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Dynamic Complexity of Decision Problems
Modulo 3 Decision

Input: Elements x1, x2, . . . , xn of F3

Output: Yes if x1 ` x2 ` . . .` xn “ 0 — No otherwise

Solving this problem. . .
Static world: membership in a regular language
Dynamic world: what if some element xk changes?

§ Maintain predicates Si ” “x1 ` x2 ` . . .` xn “ i ” for i P F3
§ Update the values of S0, S1, S2 when xk changes
§ Use the new value of S0 and answer the problem

How complex is it?
Static world: linear time
Dynamic world:

§ Easy initial instance px1 “ x2 “ . . . “ xn “ 0q: constant time
§ Each update: constant time
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Dynamic Complexity of Decision Problems
Reachability in DAGs

Input: Directed acyclic graph G “ pV ,E q & two vertices s, t P V
Output: Yes if D path from s to t in G — No otherwise

Solving this problem. . .
Static world: use your favorite graph exploration algorithm
Dynamic world: what if edge u Ñ v is inserted/deleted?

§ Maintain a predicate Rpx , yq ” pD path from x to y in G q for x , y P V

§ Update the values of Rpx , yq when u Ñ v is inserted/deleted
§ Use the new value of Rps, tq and answer the problem

How complex is it?
Static world: linear time
Dynamic world:

§ Easy initial edgeless instance: FO formulæ

(parallel constant time)

§ Each update: FO formulæ

(parallel constant time)
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FO formulæ ñ parallel «constant time

φ “ Dx .@y .ψpx , yq_ψpy , xq

_ _ _ _
x“ e1
y“ e1

x“ e1
y“ e2

x“ e2
y“ e1

x“ e2
y“ e2

^ ^x“ e1 x“ e2

_

ψpe1, e1q ψpe1, e2q ψpe2, e1q ψpe2, e2q

φ
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Dynamic Complexity of Decision Problems

Reachability in DAGs with FO formulæ
Initialization (on the edgeless graph): X

Update after inserting the edge u Ñ v

: X

Update after deleting the edge u Ñ v

: X

ñ You can even maintain paths from s to t!

u

v

x
y

x

y

x y
x

ya

bx
y

Rpx , yq Ð px “ yq
Rpx , yq Ð
Rpx , yq Ð
Rpx , yq Ð
Rpx , yq Ð

Rpx , yq ÐRpx , yq
Rpx , yq Ð
Rpx , yq Ð
Rpx , yq Ð
Rpx , yq Ð

Rpx , yq ÐRpx , yq_
pRpx , uq ^ Rpv , yqq

Rpx , yq Ð
Rpx , yq Ð
Rpx , yq Ð

Rpx , yq Ð pRpx , yq ^  Rpx , uqq
Rpx , yq Ð
Rpx , yq Ð
Rpx , yq Ð
Rpx , yq Ð

Rpx , yq Ð pRpx , yq ^  Rpx , uqq_
pRpx , yq ^ Rpy , uqq

Rpx , yq Ð
Rpx , yq Ð
Rpx , yq Ð

Rpx , yq Ð pRpx , yq ^  Rpx , uqq_
pRpx , yq ^ Rpy , uqq_
pDa.Db.Rpx , aq ^ Rpb, yq^
ppaÑ bq ^ pa, bq ‰ pu, vq^
pRpa, uq ^  Rpb, uqq

Definition (Dong & Su & Topor 93 – Patnaik & Immerman 97)
A decision problem with updates is in DynFO if D predicates s.t.:

every predicate can be initialized in
every predicate can be updated in FO
one predicate is the goal predicate
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Dynamic Complexity of Decision Problems

Some more problems in DynFO

Reachability in undirected graphs (Patnaik & Immerman 97)
Integer multiplication (Patnaik & Immerman 97)
Context-free language membership (Gelade et al. 08)
Distance in undirected graphs (Grädel & Siebertz 12)
Reachability in directed graphs (Datta et al. 15)

MSO model checking on graphs of small tree-width
(Bouyer et al. 17 – Datta et al. 17)

Some problems that might be in DynFO

Distance in directed graphs
Next hop / path maintenance in directed graphs
Shortest path maintenance in undirected graphs
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Tree Decompositions and Tree Width
Definition #1 (Halin 76 – Robertson & Seymour 84)
A tree decomposition of a graph G “ pV ,E q is formed of:

a tree T “ pV, Eq
a mapping T : V ÞÑ 2V , such that:

§ for every edge px , yq of G , we have tx , yu Ď Tpvq for some node v P V
§ for every vertex x of G , the set tv P V | x P Tpvqu is a sub-tree of T

The width of the tree decomposition is maxt#Tpvq | v P Vu ´ 1.

v1 v2 v3

v4 v5 v6

v7 v8 v9

v1 v2 v3

v4 v5 v6

v7 v8 v9

v1 v2 v3

v4 v5 v6

v7 v8 v9
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Width = 2
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Tree Decompositions and Tree Width

Definition #2 (Halin 76 – Robertson & Seymour 84)
The tree width of a graph G is the minimal width of all of G ’s tree
decompositions.

