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A PhD about braids?

Some questions of interest. ..

© What are braids? Mathematical objects interacting with each other.
@ What is a complicated braid? Define notions of complexity.

© How do complicated braids typically behave?
Choose a dynamic framework /probability measure.
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What are braids? — Algebra

Isotopy classes of braid diagrams (Artin 1926)
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What are braids? — Geometry

Braids are isotopy classes of which laminations?

Open lamination Closed lamination

O1-0—0- %##4

Curve diagram
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What are braids? — Checking braid equality

Garside normal form (Garside 1969, Adian 1984)

@ The monoid of positive braids B} = {o1,...,0,-1)" is a lattice for
the divisibility ordering <. (a<BeIveBf,ay=p)
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What are braids? — Checking braid equality

Garside normal form (Garside 1969, Adian 1984)

@ The monoid of positive braids B} = {o1,...,0,-1)" is a lattice for
the divisibility ordering <. (a<BeIveBf,ay=p)
[B4]
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What are braids? — Checking braid equality

Garside normal form (Garside 1969, Adian 1984)
@ The monoid of positive braids B} = {o1,...,0,-1)" is a lattice for
the divisibility ordering <. (a<BeIveBf,ay=p)
@ There exists a Garside element A, = \/{o1,...,0n-1}

© The Garside normal form of a positive braid a € B} is the smallest
word Gar(«) = aj - ap - ... a such that:
« = aias...ak,; ai=A, A ((81...8,',1)_10).

v
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What are braids? — Checking braid equality

Garside normal form (Garside 1969, Adian 1984)

@ The monoid of positive braids B} = {o1,...,0,-1)" is a lattice for
the divisibility ordering <. (a<BeIveBf,ay=p)
@ There exists a Garside element A, = \/{o1,...,0n-1}

© The Garside normal form of a positive braid a € B} is the smallest

word Gar(«) = aj - ap - ... a such that:
o =ajay...ak ai=0n A ((a1...3-1) ta). )
The Garside normal form:
@ can be extended to the group B,;
@ is automatic: for all i e {1,...,n— 1}, the languages
» {(Gar(«), Gar(ao})) : a € B,}; » {(Gar(«), Gar(c;a)) : a € B,}
are regular;

@ solves the equality problem: o = g iff Gar(a) = Gar(f).
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Non-tight laminations/curve diagrams
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What are braids? — Checking braid equality
Tight laminations/curve diagrams

A lamination/curve diagram is tight if it minimises crossings == or 4~ -

Non-tight laminations/curve diagrams

= e

Tight laminations/curve diagrams

oo [Ead e

e Two tight laminations/curve diagrams represent the same braid iff
they are visibly isotopic to each other. (~ normal form)
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Several approaches to braid complexity
@ “Naive” Artin length: E>F>D>A~B=~C(;
e A =o00001: Al =3; e D=o}: |D| = 4;
e B = 0y00071: Bl = 3; o E = (0102)%: |E| = 6;
o C = o010501: IC| = 3; o F = o20,010%: |F| =5.
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Which braid is the most complicated?
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Several approaches to braid complexity
@ “Naive” Artin length: E>F>D>A=~B=~C(
@ “Real” Artin length: E>D>A~B~C=F;
o A = 0i0001: |A| = 3; e D=o}: |D| = 4;
e B = ogi0001: IB| = 3; o E = (0102)%: |E| = 6;
o C=oi07071: |C|=3; o F =o010%071: ‘F‘ = 3.
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What are braids? — Checking complexity
Which braid is the most complicated?
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Several approaches to braid complexity
@ “Naive” Artin length: E>F>D>A~B=~C(;
@ “Real” Artin length: E>D>A~B~C=F;
@ Symmetric Garside length: D>C=F >B=~E > A;

° B=01-0102: IB| = 2; e E=A3-As: E| = 2;
o C =001 0201-01: |C| =3; o F=C: |F| = 3.
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What are braids? — Checking complexity

Which braid is the most complicated?
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Several approaches to braid complexity
@ “Naive” Artin length: E>-F>D>A~B~C;
@ “Real” Artin length: E>D>A~B~C=F;
@ Symmetric Garside length: D>C=F >B=~E > A;
@ Open laminated complexity: C=F > D~ E > B > A;

Al =6 B/=8 |C/=|F|=14  |D|=10 IE| = 10
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What are braids? — Checking complexity

Which braid is the most complicated?

® © _© ® ®
1525¢)[55¢)[55¢ [3oo0c 5252529 (5025

Several approaches to braid complexity
@ “Naive” Artin length: E>-F>D>A~B~C;
@ “Real” Artin length: E>D>A~B~C=F;
@ Symmetric Garside length: D>C=F >B=~E > A;
@ Open laminated complexity: C=F > D~ E > B > A;
o

Diagrammatic complexity: C=F>D~E > B > A.

v

|A| =6 IB| =8 |IC| = |F| =14 ID| =10 |[E| =10

S Pde lEm&, l_lﬁ@”ﬁr l Eﬂ To ‘IQ—-O--éI?
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What are braids? — Checking complexity

How fast can you compute the complexity
of a braid a € B, of length k7

@ Artin length: coNP-complete(n, k)  (Paterson & Razborov 1991);
polynomial(n < 3, k) (Sabalka 2003);
open(n =5, k);
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What are braids? — Checking complexity

How fast can you compute the complexity
of a braid a € B, of length k7

Artin length: coNP-complete(n, k)  (Paterson & Razborov 1991);
polynomial(n < 3, k) (Sabalka 2003);
open(n =5, k);

Symmetric Garside length: polynomial(n, k) (Thurston 1988);

Open laminated complexity: polynomial(n, k) (Dynnikov & Wiest 2004);

Diagrammatic complexity: polynomial(n, k) (Dynnikov & Wiest 2004).
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Algebra Geometry

(— Braid ﬁ

Class of words Class of drawings

B, = ( generators | relations ) B, = {tight drawings}

Garside normal form (regular)
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Algebra Geometry

(— Braid ﬁ

Class of words Class of drawings
B, = ( generators | relations ) B, = {tight drawings}
Garside normal form (regular) Relaxation normal form (regular)
Part 1/4

Vincent Jugé (Paris 7 — IRIF) Combinatorics of braids



Algebra Geometry

(— Braid ﬁ

Class of words Class of drawings
B, = ( generators | relations ) B, = {tight drawings}
Garside normal form (regular) Relaxation normal form (regular)
Part 1/4

(— Complexity ﬁ

Garside: . 5. zl*l rational Relaxation: >} 5 zlel rational
Artin: Y, g, 2% rational

Artin: )] zlel ?

