Combinatorics of braids and Garside normal forms

Vincent Jugé

ALEA Young Researchers' Workshop 2017

27/06/2017

Contents

Positive braids

What are braids?

Intertwined strands

- Intertwined strands
- Intertwined strands up to isotopy

- Intertwined strands
- Intertwined strands up to isotopy

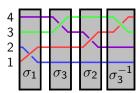
- Intertwined strands
- 2 Intertwined strands up to isotopy

- Intertwined strands
- 2 Intertwined strands up to isotopy, endowed with a product

What are braids?

- Intertwined strands
- 2 Intertwined strands up to isotopy, endowed with a product

Useful notations:



What are braids?

- Intertwined strands
- Intertwined strands up to isotopy, endowed with a product

What properties for this product?

Simplifications

$$3-3=0$$
 and $3\div 3=1$

What are braids?

- Intertwined strands
- 2 Intertwined strands up to isotopy, endowed with a product

What properties for this product?

Simplifications

$$3 - 3 = 0$$
 and $3 \div 3 = 1$

$$\begin{array}{ccc}
2 & & \\
1 & & \\
\sigma_1 & \sigma_1^{-1} & & \\
\end{array} =
\begin{array}{ccc}
& & \\
\varepsilon & & \\
\end{array}$$

What are braids?

- Intertwined strands
- Intertwined strands up to isotopy, endowed with a product

What properties for this product?

Simplifications

$$3 - 3 = 0$$
 and $3 \div 3 = 1$

Partial commutativity

$$2\times 3=3\times 2$$
 and $2+3=3+2$

What are braids?

- Intertwined strands
- Intertwined strands up to isotopy, endowed with a product

What properties for this product?

Simplifications

$$3 - 3 = 0$$
 and $3 \div 3 = 1$

Partial commutativity

$$2\times 3=3\times 2$$
 and $2+3=3+2$

What are braids?

- Intertwined strands
- Intertwined strands up to isotopy, endowed with a product

What properties for this product?

Simplifications

$$3 - 3 = 0$$
 and $3 \div 3 = 1$

Partial commutativity

$$2\times 3=3\times 2$$
 and $2+3=3+2$

Braid relations

What are braids?

- Intertwined strands
- Intertwined strands up to isotopy, endowed with a product

What properties for this product?

Simplifications

$$3 - 3 = 0$$
 and $3 \div 3 = 1$

Partial commutativity

$$2\times 3=3\times 2$$
 and $2+3=3+2$

Braid relations

What are positive braids?

1 Braids with σ_i moves only

What are positive braids?

1 Braids with σ_i moves only

What are permutations?

What are positive braids?

1 Braids with σ_i moves only

What are permutations?

② Braids where we do not know which strand is in the foreground $(\sigma_i = \sigma_i^{-1})$

Divisibility and positive braids

Divisibility in non-negative integers: $a \mid b$

An integer a divides an integer b iff \exists an integer c such that $b = a \times c$.

 $3 \mid 12, 2 \mid 14, 7 \mid 0 \text{ and } 0 \mid 0 \text{ but } 4 \nmid 7$

Divisibility and positive braids

Divisibility in non-negative integers: $a \mid b$

An integer a divides an integer b iff \exists an integer c such that $b = a \times c$.

$$3\mid 12,\; 2\mid 14,\; 7\mid 0$$
 and $0\mid 0$ but $4\nmid 7$

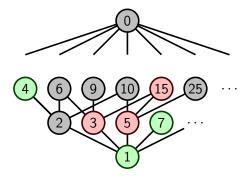
Divisibility in positive braids: $\alpha \leq_{\ell} \beta$ and $\beta \geqslant_{r} \alpha$

- **1** The braid α left-divides the braid β iff \exists a braid γ s.t. $\beta = \alpha \times \gamma$.
- ② The braid α right-divides the braid β iff \exists a braid γ s.t. $\beta = \gamma \times \alpha$.

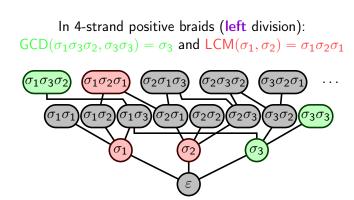
$$\sigma_1 \leqslant_{\ell} \sigma_1 \sigma_2 \sigma_1$$
, $\sigma_1 \leqslant_{\ell} \sigma_2 \sigma_1 \sigma_2$, $\sigma_1 \sigma_2 \sigma_1 \geqslant_r \sigma_1$ and $\sigma_2 \leqslant_{\ell} \sigma_2 \sigma_1$ but $\sigma_1 \leqslant_{\ell} \sigma_2 \sigma_1$

Divisibility diagrams: GCD and LCM

In non-negative integers: GCD(4,7) = 1 and LCM(3,5) = 15



Divisibility diagrams: GCD and LCM



What are simple braids?

