
Sorting presorted data

Vincent Jugé

LIGM – Université Gustave Eiffel, ESIEE, ENPC & CNRS

14/06/2021

Joint work with N. Auger, C. Nicaud, C. Pivoteau & G. Khalighinejad

Université Gustave Eiffel Sharif University
of Technology

V. Jugé Sorting presorted data

Sorting data

0 2 2 3 4 0 1 5 4 1 2 3

0 0 1 1 2 2 2 3 3 4 4 5

MergeSort has a worst-case time complexity of O(n log(n))

Can we do better?

No!

Proof:
There are n! possible reorderings
Each element comparison gives a 1-bit information
Thus log2(n!) ∼ n log2(n) tests are requiredEND OF TALK!

V. Jugé Sorting presorted data

Sorting data

0 2 2 3 4 0 1 5 4 1 2 3

0 0 1 1 2 2 2 3 3 4 4 5

MergeSort has a worst-case time complexity of O(n log(n))

Can we do better?

No!

Proof:
There are n! possible reorderings
Each element comparison gives a 1-bit information
Thus log2(n!) ∼ n log2(n) tests are requiredEND OF TALK!

V. Jugé Sorting presorted data

Sorting data

0 2 2 3 4 0 1 5 4 1 2 3

0 0 1 1 2 2 2 3 3 4 4 5

MergeSort has a worst-case time complexity of O(n log(n))

Can we do better? No!

Proof:
There are n! possible reorderings
Each element comparison gives a 1-bit information
Thus log2(n!) ∼ n log2(n) tests are required

END OF TALK!

V. Jugé Sorting presorted data

Sorting data

0 2 2 3 4 0 1 5 4 1 2 3

0 0 1 1 2 2 2 3 3 4 4 5

MergeSort has a worst-case time complexity of O(n log(n))

Can we do better? No!

Proof:
There are n! possible reorderings
Each element comparison gives a 1-bit information
Thus log2(n!) ∼ n log2(n) tests are requiredEND OF TALK!

V. Jugé Sorting presorted data

Cannot we ever do better?

In some cases, we should. . .

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

V. Jugé Sorting presorted data

Cannot we ever do better?

In some cases, we should. . .

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

0 2 2 3 4 0 1 5 4 1 2 3

1 Chunk your data in non-decreasing runs

2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)
New parameters: Run-length entropy: H =

∑ρ
i=1(ri/n) log2(n/ri)

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [1,2,4,7,11]
Some merge sort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![4]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2nH/2

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

0 2 2 3 4 0 1 5 4 1 2 3

1 Chunk your data in non-decreasing runs
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

New parameters: Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri)

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [1,2,4,7,11]
Some merge sort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![4]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2nH/2

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

0 2 2 3 4 0 1 5 4 1 2 3

1 Chunk your data in non-decreasing runs
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

New parameters: Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri)

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [1,2,4,7,11]
Some merge sort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![4]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2nH/2

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

0 2 2 3 4 0 1 5 4 1 2 3

1 Chunk your data in non-decreasing runs
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

New parameters: Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri)

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [1,2,4,7,11]
Some merge sort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![4]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2nH/2

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

0 2 2 3 4 0 1 5 4 1 2 3

1 Chunk your data in non-decreasing runs
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

New parameters: Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri)

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [1,2,4,7,11]
TimSort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![4]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2nH/2

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

0 2 2 3 4 0 1 5 4 1 2 3

1 Chunk your data in non-decreasing runs
2 New parameters: Number of runs (ρ) and their lengths (r1, . . . , rρ)

New parameters: Run-length entropy: H =
∑ρ

i=1(ri/n) log2(n/ri)

New parameters: Run-length entropy: H 6 log2(ρ) 6 log2(n)

Theorem [1,2,4,7,11]
TimSort has a worst-case time complexity of O(n + nH)

We cannot do better than Ω(n + nH)![4]

Reading the whole input requires a time Ω(n)

