Courcelle's Theorem Made Dynamic

Patricia Bouyer-Decitre^{1,2}, Vincent Jugé^{1,2,3} & Nicolas Markey^{1,2,4}

1: CNRS — 2: ENS Paris-Saclay (LSV) — 3: UPEM (LIGM) — 4: Rennes (IRISA)

03/10/2017

Contents

- 1 Dynamic Complexity of Decision Problems
- 2 Courcelle's Theorem
- Making Courcelle's Theorem Dynamic

Modulo 3 Decision

• Input: Elements x_1, x_2, \dots, x_n of \mathbb{F}_3

• Output: **Yes** if $x_1 + x_2 + ... + x_n = 0$ — **No** otherwise

Modulo 3 Decision

- Input: Elements x_1, x_2, \dots, x_n of \mathbb{F}_3
- Output: **Yes** if $x_1 + x_2 + \ldots + x_n = 0$ **No** otherwise

Solving this problem...

• Static world: membership in a regular language

Modulo 3 Decision

- Input: Elements x_1, x_2, \ldots, x_n of \mathbb{F}_3
- Output: **Yes** if $x_1 + x_2 + \ldots + x_n = 0$ **No** otherwise

Solving this problem...

- Static world: membership in a regular language
- Dynamic world: what if some element x_k changes?
 - ▶ Maintain predicates $S_i \equiv "x_1 + x_2 + ... + x_n = i"$ for $i \in \mathbb{F}_3$
 - Update the values of S_0 , S_1 , S_2 when x_k changes
 - Use the new value of S_0 and answer the problem

Modulo 3 Decision

- Input: Elements x_1, x_2, \ldots, x_n of \mathbb{F}_3
- Output: **Yes** if $x_1 + x_2 + ... + x_n = 0$ **No** otherwise

Solving this problem...

- Static world: membership in a regular language
- **Dynamic world**: what if some element x_k changes?
 - ▶ Maintain predicates $S_i \equiv "x_1 + x_2 + ... + x_n = i"$ for $i \in \mathbb{F}_3$
 - Update the values of S_0 , S_1 , S_2 when x_k changes
 - Use the new value of S_0 and answer the problem

How complex is it?

- Static world: linear time
- Dynamic world:
 - **Easy** initial instance $(x_1 = x_2 = ... = x_n = 0)$: constant time
 - Each update: constant time

Reachability in DAGs

- Input: Directed acyclic graph G = (V, E) & two vertices $s, t \in V$
- Output: **Yes** if \exists path from s to t in G **No** otherwise

Reachability in DAGs

- Input: Directed acyclic graph G = (V, E) & two vertices $s, t \in V$
- Output: **Yes** if \exists path from s to t in G **No** otherwise

Solving this problem...

- Static world: use your favorite graph exploration algorithm
- **Dynamic world**: what if edge $u \rightarrow v$ is inserted/deleted?
 - ▶ Maintain a predicate $\mathbf{R}(x,y) \equiv (\exists \text{ path from } x \text{ to } y \text{ in } G) \text{ for } x,y \in V$
 - ▶ Update the values of $\mathbf{R}(x, y)$ when $u \rightarrow v$ is inserted/deleted
 - Use the new value of $\mathbf{R}(s,t)$ and answer the problem

Reachability in DAGs

- Input: Directed acyclic graph G = (V, E) & two vertices $s, t \in V$
- Output: **Yes** if \exists path from s to t in G **No** otherwise

Solving this problem...

- Static world: use your favorite graph exploration algorithm
- Dynamic world: what if edge $u \rightarrow v$ is inserted/deleted?
 - ▶ Maintain a predicate $\mathbf{R}(x,y) \equiv (\exists \text{ path from } x \text{ to } y \text{ in } G) \text{ for } x,y \in V$
 - ▶ Update the values of $\mathbf{R}(x, y)$ when $u \rightarrow v$ is inserted/deleted
 - Use the new value of $\mathbf{R}(s,t)$ and answer the problem

How complex is it?

- Static world: linear time
- Dynamic world:
 - Easy initial edgeless instance: FO formulæ
 - ▶ Each update: FO formulæ

Reachability in DAGs

- Input: Directed acyclic graph G = (V, E) & two vertices $s, t \in V$
- Output: **Yes** if \exists path from s to t in G **No** otherwise

Solving this problem...

- Static world: use your favorite graph exploration algorithm
- **Dynamic world**: what if edge $u \rightarrow v$ is inserted/deleted?
 - ▶ Maintain a predicate $\mathbf{R}(x,y) \equiv (\exists \text{ path from } x \text{ to } y \text{ in } G) \text{ for } x,y \in V$
 - ▶ Update the values of $\mathbf{R}(x, y)$ when $u \rightarrow v$ is inserted/deleted
 - Use the new value of $\mathbf{R}(s,t)$ and answer the problem

How complex is it?