CMEB,,>4
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Algebra Geometry

(— Braid ﬁ

Class of words Class of drawings
B, = ( generators | relations ) B, = {tight drawings}
Garside normal form (regular) Relaxation normal form (regular)
Part 1/4

(— Complexity ﬁ

Garside: . 5. zl*l rational Relaxation: >} 5 zlel rational
Artin: Y, g, 2% rational Geometric: Y, z/*l  —rational
—algebraic
Ao la| 2 alg i
Artin: ZCveBn>4 a0 Part 2/4 —holonomic

Geometric: > 5 _, zlel?
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Depth-first exploration Width-first exploration

(— Braids of large size ﬁ

Random walk Uniform measure on positive braids
of given (Artin) size

Which normal forms converge? What do Garside normal forms of
(Vershik, 2000) large random braids look like?
(Gebhardt & Tawn, 2013)

Markov-lvanovsky normal form
(Vershik & Malyutin, 2007)
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Depth-first exploration Width-first exploration

(— Braids of large size ﬁ

Random walk Uniform measure on positive braids
of given (Artin) size

Which normal forms converge? What do Garside normal forms of
(Vershik, 2000) large random braids look like?
(Gebhardt & Tawn, 2013)

Markov-lvanovsky normal form
(Vershik & Malyutin, 2007)

Garside normal forms
Part 3/4 (with J. Mairesse)
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Depth-first exploration Width-first exploration

(— Braids of large size ﬁ

Random walk Uniform measure on positive braids
of given (Artin) size

Which normal forms converge? What do Garside normal forms of
(Vershik, 2000) large random braids look like?
(Gebhardt & Tawn, 2013)
Markov-lvanovsky normal form Uniform measure on
(Vershik & Malyutin, 2007) infinite positive braids
Garside normal forms Part 4/4 (with S. Abbes,
Part 3/4 (with J. Mairesse) S. Gouézel & J. Mairesse)
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Contents

@ Geometric aspects of braids
@ Right relaxation normal form
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

While your lamination is not trivial:
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

While your lamination is not trivial:

@ Select the rightmost (mobile) puncture that lies inside a bigon;
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

@—O O—:’ @

While your lamination is not trivial:
@ Select the rightmost (mobile) puncture that lies inside a bigon;
@ Slide it along its right neighbour arc;
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What is the right relaxation normal form? (by S. Caruso &

B. Wiest)

Move your rightmost tensed puncture and relax!

[ro1]

)
A

|I_II_I|

=1

While your lamination is not trivial:

Moves performed:
(23]

@ Select the rightmost (mobile) puncture that lies inside a bigon;

@ Slide it along its right neighbour arc (and remember it);
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

Moves performed:
(23]

IE Ig °

While your lamination is not trivial:
@ Select the rightmost (mobile) puncture that lies inside a bigon;
@ Slide it along its right neighbour arc (and remember it);
© Relax your diagram!
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

Moves performed:
(23]

oc%@ ®

While your lamination is not trivial:

@ Select the rightmost (mobile) puncture that lies inside a bigon;
@ Slide it along its right neighbour arc (and remember it);
© Relax your diagram!
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

Moves performed:
(23]

While your lamination is not trivial:
@ Select the rightmost (mobile) puncture that lies inside a bigon;
@ Slide it along its right neighbour arc (and remember it);
© Relax your diagram!
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

Moves performed:
[2 — 3][2 —~ 3]

=
o &of o

While your lamination is not trivial:

@ Select the rightmost (mobile) puncture that lies inside a bigon;
@ Slide it along its right neighbour arc (and remember it);
© Relax your diagram!
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

Moves performed:
[2 — 3][2 —~ 3]

@ ﬂC @

While your lamination is not trivial:
@ Select the rightmost (mobile) puncture that lies inside a bigon;
@ Slide it along its right neighbour arc (and remember it);
© Relax your diagram!
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

Moves performed:
[2 — 3][2 —~ 3]

@ %C @

While your lamination is not trivial:
@ Select the rightmost (mobile) puncture that lies inside a bigon;
@ Slide it along its right neighbour arc (and remember it);
© Relax your diagram!
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

Moves performed:
[2 — 3][2 —~ 3]

While your lamination is not trivial:
@ Select the rightmost (mobile) puncture that lies inside a bigon;
@ Slide it along its right neighbour arc (and remember it);
© Relax your diagram!
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

Moves performed:
[2 — 3][2 —~ 3]

While your lamination is not trivial:
@ Select the rightmost (mobile) puncture that lies inside a bigon;
@ Slide it along its right (or left) neighbour arc (and remember it);
© Relax your diagram!
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

Moves performed:
[2 — 3][2 —~ 3][1 — 2]

O
(]

FLT,

While your lamination is not trivial:
@ Select the rightmost (mobile) puncture that lies inside a bigon;
@ Slide it along its right (or left) neighbour arc (and remember it);
© Relax your diagram!
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

. L
Trivial lamination! Moves performed:

[2 = 3][2~ 3][1 = 2]

While your lamination is not trivial:
@ Select the rightmost (mobile) puncture that lies inside a bigon;
@ Slide it along its right (or left) neighbour arc (and remember it);
© Relax your diagram!
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What is the right relaxation normal form? (by S. Caruso &
B. Wiest)

Move your rightmost tensed puncture and relax!

. L
Trivial lamination! Moves performed:

[2 = 3][2~ 3][1 = 2]

Relaxation normal form (RNF):
i oo
[k ~tl]=0k...001
[k =] =0%...01

O
(]

While your lamination is not trivial:
@ Select the rightmost (mobile) puncture that lies inside a bigon;
@ Slide it along its right (or left) neighbour arc (and remember it);
© Relax your diagram!
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination Cell map

EHeipifeliolie (IEENAE
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination Cell map
wdlall e
Lellel Lel
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination Cell map
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination Cell map
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination Cell map

ElfifFtlelie | T1L[TLU

Lamination trees (LT)

|I_i

Il |
[CTC| ma
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination Cell map

ElfifFtlelie | T1L[TLU

Lamination trees (LT)

Ir°-i

Isall |
[ By
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination Cell map

Lamination trees (LT)

el I
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination Cell map

Lamination trees (LT)
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination Cell map

Lamination trees (LT) Arc trees

74
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination Cell map

Lamination trees (LT) Arc trees

G
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination Cell map

Lamination trees (LT) Arc trees

]

L Bigons }
(N ] ()
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Tight closed lamination, cell map and lamination/arc trees

Tight closed lamination

Cell map

LT

Lamination trees (LT)

(unary-binary trees 4+ 0/1 leaf)

Vincent Jugé (Paris 7 — IRIF)

Arc trees

3

() ®
L Bigons }
(N ]

7

(unary-binary trees)
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After a careful case analysis. ..
Given two braids a € B, and [k —~ ¢], remembering small-size subtrees

It(c) of LT («) is enough to:
o check whether RNF(a[k —~ £]) = RNF(a) - [k —~ ¢];
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After a careful case analysis. ..

Given two braids a € B, and [k —~ ¢], remembering small-size subtrees
It(c) of LT («) is enough to:
o check whether RNF(a[k —~ £]) = RNF(a) - [k —~ ¢];

@ compute analogous subtrees It(a[k — ¢]) (if needed).
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After a careful case analysis. ..

Given two braids a € B, and [k —~ ¢], remembering small-size subtrees
It(c) of LT («) is enough to:
o check whether RNF(a[k —~ £]) = RNF(a) - [k —~ ¢];

@ compute analogous subtrees It(a[k — ¢]) (if needed).
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After a careful case analysis. ..

Given two braids a € B, and [k —~ ¢], remembering small-size subtrees
It(c) of LT («) is enough to:
o check whether RNF(a[k —~ £]) = RNF(a) - [k —~ ¢];

@ compute analogous subtrees It(a[k — ¢]) (if needed).

< 5n+ 6 nodes

< 5n+ 6 nodes
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After a careful case analysis. ..

