Sorting presorted data

Vincent Jugé
LIGM — Université Gustave Eiffel, ESIEE, ENPC & CNRS

14/06/2021

Joint work with N. Auger, C. Nicaud, C. Pivoteau & G. Khalighinejad

Université Gustave Eiffel Sharif University
of Technology

V. Jugé Sorting presorted data

Sorting data

lof2]2]3fafof1]s[af1]2]3]

l

Lofofi]sfof2f2]3[sf4ala]s]

Sorting presorted data

Sorting data

lof2]2]3fafof1]s[af1]2]3]

l

Lofofi]sfof2f2]3[sf4ala]s]

MergeSort has a worst-case time complexity of O(nlog(n))

Can we do better?

Sorting presorted data

Sorting data

lof2]2]3fafof1]s[af1]2]3]

l

Lofofi]sfof2f2]3[sf4ala]s]

MergeSort has a worst-case time complexity of O(nlog(n))

Can we do better? No!

Proof:
@ There are n! possible reorderings
@ Each element comparison gives a 1-bit information

@ Thus log,(n!) ~ nlog,(n) tests are required

Sorting presorted data

Sorting data

lof2]2]3fafof1]s[af1]2]3]

l

Lofofi]sfof2f2]3[sf4ala]s]

MergeSort has a worst-case time complexity of O(nlog(n))

Can we do better? No!

Proof:

@ There are n! possible reorderir~
o Each element comp>- ~.nation

@ Thus log,(n!) ~ nloy "< required

Sorting presorted data

Cannot we ever do better?

In some cases, we should. ..

[of1]2[3]45]6]7]8]9]10f11]

l

[of1]2]3]45]6]7]8]9]10f11]

Sorting presorted data

Cannot we ever do better?

In some cases, we should. ..

[of1]2[3]45]6]7]8]9]10f11]

l

[of1]2]3]45]6]7]8]9]10f11]

lofufrfof2]1fof2]of2]of1]
¥

5><|E| 4>< 3><
¥

[ofofofofofafsfafifa]2]2]

Let us do better!

lof2]2]3fafof1]s[af1]2]3]

@ Chunk your data in non-decreasing runs

Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

lof2]2]3fafof1]s[af1]2]3]

@ Chunk your data in non-decreasing runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

lof2]2]3fafof1]s[af1]2]3]

@ Chunk your data in non-decreasing runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >"2_(ri/n)logy(n/r;)
< logy(p) < logy(n)

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

lof2]2]3fafof1]s[af1]2]3]

@ Chunk your data in non-decreasing runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >"2_(ri/n)logy(n/r;)
< logy(p) < logy(n)

Theorem [1,2,4,7,11] J

Some merge sort has a worst-case time complexity of O(n+ nH)

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

lof2]2]3fafof1]s[af1]2]3]

@ Chunk your data in non-decreasing runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >"2_(ri/n)logy(n/r;)
< logy(p) < logy(n)

Theorem [1,2,4,7,11] J

TimSort has a worst-case time complexity of O(n+ nH)

V. Jugé Sorting presorted data

Let us do better!

4 runs of lengths 5, 3, 1 and 3

lof2]2]3fafof1]s[af1]2]3]

@ Chunk your data in non-decreasing runs
@ New parameters: Number of runs (p) and their lengths (ri,...,r,)
Run-length entropy: H = >"2_(ri/n)logy(n/r;)
< logy(p) < logy(n)

Theorem [1,2,4,7,11] J

TimSort has a worst-case time complexity of O(n+ nH)

We cannot do better than Q(n + n#)!l
@ Reading the whole input requires a time Q(n)
@ There are X possible reorderings, with X > 21_f’(r1 ")z onH/2

R)

V. Jugé Sorting presorted data

A brief history of TimSort

>
T T

2001’02’03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15'16 '17 '18 '19 '20 '21

V. Jugé Sorting presorted data

A brief history of TimSort

a >

2001’02’03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15'16 '17 '18 '19 '20 '21

© Invented by Tim Petersl®]

V. Jugé Sorting presorted data

A brief history of TimSort

P A) 0]
) Q0 o .

