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Monoid of positive braids

Positive braids with n strands are elements of the monoid

B+
n = 〈σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi if |i− j| ≥ 2〉+.

Braids represent isotopy classes of braid diagrams.
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Isotopic braid diagrams associated with the braid σ1σ2σ1σ3

Uniform sampling of n-strand braids of length k

Simple 3-step algorithm:

1. Enumerate the elements of the set Bk
n := {n-strand braids of length k};

2. Draw some integer i ∈ {1, 2, . . . ,#Bk
n} uniformly at random;

3. Pick the ith element of your enumeration of Bk
n.

B Step 1 is computationally difficult!

Example (n = 4 and 0 ≤ k ≤ 2):

B0
4 = {1}, B1

4 = {σ1, σ2, σ3} and B2
4 = {σ2

1, σ1σ2, σ1σ3, σ2σ1, σ
2
2, σ2σ3, σ3σ2, σ

2
3}.

There exists an efficient variant [5] that works in time O(k2n4).

Garside normal form
Theorem & Definitions [2]: The monoid B+

n , endowed with the division ordering 4
(i.e. α 4 αβ for all α, β ∈ B+

n ), is a lattice. Furthermore, we call

•Garside element of B+
n the braid ∆ := σ1 ∨ σ2 ∨ . . . ∨ σn−1.

•Garside normal form of a positive braid α ∈ B+
n the smallest word a1 · a2 · . . . · ak

such that a1a2 . . . ak = α and ai = ∆ ∧ (aiai+1 . . . ak) for all i ∈ {1, . . . , k}.

Consequence: Uniform sampling of braids in Bk
n can be performed in time O(n!+n222nk)

by constructing inductively the sets

Bk,α
n := {n-strand braids β of length k and such that α = ∆ ∧ β}

for all divisors α of ∆, via the recursion formulæ:

Bk,α
n =

⊔
β : β 4 ∆ and
α = ∆ ∧ (αβ)

Bk−length(α),β
n .

Inconsistent samplings

Given oracles for drawing elements of Bk
n, can we draw elements of Bk+1

n ?

With the above algorithms, we need to start again from scratch! Is there a better way?

Naive (and incorrect) idea:
To draw an element of Bk+1

n , begin by drawing some prefix of length k, i.e.

1. Draw some element α ∈ Bk
n;

2. For all β ∈ Bk+1
n such that α 4 β, compute an extension probability pα,β;

3. Draw β with probability pα,β.

B Issue: This approach fails for n = 4 and k = 1: drawing β ∈ {σ2σ1, σ
2
2, σ2σ3} (with

probability 3/8) amounts to drawing α = σ2 (with probability 1/3) in the first place!

Let us find other ways to generate large random braids. . .

A new approach on consistent samplings

Idea: Let us smoothen measures on the “spheres”Bk
n by taking averages!

1. Choose p such that the sum Zn(p) :=
∑

k≥0 #Bk
np

k converges;

2. Choose µp : α 7→ 1
Zn(p)p

length(α).

Key results:

1. We have µp(αB
+
n ) = plength(α) for all α ∈ B+

n , where αB+
n := {αβ : β ∈ B+

n };
2. Möbius inversion formulæ allow computing µp

(
AGar

)
for all finite words A, where

AGar := {β : the Garside normal form of β begins with the prefix A}.

Möbius inversion formulæ

For all α ∈ B+
n , we have

1.αB+
n =

⊔
β:α4β4∆‖α‖ GNF(β)Gar;

2.µp
(
GNF(α)Gar

)
=
∑

I⊆{1,...,n−1} 1‖α‖=‖α∆I‖(−1)#Iµp(α∆IB
+
n ), where

GNF(α) is Garside normal form of α, ‖α‖ is the length of GNF(α), and ∆I := ∨i∈Iσi.

Example (n = 4 and A = σ1 · σ1) :
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= p2− 2p3 + p5.

Möbius polynomial

Theorem [3, 4]: Let Hn(X) be the Möbius polynomial of the monoid B+
n , i.e.

Hn(X) =
∑

I⊆{1,...,n−1}

(−1)#IX length(∆I).

The power series Zn(X) and Hn(X) are inverses of each other, i.e. Zn(X)Hn(X) = 1.
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Möbius polynomials H2(p), H3(p), H4(p) and H5(p) and their smallest positive roots

Theorem: Using Möbius inversion formulæ and Möbius polynomials, we derive a

Markov realisation of µp

There exists an explicit Markov chain (Θp
k)k≥1 over the set {β : β 4 ∆} such that, for all

finite words A = a1 · a2 · . . . · ak,
µp
(
AGar

)
= P[Θp

1 = a1 ∧ Θp
2 = a2 ∧ . . . ∧ Θp

k = ak].

Critical behaviour: What happens when p→ rn?

Adding infinite braids:

1. Endow B+
n with a topology generated by sets αB+

n and consider its completion B+
n ;

2. Extend Garside normal forms to infinite braids (i.e. elements of ∂B+
n := B+

n \B+
n ).

Increasing p:

1. Both µp and (Θp
k)k≥1 have limits µ∞ and (Θ∞k )k≥1 when p→ rn;

2. (Θ∞k )k≥1 is still a Markov realisation of µ∞.

Theorems:

1. The support of µ∞ is ∂B+
n ;

2. Uniform probability measures on Bk
n converge weakly towards µ∞ when k → +∞.

Hence, we say that µ∞ is a uniform probability measure on infinite braids!
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An infinite braid chosen uniformly at random

This work was inspired by the similar case of trace monoids [1].
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