Given two braids a € B, and [k —~ ¢], remembering small-size subtrees
It(c) of LT («) is enough to:
o check whether RNF(a[k —~ £]) = RNF(a) - [k —~ ¢];

@ compute analogous subtrees It(a[k — ¢]) (if needed).

< 5n+ 6 nodes

< 5n+ 6 nodes
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After a careful case analysis. ..
Given two braids a € B, and [k —~ ¢], remembering small-size subtrees
It(c) of LT («) is enough to:

o check whether RNF(a[k —~ £]) = RNF(a) - [k —~ ¢];

@ compute analogous subtrees It(a[k — ¢]) (if needed).

< 5n+ 6 nodes

< 5n+ 6 nodes

The right relaxation normal form is regular.

Theorem (J. 2015) J
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Going further

Some additional results

@ Memory requirements: nearly optimal (up to a ratio < 20);

@ Dehornoy ordering: o-positivity <> RNF in a regular language.
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Going further

Some additional results

Memory requirements: nearly optimal (up to a ratio < 20);

Dehornoy ordering: o-positivity < RNF in a regular language.

and open questions

Is the right relaxation normal form (bi-)automatic? (Yes if n < 3)

Regularity of other transmission-relaxation normal forms? (wide open)
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Contents

@ Geometric aspects of braids

@ Counting braids with a given geometric complexity
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Which complexity should we look at?
Knowing the open laminated complexity of a;, can we compute its:

@ closed laminated complexity?
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Which complexity should we look at?

Knowing the open laminated complexity of a;, can we compute its:

@ closed laminated complexity?

Tight open lamination

=11

4

Yes: |a|c = |a|o + n+3

Tight closed lamination

fiototorfo]

Vincent Jugé (Paris 7 — IRIF)
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Which complexity should we look at?

Knowing the open laminated complexity of a;, can we compute its:
@ closed laminated complexity? Yes: |alc = |alo +n+3
e diagrammatic complexity?
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Which complexity should we look at?

Knowing the open laminated complexity of a;, can we compute its:

@ closed laminated complexity? Yes: |a|c = |alo + n+3
@ diagrammatic complexity? No for n > 4
Tight open laminations Tight curve diagrams

[rlle ﬁq—-& W‘

|0102073], = 11 |016203|4 = 13
II |I25%‘ oo || &0 e
o330 = 11 |o33%a = 11
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Which complexity should we look at?

Knowing the open laminated complexity of a;, can we compute its:
@ closed laminated complexity? Yes: |alc = |alo +n+3
e diagrammatic complexity? No for n > 4

@ inverse diagrammatic complexity?
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Which complexity should we look at?

Knowing the open laminated complexity of a;, can we compute its:

@ closed laminated complexity? Yes: |a|c = |alo + n+3

@ diagrammatic complexity? No for n > 4

e inverse diagrammatic complexity? Yes: [a@lq = |alo
Tight open lamination Inverse tight curve diagram

[rs1lly ?é-lr-? J)--Q?
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Which complexity should we look at?

Knowing the open laminated complexity of a;, can we compute its:

@ closed laminated complexity? Yes: |alc = |alo +n+3
e diagrammatic complexity? No for n > 4
e inverse diagrammatic complexity? Yes: [a@lq = |alo

Let us compute geometric generating functions!

On(z) = Z Zlalo Ch(z) = Z Zlale Dy(z) = Z Zlala

a€eB, a€eB, aeB,

Co(z) = 2"30,(2) = 2"73D,(2)
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Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams
Tight curve diagram Tight generalised curve diagram

el |zl
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Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams
Tight curve diagram Tight generalised curve diagram

il L ST

(not necessarily connected)
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Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams
Tight curve diagram Tight generalised curve diagram

el |zl

(not necessarily connected)

and encoding them!

L

Coordinates: {(xo,x1,%2,%3,%2),(V1,¥2,¥3.Y4))
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Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams
Tight curve diagram Tight generalised curve diagram

el |zl

(not necessarily connected)

and encoding them!

L

Coordinates: {(0,x1,x2,x3,0),(y1,¥2,¥3.Y4))
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Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams
Tight curve diagram Tight generalised curve diagram

el |zl

(not necessarily connected)

and encoding them!
6-0-
Q Q

@
Coordinates: {(0,x1,x2,x3,0),(y1,¥2,¥3.Y4))
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Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams
Tight curve diagram Tight generalised curve diagram

el |zl

(not necessarily connected)

and encoding them!
60-0-
Q Q

@
Coordinates: {(0,x1,x2,x3,0),(y1,¥2,¥3.Y4))
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Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams
Tight curve diagram Tight generalised curve diagram

el |zl

(not necessarily connected)

and encoding them!

Coordinates: ((0,1,2,2,0),(y1,y2,¥3.Y4))
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Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams
Tight curve diagram Tight generalised curve diagram

el |zl

(not necessarily connected)

and encoding them!
@'@
[on el

@
Coordinates: ((0,1,2,2,0),(y1,y2,¥3.Y4))
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Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams
Tight curve diagram Tight generalised curve diagram

el |zl

(not necessarily connected)

and encoding them!
@'@
[on el

@
Coordinates: ((0,1,2,2,0),(1,3,4,0))
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Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams
Tight curve diagram Tight generalised curve diagram

el |zl

(not necessarily connected)

and encoding them!
6-0-
Q Q

@
Coordinates: ((0,1,2,2,0),(1,3,4,0))
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Generalised tight curve diagrams and coordinates

Generalising tight curve diagrams
Tight curve diagram Tight generalised curve diagram

el |zl

(not necessarily connected)

and encoding them!

Coordinates: ((0,1,2,2,0),(1,3,4,0))

27:—11 Xj = M’%: Let us compute G,(z) = Z g,,,kzk = \/El_nDn(\/E)!
k>0
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And finally. ..

Theorem (J. 2015)
In the 3-strand braid group Bs, we have:

° G3(z) = 12"‘(21;25_ (Zk>390( )z )+ 1_322‘ and

o g3k =14o+2 ( (k+2) — 1geaz + 2592 ok +3 - 2i)) 1is1,

where p(k) = #{¢:1<{ < kand k A ¢ =1}.
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And finally. ..

Theorem (J. 2015)
In the 3-strand braid group B3, we have:
o Gs(2) = 2HEZE (Lhss 9(K)2¥) + 1232 and

o g3k =14o+2 ( (k+2) — 1geaz + 2592 ok +3 - 2i)) 1is1,

where p(k) = #{¢:1<{ < kand k A ¢ =1}.

Consequence: G3(z) is not
e rational; (93(2) ¢ R(2))
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And finally. ..

Theorem (J. 2015)
In the 3-strand braid group Bs, we have:

—322
° G3(2) = 25%E (Yiss w(k)Z¥) + 125 and
@ B3k =1k +2 ( (k+2) — 1xerz + 22’k/12 ¥

where ¢(k)

=#{{:1<l<kand k Al =1}

(k+3—Z»IDL

Consequence: G3(z) is not
@ rational;

e algebraic;

(for all P e R[z], if P(G"

(93(2) ¢ R(2))
(z)) =0, then P =0)
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And finally. ..

