧ S(V ,Y ) ⇒ E(Y )
↓

O(V ),E(W )∧S(W ,V ) ⇒ O(V )
↓

E(W ),Z(W ) ⇒ E(W )

Unfolding tree of B

I(X ), I(X ) ⇒ I(X )
↓

I(X ), I(Y ) ∧ S(Y ,X ) ⇒ I(X )
↓

I(Y ), I(V ) ∧ S(V ,Y ) ⇒ I(Y )
↓

I(V ), I(W ) ∧ S(W ,V ) ⇒ I(V )
↓

I(W ),Z(W ) ⇒ I(W )

Vincent Jugé Complexity of Decision Problems in Computational Logic



Introduction
Datalog, Trees, Automata

Containment in Monadic Programs
Containment in Transitive Programs

Conclusion

Datalog Programs
Unfolding Trees
Proof Trees
Containment of Datalog Programs
Automata

How can we work on trees ?
Words are recognized by word automata.
Trees are recognized by tree automata.

Different tree automata
Top-down deterministic finite automata
Top-down non-deterministic finite automata
Bottom-up deterministic finite automata
Bottom-up non-deterministic finite automata
Two-way alternating finite automata

TDDFA ( TDNDFA = BUDFA = BDNDFA = TWAFA

Vincent Jugé Complexity of Decision Problems in Computational Logic
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What is a monadic program ?
A program in which each internal IDB predicate is of arity 1.

Example of monadic program
Program B

Z(X ) ⇒ I(X )

I(X ) ∧ S(X ,Y ) ⇒ I(Y )

I(X ) ⇒ I(X )

Goal predicate : I

Vincent Jugé Complexity of Decision Problems in Computational Logic
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Decoration of a tree of A
Identify the internal IDB predicates of B .
Assume that some internal IDB predicates hold on some
variables of the tree.
Store the information

globally in unfolding trees.
locally in proof trees.

Vincent Jugé Complexity of Decision Problems in Computational Logic
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Example of decorated unfolding tree

O(X ),O(X ) ⇒ O(X )
↓

O(X ),E(Y ) ∧ S(Y ,X ) ⇒ O(X )
↓

E(Y ),O(V ) ∧ S(V ,Y ) ⇒ E(Y )
↓

O(V ),E(W ) ∧ S(W ,V ) ⇒ O(V )
↓

E(W ),Z(W ) ⇒ E(W )

IDB predicates : I.
Assumed relations : I(X ), I(Y ), I(V ), I(W ).

Vincent Jugé Complexity of Decision Problems in Computational Logic
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Example of decorated proof tree

O(X ),O(X ) ⇒ O(X )
↓

O(X ),E(Y ) ∧ S(Y ,X ) ⇒ O(X )
↓

E(Y ),O(X ) ∧ S(X ,Y ) ⇒ E(Y )
↓

O(X ),E(Y ) ∧ S(Y ,X ) ⇒ O(X )
↓

E(Y ),Z(Y ) ⇒ E(Y )

Vincent Jugé Complexity of Decision Problems in Computational Logic
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Example of decorated proof tree

O(X ),O(X ) ⇒ O(X )
↓

O(X ),E(Y ) ∧ S(Y ,X ) ⇒ O(X )
↓

E(Y ),O(X ) ∧ S(X ,Y ) ⇒ E(Y )
↓

O(X ),E(Y ) ∧ S(Y ,X ) ⇒ O(X )
↓

E(Y ),Z(Y ) ⇒ E(Y )

— I — I(X)

— I — I(X), I(Y)

— I — I(X), I(Y)

— I — I(X), I(Y)

— I — I(Y)

Vincent Jugé Complexity of Decision Problems in Computational Logic
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What is a fix-point tree ?
Nothing more is implied by the assumptions.
There exists a least fix-point.

Why are these trees important ?
Equivalence between :

A proof of P(X ).
The presence of P(X ) in the least fix-point.
The presence of P(X ) in every fix-point.

Vincent Jugé Complexity of Decision Problems in Computational Logic
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How can we recognize fix-point proof trees ?
With automata :

We search an infix-point certificate.
The research fails when the tree is fix-point.

How can we conclude over the containment ?
With automata :

We search a reaching-goal certificate.
The research succeeds when a containment mapping exists.

Vincent Jugé Complexity of Decision Problems in Computational Logic
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What is a certificate ?
A mapping of variables :

From the variables of a rule.
To the variables of a tree.
That stabilizes the body predicates.
That does not stabilize the head predicate.