2001’02’03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15'16 '17 '18 '19 '20 '21

© Invented by Tim Petersl®]
@ Standard algorithm in Python

for non-primitive arrays in Android, Java, Octave

V. Jugé Sorting presorted data

A brief history of TimSort

P A) 0]
) Q0 o o .

2001’02’03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15'16 '17 '18 '19 '20 '21

© Invented by Tim Petersl®]
@ Standard algorithm in Python

for non-primitive arrays in Android, Java, Octave

© 1% worst-case complexity analysisl® — TimSort works in time O(nlog n)

V. Jugé Sorting presorted data

A brief history of TimSort

P A) 0]
) Q0 o o o .

2001’02’03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15'16 '17 '18 '19 '20 '21

© Invented by Tim Petersl®]
@ Standard algorithm in Python

for non-primitive arrays in Android, Java, Octave

© 1% worst-case complexity analysisl® — TimSort works in time O(nlog n)

Q@ Refined worst-case analysisl”l — TimSort works in time O(n + n'H)

V. Jugé Sorting presorted data

A brief history of TimSort

PJ J
P A J)
o o Q@ O 2] % %

>

2001 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13'14'15 '16 '17 '18 '19 '20 21
© Invented by Tim Petersl®]
@ Standard algorithm in Python

for non-primitive arrays in Android, Java, Octave

© 1% worst-case complexity analysisl® — TimSort works in time O(nlog n)
Q@ Refined worst-case analysisl”l — TimSort works in time O(n + n'H)
A Bugs uncovered in Python & Java implementations!® 7]

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs

[o[2]2]3]afof1]s]

Lofof1f2f2]3]a]5]

Sorting presorted data

The principles of TimSort

and its variants (1/2)

Algorithm based on merging adjacent runs @ Stable algorithm

(good for composite types)

[of[2]2]3]afof1]s]

|

h’

Lofof1]2

2|3]4]5]

Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs @ Stable algorithm
(good for composite types)

kKo
[of2]2[3]4]0]1]5]

Lofof1f2f2]3]a]5]

@ Run merging algorithm: standard + many optimizations
> time O(k + ¢)

» memory O(min(k,¥¢)) } Merge cost: k+

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs @ Stable algorithm
(good for composite types)

k /
lof2]2[3]4fo]1]s]|=[5]3]

lofof1f2f2]3]a]s]|=[8 |

@ Run merging algorithm: standard + many optimizations
> time O(k + ¢)
» memory O(min(k,¥¢))
@ Policy for choosing runs to merge:
» depends on run lengths only

} Merge cost: k + ¢

V. Jugé Sorting presorted data

The principles of TimSort and its variants (1/2)

Algorithm based on merging adjacent runs @ Stable algorithm
(good for composite types)

k /
lof2]2[3]4fo]1]s]|=[5]3]

lofof1f2f2]3]a]s]|=[8 |

@ Run merging algorithm: standard + many optimizations
> time O(k + ¢)
» memory O(min(k,¥¢))
@ Policy for choosing runs to merge:
» depends on run lengths only

} Merge cost: k + ¢

© Complexity analysis:
@ Evaluate the total merge cost
@ Forget array values and only work with run lengths

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of a-merge sortl for a = ¢ = (1 + /5)/2 ~ 1.618:
@ Find the least index k such that r, < argyq or re < rio
@ Merge the runs Ry and Ry1

[of2]2]3]4fofa]s[4f1]2]3]=[5]3]1]3[~]

V. Jugé Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of a-merge sortl® for o = ¢ = (14 1/5)/2 ~ 1.618:
@ Find the least index k such that r, < argyq or re < rio

@ Merge the runs Ry and Ry1

[of2]2]3]4fof1]s[4fr]2]3]=[5]3]1]3[~]

—

lof2]2f3]4]o]s

afslaf2]s]|=[5] 4 [3]~]

Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of a-merge sortl® for o = ¢ = (14 1/5)/2 ~ 1.618:
@ Find the least index k such that r, < argyq or re < rio

@ Merge the runs Ry and Ry1

[of2]2]3]4fof1]s[4fr]2]3]=[5]3]1]3[~]

—

lof2]2]3]4]o]1

afslaf2]s]|=[5] 4 [3]~]