There are X possible reorderings, with X > 21−ρ
(n
r1 ... rρ

)
> 2nH/2

V. Jugé Sorting presorted data

A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21

1 2
P

2 2 2
A J O

3 4

P J J

1 Invented by Tim Peters[3]

2 Standard algorithm in Python
Standard algorithm———————— for non-primitive arrays in Android, Java, Octave

3 1st worst-case complexity analysis[6] – TimSort works in time O(n log n)

4 Refined worst-case analysis[7] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[5,7]

V. Jugé Sorting presorted data

A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21

1

2
P

2 2 2
A J O

3 4

P J J

1 Invented by Tim Peters[3]

2 Standard algorithm in Python
Standard algorithm———————— for non-primitive arrays in Android, Java, Octave

3 1st worst-case complexity analysis[6] – TimSort works in time O(n log n)

4 Refined worst-case analysis[7] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[5,7]

V. Jugé Sorting presorted data

A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21

1 2
P

2 2 2
A J O

3 4

P J J

1 Invented by Tim Peters[3]

2 Standard algorithm in Python
Standard algorithm———————— for non-primitive arrays in Android, Java, Octave

3 1st worst-case complexity analysis[6] – TimSort works in time O(n log n)

4 Refined worst-case analysis[7] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[5,7]

V. Jugé Sorting presorted data

A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21

1 2
P

2 2 2
A J O

3

4

P J J

1 Invented by Tim Peters[3]

2 Standard algorithm in Python
Standard algorithm———————— for non-primitive arrays in Android, Java, Octave

3 1st worst-case complexity analysis[6] – TimSort works in time O(n log n)

4 Refined worst-case analysis[7] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[5,7]

V. Jugé Sorting presorted data

A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21

1 2
P

2 2 2
A J O

3 4

P J J

1 Invented by Tim Peters[3]

2 Standard algorithm in Python
Standard algorithm———————— for non-primitive arrays in Android, Java, Octave

3 1st worst-case complexity analysis[6] – TimSort works in time O(n log n)

4 Refined worst-case analysis[7] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[5,7]

V. Jugé Sorting presorted data

A brief history of TimSort

2001 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17 ’18 ’19 ’20 ’21

1 2
P

2 2 2
A J O

3 4

P J J

1 Invented by Tim Peters[3]

2 Standard algorithm in Python
Standard algorithm———————— for non-primitive arrays in Android, Java, Octave

3 1st worst-case complexity analysis[6] – TimSort works in time O(n log n)

4 Refined worst-case analysis[7] – TimSort works in time O(n + nH)

Bugs uncovered in Python & Java implementations[5,7]

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs

* Stable algorithm
(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Run merging algorithm: standard + many optimizations
I time O(k + `)
I memory O(min(k , `))

}
Merge cost: k + `

2 Policy for choosing runs to merge:
I depends on run lengths only

3 Complexity analysis:
* Evaluate the total merge cost
* Forget array values and only work with run lengths

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs * Stable algorithm
(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Run merging algorithm: standard + many optimizations
I time O(k + `)
I memory O(min(k , `))

}
Merge cost: k + `

2 Policy for choosing runs to merge:
I depends on run lengths only

3 Complexity analysis:
* Evaluate the total merge cost
* Forget array values and only work with run lengths

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs * Stable algorithm
(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Run merging algorithm: standard + many optimizations
I time O(k + `)
I memory O(min(k , `))

}
Merge cost: k + `

2 Policy for choosing runs to merge:
I depends on run lengths only

3 Complexity analysis:
* Evaluate the total merge cost
* Forget array values and only work with run lengths

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs * Stable algorithm
(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Run merging algorithm: standard + many optimizations
I time O(k + `)
I memory O(min(k , `))

}
Merge cost: k + `

2 Policy for choosing runs to merge:
I depends on run lengths only

3 Complexity analysis:
* Evaluate the total merge cost
* Forget array values and only work with run lengths

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs * Stable algorithm
(good for composite types)