Braids whose strands cross at most once.

What are simple braids?

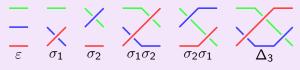
Braids whose strands cross at most once.

What are simple braids?

Braids whose strands cross at most once.

What are simple braids?

Braids whose strands cross at most once.

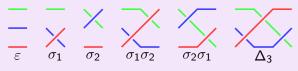


The set of simple braids is:

• closed by left and right divisions

What are simple braids?

Braids whose strands cross at most once.



- closed by left and right divisions
- 2 in bijection with permutations

What are simple braids?

Braids whose strands cross at most once.

- closed by left and right divisions
- in bijection with permutations

4	4
3	3
2	2
1	1

What are simple braids?

Braids whose strands cross at most once.

- closed by left and right divisions
- in bijection with permutations

What are simple braids?

Braids whose strands cross at most once.

- closed by left and right divisions
- in bijection with permutations

What are simple braids?

Braids whose strands cross at most once.

- closed by left and right divisions
- in bijection with permutations

What are simple braids?

Braids whose strands cross at most once.

- closed by left and right divisions
- in bijection with permutations

For a simple β , let $\mathcal{L}(\beta) = \{(i,j) : i < j, \mathsf{strand}_{i \to} \mathsf{crosses} \; \mathsf{strand}_{j \to} \}.$

If you please – draw me a $\mathcal{L}(\beta)$

For a simple β , let $\mathcal{L}(\beta) = \{(i,j) : i < j, \mathsf{strand}_{i \to} \mathsf{crosses} \; \mathsf{strand}_{j \to} \}.$

If you please – draw me a $\mathcal{L}(\beta)$

- $(i,j) \in S$ and $(j,k) \in S \Rightarrow (i,k) \in S$, and
- $(i,j) \notin S$ and $(j,k) \notin S \Rightarrow (i,k) \notin S$.

$$j \longrightarrow j$$
 and $k \longrightarrow k$ $\Rightarrow j \longrightarrow j$

For a simple β , let $\mathcal{L}(\beta) = \{(i,j) : i < j, \mathsf{strand}_{i \to} \mathsf{crosses} \; \mathsf{strand}_{j \to} \}.$

If you please – draw me a $\mathcal{L}(\beta)$

- $(i,j) \in S$ and $(j,k) \in S \Rightarrow (i,k) \in S$, and
- $(i,j) \notin S$ and $(j,k) \notin S \Rightarrow (i,k) \notin S$.
- Choose a pair (i, i + 1) in **S**.

$$S = \{(1,2), (1,4), (3,4)\}$$

For a simple β , let $\mathcal{L}(\beta) = \{(i,j) : i < j, \mathsf{strand}_{i \to} \mathsf{crosses} \; \mathsf{strand}_{j \to} \}.$

If you please – draw me a $\mathcal{L}(\beta)$

- $(i,j) \in S$ and $(j,k) \in S \Rightarrow (i,k) \in S$, and
- $(i,j) \notin S$ and $(j,k) \notin S \Rightarrow (i,k) \notin S$.
- Choose a pair (i, i + 1) in **S** and delete it.

$$S' = \{(1,4), (3,4)\}$$

For a simple β , let $\mathcal{L}(\beta) = \{(i,j) : i < j, \mathsf{strand}_{i \to} \mathsf{crosses} \; \mathsf{strand}_{j \to} \}$.

If you please – draw me a $\mathcal{L}(\beta)$

The set **S** belongs to $\{\mathcal{L}(\beta) \mid \beta \text{ is simple}\}\$ if and only if, for all i < j < k:

- $(i,j) \in S$ and $(j,k) \in S \Rightarrow (i,k) \in S$, and
- $(i,j) \notin S$ and $(j,k) \notin S \Rightarrow (i,k) \notin S$.
- Choose a pair (i, i + 1) in **S** and delete it.
- 2 Swap i's and (i + 1)'s.

$$S'' = \{(2,4), (3,4)\}$$

For a simple β , let $\mathcal{L}(\beta) = \{(i,j) : i < j, \mathsf{strand}_{i \to} \mathsf{crosses} \; \mathsf{strand}_{j \to} \}.$

If you please – draw me a $\mathcal{L}(\beta)$

The set **S** belongs to $\{\mathcal{L}(\beta) \mid \beta \text{ is simple}\}\$ if and only if, for all i < j < k:

- $(i,j) \in \mathbf{S}$ and $(j,k) \in \mathbf{S} \Rightarrow (i,k) \in \mathbf{S}$, and
- $(i,j) \notin S$ and $(j,k) \notin S \Rightarrow (i,k) \notin S$.
- Choose a pair (i, i + 1) in **S** and delete it.
- 2 Swap i's and (i + 1)'s.
- **3** Build a braid γ by induction on |S|.

$$\textbf{S}'' = \{(2,4), (3,4)\}$$

For a simple β , let $\mathcal{L}(\beta) = \{(i,j) : i < j, \mathsf{strand}_{i \to} \mathsf{crosses} \; \mathsf{strand}_{j \to} \}.$

If you please – draw me a $\mathcal{L}(\beta)$

The set **S** belongs to $\{\mathcal{L}(\beta) \mid \beta \text{ is simple}\}\$ if and only if, for all i < j < k:

- $(i,j) \in S$ and $(j,k) \in S \Rightarrow (i,k) \in S$, and
- $(i,j) \notin S$ and $(j,k) \notin S \Rightarrow (i,k) \notin S$.
- **①** Choose a pair (i, i + 1) in **S** and delete it.
- 2 Swap i's and (i + 1)'s.
- **3** Build a braid γ by induction on |S|.
- We have $S = \mathcal{L}(\sigma_i \gamma)!$

$$S = \{(1,2), (1,4), (3,4)\}$$

For a simple β , let $\mathcal{L}(\beta) = \{(i,j) : i < j, \mathsf{strand}_{i \to} \mathsf{crosses} \; \mathsf{strand}_{j \to} \}$.

If you please – draw me a $\mathcal{L}(\beta)$

The set **S** belongs to $\{\mathcal{L}(\beta) \mid \beta \text{ is simple}\}\$ if and only if, for all i < j < k:

- $(i,j) \in S$ and $(j,k) \in S \Rightarrow (i,k) \in S$, and
- $(i,j) \notin S$ and $(j,k) \notin S \Rightarrow (i,k) \notin S$.
- **①** Choose a pair (i, i + 1) in **S** and delete it.
- ② Swap i's and (i+1)'s.
- **3** Build a braid γ by induction on |S|.
- We have $S = \mathcal{L}(\sigma_i \gamma)!$

Bonus

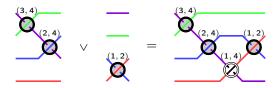
$$\beta \leqslant_{\ell} \gamma \text{ iff } \mathcal{L}(\beta) \subseteq \mathcal{L}(\gamma)$$

GCDs and LCMs for simple braids

Simple braids have LCMs.

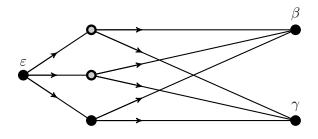
GCDs and LCMs for simple braids

 $\textbf{ § Simple braids have LCMs: } \mathcal{L}(\mathbf{LCM}(\beta,\gamma)) = \mathbf{cl}(\mathcal{L}(\beta) \cup \mathcal{L}(\gamma)).$



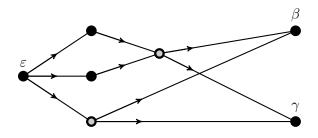
GCDs and LCMs for simple braids

- **①** Simple braids have LCMs: $\mathcal{L}(\mathbf{LCM}(\beta, \gamma)) = \mathbf{cl}(\mathcal{L}(\beta) \cup \mathcal{L}(\gamma))$.
- ② Simple braids have GCDs: $GCD(\beta, \gamma) = LCM(\{\delta \mid \delta \leq_{\ell} \beta \text{ and } \delta \leq_{\ell} \gamma\}).$



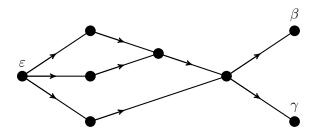
GCDs and LCMs for simple braids

- $\textbf{ § Simple braids have LCMs: } \mathcal{L}(\mathbf{LCM}(\beta,\gamma)) = \mathbf{cl}(\mathcal{L}(\beta) \cup \mathcal{L}(\gamma)).$
- ② Simple braids have GCDs: $GCD(\beta, \gamma) = LCM(\{\delta \mid \delta \leq_{\ell} \beta \text{ and } \delta \leq_{\ell} \gamma\}).$