How do we search certificates ?
With top-down non-deterministic automata :

We identify mapped variables in the current node.
Unidentified variables are in one child sub-tree.
We look for stabilized body predicates in the current node.
We check if the head predicate of the rule was stabilized.

Vincent Jugé Complexity of Decision Problems in Computational Logic
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Research of an infix-point certificate : Example
IDB predicates : E,O.
Rule : E(X ) ∧T(Y ,Z ) ∧T(X ,Y ) ⇒ O(Y ).
Current sub-tree :

G(Y ),U(Y ) ∧H(Y ) ⇒ G(Y ) — E, O — E(Y)

,O(Y)

↓
U(Y ),
T(Y ,Z )∧T(Z ,W ) ⇒ U(Y )
E, O — E(Y)

, O(Y)

↓
H(Y ),
T(X ,Y )⇒ H(Y )
E, O — E(Y),E(X)

,
O(Y)

Vincent Jugé Complexity of Decision Problems in Computational Logic
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Research of an infix-point certificate : Example
IDB predicates : E,O.
Rule : E(X ) ∧T(Y ,Z ) ∧T(X ,Y ) ⇒ O(Y ).
Current sub-tree :

G(Y ),U(Y ) ∧H(Y ) ⇒ G(Y ) — E, O — E(Y),O(Y)
↓

U(Y ),
T(Y ,Z )∧T(Z ,W ) ⇒ U(Y )
E, O — E(Y), O(Y)

↓
H(Y ),
T(X ,Y )⇒ H(Y )
E, O — E(Y),E(X),
O(Y)
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We build automata checking whether the tree
Is a decorated prof tree.
Contains an infix-point certificate.
Contains a reaching-goal certificate.

A is contained in B when every decorated proof tree of A
Contains an infix-point certificate.
Contains a reaching-goal certificate.

Vincent Jugé Complexity of Decision Problems in Computational Logic
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We proceed by
Union of automata.
Complementation of automata.
Intersection of automata.
Emptiness-checking of automata.

Complexity of the algorithm
2EXPTIME in the sizes of A and B

Vincent Jugé Complexity of Decision Problems in Computational Logic
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What is a transitive program ?
A program with recursion through transitive closure only.

Example of transitive program
Program C

> ⇒ S∗(X ,X )

S(X ,Y ) ∧ S∗(Y ,Z ) ⇒ S∗(X ,Z )

Z(X ) ∧ S∗(X ,Y ) ⇒ I(Y )

Goal predicate : I

Vincent Jugé Complexity of Decision Problems in Computational Logic
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Diamond reduction
Non-recursive program with

New EDB diamond predicates.
New diamond rules.
Rules > ⇒ S∗(X ,X ) are erased.
Rules S(X ,Y ) ∧ S∗(Y ,Z ) ⇒ S∗(X ,Z ) are replaced by
diamond rules.

Vincent Jugé Complexity of Decision Problems in Computational Logic
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Twelve diamond rules
1 S(X ,X1) ∧ S�(X1,X2) ∧ S(X2,X3) ∧ S�(X3,X4) ∧ S(X4,Y ) ⇒ S∗(X ,Y )

2 S(X ,X1) ∧ S�(X1,X2) ∧ S(X2,X3) ∧ S�(X3,Y ) ⇒ S∗(X ,Y )

3 S(X ,X1) ∧ S�(X1,X2) ∧ S�(X2,X3) ∧ S(X3,Y ) ⇒ S∗(X ,Y )

4 S(X ,X1) ∧ S�(X1,X2) ∧ S�(X2,Y ) ⇒ S∗(X ,Y )

5 S�(X ,X1) ∧ S(X1,X2) ∧ S�(X2,X3) ∧ S(X3,Y ) ⇒ S∗(X ,Y )

6 S�(X ,X1) ∧ S(X1,X2) ∧ S�(X2,Y ) ⇒ S∗(X ,Y )

7 S�(X ,X1) ∧ S�(X1,X2) ∧ S(X2,Y ) ⇒ S∗(X ,Y )

8 S�(X ,X1) ∧ S�(X1,Y ) ⇒ S∗(X ,Y )

9 S(X ,X1) ∧ S�(X1,X2) ∧ S(X2,Y ) ⇒ S∗(X ,Y )

10 S(X ,X1) ∧ S�(X1,Y ) ⇒ S∗(X ,Y )

11 S�(X ,X1) ∧ S(X1,Y ) ⇒ S∗(X ,Y )

12 S�(X ,Y ) ⇒ S∗(X ,Y )
Vincent Jugé Complexity of Decision Problems in Computational Logic
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Labelling of a proof tree
Select atoms of an unfolding tree of the diamond reduction.
Map variables of these atoms to variables of the current node.
Build a logical formula from this set and this mapping.
Store the couple (Set of atoms, Associated mapping) locally.
Store locally a set a such couples.