Tree width of some specific graphs

Graph Width
Tree 1
Cycle 2
Kn n ´ 1
Ka,b minta, bu

Za ˆ Zb minta, bu
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Monadic Second-Order Formulæ on Directed Graphs

Is the graph G “ pV ,E q

Undirected? @s.@t.ps, tq P E ñ pt, sq P E

Strongly connected?
@X Ď V .@a.@b.a P X ^ b R X ñ pDs.Dt.s P X ^ t R X ^ ps, tq P E q

3-colorable?
DV1.DV2.DV3.V “ V1 ZV2 ZV3 ^@s.@t.

Ź3
i“1ps P Vi ^ t P Vi q ñ ps, tq R E

Properly partitioned? @s.@t.ps, tq P E ñ ps P VA ô t P VBq

Winning for Alice (in the reachability game s Ñ t)?
D Alice’s strategy s.t. @ Barbara’s strategies, A wins

Theorem (Karp 72)
Checking a given MSO formula on finite structures is NP-hard.
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Courcelle’s Theorem

Theorem (Courcelle 90, Bodlaender 96 & Eberfeld et al. 10)
For all κ, checking a given MSO formula on n-vertex structures of tree
width at most κ is feasible in time Opnq and space Oplogpnqq.

B The constant in the Op¨q may be huge!

Proof Idea
1 Compute a tree decomposition of G of width κ
2 Run a tree automaton on the tree decomposition
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Result Framework

Check MSO satisfaction in low dynamic complexity

Too hard in general! Look for restricted cases

Use a maximal graph G‹ “ pV ,E‹q? Added edges belong to E‹

Still too hard in general! Look for further restricted cases

Do it for graphs G‹ with tree width at most κ! Copy Courcelle

Bonus: Compute witnesses of D formulæ
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Sketch of Proof
1 Compute a nice tree decomposition from G

(linear-size, log-depth binary tree)

2 Run a (bottom-up, deterministic) automaton

sequentially

3 Identify its run with a path in an acyclic graph G’

Golden rule: 1 change in G = O(1) changes in G’

n6 n5

n7

n3

n4

n1
ROOT

n2

H

q7

λ7

q6
q7

λ6

q5

λ5

q4 q5

λ4 q3
λ3

q2
q3

λ2

n1

λ1

?
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Sketch of Proof
1 Compute a nice tree decomposition from G

(linear-size, log-depth binary tree)
2 Run a (bottom-up, deterministic) automaton sequentially
3 Identify its run with a Dyck path in an acyclic graph G’

Golden rule: 1 change in G = O(1) changes in G’
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Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) )

: X

( [ ( ] ) )

: 7

( [ ( ) ] ( ) ]

: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) )

: X

( [ ( ] ) )

: 7

( [ ( ) ] ( ) ]

: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) )

: X

( [ ( ] ) )

: 7

( [ ( ) ] ( ) ]

: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) )

: X

( [ ( ] ) )

: 7

( [ ( ) ] ( ) ]

: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) )

: 7

( [ ( ) ] ( ) ]

: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) )

: 7

( [ ( ) ] ( ) ]

: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) ): 7 ( [ ( ) ] ( ) ]

: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) ): 7 ( [ ( ) ] ( ) ]

: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) ): 7 ( [ ( ) ] ( ) ]

: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) ): 7 ( [ ( ) ] ( ) ]

: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) ): 7 ( [ ( ) ] ( ) ]: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) ): 7 ( [ ( ) ] ( ) ]: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4
) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) ): 7 ( [ ( ) ] ( ) ]: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) ): 7 ( [ ( ) ] ( ) ]: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ

v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) ): 7 ( [ ( ) ] ( ) ]: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) ): 7 ( [ ( ) ] ( ) ]: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ

v2
0
ÝÑ v3

1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) ): 7 ( [ ( ) ] ( ) ]: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

( [ ( ) ] ( ) ): X ( [ ( ] ) ): 7 ( [ ( ) ] ( ) ]: 7

Dyck paths = Paths labeled with Dyck words

v1 v2 v3 v4

) ( , [ [

]

0 0 , 1 1

1

v3
1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v3

1
ÝÑ v4

1
ÝÑ v2

0
ÝÑ v1

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO
and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey Courcelle’s Theorem Made Dynamic



Sketch of Proof
Dyck words = Paths on a pushdown graph

Memory update when reading the symbol `1
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Future work

Some problems to investigate:
Parity games with n priorities (« mean-payoff games)
Nash equilibria with n players

Computing good path or tree decompositions in PTIME-DynFO
Model checking MSO in all graphs of tree width κ (Datta et al. 17)
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