Theorem (J. 2015)
In the 3-strand braid group Bs, we have:

o G3(2) = 2L2=5 (S0 0(k)2) + 1225 and
@ B3k =1k +2 ( (k+2) — 1xerz + 22’k/12 ¥
where (k) = #{{:1<{ <k and k A ¢ = 1}.

(k+3— 2i)) 1is1,

Consequence: G3(z) is not
@ rational;
e algebraic;
@ holonomic.

(for all Py, ...

P e R[z], if i Pi(2)GS

(for all P e R[Z], if P(gé’)

i)(z) =0, then Py = ...

(93(2) ¢ R(2))
(z)) =0, then P =0)

- P, =

0)
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And finally. ..

Theorem (J. 2015)
In the 3-strand braid group Bs, we have:

° G3(2) = 258 (L1 0(K)7*) + 525 and
@ B3k =1k +2 ( (k+2) — 1xerz + 22’k/12 ¥
where (k) = #{{:1<{ <k and k A ¢ = 1}.

(k+3— 2i)) 1is1,

Consequence: G3(z) is not
@ rational;
e algebraic;
@ holonomic.

(for all Py, ...

P e R[z], if i Pi(2)GS

G3(z) is more complicated than 3}, . zlolarin —

(for all P e R[Z], if P(Qéi)

i)(z) =0, then Py = ...

(93(2) ¢ R(2))
(z)) =0, then P =0)

- P, =

0)

(14+2)(1—z+22-223)

(2—z)(1-22)(1—z—22) *
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Contents

© Algebraic aspects of braids
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Combinatorics of positive braids

Simple positive braids
Simple positive braids are:
o the left divisors of A, = \/{o1,...,0n-1};
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Combinatorics of positive braids

Simple positive braids
Simple positive braids are:
o the left divisors of A, = \/{o1,...,0n-1};
o the right divisors of A, = \/ {o1,...,0n-1};
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Combinatorics of positive braids

Simple positive braids
Simple positive braids are:
o the left divisors of A, = \/{o1,...,0n-1};
o the right divisors of A, = \/ {o1,...,0n-1};

o the o-free braids (elements of S, = {a € B, : Voju,v € By, o # uo?v}).
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Combinatorics of positive braids
Simple positive braids
Simple positive braids are:

o the left divisors of A, = \/{o71,.

L onak
o the right divisors of A, = \/ {o1,...,0n-1};

o the o-free braids (elements of S, = {a € B, : Voju,v € By, o # uo?v}).

Some properties of simple braids:

. . IA I
@ S, is a sublattice of B;}; \4

|0'10201030'2| |0'10'20'3a'20'1|

0201030201

|010'20'103 | |0'10'2030'2 | 02010302

Vincent Jugé (Paris 7 — IRIF)
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Combinatorics of positive braids
Simple positive braids
Simple positive braids are:

o the left divisors of A, = \/{o71,

o onal
o the right divisors of A, = \/ {o1,...,0n-1};

o the o-free braids (elements of S, = {a € B, : Voju,v € By, o # uo?v}).

Some properties of simple braids:
@ S, is a sublattice of B;};

@ S, is a two-way Garside family (closed under v, <, v4 and >);
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Combinatorics of positive braids
Simple positive braids
Simple positive braids are:

o the left divisors of A, = \/{o71,

o onal
o the right divisors of A, = \/ {o1,...,0n-1};

o the o-free braids (elements of S, = {a € B, : Voju,v € By, o # uo?v}).

Some properties of simple braids:
@ S, is a sublattice of B;};

@ S, is a two-way Garside family

(closed under v, <, vy and >);
© local exit criterion

(for all € € S, and 0;, a > 0, < aoc; ¢ S,).
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Combinatorics of positive braids
Simple positive braids
Simple positive braids are:
o the left divisors of A, = \/{o1,...,0n-1};
o the right divisors of A, = \/ {o1,...,0n-1};

o the o-free braids (elements of S, = {a € B, : Voju,v € By, o # uo?v}).

Some properties of simple braids:
@ S, is a sublattice of B;};
@ S, is a two-way Garside family (closed under v, <, v4 and >);

© local exit criterion (forall o€ S, and 0y, a > 0; = ao; ¢ S,).

Consequence on Garside normal forms:
Q local neighbouring criterion: wy - wy - ... - wy € Gar(B;}) iff
»owa, .., wi € SR\ {1 » R(w;) 2 L(wj41) for all i < k.
(L(e) = {o;: 0 < a} and R(a) = {0 : @ > 0})
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Generalising braid monoids

e Braid monoid: <0',' | 0i0j410) = 0','+10','0‘,'+1,i #_j +1= g0 = Uj0'i>+;
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Generalising braid monoids

Garside

@ Braid monoid: <0',' | 0i0i4+10; = 0j4+10i0i4+1, i #_j +1= g0 = O'J'O','>+;
o Garside monoid: finite generating set ¥, cancellative, <- and >-lattice,
with a Garside element A such that {x : x < A} = {x: A > x} 2 &;
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Generalising braid monoids

< Garside ii Artin—Tits >

@ Braid monoid: <0',' | 0i0i4+10; = 0j4+10i0i4+1, i #_j +1= g0 = 0‘j0‘,‘>+;

o Garside monoid: finite generating set ¥, cancellative, <- and >-lattice,
with a Garside element A such that {x : x < A} = {x: A > x} 2 &;

e Artin—Tits monoid: {(o; | [070;](¥) = [gj0;]0))*;

U(i,j) =2 = ojoj = gjo;

Vincent Jugé (Paris 7 — IRIF) Combinatorics of braids



Generalising braid monoids

< Garside ii Artin—Tits >

@ Braid monoid: <0',' | 0i0i4+10; = 0j4+10i0i4+1, i #_j +1= g0 = 0‘j0‘,‘>+;

o Garside monoid: finite generating set ¥, cancellative, <- and >-lattice,
with a Garside element A such that {x : x < A} = {x: A > x} 2 &;

e Artin—Tits monoid: {(o; | [070;](¥) = [gj0;]0))*;

E(I,_/) =3= 0j0j0j = 000
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Generalising braid monoids

< Garside ii Artin—Tits >

@ Braid monoid: <0',' | 0i0i4+10; = 0j4+10i0i4+1, i #_j +1= g0 = 0‘j0‘,‘>+;

o Garside monoid: finite generating set ¥, cancellative, <- and >-lattice,
with a Garside element A such that {x : x < A} = {x: A > x} 2 &;

e Artin—Tits monoid: {(o; | [070;](¥) = [gj0;]0))*;

£(i,j) = +00 = no relation!
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Generalising braid monoids

Garside Artin—Tits
S

@ Braid monoid: <0',' | 0i0i4+10; = 0j4+10i0i4+1, i #_j +1= g0 = 0‘j0‘,‘>+;

o Garside monoid: finite generating set ¥, cancellative, <- and >-lattice,
with a Garside element A such that {x : x < A} = {x: A > x} 2 &;

e Artin—Tits monoid: {(o; | [070;](¥) = [gj0;]0))*;

@ A-T monoid with spherical type: A-T and Garside; (3/4)
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Generalising braid monoids

Garside Artin—Tits

O

Braid monoid: <0',' | 0i0j410] = 0j4+10i0j4+1, i #_j +1= g0 = 0‘j0‘,‘>+;