0 2 2 3 4 0 1 5

0 0 1 2 2 3 4 5

k `

≡

≡

5 3

8

1 Run merging algorithm: standard + many optimizations
I time O(k + `)
I memory O(min(k , `))

}
Merge cost: k + `

2 Policy for choosing runs to merge:
I depends on run lengths only

3 Complexity analysis:
* Evaluate the total merge cost
* Forget array values and only work with run lengths

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[9] for α = φ = (1 +
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3 ≡ ∞5 3 1 3

5 3 1 3

4

9

12

0 2 2 3 4 0 1 4 5 1 2 3 5 4 3 ∞≡

0 0 1 2 2 3 4 4 5 1 2 3 9 3 ∞≡

0 0 1 1 2 2 2 3 3 4 4 5 12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

α > φ ⇒ knew > kold − 1 after each merge
⇒ one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[9] for α = φ = (1 +
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3 ≡ ∞5 3 1 3

5 3 1 3

4

9

12

0 2 2 3 4 0 1 4 5 1 2 3 5 4 3 ∞≡

0 0 1 2 2 3 4 4 5 1 2 3 9 3 ∞≡

0 0 1 1 2 2 2 3 3 4 4 5 12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

α > φ ⇒ knew > kold − 1 after each merge
⇒ one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[9] for α = φ = (1 +
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3 ≡ ∞5 3 1 3

5 3 1 3

4

9

12

0 2 2 3 4 0 1 4 5 1 2 3 5 4 3 ∞≡

0 0 1 2 2 3 4 4 5 1 2 3 9 3 ∞≡

0 0 1 1 2 2 2 3 3 4 4 5 12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

α > φ ⇒ knew > kold − 1 after each merge
⇒ one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[9] for α = φ = (1 +
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3 ≡ ∞5 3 1 3

5 3 1 3

4

9

12

0 2 2 3 4 0 1 4 5 1 2 3 5 4 3 ∞≡

0 0 1 2 2 3 4 4 5 1 2 3 9 3 ∞≡

0 0 1 1 2 2 2 3 3 4 4 5 12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

α > φ ⇒ knew > kold − 1 after each merge
⇒ one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[9] for α = φ = (1 +
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3

≡ ∞

5 3 1 3

5 3 1 3

4

9

12

0 2 2 3 4 0 1 4 5 1 2 3

5 4 3 ∞≡

0 0 1 2 2 3 4 4 5 1 2 3

9 3 ∞≡

0 0 1 1 2 2 2 3 3 4 4 5

12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

α > φ ⇒ knew > kold − 1 after each merge
⇒ one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[9] for α = φ = (1 +
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3

≡ ∞5 3 1 3

5 3 1 3

4

9

12

0 2 2 3 4 0 1 4 5 1 2 3

5 4 3 ∞≡

0 0 1 2 2 3 4 4 5 1 2 3

9 3 ∞≡

0 0 1 1 2 2 2 3 3 4 4 5

12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

α > φ ⇒ knew > kold − 1 after each merge
⇒ one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[9] for α = φ = (1 +
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3

≡ ∞5 3 1 3

5 3 1 3

4

9

12

0 2 2 3 4 0 1 4 5 1 2 3

5 4 3 ∞≡

0 0 1 2 2 3 4 4 5 1 2 3

9 3 ∞≡

0 0 1 1 2 2 2 3 3 4 4 5

12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

α > φ ⇒ knew > kold − 1 after each merge
⇒ one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of α-merge sort[9] for α = φ = (1 +
√
5)/2 ≈ 1.618:

Find the least index k such that rk 6 αrk+1 or rk 6 rk+2

Merge the runs Rk and Rk+1

0 2 2 3 4 0 1 5 4 1 2 3

≡ ∞5 3 1 3

5 3 1 3

4

9

12

0 2 2 3 4 0 1 4 5 1 2 3

5 4 3 ∞≡

0 0 1 2 2 3 4 4 5 1 2 3

9 3 ∞≡

0 0 1 1 2 2 2 3 3 4 4 5

12 ∞≡

4

9

12

Merge tree

×
2
×
3
×
3
×
1+ + +

=
merge cost

α > φ ⇒ knew > kold − 1 after each merge
⇒ one can use stack-based implementations of α-merge sort

