Is the right relaxation normal form for braids automatic?

Vincent Jugé

LSV (CNRS & ENS Cachan, Université Paris-Saclay)

28/10/2016

Contents

- Curve Diagrams and Braid Groups
 - Curve Diagrams
 - Deformations of a Curve Diagram
 - Artin Moves and Semi-Circular Moves
 - Braid Group
- 2 Right-Relaxation Normal Form
- 3 Properties of the Right-Relaxation Normal Form
- 4 Conclusion

Curve Diagrams

Trivial diagram

Curve Diagrams

Non-trivial diagram

$$[1 \curvearrowright 3] = \mathbf{S}_1 \mathbf{S}_2$$

$$[1 \sim 3] = S_2S_1 \neq S_1S_2 = [1 \sim 3]$$

 $[1 \backsim 3] = \Sigma_1 \Sigma_2$

 $[1 - 3] = \Sigma_2 \Sigma_1$

Braid Group

Braid Group \mathcal{B}_n : Definition #1

- Monoid generated by the transformations S_i and Σ_i , $1 \le i < n$
- $S_i \Sigma_i = \Sigma_i S_i = Id$

Braid Group

Braid Group \mathcal{B}_n : Definition #1

- Monoid generated by the transformations S_i and Σ_i , $1 \le i < n$
- $S_i \Sigma_i = \Sigma_i S_i = Id$

Braid Group \mathcal{B}_n : Definition #2

$$\langle \mathsf{S}_1,\ldots,\mathsf{S}_{n-1}\mid \mathsf{S}_i\mathsf{S}_{i+1}\mathsf{S}_i=\mathsf{S}_{i+1}\mathsf{S}_i\mathsf{S}_{i+1},\mathsf{S}_i\mathsf{S}_j=\mathsf{S}_j\mathsf{S}_i \text{ if } j\geqslant i+2 \rangle$$

Braid Group

Braid Group \mathcal{B}_n : Definition #1

- Monoid generated by the transformations S_i and Σ_i , $1 \le i < n$
- $S_i \Sigma_i = \Sigma_i S_i = Id$

Braid Group \mathcal{B}_n : Definition #2

$$\langle \mathsf{S}_1,\ldots,\mathsf{S}_{n-1}\mid \mathsf{S}_i\mathsf{S}_{i+1}\mathsf{S}_i=\mathsf{S}_{i+1}\mathsf{S}_i\mathsf{S}_{i+1},\mathsf{S}_i\mathsf{S}_j=\mathsf{S}_j\mathsf{S}_i \text{ if } j\geqslant i+2 \rangle$$

Systems of Generators

- Artin generators: S_i , Σ_i
- Semi-circular generators: $[k \sim \ell]$, $[k \backsim \ell]$, $[k \backsim \ell]$, $[k \backsim \ell]$

Braid ≈ Curve Diagram

Identification Theorem (Birman 74)

For all diagrams \mathcal{D} and \mathfrak{D} , a unique braid maps \mathcal{D} to \mathfrak{D} .

Contents

- Curve Diagrams and Braid Groups
- Right-Relaxation Normal Form
 - Goals
 - Right-Relaxation Algorithm
 - The Normal Form
- 3 Properties of the Right-Relaxation Normal Form
- Conclusion

Goals: Why a Normal Form?

Desired Features

Write group elements as products of generators such that

- The product is "short"
- Algorithms are carried efficiently:
 - Group multiplication
 - Conjugation test
 - Many others...
- The factorization is "natural"

Goals: Why a Normal Form?

Desired Features

Write group elements as products of generators such that

- The product is "short"
- Algorithms are carried efficiently:
 - Group multiplication
 - Conjugation test
 - Many others...
- The factorization is "natural"

Example: $(\mathbb{Z}, +)$

- Generators = $\{\pm 1\}$: base 1
- Generators = $\{\pm 2^n \mid n \in \mathbb{N}\}$: base 2 (but others are possible)

In a Non-Trivial Diagram...

In a Non-Trivial Diagram...

1 Pick the hole in the rightmost bigon

In a Non-Trivial Diagram...

- Pick the hole in the rightmost bigon
- Slide it along its
 - right branch if possible

In a Non-Trivial Diagram...

- Pick the hole in the rightmost bigon
- Slide it along its
 - right branch if possible
 - left branch otherwise

In a Non-Trivial Diagram...

- Pick the hole in the rightmost bigon
- Slide it along its
 - right branch if possible
 - left branch otherwise
- 3 Iterate the process until you reach the trivial diagram

Move performed: [3 ~ 4]

In a Non-Trivial Diagram...

- Pick the hole in the rightmost bigon
- Slide it along its
 - right branch if possible
 - left branch otherwise
- 3 Iterate the process until you reach the trivial diagram

Move performed: [3 ~ 4]

In a Non-Trivial Diagram...

- Pick the hole in the rightmost bigon
- Slide it along its
 - right branch if possible
 - left branch otherwise
- 3 Iterate the process until you reach the trivial diagram

Moves performed: $[3 \sim 4][1 \sim 4]$

In a Non-Trivial Diagram...

- Pick the hole in the rightmost bigon
- Slide it along its
 - right branch if possible
 - left branch otherwise
- 3 Iterate the process until you reach the trivial diagram

Moves performed: $[3 \sim 4][1 \sim 4]$

In a Non-Trivial Diagram...

- Pick the hole in the rightmost bigon
- Slide it along its
 - right branch if possible
 - left branch otherwise
- 3 Iterate the process until you reach the trivial diagram

Moves performed: $[3 \sim 4][1 \sim 4][2 \sim 4]$

In a Non-Trivial Diagram...

