

Uniform Generation of Braids

Samy Abbes¹, Sébastien Gouëzel^{2,3}, Vincent Jugé^{1,4} & Jean Mairesse^{2,4} 1: Université Paris 7 2: CNRS 3: Université de Nantes 4: Université Paris 6

Monoid of positive braids

Positive braids with *n* strands are elements of the monoid

$$B_n^+ = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \text{ and } \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } |i-j| \ge 2 \rangle^+.$$

Braids represent **isotopy** classes of **braid diagrams**.

Isotopic braid diagrams associated with the braid $\sigma_1 \sigma_2 \sigma_1 \sigma_3$

Uniform sampling of *n*-strand braids of length *k*

Simple 3-step algorithm:

- 1. Enumerate the elements of the set $B_n^k := \{n\text{-strand braids of length } k\};$
- 2. Draw some integer $i \in \{1, 2, \dots, \#B_n^k\}$ uniformly at random;
- 3. Pick the i^{th} element of your enumeration of B_n^k .

⚠ Step 1 is **computationally difficult**!

Example $(n = 4 \text{ and } 0 \le k \le 2)$:

$$B_4^0 = \{\mathbf{1}\}, \ B_4^1 = \{\sigma_1, \sigma_2, \sigma_3\} \text{ and } B_4^2 = \{\sigma_1^2, \sigma_1\sigma_2, \sigma_1\sigma_3, \sigma_2\sigma_1, \sigma_2^2, \sigma_2\sigma_3, \sigma_3\sigma_2, \sigma_3^2\}.$$

There exists an **efficient variant** [5] that works in time $\mathcal{O}(k^2n^4)$.

Garside normal form

Theorem & Definitions [2]: The monoid B_n^+ , endowed with the **division** ordering \leq (i.e. $\alpha \leq \alpha\beta$ for all $\alpha, \beta \in B_n^+$), is a **lattice**. Furthermore, we call

- Garside element of B_n^+ the braid $\Delta := \sigma_1 \vee \sigma_2 \vee \ldots \vee \sigma_{n-1}$.
- Garside normal form of a positive braid $\alpha \in B_n^+$ the smallest word $a_1 \cdot a_2 \cdot \ldots \cdot a_k$ such that $a_1 a_2 \dots a_k = \alpha$ and $a_i = \Delta \wedge (a_i a_{i+1} \dots a_k)$ for all $i \in \{1, \dots, k\}$.

Consequence: Uniform sampling of braids in B_n^k can be performed in time $\mathcal{O}(n!+n^22^{2n}k)$ by constructing **inductively** the sets

 $B_n^{k,\alpha} := \{n\text{-strand braids }\beta \text{ of length } k \text{ and such that } \alpha = \Delta \wedge \beta \}$

for all divisors α of Δ , via the recursion formulæ:

$$B_n^{k,\alpha} = \bigsqcup_{\beta: \beta \leq \Delta \text{ and } \\ \alpha = \Delta \wedge (\alpha\beta)} B_n^{k-length(\alpha),\beta}.$$

Inconsistent samplings

Given oracles for drawing elements of B_n^k , can we draw elements of B_n^{k+1} ?

With the above algorithms, we need to start again **from scratch!** Is there a better way?

Naive (and incorrect) idea:

To draw an element of B_n^{k+1} , begin by drawing some prefix of length k, i.e.

- 1. Draw some element $\alpha \in B_n^k$;
- 2. For all $\beta \in B_n^{k+1}$ such that $\alpha \leq \beta$, compute an **extension probability** $p_{\alpha,\beta}$;
- 3. Draw β with probability $p_{\alpha,\beta}$.

Issue: This approach fails for n=4 and k=1: drawing $\beta \in \{\sigma_2\sigma_1, \sigma_2^2, \sigma_2\sigma_3\}$ (with probability 3/8) amounts to drawing $\alpha = \sigma_2$ (with probability 1/3) in the first place!

Let us find other ways to generate large random braids...

A new approach on consistent samplings

Idea: Let us smoothen measures on the "spheres" B_n^k by taking averages!

- 1. Choose p such that the sum $Z_n(p) := \sum_{k>0} \#B_n^k p^k$ converges;
- 2. Choose $\mu_p: \alpha \mapsto \frac{1}{Z_n(p)} p^{\operatorname{length}(\alpha)}$.