[ofof12]2[s[4]4]5[1]2]3]=] 9 [3[~]

Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of a-merge sortl® for o = ¢ = (14 1/5)/2 ~ 1.618:
@ Find the least index k such that r, < argyq or re < rio
@ Merge the runs Ry and Ry1

[of2]2]3]4fof1]s[4fr]2]3]=[5]3]1]3[~]
T
lof2]2]3]afofu]afs[1]2]3]=[5] 4 [3[~]

[ofofi2]2fsf4]4[5[1[2]8]=[9 [3[~]

lofof1]1[2]2]2]3[3]a]as]|=] 12 [

Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of a-merge sortl® for o = ¢ = (14 1/5)/2 ~ 1.618:
@ Find the least index k such that r, < argyq or re < rio

@ Merge the runs Ry and Ry1
Merge tree

[of2]2]3]4fof1]s]a[1[2]3] [5]3]1]3]

T

[of2]2]3]afof1]afs[1]2]3] 4]
7

[ofofi2]2[s[4]4[5[1]2]3] [

[ofof1r]2[2]2]3[3]4]4]5]

Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of a-merge sortl® for o = ¢ = (14 1/5)/2 ~ 1.618:
@ Find the least index k such that r, < argyq or re < rio

@ Merge the runs Ry and Ry1

Merge tree
[ol2]2]3]4fofufsf4[1]2]3] (12
— v ()
lol2]23]4fof1f4afs[1[2]3]

v
Ofoj1f212|3|4[4|5]1]|2]3
CEEEEEEEEER & &

[ofofrfrf2]2]2[3[s]4]4]5]

Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of a-merge sortl® for o = ¢ = (14 1/5)/2 ~ 1.618:
@ Find the least index k such that r, < argyq or re < rio
@ Merge the runs Ry and Ry1

Merge tree
[ol2]2]3]4fofufsf4[1]2]3] (12
— v ()
I0I2I2I3I4I0I1 afs[1]2]3]

OOMEECEEEIEE

[ofo]1]1|2]2]2]3]3]4]4]5] 2+>3<+§+1

merge cost

Sorting presorted data

The principles of TimSort and its variants (2/2)

Run merge policy of a-merge sortl® for o = ¢ = (14 1/5)/2 ~ 1.618:
@ Find the least index k such that r, < argyq or re < rio
@ Merge the runs Ry and Ry1

Merge tree
[ol2]2]3]4fofufsf4[1]2]3] (12
— v ()
I0I2I2I3I4I0I1 afs[1]2]3]

OOMEECEEEIEE

[ofo]1]1|2]2]2]3]3]4]4]5] 2+>3<+§+1

merge cost

a>¢ = k"W > ko' _ 1 after each merge
= one can use stack-based implementations of a-merge sort

Sorting presorted data

Fast growth in merge trees (1/2)
Theorem [11]

In merge trees induced by a-merge sort for a > ¢, each node is at least
(o + 1)/a times larger than its great-grandchildren

V. Jugé Sorting presorted data

Fast growth in merge trees (1/2)
Theorem [11]

In merge trees induced by a-merge sort for a > ¢, each node is at least
(o + 1)/a times larger than its great-grandchildren

Proof:

V. Jugé

Sorting presorted data

Fast growth in merge trees (1/2)
Theorem [11]

In merge trees induced by a-merge sort for a > ¢, each node is at least
(o + 1)/a times larger than its great-grandchildren

Proof: O > a+ max{b,c}
O>at+tc>2c 2 (a+1)a/a
,/’ i \\\ . . H i N

V. Jugé

Sorting presorted data

Fast growth in merge trees (1/2)
Theorem [11]

In merge trees induced by a-merge sort for a > ¢, each node is at least
(o + 1)/a times larger than its great-grandchildren

Proof: O a+ max{b c}
Da/a
ole ©0o
Corollary:

e Each run R lies at depth O(1 + log(n/r))
@ a-merge sort has a merge cost O(n + nH)

V. Jugé

Sorting presorted data

Fast growth in merge trees (2/2)

Fast-growth property

A merge algorithm A has the fast-growth property if
@ there exists an integer k > 1 and a real number £ > 1 such that
@ in each merge tree induced by A,

going up k times multiplies the node size by £ or more

V. Jugé Sorting presorted data

Fast growth in merge trees (2/2)