- Pick the hole in the rightmost bigon
- Slide it along its
 - right branch if possible
 - left branch otherwise
- 3 Iterate the process until you reach the trivial diagram

Moves performed: $[3 \sim 4][1 \sim 4][2 \sim 4]$

Right-Relaxation Algorithm: Example

In a Non-Trivial Diagram...

- Pick the hole in the rightmost bigon
- Slide it along its
 - right branch if possible
 - left branch otherwise
- 3 Iterate the process until you reach the trivial diagram

Moves performed: $[3 \sim 4][1 \sim 4][2 \sim 4][2 \sim 4]$

Right-Relaxation Algorithm: Example

In a Non-Trivial Diagram...

- Pick the hole in the rightmost bigon
- Slide it along its
 - right branch if possible
 - left branch otherwise
- 3 Iterate the process until you reach the trivial diagram

Moves performed: $[3 \sim 4][1 \sim 4][2 \sim 4][2 \sim 4]$

From the Algorithm to the Normal Form

Computing the Right-Relaxation Normal Form

- **①** Consider your braid **B** and the trivial diagram $\mathcal{D}_{arepsilon}$
- $oldsymbol{0}$ Apply $oldsymbol{\mathsf{B}}$ to $\mathcal{D}_{arepsilon}$
 - You obtain a diagram \mathcal{D}_{B}
- f 3 Apply the right-relaxation algorithm to $\mathcal{D}_{f B}$
 - You perform moves $\mathbf{m}_1\mathbf{m}_2\dots\mathbf{m}_k$ and obtain $\mathcal{D}_{arepsilon}$ again
- **①** The right normal form of B is the product $\mathbf{m}_k^{-1}\mathbf{m}_{k-1}^{-1}\dots\mathbf{m}_1^{-1}$

From the Algorithm to the Normal Form

Computing the Right-Relaxation Normal Form

- **①** Consider your braid **B** and the trivial diagram $\mathcal{D}_{arepsilon}$
- $oldsymbol{2}$ Apply $oldsymbol{\mathsf{B}}$ to $\mathcal{D}_{arepsilon}$
 - You obtain a diagram \mathcal{D}_{B}
- $oldsymbol{3}$ Apply the right-relaxation algorithm to $\mathcal{D}_{oldsymbol{B}}$
 - You perform moves $\mathbf{m}_1\mathbf{m}_2\dots\mathbf{m}_k$ and obtain $\mathcal{D}_{arepsilon}$ again
- **1** The right normal form of B is the product $\mathbf{m}_k^{-1}\mathbf{m}_{k-1}^{-1}\ldots\mathbf{m}_1^{-1}$

Example:
$$B = S_2S_3S_2S_3S_1S_2 = [2 \rightsquigarrow 4][2 \rightsquigarrow 4][1 \rightsquigarrow 3]$$

Diagram $\mathcal{D}_{\mathbf{B}}$:

Moves performed:

$$[3 \sim 4][1 \sim 4][2 \sim 4][2 \sim 4]$$

Right normal form:

$$[2 \rightsquigarrow 4][2 \rightsquigarrow 4][1 \rightsquigarrow 4][3 \leadsto 4]$$

Contents

- Curve Diagrams and Braid Groups
- 2 Right-Relaxation Normal Form
- 3 Properties of the Right-Relaxation Normal Form
 - Basic Properties
 - Regularity and Automaticity
- 4 Conclusion

Basic Properties

Satisfied Properties

- Prefix-closed language
- Efficient to compute
- Behaves nicely with the Dehornoy braid ordering

Unsatisfied Properties

Not geodesic

Basic Properties

Satisfied Properties

- Prefix-closed language
- Efficient to compute
- Behaves nicely with the Dehornoy braid ordering

Unsatisfied Properties

Not geodesic

Regularity & Automaticity Properties

Is the right-relaxation normal form

- regular?
- left automatic?
- right automatic?

Regularity

Regular Language

Language accepted by a NFA:

- Read your word from left to right
- Use a finite auxiliary memory
- Decide word membership

Regularity

Regular Language

Language accepted by a NFA:

- Read your word from left to right
- Use a finite auxiliary memory
- Decide word membership

Theorem (J. 2016⁺)

The right-relaxation normal form is regular!

Key Idea

- Use prefix-closure
- Split the real axis in intervals
- Remember which intervals are linked by neighboring arcs

Regular Language

Language accepted by a NFA:

- Read your word from left to right
- Use a finite auxiliary memory
- Decide word membership

Theorem (J. 2016⁺)

The right-relaxation normal form is regular!

Key Idea

- Use prefix-closure
- Split the real axis in intervals
- Remember which intervals are linked by neighboring arcs

Key Idea (continued)

Intervals

- Intervals
- Neighboring arcs

Ingredients

- ullet Group ${\mathcal G}$
- ullet Finite generating set Σ
- $\bullet \ \, \mathsf{Normal} \ \, \mathsf{form} \ \, \mathsf{NF} \subseteq \Sigma^*$

Ingredients

- Group \mathcal{G}
- ullet Finite generating set Σ
- Normal form $NF \subseteq \Sigma^*$

Informal Meaning

- Regularity: checking membership in NF is easy
- ullet Automaticity: **simulating multiplication** in ${\mathcal G}$ is easy

Ingredients

- ullet Group $\mathcal G$
- ullet Finite generating set Σ
- Normal form $NF \subseteq \Sigma^*$

Informal Meaning

- Regularity: checking membership in NF is easy
- ullet Automaticity: **simulating multiplication** in ${\mathcal G}$ is easy