Example of formula

Current node : I(X ),S(Y ,X ) ∧ I(Y ) ⇒ I(X )

Set of atoms : {S�(X ,Y ),S(Y ,Z )}
Mapping : X → X ,Y → Y ,Z → Z
Logical formula :

(
∃Z

) (
S∗(X ,Y ) ∧ S(Y ,Z )

)
Vincent Jugé Complexity of Decision Problems in Computational Logic
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Example of labelled proof tree

I(X ),
I(X ) ⇒ I(X )

↓
I(X ),
I(Y ) ∧ S(Y ,X ) ⇒ I(X )

↓
I(Y ),
Z(Y ) ⇒ I(Y )

Vincent Jugé Complexity of Decision Problems in Computational Logic
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Example of labelled proof tree

I(X ),
I(X ) ⇒ I(X )

↓
I(X ),
I(Y ) ∧ S(Y ,X ) ⇒ I(X )

↓
I(Y ),
Z(Y ) ⇒ I(Y )

{({S�(X ,Y ),S(Y ,Z )},
{X → X ,Y → Y ,Z → Z})}

{({S�(X ,Y ),S(Y ,Z )},
{X → X ,Y → Y ,Z → Z})}

{({S�(X ,Y ),S(Y ,Z )},
{X → X ,Y → Y ,Z → Z})}

Vincent Jugé Complexity of Decision Problems in Computational Logic



Introduction
Datalog, Trees, Automata

Containment in Monadic Programs
Containment in Transitive Programs

Conclusion

Transitive Programs
Labelled Proof Trees
Fix-Point Labelled Proof Trees
Automata
The Algorithm

What is a fix-point labelled proof tree ?
The stored formulæ do not imply directly other formulæ.
There exists a least fix-point.

Why are these trees important ?
Equivalence between :

A proof of β(v).
The presence of β(v) in the root of the least fix-point.
The presence of β(v) in the root of every fix-point.
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What is a direct implication ?
1 If ϕ is true in a neighbour node, ϕ is true.
2 If ϕ1 ∧ ϕ2 is true, ϕ1 is true.
3 If ϕ1 and ϕ2 are true, ϕ1 ∧ ϕ2 is true.
4 If ϕ is true, (∃v) (ϕ) is true.
5 If (∃v) (ϕ1 ∧ ϕ2) is true and ϕ2 ⇒ ϕ3 is a rule,

(∃v) (ϕ1 ∧ ϕ2 ∧ ϕ3) is true.
6 If ϕ is an EDB atom of the current node, ϕ is true.
7 If (∃v) (ϕ) is true, (∃v) (ϕ ∧ S∗(x , x)) is true.
8 If (∃v) (ϕ ∧ S(x , y)) is true, (∃v) (ϕ ∧ S∗(x , y)) is true.
9 If (∃v) (ϕ ∧ S∗(x , y) ∧ S∗(y , z)) is true, (∃v) (ϕ ∧ S∗(x , z)) is

true.
10 > is true.
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How do we recognize fix-point labelled proof trees ?
With top-down non-deterministic automata :

We select a direct implication rule.
We select one or two true formulæ stored in the node.
We compute the implied formula.
We verify that this formula is stored in the node.

How can we conclude over the containment ?
With automata :

The goal formula β(v) is stored in the root when a
containment mapping exists.
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We build an automaton checking whether the tree
Is a fix-point labelled prof tree.
Does not store the goal formula β(v) in its root.

A is contained in B when every labelled proof tree of A

Stores the goal formula β(v) in its root.

We proceed by
Emptiness-checking of automata.

Complexity of the algorithm
3EXPTIME in the sizes of A and B
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We already knew
The decidability of the containment problem in monadic and
transitive programs.
Algorithms of non-elementary complexity.

I found
An algorithm deciding the containment in monadic programs
in 2EXPTIME.
An algorithm deciding the containment in transitive programs
in 3EXPTIME.

We still have to
Find lower bounds for the containment problems.
Search algorithms deciding directly the equivalence problems.

Vincent Jugé Complexity of Decision Problems in Computational Logic



Introduction
Datalog, Trees, Automata

Containment in Monadic Programs
Containment in Transitive Programs

Conclusion

Questions ?
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