

Courcelle's Theorem Made Dynamic

Patricia Bouyer-Decitre¹, Vincent Jugé¹ & Nicolas Markey^{1,2}

2: IRISA, CNRS & Inria & Université Rennes 1 1: LSV, CNRS & ENS Paris-Saclay

Dynamic decision problems

Context: Given a decision problem, at what cost can we update our decision when one bit of the problem input is modified?

Dynamic complexity class: If precomputing auxiliary data in \mathcal{C} helps us treating input updates in \mathcal{C}' , we say that the dynamic problem is in $\mathsf{Dyn}(\mathcal{C},\mathcal{C}')$.

Example: Reachability in acyclic graphs is in Dyn(NL,FO) [5]

Decision problem: Given two vertices s, t of an acyclic graph G = (V, E), does there exist a path from s to t in G?

Input updates: Edge deletion or insertion (without creating cycles) Auxiliary predicate: $\mathbf{R}(x,y) =$ "There exists a path from x to y".

 $\mathbf{R}(x,y) \leftarrow \mathbf{R}(x,y) \lor$ $(\mathbf{R}(x,u)\wedge\mathbf{R}(v,y))$

Deleting an edge (u, v)

 $\mathbf{R}(x,y) \leftarrow (\mathbf{R}(x,y) \wedge \mathbf{R}(y,u)) \quad \lor$ $(\mathbf{R}(x,y) \wedge \neg \mathbf{R}(x,u)) \vee$ $(\exists (a,b) \neq (u,v) \text{ s.t.}$ $\mathbf{R}(x,a) \wedge \mathbf{R}(b,y) \wedge$ $\mathbf{E}(a,b) \wedge \mathbf{R}(a,u) \wedge \neg \mathbf{R}(b,u)$

Courcelle's theorem

Ingredients: A graph G = (V, E), a tree-decomposition \mathcal{D} of width κ of G, a succinct encoding **enc** of \mathcal{D} and an MSO formula φ

Tree-decomposition of width κ of G: Pair $\mathcal{D} = \langle \mathcal{T}, \mathbf{bag} \rangle$, where $\mathcal{T} = (\mathcal{N}, \mathcal{E})$ is an ordered binary tree and **bag** is a mapping $\mathcal{N} \mapsto 2^V$ such that:

1. for each vertex $v \in V$, the set $\{n \in \mathcal{N} : v \in \mathbf{bag}(n)\}$ is connected and non-empty;

2. for each edge $e = (v_1, v_2) \in E$, the set $\{n \in \mathcal{N} : \{v_1, v_2\} \subseteq \mathbf{bag}(n)\}$ is non-empty;

3. for each node $n \in \mathcal{N}$, the set $\mathbf{bag}(n)$ is of cardinality at most $\kappa + 1$.

Succinct encoding of \mathcal{D} : Triple enc = $\langle \chi, \lambda^v, \lambda^e \rangle$, where $\chi : V \mapsto \{0, \dots, \kappa\}, \lambda^v :$ $\mathcal{N} \mapsto 2^{\{0,\dots,\kappa\}}$ and $\lambda^e : \mathcal{N} \mapsto 2^{\{0,\dots,\kappa\}^2}$ are mappings such that, for each node $n \in \mathcal{N}$:

1. the restriction of χ to $\mathbf{bag}(n)$ is injective (hence χ is a proper coloring of G);

2. $\lambda^v(n) = \{\chi(v) : v \in \mathbf{bag}^*(n)\}$, where $\mathbf{bag}^*(n) = \mathbf{bag}(n) \setminus \mathbf{bag}(m)$ if m is n's parent $= \mathbf{bag}(n)$ if n has no parent;

3. $\lambda^e(n) = \{(\chi(v_1), \chi(v_2)) : (v_1, v_2) \in E \cap \mathbf{bag}^*(n)^2\}.$

Labeling every node $n \in \mathcal{T}$ with the pair $(\lambda^v(n), \lambda^e(n))$ gives a succinctly encoded tree-decomposition of G.

Example: Succinctly encoded tree-decomposition of width 2

MSO formula: Formula over graphs with quantification on (sets of) edges and vertices

Example: The graph G is strongly connected iff G satisfies the formula $\varphi \equiv \forall X \subseteq V. \forall x, y \in V. x \notin X \lor y \in X \lor (\exists u, v \in V \text{ s.t. } \mathbf{E}(u, v) \land u \in X \land v \notin X)$

Theorem statement [3]

Given an integer κ and an MSO formula φ , there exists a tree automaton $\mathcal{A}_{\kappa,\varphi}$ such that, for all graphs G and all succinctly encoded tree-decompositions $\mathcal{T}^{\text{succinct}}$ of width κ of G: G satisfies φ iff $\mathcal{A}_{\kappa,\varphi}$ accepts $\mathcal{T}^{\mathrm{succinct}}$.

Sequentially simulating runs of tree automata

Context: Bottom-up, deterministic automata perform computations in a distributed way. How can we simulate them on a single (sequential) computation thread?