Less Informal Meaning

- Use end-padding to encode pairs of words
- Consider the sets $R_x = \{(\mathbf{u}, \mathbf{v}) \mid \mathbf{u}, \mathbf{v} \in \mathbf{NF}, \mathbf{u}x \equiv_{\mathcal{G}} \mathbf{v}\}$ and $L_x = \{(\mathbf{u}, \mathbf{v}) \mid \mathbf{u}, \mathbf{v} \in \mathbf{NF}, x\mathbf{u} \equiv_{\mathcal{G}} \mathbf{v}\}$, for $x \in \Sigma$
 - ightharpoonup NF is synchronously **right**-automatic if all $R_{
 m x}$ are regular
 - ightharpoonup NF is synchronously left-automatic if all L_x are regular

Ingredients

- ullet Group $\mathcal G$
- ullet Finite generating set Σ
- Normal form $NF \subseteq \Sigma^*$

Informal Meaning

- Regularity: checking membership in NF is easy
- ullet Automaticity: **simulating multiplication** in ${\cal G}$ is easy

Less Informal Meaning

- Use end-padding to encode pairs of words
- Consider the sets $R_x = \{(\mathbf{u}, \mathbf{v}) \mid \mathbf{u}, \mathbf{v} \in \mathbf{NF}, \mathbf{u}x \equiv_{\mathcal{G}} \mathbf{v}\}$ and $L_x = \{(\mathbf{u}, \mathbf{v}) \mid \mathbf{u}, \mathbf{v} \in \mathbf{NF}, x\mathbf{u} \equiv_{\mathcal{G}} \mathbf{v}\}$, for $x \in \Sigma$
 - NF is synchronously **bi**-automatic if all R_x and L_x are regular

- $\mathcal{G} = \mathcal{B}_4$, $\Sigma = \{\text{semi-circular generators}\}$, NF = right-relaxation NF
- Set membership:

$$\mathbf{u} = [2 \smile 4][1 \smile 3][1 \curvearrowright 4] \in \mathbf{NF}$$

- $\mathcal{G} = \mathcal{B}_4$, $\Sigma = \{\text{semi-circular generators}\}$, NF = right-relaxation NF
- Set membership:
 - $u = [2 4][1 3][1 4] \in NF$
 - $\mathbf{v} = [2 \leadsto 4][1 \leadsto 3][3 \leadsto 4][1 \leadsto 4] \in \mathbf{NF}$

- $\mathcal{G} = \mathcal{B}_4$, $\Sigma = \{\text{semi-circular generators}\}$, NF = right-relaxation NF
- Set membership:
 - $u = [2 4][1 3][1 4] \in NF$
 - $\mathbf{v} = [2 \smile 4][1 \smile 3][3 \smile 4][1 \smile 4] \in \mathbf{NF}$
 - $\mathbf{v} \equiv_{\mathcal{G}} \mathbf{u} \; \mathbf{S}_2$

- $\mathcal{G} = \mathcal{B}_4$, $\Sigma = \{\text{semi-circular generators}\}$, NF = right-relaxation NF
- Set membership:
 - $u = [2 4][1 3][1 4] \in NF$
 - $\mathbf{v} = \begin{bmatrix} 2 4 \end{bmatrix} \begin{bmatrix} 1 3 \end{bmatrix} \begin{bmatrix} 3 4 \end{bmatrix} \begin{bmatrix} 1 4 \end{bmatrix} \in \mathbf{NF}$

$$(\mathbf{u},\mathbf{v}) = \binom{[2 - 4]}{[2 - 4]} \binom{[1 - 3]}{[1 - 3]} \binom{[1 - 4]}{[3 - 4]} \binom{\varepsilon}{[1 - 4]} \in R_{\mathbf{S_2}}$$

- $\mathcal{G} = \mathcal{B}_4$, $\Sigma = \{\text{semi-circular generators}\}$, NF = right-relaxation NF
- Set membership:
 - $u = [2 4][1 3][1 4] \in NF$
 - $\mathbf{v} = \begin{bmatrix} 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} \in \mathbf{NF}$
 - $\mathbf{w} = [3 \leadsto 4][1 \leadsto 3][1 \leadsto 4] \in \mathbf{NF}$
 - $(\mathbf{u},\mathbf{v}) = \binom{[2 \cdot 4]}{[2 \cdot 4]} \binom{[1 \cdot 4]}{[1 \cdot 3]} \binom{[1 \cdot 4]}{[3 \cdot 4]} \binom{\varepsilon}{[1 \cdot 4]} \in R_{\mathbf{S_2}}$

- $\mathcal{G} = \mathcal{B}_4$, $\Sigma = \{\text{semi-circular generators}\}$, NF = right-relaxation NF
- Set membership:

$$u = [2 - 4][1 - 3][1 - 4] \in NF$$

$$\mathbf{v} = \begin{bmatrix} 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} \in \mathbf{NF}$$

$$\mathbf{w} = [3 \leadsto 4][1 \leadsto 3][1 \leadsto 4] \in \mathbf{NF}$$

$$(\mathbf{u},\mathbf{v}) = \binom{[2 \multimap 4]}{[2 \multimap 4]} \binom{[1 \multimap 3]}{[1 \multimap 3]} \binom{[1 \multimap 4]}{[3 \multimap 4]} \binom{\varepsilon}{[1 \multimap 4]} \in R_{\mathbf{S_2}}$$

$$\mathbf{w} \equiv_{\mathcal{G}} \mathbf{S}_2 \mathbf{u}$$

- $\mathcal{G} = \mathcal{B}_4$, $\Sigma = \{\text{semi-circular generators}\}$, NF = right-relaxation NF
- Set membership:

$$\mathbf{u} = [2 \hookrightarrow 4][1 \hookrightarrow 3][1 \curvearrowright 4] \in \mathbf{NF}$$

$$\mathbf{v} = \begin{bmatrix} 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 4 \end{bmatrix} \in \mathbf{NF}$$

$$\mathbf{w} = [3 \leadsto 4][1 \leadsto 3][1 \leadsto 4] \in \mathbf{NF}$$

$$(\mathbf{u},\mathbf{v}) = \binom{[2 \cdot 4]}{[2 \cdot 4]} \binom{[1 \cdot 4]}{[1 \cdot 4]} \binom{[1 \cdot 4]}{[3 \cdot 4]} \binom{\varepsilon}{[1 \cdot 4]} \in R_{\mathbf{S_2}}$$

$$(\mathbf{u}, \mathbf{w}) = \binom{[2 \leadsto 4]}{[3 \leadsto 4]} \binom{[1 \leadsto 3]}{[1 \leadsto 3]} \binom{[1 \leadsto 4]}{[1 \leadsto 4]} \in L_{\mathbf{S_2}}$$