- Static world: linear time
- Dynamic world:
 - ► Easy initial edgeless instance: FO formulæ (parallel constant time)
 - ► Each update: FO formulæ (parallel constant time)

FO formulæ \Rightarrow parallel \approx constant time

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

$$\psi(e_1, e_1) \ \psi(e_1, e_2) \ \psi(e_2, e_1) \ \psi(e_2, e_2)$$

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

$$\psi(e_1, e_1) \ \psi(e_1, e_2) \ \psi(e_2, e_1) \ \psi(e_2, e_2)$$

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

Reachability in DAGs with FO formulæ

ullet Initialization (on the edgeless graph): \checkmark

$$R(x, y) \leftarrow (x = y)$$

- Initialization (on the edgeless graph): √
- ullet Update after inserting the edge $u \rightarrow v$

$$R(x, y) \leftarrow R(x, y)$$

- Initialization (on the edgeless graph): √
- Update after inserting the edge $u \rightarrow v$: \checkmark

$$R(x,y) \leftarrow R(x,y) \lor (R(x,u) \land R(v,y))$$

- Initialization (on the edgeless graph): √
- Update after **inserting** the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$

$$R(x,y) \leftarrow (R(x,y) \land \neg R(x,u))$$

- Initialization (on the edgeless graph): √
- Update after **inserting** the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$

$$R(x,y) \leftarrow (R(x,y) \land \neg R(x,u)) \lor (R(x,y) \land R(y,u))$$

- Initialization (on the edgeless graph): √
- Update after **inserting** the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$: \checkmark

$$R(x,y) \leftarrow (R(x,y) \land \neg R(x,u)) \lor (R(x,y) \land R(y,u)) \lor (\exists a.\exists b.R(x,a) \land R(b,y) \land (a \rightarrow b) \land (a,b) \neq (u,v) \land R(a,u) \land \neg R(b,u))$$

- Initialization (on the edgeless graph): √
- Update after **inserting** the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$: \checkmark
- \Rightarrow You can even **maintain paths** from s to t!

Reachability in DAGs with FO formulæ

- Initialization (on the edgeless graph): √
- Update after **inserting** the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$: \checkmark

Definition (Dong & Su & Topor 93 – Patnaik & Immerman 97)

A decision problem with updates is in C-DynFO if \exists predicates s.t.:

- ullet every predicate can be initialized in ${\mathcal C}$
- every predicate can be updated in FO
- one predicate is the goal predicate

Reachability in DAGs with FO formulæ

- Initialization (on the edgeless graph): √
- Update after **inserting** the edge $u \rightarrow v$: \checkmark
- Update after **deleting** the edge $u \rightarrow v$: \checkmark

Definition (Dong & Su & Topor 93 – Patnaik & Immerman 97)

A decision problem with updates is in DynFO if \exists predicates s.t.:

- every predicate can be initialized in FO
- every predicate can be updated in FO
- one predicate is the goal predicate

Some more problems in DynFO

- Reachability in undirected graphs
- Integer multiplication
- Context-free language membership
- Distance in undirected graphs
- Reachability in directed graphs

(Patnaik & Immerman 97)

(Patnaik & Immerman 97)

(Gelade et al. 08)

(Grädel & Siebertz 12)

(Datta et al. 15)

Some problems that might be in DynFO

- Distance in directed graphs
- Next hop / path maintenance in directed graphs
- Shortest path maintenance in undirected graphs

Some more problems in LogSpace-DynFO

- Reachability in undirected graphs
 Integer multiplication
 Context-free language membership
 (Patnaik & Immerman 97)
 (Gelade et al. 08)
- Distance in undirected graphs
- Reachability in directed graphs

(Datta et al. 15)

(Grädel & Siebertz 12)

MSO model checking on graphs of small tree-width

(Bouyer et al. 17 – Datta et al. 17)

Some problems that might be in DynFO

- Distance in directed graphs
- Next hop / path maintenance in directed graphs
- Shortest path maintenance in undirected graphs

Contents

- 1 Dynamic Complexity of Decision Problems
- 2 Courcelle's Theorem
- Making Courcelle's Theorem Dynamic

Definition #1 (Halin 76 – Robertson & Seymour 84)

A tree decomposition of a graph G = (V, E) is formed of:

- $\bullet \text{ a tree } \mathcal{T} = (\mathcal{V}, \mathcal{E})$
- a mapping $T: \mathcal{V} \mapsto 2^{\mathcal{V}}$, such that:
 - for every edge (x,y) of G, we have $\{x,y\}\subseteq \mathbf{T}(v)$ for some node $v\in\mathcal{V}$
 - for every vertex x of G, the set $\{v \in \mathcal{V} \mid x \in \mathbf{T}(v)\}$ is a sub-tree of \mathcal{T}

The width of the tree decomposition is $\max\{\#T(v) \mid v \in \mathcal{V}\} - 1$.

Definition #2 (Halin 76 – Robertson & Seymour 84)

The **tree** width of a graph G is the minimal width of all of G's tree decompositions.

Definition #2 (Halin 76 – Robertson & Seymour 84)

The **tree** width of a graph G is the minimal width of all of G's tree decompositions.

