COURCELLE’S THEOREM MADE DYNAMIC
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f Dynamic decision problems

Context: Given a decision problem, at what cost can we update our decision when one bit
of the problem input is modified?

Dynamic complexity class: If precomputing auxiliary data in C helps us treating input
updates in C’, we say that the dynamic problem is in Dyn(C,C’).

Example: Reachability in acyclic graphs is in Dyn(NL,FO) [5]

Decision problem: Given two vertices s,t of an acyclic graph G = (V, E), does there
exist a path from s to t in G7

Input updates: Edge deletion or insertion (without creating cycles)

Auxiliary predicate: R(x,y) = “There exists a path from x to y”.

Inserting an edge (u,v)

Deleting an edge (u,v)

R(SE,y) %R(I’,g) v R(Qf,y) %(R(xvy) A R(yau» N
(R(z,u) A R(v,y)) (R(z,y) A —R(z,u)) V
(d(a, b) # (u,v) s.t.
R(x,a) ANR(b,y) A
E(a,b) ANR(a,u) A =R(b,u))

Courcelle’s theorem

Ingredients: A graph G = (V, E), a tree-decomposition D of width x of G, a succinct
encoding enc of D and an M50 formula ¢

Tree-decomposition of width x of G: Pair D = (T, bag), where T = (N, &) is an
ordered binary tree and bag is a mapping N — 2" such that:

1. for each vertex v € V, the set {n € N : v € bag(n)} is connected and non-empty:
2.for each edge e = (v, v9) € E, the set {n € N : {v1, 15} C bag(n)} is non-empty;

3. for each node n € N, the set bag(n) is of cardinality at most x + 1.
Succinct encoding of D: Triple enc = (x, AY, A®), where x : V — {0,...,&}, AV :

1. the restriction of x to bag(n) is injective (hence y is a proper coloring of GG);

2.0%(n) ={x(v) : v € bag®(n)}, where bag*(n) = bag(n) \ bag(m) if m is n’s parent
= bag(n) if n has no parent;

3.X(n) = {(x(v1), x(v2)) : (v, v2) € ENbag™(n)7}.

Labeling every node n € T with the pair (A(n), A°(n)) gives a succinctly encoded
tree-decomposition of G.

Example: Succinctly encoded tree-decomposition of width 2

Root
4 § E ) 4 § E ) 4 E E ) 4 E E ) 4 E E )
\_ J \_ J \_ J \_ J \_ J
4 ) 4 ) 4 E E ) 4 E § ) 4 E § )
\_ E E J \_ E E J \_ J \_ J \_ J

MSO formula: Formula over graphs with quantification on (sets of) edges and vertices

Example: The graph G is strongly connected ift G satisfies the formula
p=VX CVVr,yeVaeg XVye XV (Ju,ve Vst Eu,v) ANue X ANv ¢ X)

Theorem statement [3]

Given an integer £ and an MSO formula ¢, there exists a tree automaton A, , such that,

for all graphs G and all succinctly encoded tree-decompositions 752t of width & of G:

G satisfies ¢ iff A, , accepts Tsuceinct,
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Context: Bottom-up, deterministic automata perform computations in a distributed way:.
How can we simulate them on a single (sequential) computation thread?

Sequentially simulating runs of tree automata

Tree automata and distributed computation: The run of the tree automaton A =
(2,Q,6,t, F) on a labeled tree T = (N, &, Y) is the mapping p : N +— @Q such that:

1. p(n) = 6(¢, AM(n), ¢) for all leaves n with label A(n) € ¥;
2.p(n) = d(p(mq), A(n), p(ms)) for all nodes n with label A(n) and children m; and ms.

The automaton A accepts the tree T, with root 7, iff p(7) € F.

Slicing 7: Choose subsets Sy, . .

1. there is a unique node ny in Sg \ Sk_1;

., Sy of N such that Sy =0, Sy = {7} and, for k > 1:
2.1its children (if any) belong to Si_1.

o AN N AN RN AN AN AN J

Sequential simulation: Compute the run restrictions p s, for 0 < k& < £

1. the initial restriction p [s, is fixed; 2. pls, determines whether A accepts T;

3.pls,., depends on pls, and A1) only: we set pls,.,.= (s, Alngsr)

Sequential computations vs Dyck-path reachability

Dyck words: Well-parenthesized words (with multiple kinds of parentheses)
Dyck paths in a labeled graph: Paths whose labels are Dyck words

Example: There are 7 Dyck paths in this graph. Will you find them all?

Simulating a successful run with paths: Create a graph I' with:
1. vertices (k, ), where m: S — @ for 0 < k < /;
2.edges (k,m) — (k+1,7"), where 7’ = Il (m, A(ngi1)).

A accepts T iff there is a path from (0, p[s,) to some vertex (¢, ) where (1) € F'.
/\ Issue: Changing one label of 7 may cause many changes in I'!

Simulating a successful run with Dyck paths: Insert gadgets into I', i.e. add:
1. vertices (k7), (k7) and (k,0) ;
2 eades (k, 1) = (k), (k) 220 (69), (k) S (k, o) and (k, o) "= (k + 1, 7)

for 0 <k<loed n:8S— Qand 7" = 1li(m, A(ngy1)).
A accepts T iff there is a Dyck path from (0, p[s,) to some vertex (¢, ) where w(7) €

(\T aive graph simulation\

(k, o) (k+1,m)
(k,m) (k+1,7)
(k, o) (k+ 1, 7))

/

edge present
if A(nk+1) — 01

edge present
if )\(nk+1) — 09

edge present
at all times

Making Courcelle’s theorem dynamic

Using two more ingredients in addition to the above constructions:

1. Computing logarithmic-depth tree-decompositions of width 4x + 3 in L |2, 4];

2. Solving Dyck-path reachability problems in acyclic graphs in Dyn(LogCFL,FO) [6].

Dynamic Courcelle’s theorem statement [1]

Let kK and ¢ be fixed. Given a maximal graph G* =
subgraph G = (V, F) with ¥ C E*, and updating G by adding/deleting edges e € E™:

checking whether G satisfies ¢ is feasible in Dyn(L,FO).
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