Asynchronous Automaticity

- ullet Consider a padding function arphi
- Consider the sets $R_x^{\varphi} = \{(\mathbf{u}, \mathbf{v})^{\varphi} \mid \mathbf{u}, \mathbf{v} \in \mathbf{NF}, \mathbf{u}x \equiv_{\mathcal{G}} \mathbf{v}\}$ and $L_x^{\varphi} = \{(\mathbf{u}, \mathbf{v})^{\varphi} \mid \mathbf{u}, \mathbf{v} \in \mathbf{NF}, x\mathbf{u} \equiv_{\mathcal{G}} \mathbf{v}\}$, for $x \in \Sigma$
 - ightharpoonup NF is asynchronously **right**-automatic if all $R_{
 m x}^{arphi}$ are regular
 - ightharpoonup NF is asynchronously left-automatic if all $L_{
 m x}^{arphi}$ are regular

for \mathbf{some} padding function φ

Asynchronous Automaticity

- ullet Consider a padding function arphi
- Consider the sets $R_x^{\varphi} = \{(\mathbf{u}, \mathbf{v})^{\varphi} \mid \mathbf{u}, \mathbf{v} \in \mathbf{NF}, \mathbf{u}x \equiv_{\mathcal{G}} \mathbf{v}\}$ and $L_x^{\varphi} = \{(\mathbf{u}, \mathbf{v})^{\varphi} \mid \mathbf{u}, \mathbf{v} \in \mathbf{NF}, x\mathbf{u} \equiv_{\mathcal{G}} \mathbf{v}\}$, for $x \in \Sigma$
 - **NF** is asynchronously **bi**-automatic if all R_x^{φ} and L_x^{φ} are regular for **some** padding function φ

Asynchronous Automaticity

- ullet Consider a padding function arphi
- Consider the sets $R_x^{\varphi} = \{(\mathbf{u}, \mathbf{v})^{\varphi} \mid \mathbf{u}, \mathbf{v} \in \mathbf{NF}, \mathbf{u}x \equiv_{\mathcal{G}} \mathbf{v}\}$ and $L_x^{\varphi} = \{(\mathbf{u}, \mathbf{v})^{\varphi} \mid \mathbf{u}, \mathbf{v} \in \mathbf{NF}, x\mathbf{u} \equiv_{\mathcal{G}} \mathbf{v}\}$, for $x \in \Sigma$
 - **NF** is asynchronously **bi**-automatic if all R_x^{φ} and L_x^{φ} are regular for **some** padding function φ

$$\bullet \ (\mathbf{u},\mathbf{v})^\varphi = {[2 \multimap 4] \choose [2 \multimap 4]} {\varepsilon \choose [1 \multimap 3]} {[1 \multimap 3] \choose \varepsilon} {[1 \multimap 4] \choose \varepsilon} {\varepsilon \choose [3 \multimap 4]} {\varepsilon \choose [1 \multimap 4]} \in R^\varphi_{\mathbf{S}_2}$$

$$\bullet \ (\mathbf{u},\mathbf{w})^{\varphi} = {\varepsilon \brack {[3 \multimap 4]}} {[2 \multimap 4] \choose {[1 \multimap 3]}} {[1 \multimap 3] \choose {\varepsilon}} {[1 \multimap 4] \choose {[1 \multimap 4]}} \in L_{\mathbf{S}_2}^{\varphi}$$

My Current Problem

The right-relaxation NF is regular. Is it automatic?

My Current Problem

The right-relaxation NF is regular. Is it automatic?

Theorem (J. 2016⁺)

The right-relaxation NF is:

- synchronously **bi**-automatic if $n \le 3$
- asynchronously **left**-automatic if n = 4
- **not** synchronously **left**-automatic if $n \ge 4$
- **not** asynchronously **right**-automatic if $n \ge 4$

Conjecture

The right-relaxation NF is asynchronously left-automatic for all $n \ge 1$

My Current Problem

The right-relaxation NF is regular. Is it automatic?

Theorem (J. 2016⁺)

The right-relaxation NF is:

- synchronously **bi**-automatic if $n \le 3$
- asynchronously **left**-automatic if n = 4
- **not** synchronously **left**-automatic if $n \ge 4$
- **not** asynchronously **right**-automatic if $n \ge 4$

Conjecture

The right-relaxation NF is asynchronously left-automatic for all $n \ge 1$

- Empirical tests suggest an asynchronous fellow-traveller property
- Computing automata for L_x^{φ} is memory-intensive

Example

The word
$$\mathbf{w} = \binom{[2 \leadsto 4]}{[2 \leadsto 4]} \binom{\varepsilon}{[1 \leadsto 3]} \binom{[1 \leadsto 4]}{\varepsilon} \binom{[1 \leadsto 4]}{\varepsilon} \binom{\varepsilon}{[3 \leadsto 4]} \binom{\varepsilon}{[1 \leadsto 4]}$$