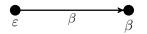
GCDs and LCMs for simple braids

- **①** Simple braids have LCMs: $\mathcal{L}(\mathbf{LCM}(\beta, \gamma)) = \mathbf{cl}(\mathcal{L}(\beta) \cup \mathcal{L}(\gamma))$.
- ② Simple braids have GCDs: $GCD(\beta, \gamma) = LCM(\{\delta \mid \delta \leq_{\ell} \beta \text{ and } \delta \leq_{\ell} \gamma\}).$



The greatest simple divisor

 β and γ are simple braids

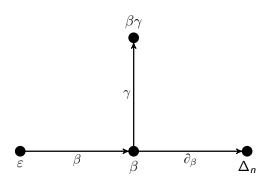


The greatest simple divisor

 β and γ are simple braids

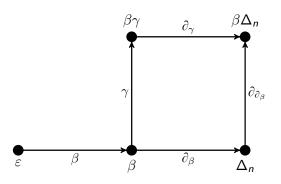
The greatest simple divisor

 β and γ are simple braids



The greatest simple divisor

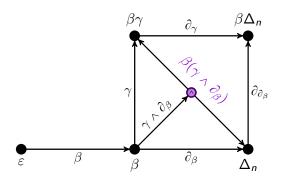
 β and γ are simple braids



The greatest simple divisor

 β and γ are simple braids

 $\textbf{0} \ \, \mathsf{Complement} \ \, \mathbf{C}(\beta,\gamma) = \beta(\gamma \wedge \partial_\beta) = \bigvee \{x \ \mathsf{simple} \mid \beta \leqslant_\ell x \leqslant_\ell \beta \gamma \}$



The greatest simple divisor $x_1, x_2, \dots, x_k, \beta$ and γ are simple braids

The greatest simple divisor $x_1, x_2, \dots, x_k, \beta$ and γ are simple braids

- **a** Head $H(x_1, x_2, \dots, x_k) = C(x_1, H(x_2, \dots, x_k))$ $H(\cdot) = 0$

Lemma:
$$H(x_1, x_2, ..., x_k) \stackrel{?}{=} H(x_1 x_2 \cdots x_k)$$

The greatest simple divisor

 $x_1, x_2, \dots, x_k, \beta$ and γ are simple braids

Lemma:
$$\mathbf{H}(x, y, z) \stackrel{?}{=} \mathbf{H}(xy, z)$$

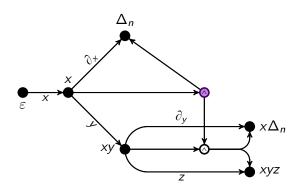
$$\varepsilon$$
 $H(x,y,z)$

The greatest simple divisor

 $x_1, x_2, \ldots, x_k, \beta$ and γ are simple braids

- **①** Complement $C(\beta, \gamma) = \beta(\gamma \land \partial_{\beta}) = \bigvee \{x \text{ simple } | \beta \leqslant_{\ell} x \leqslant_{\ell} \beta \gamma \}$

Lemma: $\mathbf{H}(x, y, z) = x(\partial_x \wedge y(\partial_y \wedge z))$

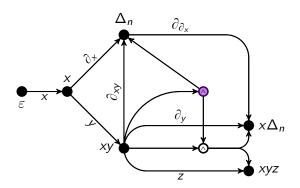


The greatest simple divisor

 $x_1, x_2, \ldots, x_k, \beta$ and γ are simple braids

- **①** Complement $C(\beta, \gamma) = \beta(\gamma \land \partial_{\beta}) = \bigvee \{x \text{ simple } | \beta \leqslant_{\ell} x \leqslant_{\ell} \beta \gamma \}$

Lemma: $\mathbf{H}(x, y, z) = x(y\partial_{xy} \wedge y(\partial_{xy}\partial_{\partial_x} \wedge z))$

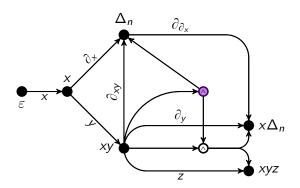


The greatest simple divisor

 $x_1, x_2, \ldots, x_k, \beta$ and γ are simple braids

- **①** Complement $C(\beta, \gamma) = \beta(\gamma \land \partial_{\beta}) = \bigvee \{x \text{ simple } | \beta \leqslant_{\ell} x \leqslant_{\ell} \beta \gamma \}$

Lemma: $\mathbf{H}(x,y,z) = xy(\partial_{xy} \wedge \partial_{xy}\partial_{\partial_x} \wedge z)$