V. Jugé Sorting presorted data

Fast growth in merge trees (1/2)
Theorem [11]
In merge trees induced by α-merge sort for α > φ, each node is at least
(α + 1)/α times larger than its great-grandchildren

Proof:

. . . a b c

> a + c > 2c

. . .cba

> a + max{b, c}
> (α + 1)a/α

Corollary:
Each run R lies at depth O(1 + log(n/r))

α-merge sort has a merge cost O(n + nH)

V. Jugé Sorting presorted data

Fast growth in merge trees (1/2)
Theorem [11]
In merge trees induced by α-merge sort for α > φ, each node is at least
(α + 1)/α times larger than its great-grandchildren

Proof:

. . . a b c

> a + c > 2c

. . .cba

> a + max{b, c}
> (α + 1)a/α

Corollary:
Each run R lies at depth O(1 + log(n/r))

α-merge sort has a merge cost O(n + nH)

V. Jugé Sorting presorted data

Fast growth in merge trees (1/2)
Theorem [11]
In merge trees induced by α-merge sort for α > φ, each node is at least
(α + 1)/α times larger than its great-grandchildren

Proof:

. . . a b c

> a + c > 2c

. . .cba

> a + max{b, c}
> (α + 1)a/α

Corollary:
Each run R lies at depth O(1 + log(n/r))

α-merge sort has a merge cost O(n + nH)

V. Jugé Sorting presorted data

Fast growth in merge trees (1/2)
Theorem [11]
In merge trees induced by α-merge sort for α > φ, each node is at least
(α + 1)/α times larger than its great-grandchildren

Proof:

. . . a b c

> a + c > 2c

. . .cba

> a + max{b, c}
> (α + 1)a/α

Corollary:
Each run R lies at depth O(1 + log(n/r))

α-merge sort has a merge cost O(n + nH)

V. Jugé Sorting presorted data

Fast growth in merge trees (2/2)

Fast-growth property
A merge algorithm A has the fast-growth property if

there exists an integer k > 1 and a real number ε > 1 such that
in each merge tree induced by A,

going up k times multiplies the node size by ε or more

Theorem (continued)

Timsort[3], α-merge sort[9] (when α > φ), adaptive Shivers sort[10],
Peeksort and Powersort[8] have the fast growth-property

Corollary: These algorithms work in time O(n + nH)

V. Jugé Sorting presorted data

Fast growth in merge trees (2/2)

Fast-growth property
A merge algorithm A has the fast-growth property if

there exists an integer k > 1 and a real number ε > 1 such that
in each merge tree induced by A,

going up k times multiplies the node size by ε or more

Theorem (continued)

Timsort[3], α-merge sort[9] (when α > φ), adaptive Shivers sort[10],
Peeksort and Powersort[8] have the fast growth-property

Corollary: These algorithms work in time O(n + nH)

V. Jugé Sorting presorted data

What about ?

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

Few runs vs few values:

lex inv

V. Jugé Sorting presorted data

What about ?

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

Few runs vs few values:

lex

inv

V. Jugé Sorting presorted data

What about ?

5 × 0 4 × 1 3 × 2

0

0

1

0

1

0

0

0

2

0

1

1

0

1

2

1

0

1

2

2

0

2

1

2

Few runs vs few values vs few dual runs:

lex inv

V. Jugé Sorting presorted data

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3

0 1 1 0 2 1 0 2 0 2 0 1

1 Chunk your data in non-decreasing, non-overlapping dual runs
2 New parameters: Number of dual runs (ρ?) and their lengths (r?i)

New parameters: Dual-run entropy: H? =
∑ρ?

i=1(r?i /n) log2(n/r?i)

New parameters: Dual-run entropy: H? 6 log2(ρ?) 6 log2(n)

Theorem [11]
Every fast-growth merge sort requires O(n + nH?) comparisons if it uses
Timsort’s optimized run-merging routine

and we still cannot do better than Ω(n + nH?)