Example

The word
$$\mathbf{w} = \binom{ \left[2 \rightarrow 4 \right] }{ \left[2 \rightarrow 4 \right] } \binom{ \varepsilon }{ \left[1 \rightarrow 3 \right] } \binom{ \left[1 \rightarrow 4 \right] }{ \varepsilon } \binom{ \left[1 \rightarrow 4 \right] }{ \varepsilon } \binom{ \varepsilon }{ \left[3 \rightarrow 4 \right] } \binom{ \varepsilon }{ \left[1 \rightarrow 4 \right] }$$

$$S \ni \qquad [2 \leadsto 4]^{-1}[2 \leadsto 4]$$

Example

The word
$$\mathbf{w} = \binom{[2 \leadsto 4]}{[2 \leadsto 4]} \binom{\varepsilon}{[1 \leadsto 3]} \binom{[1 \leadsto 4]}{\varepsilon} \binom{[1 \leadsto 4]}{\varepsilon} \binom{\varepsilon}{[3 \leadsto 4]} \binom{\varepsilon}{[1 \leadsto 4]}$$

$$S \ni [2 \leadsto 4]^{-1}[2 \leadsto 4][1 \leadsto 3]$$

Example

The word
$$\mathbf{w} = \binom{[2 \multimap 4]}{[2 \multimap 4]} \binom{\varepsilon}{[1 \multimap 3]} \binom{[1 \multimap 4]}{\varepsilon} \binom{[1 \multimap 4]}{\varepsilon} \binom{\varepsilon}{[3 \multimap 4]} \binom{\varepsilon}{[1 \multimap 4]}$$

$$S \ni [1 \multimap 3]^{-1}[2 \backsim 4]^{-1}[2 \backsim 4][1 \backsim 3]$$

Example

The word
$$\mathbf{w} = \binom{[2 \multimap 4]}{[2 \multimap 4]} \binom{\varepsilon}{[1 \multimap 3]} \binom{[1 \multimap 4]}{\varepsilon} \binom{[1 \multimap 4]}{\varepsilon} \binom{\varepsilon}{[3 \multimap 4]} \binom{\varepsilon}{[1 \multimap 4]}$$

• **right**-travels in $S \subseteq \mathcal{G}$ if:

$$S \ni [1 \multimap 4]^{-1}[1 \multimap 3]^{-1}[2 \multimap 4]^{-1}[2 \multimap 4][1 \multimap 3]$$

Example

The word
$$\mathbf{w} = \binom{[2 \multimap 4]}{[2 \multimap 4]} \binom{\varepsilon}{[1 \multimap 3]} \binom{[1 \multimap 4]}{\varepsilon} \binom{[1 \multimap 4]}{\varepsilon} \binom{\varepsilon}{[3 \multimap 4]} \binom{\varepsilon}{[1 \multimap 4]}$$

• right-travels in $S \subseteq \mathcal{G}$ if:

$$S\ni \begin{bmatrix}1\rightsquigarrow 4\end{bmatrix}^{-1}\begin{bmatrix}1\rightsquigarrow 3\end{bmatrix}^{-1}\begin{bmatrix}2\backsim 4\end{bmatrix}^{-1}\begin{bmatrix}2\backsim 4\end{bmatrix}\begin{bmatrix}1\backsim 3\end{bmatrix}\begin{bmatrix}3\rightsquigarrow 4\end{bmatrix}$$

Example

The word
$$\mathbf{w} = {[2 \multimap 4] \choose [2 \multimap 4]} {\varepsilon \choose [1 \multimap 3]} {[1 \multimap 4] \choose \varepsilon} {[1 \multimap 4] \choose \varepsilon} {\varepsilon \choose [3 \multimap 4]} {\varepsilon \choose [1 \multimap 4]}$$

• **right**-travels in $S \subseteq \mathcal{G}$ if:

$$S\ni [1 \rightsquigarrow 4]^{-1}[1 \rightsquigarrow 3]^{-1}[2 \rightsquigarrow 4]^{-1}[2 \rightsquigarrow 4][1 \rightsquigarrow 3][3 \rightsquigarrow 4][1 \rightsquigarrow 4]$$

Example

The word
$$\mathbf{w} = \binom{[2 \leadsto 4]}{[2 \leadsto 4]} \binom{\varepsilon}{[1 \leadsto 3]} \binom{[1 \leadsto 4]}{\varepsilon} \binom{[1 \leadsto 4]}{\varepsilon} \binom{\varepsilon}{[3 \leadsto 4]} \binom{\varepsilon}{[1 \leadsto 4]}$$

• right-travels in $S \subseteq \mathcal{G}$ if:

$$S \ni [1 \rightsquigarrow 4]^{-1}[1 \rightsquigarrow 3]^{-1}[2 \rightsquigarrow 4]^{-1}[2 \rightsquigarrow 4][1 \rightsquigarrow 3][3 \rightsquigarrow 4][1 \rightsquigarrow 4]$$

Theorem (Epstein et al. 92)

Example

The word
$$\mathbf{w} = \binom{[2 \leadsto 4]}{[2 \leadsto 4]} \binom{\varepsilon}{[1 \leadsto 3]} \binom{[1 \leadsto 4]}{\varepsilon} \binom{[1 \leadsto 4]}{\varepsilon} \binom{\varepsilon}{[3 \leadsto 4]} \binom{\varepsilon}{[1 \leadsto 4]}$$

• right-travels in $S \subseteq \mathcal{G}$ if:

$$S\ni [1 \mathrel{\mathrel{\sim}} 4]^{-1}[1 \mathrel{\mathrel{\hookrightarrow}} 3]^{-1}[2 \mathrel{\mathrel{\hookrightarrow}} 4]^{-1}[2 \mathrel{\mathrel{\hookrightarrow}} 4][1 \mathrel{\mathrel{\hookrightarrow}} 3][3 \mathrel{\mathrel{\mathrel{\sim}}} 4][1 \mathrel{\mathrel{\mathrel{\hookrightarrow}}} 4]$$