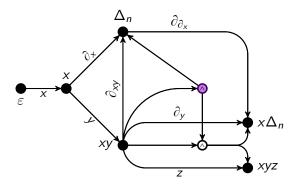


The greatest simple divisor

 $x_1, x_2, \ldots, x_k, \beta$ and γ are simple braids

- **①** Complement $C(\beta, \gamma) = \beta(\gamma \land \partial_{\beta}) = \bigvee \{x \text{ simple } | \beta \leqslant_{\ell} x \leqslant_{\ell} \beta \gamma \}$

Lemma: $\mathbf{H}(x, y, z) = xy(\partial_{xy} \wedge z)$

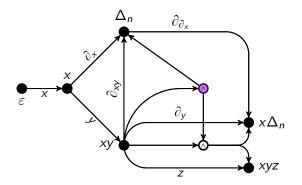


The greatest simple divisor

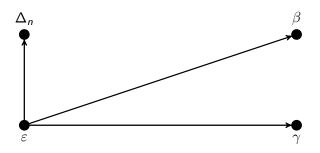
 $x_1, x_2, \ldots, x_k, \beta$ and γ are simple braids

- **①** Complement $C(\beta, \gamma) = \beta(\gamma \land \partial_{\beta}) = \bigvee \{x \text{ simple } | \beta \leqslant_{\ell} x \leqslant_{\ell} \beta \gamma \}$

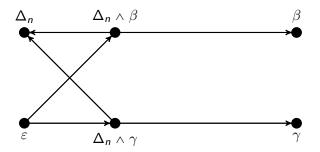
Lemma: H(x, y, z) = H(xy, z)



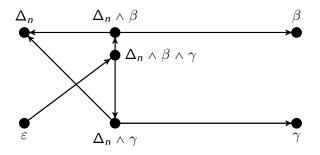
GCDs and LCMs for everybody



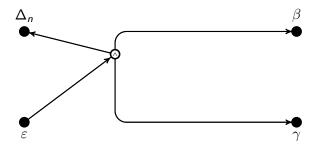
GCDs and LCMs for everybody



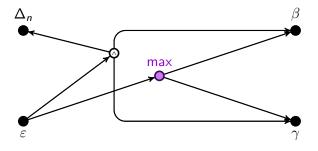
GCDs and LCMs for everybody



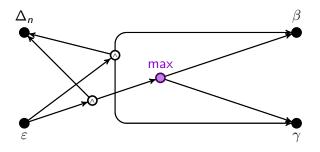
GCDs and LCMs for everybody



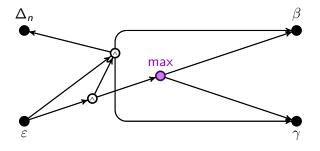
GCDs and LCMs for everybody



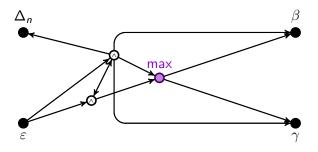
GCDs and LCMs for everybody



GCDs and LCMs for everybody



GCDs and LCMs for everybody



GCDs and LCMs for everybody

- Positive braids have GCDs.
- $\textbf{ Positive braids have LCMs: } \textbf{LCM}(\beta,\gamma) = \textbf{GCD}(\{\delta \mid \beta \leqslant_{\ell} \delta, \gamma \leqslant_{\ell} \delta\}).$

Three lemmas

GCDs and LCMs for everybody

- Positive braids have GCDs.
- $\textbf{ Positive braids have LCMs: } \textbf{LCM}(\beta,\gamma) = \textbf{GCD}(\{\delta \mid \beta \leqslant_{\ell} \delta, \gamma \leqslant_{\ell} \delta\}).$

Three lemmas

$$\sigma_1\sigma_3\sigma_2\sigma_1\Delta_n^2 = \sigma_1\sigma_3\sigma_2\Delta_n^2\sigma_1 = \ldots = \Delta_n^2\sigma_1\sigma_3\sigma_2\sigma_1$$

GCDs and LCMs for everybody

- Positive braids have GCDs.
- $\textbf{ Positive braids have LCMs: } \textbf{LCM}(\beta,\gamma) = \textbf{GCD}(\{\delta \mid \beta \leqslant_{\ell} \delta, \gamma \leqslant_{\ell} \delta\}).$

Three lemmas

$$\sigma_1\sigma_3\sigma_2\sigma_1\leqslant_{\ell}\sigma_1\sigma_3\sigma_2\Delta_n^2=\Delta_n^2\sigma_1\sigma_3\sigma_2\leqslant_{\ell}\Delta_n^2\sigma_1\sigma_3\Delta_n^2\leqslant_{\ell}\ldots\leqslant_{\ell}\Delta_n^8$$

Thank you!