V. Jugé Sorting presorted data

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3

0 1 1 0 2 1 0 2 0 2 0 1

1 Chunk your data in non-decreasing, non-overlapping dual runs
2 New parameters: Number of dual runs (ρ?) and their lengths (r?i)

New parameters: Dual-run entropy: H? =
∑ρ?

i=1(r?i /n) log2(n/r?i)

New parameters: Dual-run entropy: H? 6 log2(ρ?) 6 log2(n)

Theorem [11]
Every fast-growth merge sort requires O(n + nH?) comparisons if it uses
Timsort’s optimized run-merging routine

and we still cannot do better than Ω(n + nH?)

V. Jugé Sorting presorted data

Conclusion
TimSort is good in practice and in theory: O(n + nH) merge cost
TimSort is good in practice and in theory: O(n + nH?) comparisons

Both its merging policy and merging routine are great!

Some references:
[1] Optimal computer search trees and variable-length alphabetical codes,

Hu & Tucker (1971)
[2] A new algorithm for minimum cost binary trees, Garsia & Wachs (1973)
[3] Tim Peters’ description of TimSort,

svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[4] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[5] OpenJDK’s java.utils.Collection.sort() is broken, de Gouw et al. (2015)
[6] Merge strategies: from merge sort to TimSort, Auger et al. (2015)
[7] On the worst-case complexity of TimSort, Auger et al. (2018)
[8] Nearly-optimal mergesorts, Munro & Wild (2018)
[9] Strategies for stable merge sorting, Buss & Knop (2019)
[10] Adaptive ShiversSort: an alternative sorting algorithm, Jugé (2020)
[11] Galloping in natural merge sorts, Jugé & Khalighinejad (2021+)

V. Jugé Sorting presorted data

svn.python.org/projects/python/trunk/Objects/listsort.txt

Conclusion
TimSort is good in practice and in theory: O(n + nH) merge cost
TimSort is good in practice and in theory: O(n + nH?) comparisons
Both its merging policy and merging routine are great!

Some references:
[1] Optimal computer search trees and variable-length alphabetical codes,

Hu & Tucker (1971)
[2] A new algorithm for minimum cost binary trees, Garsia & Wachs (1973)
[3] Tim Peters’ description of TimSort,

svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[4] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[5] OpenJDK’s java.utils.Collection.sort() is broken, de Gouw et al. (2015)
[6] Merge strategies: from merge sort to TimSort, Auger et al. (2015)
[7] On the worst-case complexity of TimSort, Auger et al. (2018)
[8] Nearly-optimal mergesorts, Munro & Wild (2018)
[9] Strategies for stable merge sorting, Buss & Knop (2019)
[10] Adaptive ShiversSort: an alternative sorting algorithm, Jugé (2020)
[11] Galloping in natural merge sorts, Jugé & Khalighinejad (2021+)

V. Jugé Sorting presorted data

svn.python.org/projects/python/trunk/Objects/listsort.txt

Conclusion
TimSort is good in practice and in theory: O(n + nH) merge cost
TimSort is good in practice and in theory: O(n + nH?) comparisons
Both its merging policy and merging routine are great!

Some references:
[1] Optimal computer search trees and variable-length alphabetical codes,

Hu & Tucker (1971)
[2] A new algorithm for minimum cost binary trees, Garsia & Wachs (1973)
[3] Tim Peters’ description of TimSort,

svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[4] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[5] OpenJDK’s java.utils.Collection.sort() is broken, de Gouw et al. (2015)
[6] Merge strategies: from merge sort to TimSort, Auger et al. (2015)
[7] On the worst-case complexity of TimSort, Auger et al. (2018)
[8] Nearly-optimal mergesorts, Munro & Wild (2018)
[9] Strategies for stable merge sorting, Buss & Knop (2019)
[10] Adaptive ShiversSort: an alternative sorting algorithm, Jugé (2020)
[11] Galloping in natural merge sorts, Jugé & Khalighinejad (2021+)

V. Jugé Sorting presorted data

svn.python.org/projects/python/trunk/Objects/listsort.txt