• **left**-travels in $T \subseteq \mathcal{G}$ if:

Theorem (Epstein et al. 92)

Example

The word
$$\mathbf{w} = \binom{[2 \multimap 4]}{[2 \multimap 4]} \binom{\varepsilon}{[1 \multimap 3]} \binom{[1 \multimap 4]}{\varepsilon} \binom{[1 \multimap 4]}{\varepsilon} \binom{\varepsilon}{[3 \multimap 4]} \binom{\varepsilon}{[1 \multimap 4]}$$

• **right**-travels in $S \subseteq \mathcal{G}$ if:

$$S\ni [1 \leadsto 4]^{-1}[1 \leadsto 3]^{-1}[2 \leadsto 4]^{-1}[2 \leadsto 4][1 \leadsto 3][3 \leadsto 4][1 \leadsto 4]$$

ullet left-travels in $\mathcal{T}\subseteq\mathcal{G}$ if:

$$T \ni$$
 $[1 \curvearrowright 4]^{-1}$

Theorem (Epstein et al. 92)

Example

The word
$$\mathbf{w} = \binom{[2 \leadsto 4]}{[2 \leadsto 4]} \binom{\varepsilon}{[1 \leadsto 3]} \binom{[1 \leadsto 4]}{\varepsilon} \binom{[1 \leadsto 4]}{\varepsilon} \binom{\varepsilon}{[3 \leadsto 4]} \binom{\varepsilon}{[1 \leadsto 4]}$$

• **right**-travels in $S \subseteq \mathcal{G}$ if:

$$S\ni [1 \leadsto 4]^{-1}[1 \leadsto 3]^{-1}[2 \leadsto 4]^{-1}[2 \leadsto 4][1 \leadsto 3][3 \leadsto 4][1 \leadsto 4]$$

ullet left-travels in $\mathcal{T}\subseteq\mathcal{G}$ if:

$$T\ni \qquad \qquad [1 \rightsquigarrow 4]^{-1}[3 \rightsquigarrow 4]^{-1}$$

Theorem (Epstein et al. 92)

Example

The word
$$\mathbf{w} = \binom{[2 \multimap 4]}{[2 \multimap 4]} \binom{\varepsilon}{[1 \multimap 3]} \binom{[1 \multimap 4]}{\varepsilon} \binom{[1 \multimap 4]}{\varepsilon} \binom{\varepsilon}{[3 \multimap 4]} \binom{\varepsilon}{[1 \multimap 4]}$$

• **right**-travels in $S \subseteq \mathcal{G}$ if:

$$S\ni [1 \rightsquigarrow 4]^{-1}[1 \rightsquigarrow 3]^{-1}[2 \rightsquigarrow 4]^{-1}[2 \rightsquigarrow 4][1 \rightsquigarrow 3][3 \rightsquigarrow 4][1 \rightsquigarrow 4]$$

• left-travels in $T \subseteq \mathcal{G}$ if:

$$T \ni [1 \sim 4][1 \sim 4]^{-1}[3 \sim 4]^{-1}$$

Theorem (Epstein et al. 92)

Example

The word
$$\mathbf{w} = \binom{[2 \multimap 4]}{[2 \multimap 4]} \binom{\varepsilon}{[1 \multimap 3]} \binom{[1 \multimap 4]}{\varepsilon} \binom{[1 \multimap 4]}{\varepsilon} \binom{\varepsilon}{[3 \multimap 4]} \binom{\varepsilon}{[1 \multimap 4]}$$

• right-travels in $S \subseteq \mathcal{G}$ if:

$$S\ni [1 \leadsto 4]^{-1}[1 \leadsto 3]^{-1}[2 \leadsto 4]^{-1}[2 \leadsto 4][1 \leadsto 3][3 \leadsto 4][1 \leadsto 4]$$

• **left**-travels in $T \subseteq \mathcal{G}$ if:

$$T \ni [1 \multimap 3][1 \multimap 4][1 \multimap 4]^{-1}[3 \multimap 4]^{-1}$$

Theorem (Epstein et al. 92)

Example

The word
$$\mathbf{w} = \binom{[2 \multimap 4]}{[2 \multimap 4]} \binom{\varepsilon}{[1 \multimap 3]} \binom{[1 \multimap 4]}{\varepsilon} \binom{[1 \multimap 4]}{\varepsilon} \binom{\varepsilon}{[3 \multimap 4]} \binom{\varepsilon}{[1 \multimap 4]}$$

• **right**-travels in $S \subseteq \mathcal{G}$ if:

$$S\ni [1 \leadsto 4]^{-1}[1 \leadsto 3]^{-1}[2 \leadsto 4]^{-1}[2 \leadsto 4][1 \leadsto 3][3 \leadsto 4][1 \leadsto 4]$$

• **left**-travels in $T \subseteq \mathcal{G}$ if:

$$T \ni [1 \multimap 3][1 \multimap 4][1 \multimap 4]^{-1}[3 \multimap 4]^{-1}[1 \smile 3]^{-1}$$

Theorem (Epstein et al. 92)

Example

The word
$$\mathbf{w} = \binom{ \begin{bmatrix} 2 & 4 \end{bmatrix}}{ \begin{bmatrix} 2 & 4 \end{bmatrix}} \binom{\varepsilon}{ \begin{bmatrix} 1 & 4 \end{bmatrix}} \binom{ \begin{bmatrix} 1 & 4 \end{bmatrix}}{\varepsilon} \binom{ \begin{bmatrix} 1 & 4 \end{bmatrix}}{\varepsilon} \binom{\varepsilon}{ \begin{bmatrix} 3 & 4 \end{bmatrix}} \binom{\varepsilon}{ \begin{bmatrix} 1 & 4 \end{bmatrix}}$$