Key results:

- 1. We have $\mu_p(\alpha B_n^+) = p^{length(\alpha)}$ for all $\alpha \in B_n^+$, where $\alpha B_n^+ := \{\alpha \beta : \beta \in B_n^+\}$;
- 2. Möbius inversion formulæ allow computing $\mu_p(\mathbf{A}^{\mathbf{Gar}})$ for all finite words \mathbf{A} , where $\mathbf{A}^{\mathbf{Gar}} := \{\beta : \text{ the Garside normal form of } \beta \text{ begins with the prefix } \mathbf{A} \}.$

Möbius inversion formulæ

For all $\alpha \in B_n^+$, we have

- 1. $\alpha B_n^+ = \coprod_{\beta:\alpha \leq \beta \leq \Delta^{\|\alpha\|}} \mathbf{GNF}(\beta)^{\mathbf{Gar}};$
- 2. $\mu_p\left(\mathbf{GNF}(\alpha)^{\mathbf{Gar}}\right) = \sum_{I \subseteq \{1,...,n-1\}} \mathbf{1}_{\|\alpha\| = \|\alpha\Delta_I\|} (-1)^{\#I} \mu_p(\alpha\Delta_I B_n^+)$, where
- $\mathbf{GNF}(\alpha)$ is Garside normal form of α , $\|\alpha\|$ is the length of $\mathbf{GNF}(\alpha)$, and $\Delta_I := \bigvee_{i \in I} \sigma_i$.

Example $(n = 4 \text{ and } \mathbf{A} = \sigma_1 \cdot \sigma_1)$:

$$\mu_p\left(\mathbf{A^{Gar}}\right) = \mu_p(\sigma_1^2 B_4^+) - \mu_p\left(\sigma_1^2 \sigma_2 B_4^+\right) - \mu_p\left(\sigma_1^2 \sigma_3 B_4^+\right) + \mu_p\left(\sigma_1^2 \sigma_2 \sigma_3 \sigma_2 B_4^+\right) = p^2 - 2p^3 + p^5.$$

Möbius polynomial

Theorem [3, 4]: Let $H_n(X)$ be the **Möbius polynomial** of the monoid B_n^+ , i.e.

$$H_n(X) = \sum_{I \subseteq \{1, \dots, n-1\}} (-1)^{\#I} X^{length(\Delta_I)}.$$

The power series $Z_n(X)$ and $H_n(X)$ are inverses of each other, i.e. $Z_n(X)H_n(X) = 1$.

Möbius polynomials $H_2(p)$, $H_3(p)$, $H_4(p)$ and $H_5(p)$ and their smallest positive roots

Theorem: Using Möbius inversion formulæ and Möbius polynomials, we derive a

Markov realisation of μ_p

There exists an explicit Markov chain $(\Theta_k^p)_{k>1}$ over the set $\{\beta:\beta \leq \Delta\}$ such that, for all finite words $\mathbf{A} = a_1 \cdot a_2 \cdot \ldots \cdot a_k$,

$$\mu_p\left(\mathbf{A^{Gar}}\right) = \mathbb{P}[\Theta_1^p = a_1 \wedge \Theta_2^p = a_2 \wedge \ldots \wedge \Theta_k^p = a_k].$$

Critical behaviour: What happens when $p \rightarrow r_n$?

Adding infinite braids:

- 1. Endow B_n^+ with a **topology** generated by sets αB_n^+ and consider its **completion** B_n^+ ;
- 2. Extend Garside normal forms to **infinite** braids (i.e. elements of $\partial B_n^+ := \overline{B_n^+} \setminus B_n^+$).

Increasing p:

- 1. Both μ_p and $(\Theta_k^p)_{k>1}$ have **limits** μ_∞ and $(\Theta_k^\infty)_{k>1}$ when $p \to r_n$;
- 2. $(\Theta_k^{\infty})_{k\geq 1}$ is still a **Markov realisation** of μ_{∞} .

Theorems:

- 1. The support of μ_{∞} is ∂B_n^+ ;
- 2. Uniform probability measures on B_n^k converge weakly towards μ_{∞} when $k \to +\infty$.

Hence, we say that μ_{∞} is a uniform probability measure on infinite braids!

An infinite braid chosen uniformly at random

This work was inspired by the similar case of **trace monoids** [1].

References

- 3. M. Albenque. Bijective combinatorics of positive braids. Electron. Notes Discrete Math. 29:225–229, 2007.
 - 4. A. Bronfman. Growth functions of a class of monoids. *Preprint*, 2001.
 - 5. V. Gebhardt and J. González-Meneses. Generating random braids. J. Combin. Theory Ser. A, 120(1):111–128, 2013.

- 2. S. Adian. Fragments of the word Δ in the braid group. Matematicheskie Zametki, 36(1):25–34, 1984.

^{1.} S. Abbes and J. Mairesse. Uniform and Bernoulli measures on the boundary of trace monoids. J. Combin. Theory Ser. A, 135:201–236, 2015.