Garside monoid: finite generating set ¥, cancellative, <- and >-lattice,
with a Garside element A such that {x : x < A} = {x: A > x} 2 &;

Artin—Tits monoid: (o; | [0;0,]/09) = [00;]¢0))F;
A-T monoid with spherical type: A-T and Garside; (3/4)
Trace monoid: Artin—Tits with £(i,j) € {2, +o0};
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Generalising braid monoids

< Garside

Braid monoid: <0',' | 0i0j410] = 0j4+10i0j4+1, i #_j +1= g0 = 0‘_,'0','>+;

Artin—Tits

Garside monoid: finite generating set ¥, cancellative, <- and >-lattice,
with a Garside element A such that {x : x < A} = {x: A > x} 2 &;

e Artin—Tits monoid: {(o; | [070;](¥) = [gj0;]0))*;
@ A-T monoid with spherical type: A-T and Garside; (3/4)
e Trace monoid: Artin—Tits with £(i,j) € {2, +o0};

@ A-T monoid with FC type: A-T with finite 2-way Garside family. (4/4)
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Contents

© Algebraic aspects of braids
@ Garside normal form and random walks
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Random walk in a braid monoid (with J. Mairesse)

Random walk
Q Select i.i.d. generators (Yi)k=o uniformly chosen in {o1,...,05-1}.
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Random walk in a braid monoid (with J. Mairesse)

Random walk
© Select i.i.d. generators (Yk)k=o uniformly chosen in {o1,...,00-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.
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Random walk in a braid monoid (with J. Mairesse)

Random walk
© Select i.i.d. generators (Yk)k=o uniformly chosen in {o1,...,00-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:

(] Garg(ﬁ) = By ... By with R(ﬁ,) =2 L(ﬂi+1);
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Random walk in a braid monoid (with J. Mairesse)

Random walk
© Select i.i.d. generators (Yk)k=o uniformly chosen in {o1,...,00-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
(] Garg(ﬁ) = By ... By with R(ﬁ,) =2 L(ﬂi+1);
(2) Garr(ﬁ) =1 -...- Bk with R(ﬁ,) < L(,@H_l);
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Random walk in a braid monoid (with J. Mairesse)

Random walk
© Select i.i.d. generators (Yk)k=o uniformly chosen in {o1,...,00-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
o Garg(ﬁ) = By ... By with R(ﬂ,) =2 L(ﬁi+1);
Q@ Gar,(3) = p1-... Bk with R(3;) = L(Bi+1);
© Gar®(B) =f1-...- Bi- A* with By # A and R(B;) < L(Bi41).
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Random walk in a braid monoid (with J. Mairesse)

Random walk
© Select i.i.d. generators (Yk)k=o uniformly chosen in {o1,...,00-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
o Garg(ﬁ) = By ... By with R(ﬂ,) =2 L(Bi-i—l);
Q@ Gar,(3) = p1-... Bk with R(3;) = L(Bi+1);
© Gar®(B) =f1-...- Bi- A* with By # A and R(B;) < L(Bi41).

Chronological
form:

Left Garside

normal form:
Right Garside
normal form:

Left® Garside
normal form:
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Random walk in a braid monoid (with J. Mairesse)

Random walk
© Select i.i.d. generators (Yk)k=o uniformly chosen in {o1,...,00-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
o Garg(ﬁ) = By ... By with R(ﬂ,) =2 L(Bi-i—l);
Q@ Gar,(3) = p1-... Bk with R(3;) = L(Bi+1);
© Gar®(B) =f1-...- Bi- A* with By # A and R(B;) < L(Bi41).

Chronological
form:

Left Garside

normal form:
Right Garside
normal form:

Left® Garside
normal form:
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Random walk in a braid monoid (with J. Mairesse)

Random walk
© Select i.i.d. generators (Yk)k=o uniformly chosen in {o1,...,00-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
o Garg(ﬁ) = By ... By with R(ﬂ,) =2 L(Bi-i—l);
Q@ Gar,(3) = p1-... Bk with R(3;) = L(Bi+1);
© Gar®(B) =f1-...- Bi- A* with By # A and R(B;) < L(Bi41).

Chronological §>C

form:
Left Garside ?d\E
normal form: ———_— 3d step

Right Garside ?&

normal form:

Left® Garside
normal form:
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Random walk in a braid monoid (with J. Mairesse)

Random walk
© Select i.i.d. generators (Yk)k=o uniformly chosen in {o1,...,00-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
o Garg(ﬁ) = By ... By with R(ﬂ,) =2 L(Bi-i—l);
Q@ Gar,(3) = p1-... Bk with R(3;) = L(Bi+1);
© Gar®(B) =f1-...- Bi- A* with By # A and R(B;) < L(Bi41).

Chronological 5}:

form: —/
Left Garside ?d“\:
X

normal form:
Right Garside E
normal form:

Left® Garside 5:)'\
normal form: :CA
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Random walk in a braid monoid (with J. Mairesse)

Random walk
© Select i.i.d. generators (Yk)k=o uniformly chosen in {o1,...,00-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
o Garg(ﬁ) = By ... By with R(ﬂ,) =2 L(Bi-i—l);
Q@ Gar,(3) = p1-... Bk with R(3;) = L(Bi+1);
© Gar®(B) =f1-...- Bi- A* with By # A and R(B;) < L(Bi41).

Chronological
form:

Left Garside ?d“\:
— X

normal form:
Right Garside g
normal form:

Left® Garside 5:)'\
normal form: :’CJ(
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Random walk in a braid monoid (with J. Mairesse)

Random walk
© Select i.i.d. generators (Yk)k=o uniformly chosen in {o1,...,00-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
o Garg(ﬁ) = By ... By with R(ﬂ,) =2 L(Bi-i—l);
Q@ Gar,(3) = p1-... Bk with R(3;) = L(Bi+1);
© Gar®(B) =f1-...- Bi- A* with By # A and R(B;) < L(Bi41).

Chronological 5}:}"

form:

Left Garside ?d“\:
T — X

normal form:
Right Garside q@
normal form:

Left® Garside 5:)'\
normal form: :’CJ(
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Random walk in a braid monoid (with J. Mairesse)
Random walk

© Select i.i.d. generators (Yk)k=o uniformly chosen in {o1,...,00-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
o Garg(ﬁ) = By ... By with R(ﬂ,) =2 L(Bi-i—l);
Q@ Gar,(3) = p1-... Bk with R(3;) = L(Bi+1);
© Gar®(B) =f1-...- Bi- A* with By # A and R(B;) < L(Bi41).

Chronological

form: b’ ennfiemn o e ’d

Left Garside [— A —~—"—¢

normal form: 12t step
Right Garside yy_& . A‘

normal form: ] S5 ==

Left® Garside DA

normal form: ?_gg—b{w
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Random walk in a braid monoid (with J. Mairesse)

Random walk
Q Select i.i.d. generators (Yi)k=o uniformly chosen in {o1,...,05-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
o Garg(ﬁ) = By ... By with R(ﬂ,) =2 L(/Bi-i-l);
Q@ Gar,(3) = p1-...- Bx with R(3;) < L(Bit1);
© Gar®(B) =f1-...- Bi- A* with By # A and R(B;) < L(Bi41).