Fast-growth property

A merge algorithm A has the fast-growth property if
@ there exists an integer k > 1 and a real number £ > 1 such that
@ in each merge tree induced by A,

going up k times multiplies the node size by £ or more

Theorem (continued)

TimsortB], a-merge sortl? (when a > ¢), adaptive Shivers sort[1%,
Peeksort and Powersort[8] have the fast growth-property

Corollary: These algorithms work in time O(n + nH)

V. Jugé Sorting presorted data

What about [o|1f1]o]2[1fo]2]of2]0]1] 7
\
SXIE 4>< 3><
\
lofofofofofufs]a]afafaf2]

Sorting presorted data

What about [o|1f1]o]2[1fo]2]of2]0]1] 7
\
SXE 4>< 3><
\
lofofofofofufs]a]afafaf2]

Few runs vs few values:

—+——

lex
RS
i
)__

Sorting presorted data

What about [of1]1]o|2f1]o]2fo]2]0f1]?
\
SXE 4>< 3><
\
lofofofofofufs]a]afafaf2]

Few runs vs few values vs few dual runs:

HEPURANE

5 5

lex 1] inv] a
ST = et e
> -

>

Sorting presorted data

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3
[ofs]1fof2fsfof2]o2f0f1]

© Chunk your data in non-decreasing, non-overlapping dual runs

@ New parameters: Number of dual runs (p*) and their lengths (r?)
Dual-run entropy: H* = f;l(f;*/”) log,(n/rF)
< logy(p*) < logy(n)

V. Jugé Sorting presorted data

Let us do better, dually!

3 dual runs of lengths 5, 4 and 3
[ofs]1fof2fsfof2]o2f0f1]

© Chunk your data in non-decreasing, non-overlapping dual runs

@ New parameters: Number of dual runs (p*) and their lengths (r?)
Dual-run entropy: H* = f;l(f;*/”) log,(n/rF)
< logy(p*) < logy(n)

Theorem [11]

Every fast-growth merge sort requires O(n + nH*) comparisons if it uses
Timsort’s optimized run-merging routine

and we still cannot do better than Q(n + nH*)

V. Jugé Sorting presorted data

Conclusion

e TimSort is good in practice and in theory: O(n+ n#H) merge cost
O(n+ nH*) comparisons

V. Jugé Sorting presorted data

svn.python.org/projects/python/trunk/Objects/listsort.txt

Conclusion

e TimSort is good in practice and in theory: O(n+ n#H) merge cost
O(n+ nH*) comparisons

@ Both its merging policy and merging routine are great!

V. Jugé Sorting presorted data

svn.python.org/projects/python/trunk/Objects/listsort.txt

Conclusion

e TimSort is good in practice and in theory: O(n+ n#H) merge cost
O(n+ nH*) comparisons
@ Both its merging policy and merging routine are great!

Some references:
[1] Optimal computer search trees and variable-length alphabetical codes,

Hu & Tucker (1971)
[2] A new algorithm for minimum cost binary trees, Garsia & Wachs (1973)
[3] Tim Peters’ description of TimSort,

svn.python.org/projects/python/trunk/Objects/listsort.txt (2001)
[4] On compressing permutations and adaptive sorting, Barbay & Navarro (2013)
[5] OpendDK's java.utils. Collection.sort() is broken, de Gouw et al. (2015)
[6] Merge strategies: from merge sort to TimSort, Auger et al. (2015)
[7] On the worst-case complexity of TimSort, Auger et al. (2018)
[8] Nearly-optimal mergesorts, Munro & Wild (2018)
[9] Strategies for stable merge sorting, Buss & Knop (2019)
[10] Adaptive ShiversSort: an alternative sorting algorithm, Jugé (2020)
[11] Galloping in natural merge sorts, Jugé & Khalighinejad (202171)

V. Jugé Sorting presorted data

svn.python.org/projects/python/trunk/Objects/listsort.txt

MERCI POUR VOTRE
ATTENTION!

L
S5
M\

NE POSEZ PAS DEQUESTIONS
DIFFICILES S'IL VOUS PLAIT !