Tree automata and distributed computation: The run of the tree automaton $\mathcal{A} =$ $\langle \Sigma, Q, \delta, \iota, F \rangle$ on a labeled tree $\mathcal{T} = (\mathcal{N}, \mathcal{E}, \Sigma)$ is the mapping $\rho : \mathcal{N} \mapsto Q$ such that: 1. $\rho(n) = \delta(\iota, \lambda(n), \iota)$ for all leaves n with label $\lambda(n) \in \Sigma$;

2. $\rho(n) = \delta(\rho(m_1), \lambda(n), \rho(m_2))$ for all nodes n with label $\lambda(n)$ and children m_1 and m_2 . The automaton \mathcal{A} accepts the tree \mathcal{T} , with root τ , iff $\rho(\tau) \in F$.

Slicing \mathcal{T} : Choose subsets $\mathcal{S}_0, \ldots, \mathcal{S}_\ell$ of \mathcal{N} such that $\mathcal{S}_0 = \emptyset$, $\mathcal{S}_\ell = \{\tau\}$ and, for $k \geqslant 1$:

Sequential simulation: Compute the run restrictions $\rho \upharpoonright_{\mathcal{S}_k}$ for $0 \leqslant k \leqslant \ell$:

1. the initial restriction $\rho \upharpoonright_{\mathcal{S}_0}$ is fixed;

2. $\rho \upharpoonright_{\mathcal{S}_{\ell}}$ determines whether \mathcal{A} accepts \mathcal{T} ;

3. $\rho \upharpoonright_{\mathcal{S}_{k+1}}$ depends on $\rho \upharpoonright_{\mathcal{S}_k}$ and $\lambda(n_{k+1})$ only: we set $\rho \upharpoonright_{\mathcal{S}_{k+1}} = \Pi_k(\rho \upharpoonright_{\mathcal{S}_k}, \lambda(n_{k+1}))$.

Sequential computations vs Dyck-path reachability

Dyck words: Well-parenthesized words (with multiple kinds of parentheses) Dyck paths in a labeled graph: Paths whose labels are Dyck words

Example: There are 7 Dyck paths in this graph. Will you find them all?

Simulating a successful run with paths: Create a graph Γ with:

1. vertices (k, π) , where $\pi : \mathcal{S}_k \mapsto Q$ for $0 \leq k \leq \ell$;

2. edges $(k,\pi) \mapsto (k+1,\pi')$, where $\pi' = \Pi_k(\pi,\lambda(n_{k+1}))$.

 \mathcal{A} accepts \mathcal{T} iff there is a path from $(0, \rho \upharpoonright_{\mathcal{S}_0})$ to some vertex (ℓ, π) where $\pi(\tau) \in F$.

 \triangle Issue: Changing one label of \mathcal{T} may cause many changes in Γ !

Simulating a successful run with Dyck paths: Insert gadgets into Γ , i.e. add: 1. vertices (k^+) , (k^-) and (k, σ) ;

2. egdes $(k,\pi) \xrightarrow{\pi^+} (k^+)$, $(k^+) \xrightarrow{\lambda(n_{k+1})^+} (k^-)$, $(k^-) \xrightarrow{\sigma^-} (k,\sigma)$ and $(k,\sigma) \xrightarrow{\pi^-} (k+1,\pi')$ for $0 \le k \le \ell$, $\sigma \in \Sigma$, $\pi : \mathcal{S}_k \mapsto Q$ and $\pi' = \Pi_k(\pi, \lambda(n_{k+1}))$.

 \mathcal{A} accepts \mathcal{T} iff there is a **Dyck** path from $(0, \rho \upharpoonright_{\mathcal{S}_0})$ to some vertex (ℓ, π) where $\pi(\tau) \in F$.

if $\lambda(n_{k+1}) = \sigma_1$

Making Courcelle's theorem dynamic

Using two more ingredients in addition to the above constructions:

1. Computing logarithmic-depth tree-decompositions of width $4\kappa + 3$ in L [2, 4];

2. Solving Dyck-path reachability problems in acyclic graphs in Dyn(LogCFL,FO) [6].

Dynamic Courcelle's theorem statement [1]

Let κ and φ be fixed. Given a maximal graph $G^* = (V, E^*)$ of tree-width κ , an initial subgraph G = (V, E) with $E \subseteq E^*$, and updating G by adding/deleting edges $e \in E^*$: checking whether G satisfies φ is feasible in Dyn(L,FO).

References

- 2. H. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11(1-2):1-21, 1993.
- 3. B. Courcelle. The monadic second-order logic of graphs. I: Recognizable sets of finite graphs. Inform. and Comput., 85(1):12-75, 1990.
- 4. M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of Bodlaender and Courcelle. In *FOCS'10*, pages 143–152. IEEE Comp. Soc. Press, 2010.
- 5. S. Patnaik and N. Immerman. Dyn-FO: A parallel, dynamic complexity class. J. Comput. System Sci., 55(2):199–209, 1997. 6. V. Weber and T. Schwentick. Dynamic complexity theory revisited. Theory Comput. Syst., 40(4):355–377, 2007.

^{1.} P. Bouyer, V. Jugé, and N. Markey. Courcelle's theorem made dynamic. coRR/1702.05183, 2017.