Chronological
form: Pﬁﬂ’“ﬂ@
Left Garside - A“ X/@é()éc
/ L A th
50" step

—
Right Garside > Al
& XS @;ﬁyxxxxﬁgé::

normal form: - 4

Left® Garside P “:)é'\

! ! 4 g ey i
normal form: C K/ MKK
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Random walk in a braid monoid (with J. Mairesse)

Random walk
Q Select i.i.d. generators (Yi)k=o uniformly chosen in {o1,...,05-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
o Garg(ﬁ) = By ... By with R(ﬂ,) =2 L(/Bi-i-l);
Q@ Gar,(3) = p1-...- Bx with R(3;) < L(Bit1);
© Gar®(B) =f1-...- Bi- A* with By # A and R(B;) < L(Bi41).

Chronological P
form: ﬂ?ﬂ]\xx@
Left Garside \ -
=0
/\ N,

j— A
Right Garside Jo—T— xé/__& Py Xb’_
3(/5_(\ <& DAPLAPA =

normal form: - PC {

Left® Garside —k (S — ' X
normal form: Z PG p—_ @XXK::
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Random walk in a braid monoid (with J. Mairesse)

Random walk
Q Select i.i.d. generators (Yi)k=o uniformly chosen in {o1,...,05-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
o Garg(ﬁ) = By ... By with R(ﬂ,) =2 L(/Bi-i-l);
Q@ Gar,(3) = p1-...- Bx with R(3;) < L(Bit1);
© Gar®(B) =f1-...- Bi- A* with By # A and R(B;) < L(Bi41).

Chronological 05)(

form: P M\M

Left Garside - A“ / - . .
150 step

lq A
normal form: /\
Right Garside ><7§~_‘ xf/;\—?&‘xxxxxb/;é

normal form: - PC {

Left® Garside —k (S — ' X
normal form: Z PG p—_ @XXK::
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Random walk in a braid monoid (with J. Mairesse)

Random walk
Q Select i.i.d. generators (Yi)k=o uniformly chosen in {o1,...,05-1}.
@ Random process (Xk)k=o defined by Xo =1 and Xi11 = Xk Yk.

Several Garside normal forms:
o Garg(ﬁ) = By ... By with R(ﬂ,) =2 L(/Bi-i-l);
Q@ Gar,(3) = p1-...- Bx with R(3;) < L(Bit1);
© Gar®(B) =f1-...- Bi- A* with By # A and R(B;) < L(Bi41).

Chronological P
form: ﬂ?ﬂ]\xx@
Left Garside \ -
= :
M N, /\

BEaa
Right Garside Jo—T— LSS bbb S H=43
3(/5_(\ SE—PPPA S+

normal form: - PC {

Left® Garside —k (S — ' X
normal form: Z PG p—_ @XXK::
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Blocking patterns: Going to infinity. . .

Blocking pattern
Braid P € B} such that, for all o, 3 € B} such that A, £ aPg:
@ Gar,(Pj) = Gar,(P) - Gar,(3) iff Gar,(aPp) = Gar,(aP) - Gar,(8);

=
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Blocking patterns: Going to infinity. . .

Blocking pattern

Braid P € B} such that, for all o, 3 € B} such that A, £ aPg:
@ Gar,(Pj) = Gar,(P) - Gar,(3) iff Gar,(aPp) = Gar,(aP) - Gar,(8);
@ Gar,(aP) = Gar,(«a) - Gar,(P) iff Gar,(aPg) = Gar,(«) - Gar,(Pg3).

[ lﬁ 1
e 1 P 5 |
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Blocking patterns: Going to infinity. . .
Blocking pattern

Braid P € B} such that, for all a, 3 € B} such that A, £ aPg:
Q@ Gar,(Pj) = Gar,(P) - Gar,(3) iff Gar,(aPp) = Gar,(aP) - Gar,(8);
@ Gar,(aP) = Gar,(«a) - Gar,(P) iff Gar,(aPg) = Gar,(«) - Gar,(Pg5).

Blocking patterns exist in all braid monoids! (Caruso & Wiest 2012)

s
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Blocking patterns: Going to infinity. . .
Blocking pattern

Braid P € B} such that, for all a, 3 € B} such that A, £ aPg:
Q@ Gar,(Pj) = Gar,(P) - Gar,(3) iff Gar,(aPp) = Gar,(aP) - Gar,(8);
@ Gar,(aP) = Gar,(«a) - Gar,(P) iff Gar,(aPg) = Gar,(«) - Gar,(Pg5).

Blocking patterns exist in all braid monoids! (Caruso & Wiest 2012)
and in all irreducible A—T monoids of FC typel!
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Blocking patterns: Going to infinity. . .
Blocking pattern

Braid P € B} such that, for all a, 3 € B} such that A, £ aPg:
Q@ Gar,(Pj) = Gar,(P) - Gar,(3) iff Gar,(aPp) = Gar,(aP) - Gar,(8);
@ Gar,(aP) = Gar,(a) - Gar,(P) iff Gar,(a«P8) = Gar,(a) - Gar,(PJ3).

Blocking patterns exist in all braid monoids! (Caruso & Wiest 2012)
and in all irreducible A—T monoids of FC typel!

Some properties of blocking patterns

© C,3 < C,+ Cp+ K for all braids o, 3 € B}
(K = constant and C, = #{occurrences of P or A,1PA, in Gar,(x)});
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Blocking patterns: Going to infinity. . .
Blocking pattern

Braid P € B} such that, for all a, 3 € B} such that A, £ aPg:
Q@ Gar,(PS) = Gar,(P) - Gar,.(5) iff Gar,(aPp)

= Gar,(aP) - Gar,(3);
@ Gar,(aP) = Gar,(«a) - Gar,(P) iff Gar,(aPf)

= Gar,(«) - Gar,(PJ).

Blocking patterns exist in all braid monoids! (Caruso & Wiest 2012)
and in all irreducible A—T monoids of FC typel!

Some properties of blocking patterns

© C,3 < C,+ Cp+ K for all braids o, 3 € B}
(K = constant and C, = #{occurrences of P or A,1PA, in Gar,(x)});
Q E[Cx,] =O(k).

(transience of (Xk)k=0)

=0
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Blocking patterns: Going to infinity. . .
Blocking pattern

Braid P € B} such that, for all a, 3 € B} such that A, £ aPg:
Q@ Gar,(PS) = Gar,(P) - Gar,.(5) iff Gar,(aPp)

= Gar,(aP) - Gar,(3);
@ Gar,(aP) = Gar,(«a) - Gar,(P) iff Gar,(aPp)

= Gar,(«) - Gar,(PJ).

Blocking patterns exist in all braid monoids! (Caruso & Wiest 2012)
and in all irreducible A—T monoids of FC typel!

Some properties of blocking patterns

© C.3 <C, + Cps+ K for all braids o, 3 € B/}
(K = constant and C, =

#{occurrences of P or A;1PA, in Gar,(x)});
O E[Cx,] = ©(k).

(transience of (Xk)k=0)

=0

Theorem (J. & Mairesse 2016%)
Prefixes of the words Gar,(Xk)k=o almost surely converge. J
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...and beyond!

What is our limit object? How fast do we reach it?
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...and beyond!

What is our limit object? How fast do we reach it?

@ Limit of an infinite-state Markov chain with L! factors:

A
Y
A
Y
A
Y
A
Y

Lt Lt Lt Lt
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..and beyond!