• right-travels in $S \subseteq \mathcal{G}$ if:

$$S \ni [1 \multimap 4]^{-1}[1 \smile 3]^{-1}[2 \smile 4]^{-1}[2 \smile 4][1 \smile 3][3 \frown 4][1 \frown 4]$$

ullet left-travels in $T\subseteq \mathcal{G}$ if:

$$T\ni \boxed{2 \leadsto 4} \boxed{1 \leadsto 3} \boxed{1 \leadsto 4} \boxed{1 \leadsto 4} ^{-1} \boxed{3 \leadsto 4} ^{-1} \boxed{1 \leadsto 3} ^{-1} \boxed{2 \leadsto 4} ^{-1}$$

Theorem (Epstein et al. 92)

Example

The word
$$\mathbf{w} = \binom{[2 \leadsto 4]}{[2 \leadsto 4]} \binom{\varepsilon}{[1 \leadsto 3]} \binom{[1 \leadsto 4]}{\varepsilon} \binom{[1 \leadsto 4]}{\varepsilon} \binom{\varepsilon}{[3 \leadsto 4]} \binom{\varepsilon}{[1 \leadsto 4]}$$

• right-travels in $S \subseteq \mathcal{G}$ if:

$$S \ni [1 \multimap 4]^{-1}[1 \smile 3]^{-1}[2 \smile 4]^{-1}[2 \smile 4][1 \smile 3][3 \frown 4][1 \frown 4]$$

ullet left-travels in $T\subseteq \mathcal{G}$ if:

$$T\ni [2 \backsim 4][1\backsim 3][1\backsim 4][1\backsim 4]^{-1}[3\backsim 4]^{-1}[1\backsim 3]^{-1}[2\backsim 4]^{-1}$$

Theorem (Epstein et al. 92)

 R_x^{φ} is regular iff \exists **finite** set S s.t. all words $\mathbf{w} \in R_x^{\varphi}$ right-travel in S.

 \mathcal{L}_x^{φ} is regular iff \exists **finite** set T s.t. all words $\mathbf{w} \in \mathcal{L}_x^{\varphi}$ right-travel in T.

Synchronous bi-automaticity if $n \leq 3$

Computing an automaton for R_x or L_x (with $x \in \{S_1, S_2\}$):

• Direct computations are too expensive!

Synchronous bi-automaticity if $n \leq 3$

Computing an automaton for R_x or L_x (with $x \in \{S_1, S_2\}$):

- Direct computations are too expensive!
- Replace sliding generators with Artin generators
- Recover the synchronous automaticity

Example

Sliding generators:

•
$$\mathbf{u} = [2 \rightsquigarrow 3][2 \rightsquigarrow 3][1 \rightsquigarrow 3][1 \rightsquigarrow 3][1 \rightsquigarrow 3] \in \mathbf{NF}$$

$$\bullet \ u' = {\color{red} \textbf{S}_2 \textbf{S}_2 \textbf{S}_1 \textbf{S}_2 \textbf{S}_1 \textbf{S}_2 \boldsymbol{\Sigma}_1 \boldsymbol{\Sigma}_2} \in \textbf{NF}'$$

$$\bullet \ v' = \textcolor{red}{\textbf{S}_2} \textbf{S}_2 \textbf{S}_1 \textbf{S}_2 \boldsymbol{\Sigma}_2 \textbf{S}_1 \textbf{S}_2 \in \textbf{NF}'$$

Synchronous bi-automaticity if $n \leq 3$

Computing an automaton for R_x or L_x (with $x \in \{S_1, S_2\}$):

- Direct computations are too expensive!
- Replace sliding generators with Artin generators
- Recover the synchronous automaticity

Example

Sliding generators:

•
$$\mathbf{u} = [2 \ \ 3][2 \ \ 3][1 \ \ 3][1 \ \ 3][1 \ \ 3] \in \mathsf{NF}$$

$$\bullet \ u' = S_2 S_2 S_1 S_2 S_1 S_2 \Sigma_1 \Sigma_2 \in \mathsf{NF}'$$

$$\bullet \ v' = S_2 S_2 S_1 S_2 \Sigma_2 S_1 S_2 \in NF'$$

Synchronous bi-automaticity if $n \leq 3$

Computing an automaton for R_x or L_x (with $x \in \{S_1, S_2\}$):

- Direct computations are too expensive!
- Replace sliding generators with Artin generators
- Recover the synchronous automaticity

Example

Sliding generators:

- $\bullet \ u' = S_2S_2S_1S_2S_1S_2\Sigma_1\Sigma_2 \in NF'$
- $\bullet \ v' = S_2 S_2 S_1 S_2 \Sigma_2 S_1 S_2 \in NF'$

Synchronous bi-automaticity if $n \leq 3$

Computing an automaton for R_x or L_x (with $x \in \{S_1, S_2\}$):

- Direct computations are too expensive!
- Replace sliding generators with Artin generators
- Recover the synchronous automaticity

Example

Sliding generators:

•
$$\mathbf{v} = [2 \rightsquigarrow 3][2 \rightsquigarrow 3][1 \rightsquigarrow 3][2 \leadsto 3][1 \rightsquigarrow 3] \in \mathbf{NF}$$

$$\bullet \ u' = S_2S_2S_1S_2S_1S_2\Sigma_1\Sigma_2 \in NF'$$

$$\bullet \ v' = S_2S_2S_1S_2 \Sigma_2S_1S_2 \in NF'$$

Synchronous bi-automaticity if $n \leq 3$

Computing an automaton for R_x or L_x (with $x \in \{S_1, S_2\}$):