What is our limit object? How fast do we reach it?

@ Limit of an infinite-state Markov chain with L! factors;

@ Ergodic process;
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..and beyond!

What is our limit object? How fast do we reach it?
@ Limit of an infinite-state Markov chain with L! factors;

@ Ergodic process;
© Finite penetration distance;
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...and beyond!

What is our limit object? How fast do we reach it?

@ Limit of an infinite-state Markov chain with L! factors;
@ Ergodic process;
© Finite penetration distance;

@ Maximal linear convergence speed.

| Stable prefix | & | A |

~ an = o(n) ~ fn
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...and beyond!

What is our limit object? How fast do we reach it?

@ Limit of an infinite-state Markov chain with L! factors;
@ Ergodic process;
© Finite penetration distance;

@ Maximal linear convergence speed.

Theorem (J. & Mairesse 2016™)

Computing Gar,(Xk41) when knowing Gar,(Xx) and Y
in expected time O(k).
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...and beyond!

What is our limit object? How fast do we reach it?

@ Limit of an infinite-state Markov chain with L! factors;
@ Ergodic process;
© Finite penetration distance;

@ Maximal linear convergence speed.

Theorem (J. & Mairesse 2016™)

Computing Gar,(Xk41) when knowing Gar,(Xx) and Y
in expected time o(k).
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Going even further

Generalised framework

@ Braid monoid
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Going even further

Generalised framework

@ Braid monoid = irreducible A-T monoid with spherical type;
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Going even further

Generalised framework

@ Braid monoid = irreducible A-T monoid with spherical type
=> irreducible A-T group with spherical type;
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Going even further

Generalised framework

@ Braid monoid = irreducible A-T monoid with spherical type
=> irreducible A-T group with spherical type;

@ Simple random walk
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Going even further

Generalised framework

@ Braid monoid = irreducible A-T monoid with spherical type
=> irreducible A-T group with spherical type;

@ Simple random walk = Random walk with bounded steps;
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Going even further

Generalised framework

@ Braid monoid = irreducible A-T monoid with spherical type
=> irreducible A-T group with spherical type;

@ Simple random walk = Random walk with bounded steps
(= Random walk with L! steps);
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Going even further

Generalised framework

@ Braid monoid = irreducible A-T monoid with spherical type
=> irreducible A-T group with spherical type;

@ Simple random walk = Random walk with bounded steps
(= Random walk with L! steps);

@ Right Garside normal form
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Going even further

Generalised framework

@ Braid monoid = irreducible A-T monoid with spherical type
=> irreducible A-T group with spherical type;

@ Simple random walk = Random walk with bounded steps
(= Random walk with L! steps);

e Right Garside normal form = Left® Garside normal form.
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Going even further

Generalised framework

@ Braid monoid = irreducible A-T monoid with spherical type
=> irreducible A-T group with spherical type;

Simple random walk = Random walk with bounded steps
(= Random walk with L! steps);

Right Garside normal form = Left® Garside normal form.

and open questions

Convergence with arbitrarily large steps? (wide open)
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Going even further

Generalised framework

@ Braid monoid = irreducible A-T monoid with spherical type
=> irreducible A-T group with spherical type;

Simple random walk = Random walk with bounded steps
(= Random walk with L! steps);

Right Garside normal form = Left® Garside normal form.

and open questions

Convergence with arbitrarily large steps? (wide open)

Ergodicity/speed of convergence with L! steps? (wide open)
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Contents

© Algebraic aspects of braids

@ Drawing infinite braids uniformly at random
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(with S. Abbes,
S. Gouézel &

J. Mairesse)

DYGWI j

uniformly at random in BX = {8 € B : |B|artin = k}
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(with S. Abbes,
S. Gouézel &

J. Mairesse)

Draw
)
Braids A

uniformly at random in BX = {8 € B : |B|artin = k}
Two algorithms

o Inductively constructing sets {3 e BX: 8 A A, =} (time n! + 227k)
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(with S. Abbes,
S. Gouézel &

J. Mairesse)

Dran
Bl

uniformly at random in BX = {8 € B : |B|artin = k}
Two algorithms

o Inductively constructing sets {3 € BX: B A A, =a} (time n! + 227k)
o Efficient variant (Gebhardt & Gonzalez-Meneses 2013) (time O(k%n*))
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(with S. Abbes,
S. Gouézel &

J. Mairesse)

Dran
Bl

uniformly at random in BX = {8 € B : |B|artin = k}
Two algorithms

o Inductively constructing sets {3 € BX: B A A, =a} (time n! + 227k)
o Efficient variant (Gebhardt & Gonzalez-Meneses 2013) (time O(k%n*))

does drawing 3 € BX help drawing 3 € BX+17?

Idea:
© Draw a € Bf;
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(with S. Abbes,
S. Gouézel &

J. Mairesse)

Draw
)
Braids A

uniformly at random in BX = {8 € B : |B|artin = k}
Two algorithms

o Inductively constructing sets {3 € BX: B A A, =a} (time n! + 227k)
o Efficient variant (Gebhardt & Gonzalez-Meneses 2013) (time O(k%n*))

does drawing 3 € BX help drawing 3 € BX+17?

Idea:
© Draw a € Bf; @ Draw ao; € Bk+1 with prob. Po,i-
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(with S. Abbes,
S. Gouézel &

J. Mairesse)

Drawin

Brai(ls " J

uniformly at random in BX = {8 € B : |B|artin = k}
Two algorithms

o Inductively constructing sets {3 € BX: B A A, =a} (time n! + 227k)
o Efficient variant (Gebhardt & Gonzalez-Meneses 2013) (time O(k%n*))

does drawing 3 € BX help drawing 3 € BX+17?

(Incorrect) idea:
© Draw a € Bf; @ Draw ao; € Bk+1 with prob. Po,i-

1 2 2 2 2
B; = {01,02,03} and By = {01, 0102,0103,0201,05,0203,0302,03}
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(with S. Abbes,
S. Gouézel &

J. Mairesse)

Drawin

Brai(ls " ;

uniformly at random in BX = {8 € B : |B|artin = k}
Two algorithms

o Inductively constructing sets {3 € BX: B A A, =a} (time n! + 227k)
o Efficient variant (Gebhardt & Gonzalez-Meneses 2013) (time O(k%n*))

does drawing 3 € BX help drawing 3 € BX+17?

(Incorrect) idea:
© Draw a € Bf; @ Draw ao; € Bk+1 with prob. Po,i-

1 2 2 2 2
84 = {0-1)0-270-3} and B4 = {017U1027010370201)0270203)J3U2a03}
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Another approach to uniform sampling

Smoothening uniform measures on spheres

@ Choose jip : > Ha(p)pl* (Ha(P) = Yicior,.onpny (“1'PIA);
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Another approach to uniform sampling

Smoothening uniform measures on spheres

Q Choose Hp - @ — Hn(p)p|a| (Hn(p) = 219{01,..‘,0,1—1}(_1)#IP|AI|);
@ Some properties of yup:
> pp(aBf) = plol for all a € B ;
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Another approach to uniform sampling

Smoothening uniform measures on spheres

Q Choose Hp - @ — Hn(p)p|a| (Hn(p) = 219{01,..‘,0,1—1}(_1)#IP|AI|);
@ Some properties of yup:

> pp(aBf) = plol for all a € B ;

» Markov realisation of fi,:

]P’M[Garg(ﬂ) = W1-...‘Wk‘...] =]P[@’17= W1,...,ei= Wk].
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Another approach to uniform sampling

Smoothening uniform measures on spheres

Q Choose Hp - @ — Hn(p)p|a| (Hn(p) = 219{01,..‘,%—1}(_1)#IP|AI|);
@ Some properties of yup:

> pp(aBf) = plol for all a € B ;

» Markov realisation of fi,:

]P)#p[Gal‘g(B) = W1-...‘Wk‘...] =P[@’17= W1,...,@’Z= Wk].
What if H,(p) — 07 (i.e. p— ry)

Hs(p) Ha(p) Hs(p)
1 1 1

p p p
0 s 1 0 ra 1 0 s 1
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Critical case: p=r,
Two-step limit extraction

@ Let us add infinite braids:
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Critical case: p=r,
Two-step limit extraction

© Let us add infinite braids:
> Endow B} with a topology generated by {3} 5+ and replace B

with its completion B;;
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Critical case: p=r,
Two-step limit extraction

© Let us add infinite braids:
> Endow B} with a topology generated by {3} 5+ and replace B

with its completion E; o
» Extend Garside normal forms to infinite braids (0B = BS\B/).
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Critical case: p=r,
Two-step limit extraction

© Let us add infinite braids:
> Endow B} with a topology generated by {3} 5+ and replace B

with its completion E; o
» Extend Garside normal forms to infinite braids (0B = BS\B/).

@ Let us increase p towards ry:
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Critical case: p=r,
Two-step limit extraction

© Let us add infinite braids:
> Endow B} with a topology generated by {3} 5+ and replace B
with its completion E;
» Extend Garside normal forms to infinite braids (0B = Bi\BY).
@ Let us increase p towards ry:
» The Markov process (©7)k>1 has a limit (07 )k=1;
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Critical case: p=r,
Two-step limit extraction

© Let us add infinite braids:
> Endow B} with a topology generated by {3} 5+ and replace B
with its completion E;
» Extend Garside normal forms to infinite braids (0B = Bi\BY).
@ Let us increase p towards ry:

» The Markov process (©7)k>1 has a limit (07 )k=1;
» The measures ji, have a weak limit pio;
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Critical case: p=r,
Two-step limit extraction

© Let us add infinite braids:

> Endow B} with a topology generated by {3} 5+ and replace B

with its completion B;; o

» Extend Garside normal forms to infinite braids (0B} = BS\B).
@ Let us increase p towards ry:

» The Markov process (©7)k>1 has a limit (07 )k=1;

» The measures ji, have a weak limit pio;

» (OF)k=1 is still a Markov realisation of fio,.
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Critical case: p=r,
Two-step limit extraction

© Let us add infinite braids:

> Endow B} with a topology generated by {3} 5+ and replace B

with its completion B;; o

» Extend Garside normal forms to infinite braids (0B} = BS\B).
@ Let us increase p towards ry:

» The Markov process (©7)k>1 has a limit (07 )k=1;

» The measures ji, have a weak limit pio;

» (OF)k=1 is still a Markov realisation of fio,.

Theorem (Abbes, Gouézel, J. & Mairesse 2016™)

Uniform probability measures on BX converge weakly towards fi,
when k — +o00.

[t 1S @ uniform probability measure on infinite braids!
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Going further
Stable region conjectures (Gebhardt & Tawn 2014)
@ The words {Gary(3) | 8 € 0B} contain a geometric number of A,;

~

P[#An =

Gar(): A | & [ A NANGXE @]
k

] =l
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Going further
Stable region conjectures (Gebhardt & Tawn 2014)

@ The words {Gary(3) | 8 € 0B} contain a geometric number of A,;
@ {N(B)|Be Bk} % A, and A, # N for all i > 0.
-+

Gar(): A | & [ A NANGXE @]

~

P[#4, = k] = ri®!
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Going further
Stable region conjectures (Gebhardt & Tawn 2014)
@ The words {Gary(3) | 8 € 0B} contain a geometric number of A,;
@ (N (B) | Be B %) A and A £ A+ for all i > 0.
-+

Going to higher dimensions

@ Braid monoid = Irreducible trace monoid (Abbes & Mairesse 2015)
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@ The words {Gary(3) | 8 € 0B} contain a geometric number of A,;
@ (N (B) | Be B %) A and A £ A+ for all i > 0.
-+

Going to higher dimensions

@ Braid monoid = Irreducible trace monoid (Abbes & Mairesse 2015)
= Irreducible A-T monoid with FC type;
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Going further
Stable region conjectures (Gebhardt & Tawn 2014)
@ The words {Gary(3) | 8 € 0B} contain a geometric number of A,;
@ (N (B) | Be B %) A and A £ A+ for all i > 0.
-+

Going to higher dimensions

@ Braid monoid = Irreducible trace monoid (Abbes & Mairesse 2015)
= Irreducible A-T monoid with FC type;
o Weight a — pl®l = positive multiplicative weight o — v().
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Going further
Stable region conjectures (Gebhardt & Tawn 2014)

@ The words {Gary(3) | 8 € 0B} contain a geometric number of A,;
@ {N(B)|Be Bk} % A, and A, # N for all i > 0.
-+

Going to higher dimensions

@ Braid monoid = Irreducible trace monoid (Abbes & Mairesse 2015)
= Irreducible A-T monoid with FC type;
o Weight a — pl®l = positive multiplicative weight o — v().

vy vy vy
0 31 0 Ia 1 0 5 1
Monoid B3 Monoid B; Monoid B
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Going further
Stable region conjectures (Gebhardt & Tawn 2014)

@ The words {Gary(3) | 8 € 0B} contain a geometric number of A,;
@ {N(B) | B e Bk} % A and A, # N1 for all i > 0
-+

Going to higher dimensions

@ Braid monoid = Irreducible trace monoid (Abbes & Mairesse 2015)
= Irreducible A-T monoid with FC type;
o Weight a — pl®l = positive multiplicative weight o — v().

| .

Monoid N N Monoid
{a, b | abab = baba)™ Mon0|d {a,b,c| ac = cay*
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Main results

Geometry

@ The right relaxation normal form is regular;
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Main results
Geometry

@ The right relaxation normal form is regular;

@ The geometric generating function of B3 is not holonomic.
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Main results

Geometry

@ The right relaxation normal form is regular;

@ The geometric generating function of B3 is not holonomic.

Random walks

© Garside normal forms of random walks have an ergodic limit
(for all irreducible A-T groups of spherical type).
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Main results

Geometry

@ The right relaxation normal form is regular;

@ The geometric generating function of B3 is not holonomic.

Random walks

© Garside normal forms of random walks have an ergodic limit
(for all irreducible A-T groups of spherical type).

Uniform measures

@ Uniform measures on positive spheres converge towards a simple
critical Markov process (for all irreducible A=T monoids of FC type).
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Tresse . ,~ Bulgarian

Horik = /—\ = French
Anyaman = N— ~“—— Indonesian
Mantka AN Swahili
Kivrim _\/—/\_/— Turkish
Suka \— Uzbek

Do you have questions?
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