- Direct computations are too expensive!
- Replace sliding generators with Artin generators
- Recover the synchronous automaticity

Example

Sliding generators:

•
$$\mathbf{v} = [2 \ \ 3][2 \ \ 3][1 \ \ 3][2 \ \ 3][1 \ \ 3] \in \mathsf{NF}$$

$$\bullet \ u' = S_2S_2S_1S_2S_1S_2\sum_{1}\sum_{2} \in NF'$$

$$\bullet \ v' = S_2S_2S_1S_2\Sigma_2 S_1S_2 \in NF'$$

Synchronous bi-automaticity if $n \leq 3$

Computing an automaton for R_x or L_x (with $x \in \{S_1, S_2\}$):

- Direct computations are too expensive!
- Replace sliding generators with Artin generators
- Recover the synchronous automaticity

Asynchronous left-automaticity if n = 4

Finding a suitable padding function φ :

General strategies work but are computationnally too expensive!

Synchronous bi-automaticity if $n \leq 3$

Computing an automaton for R_x or L_x (with $x \in \{S_1, S_2\}$):

- Direct computations are too expensive!
- Replace sliding generators with Artin generators
- Recover the synchronous automaticity

Asynchronous left-automaticity if n = 4

Finding a suitable padding function φ :

- General strategies work but are computationnally too expensive!
- Use heuristics and evaluate the efficiency of the strategy

Synchronous bi-automaticity if $n \leq 3$

Computing an automaton for R_x or L_x (with $x \in \{S_1, S_2\}$):

- Direct computations are too expensive!
- Replace sliding generators with Artin generators
- Recover the synchronous automaticity

Asynchronous left-automaticity if $n \ge 4$

Finding a suitable padding function φ :

- General strategies work but are computationnally too expensive!
- Use heuristics and evaluate the efficiency of the strategy
- Space issues are intractable for n = 5

No synchronous left automaticity if $n \ge 4$

Find witnesses falsifying the synchronous fellow-traveller property:

$$\bullet \ \mathsf{S}_1 \cdot [2 \mathrel{\mathrel{\raisebox{1pt}{\sim}}} 4] \cdot ([1 \mathrel{\mathrel{\raisebox{1pt}{\sim}}} 3] \cdot [1 \mathrel{\mathrel{\raisebox{1pt}{\sim}}} 4] \cdot [3 \mathrel{\mathrel{\mathrel{\raisebox{1pt}{\sim}}}} 4])^\ell = ([2 \mathrel{\mathrel{\mathrel{\raisebox{1pt}{\sim}}}} 4] \cdot [2 \mathrel{\mathrel{\mathrel{\raisebox{1pt}{\sim}}}} 4])^\ell \cdot [1 \mathrel{\mathrel{\mathrel{\raisebox{1pt}{\sim}}}} 4]$$

No synchronous left automaticity if $n \ge 4$

Find witnesses falsifying the synchronous fellow-traveller property:

$$\bullet \ \ \mathsf{S}_1 \cdot [2 \mathrel{\rightharpoonup} 4] \cdot ([1 \mathrel{\rightharpoonup} 3] \cdot [1 \mathrel{\rightharpoonup} 4] \cdot [3 \mathrel{\rightharpoonup} 4])^\ell = ([2 \mathrel{\rightharpoonup} 4] \cdot [2 \mathrel{\rightharpoonup} 4])^\ell \cdot [1 \mathrel{\rightharpoonup} 4]$$

No asynchronous right automaticity if $n \ge 4$

Find witnesses falsifying the asynchronous fellow-traveller property:

$$\bullet \ [1 \rightharpoonup 2]^{\ell} \cdot [3 \rightharpoonup 4]^{\ell} \cdot \Delta_3 = [3 \rightharpoonup 4]^{\ell+1} \cdot [1 \rightharpoonup 4]^2 \cdot [3 \rightharpoonup 4]^{\ell-1}$$

No synchronous left automaticity if $n \ge 4$

Find witnesses falsifying the synchronous fellow-traveller property:

$$\bullet \ \mathsf{S}_1 \cdot [2 \mathrel{\rightharpoonup} 4] \cdot ([1 \mathrel{\rightharpoonup} 3] \cdot [1 \mathrel{\rightharpoonup} 4] \cdot [3 \mathrel{\rightharpoonup} 4])^\ell = ([2 \mathrel{\rightharpoonup} 4] \cdot [2 \mathrel{\rightharpoonup} 4])^\ell \cdot [1 \mathrel{\rightharpoonup} 4]$$

No asynchronous right automaticity if $n \ge 4$

Find witnesses falsifying the asynchronous fellow-traveller property:

$$\bullet \ [1 \rightharpoonup 2]^{\ell} \cdot [3 \rightharpoonup 4]^{\ell} \cdot \Delta_3 = [3 \rightharpoonup 4]^{\ell+1} \cdot [1 \rightharpoonup 4]^2 \cdot [3 \rightharpoonup 4]^{\ell-1}$$

- \Rightarrow Witnesses found while trying to compute automata L_x and R_x^{φ} !
- \Rightarrow Yet no witness disproving the asynchronous left automaticity for n=4

Contents

- Curve Diagrams and Braid Groups
- 2 Right-Relaxation Normal Form
- 3 Properties of the Right-Relaxation Normal Form
- 4 Conclusion

Conclusion

Next Goals

- Prove or disprove the conjecture
- Get published
- Discuss with you

Conclusion

Next Goals

- Prove or disprove the conjecture
- Get published
- Discuss with you

Thank you!