Graph	Width
Tree	1
Cycle	2
K _n	n-1
$K_{a,b}$	$min\{a,b\}$
$\mathbb{Z}_{a} imes \mathbb{Z}_{b}$	$min\{a,b\}$

Definition #2 (Halin 76 – Robertson & Seymour 84)

The **tree** width of a graph G is the minimal width of all of G's tree decompositions.

Graph	Width
Tree	1
Cycle	2
K _n	n – 1
$K_{a,b}$	$min\{a,b\}$
$\mathbb{Z}_a imes \mathbb{Z}_b$	$min\{a,b\}$

Definition #2 (Halin 76 – Robertson & Seymour 84)

The **tree** width of a graph G is the minimal width of all of G's tree decompositions.

Graph	Width
Tree	1
Cycle	2
K _n	<i>n</i> − 1
$K_{a,b}$	$min\{a,b\}$
$\mathbb{Z}_a imes \mathbb{Z}_b$	$min\{a,b\}$

Definition #2 (Halin 76 – Robertson & Seymour 84)

The **tree** width of a graph G is the minimal width of all of G's tree decompositions.

Graph	Width
Tree	1
Cycle	2
K _n	n-1
$K_{a,b}$	$min\{a,b\}$
$\mathbb{Z}_a imes \mathbb{Z}_b$	$min\{a,b\}$

Definition #2 (Halin 76 – Robertson & Seymour 84)

The **tree** width of a graph G is the minimal width of all of G's tree decompositions.

Graph	Width
Tree	1
Cycle	2
K _n	n – 1
$K_{a,b}$	$min\{a,b\}$
$\mathbb{Z}_a imes \mathbb{Z}_b$	$min\{a,b\}$

Monadic Second-Order Formulæ on Directed Graphs

Is the graph
$$G = (V, E)$$

• Undirected? $\forall s. \forall t. (s, t) \in E \Rightarrow (t, s) \in E$

Monadic Second-Order Formulæ on Directed Graphs

Is the graph
$$G = (V, E)$$

- Undirected? $\forall s. \forall t. (s, t) \in E \Rightarrow (t, s) \in E$
- Strongly connected? $\forall X. \forall a. \forall b. a \in X \land b \notin X \Rightarrow (\exists s. \exists t. s \in X \land t \notin X \land (s, t) \in E)$
- 3-colorable? $\exists V_1.\exists V_2.\exists V_3.V=V_1 \uplus V_2 \uplus V_3 \land \forall s.\forall t. \bigwedge_{i=1}^3 (s \in V_i \land t \in V_i) \Rightarrow (s,t) \notin E$

Monadic Second-Order Formulæ on Directed Graphs

Is the partitioned graph
$$G = (V_A \uplus V_B, E)$$

- Undirected? $\forall s. \forall t. (s, t) \in E \Rightarrow (t, s) \in E$
- Strongly connected? $\forall X. \forall a. \forall b. a \in X \land b \notin X \Rightarrow (\exists s. \exists t. s \in X \land t \notin X \land (s, t) \in E)$
- 3-colorable? $\exists V_1.\exists V_2.\exists V_3.V = V_1 \uplus V_2 \uplus V_3 \land \forall s.\forall t. \bigwedge_{i=1}^3 (s \in V_i \land t \in V_i) \Rightarrow (s,t) \notin E$
- Properly partitioned? $\forall s. \forall t. (s, t) \in E \Rightarrow (s \in V_A \Leftrightarrow t \in V_B)$
- Winning for Alice (in the reachability game $s \to t$)? \exists Alice's strategy s.t. \forall Barbara's strategies, A wins

Monadic Second-Order Formulæ on Directed Graphs

Is the **partitioned** graph
$$G = (V_A \uplus V_B, E)$$

- Undirected? $\forall s. \forall t. (s, t) \in E \Rightarrow (t, s) \in E$
- Strongly connected? $\forall X. \forall a. \forall b. a \in X \land b \notin X \Rightarrow (\exists s. \exists t. s \in X \land t \notin X \land (s, t) \in E)$
- 3-colorable? $\exists V_1.\exists V_2.\exists V_3.V = V_1 \uplus V_2 \uplus V_3 \land \forall s. \forall t. \bigwedge_{i=1}^3 (s \in V_i \land t \in V_i) \Rightarrow (s,t) \notin E$
- Properly partitioned? $\forall s. \forall t. (s, t) \in E \Rightarrow (s \in V_A \Leftrightarrow t \in V_B)$
- Winning for Alice (in the reachability game $s \to t$)? \exists Alice's strategy s.t. \forall Barbara's strategies, A wins

Theorem (Karp 72)

Checking a given MSO formula on finite structures is NP-hard.

Courcelle's Theorem

Theorem (Courcelle 90, Bodlaender 96 & Eberfeld et al. 10)

For all κ , checking a given MSO formula on *n*-vertex structures of tree width at most κ is feasible in time $\mathcal{O}(n)$ and space $\mathcal{O}(\log(n))$.

 \triangle The constant in the $\mathcal{O}(\cdot)$ may be huge!

Courcelle's Theorem

Theorem (Courcelle 90, Bodlaender 96 & Eberfeld et al. 10)

For all κ , checking a given MSO formula on *n*-vertex structures of tree width at most κ is feasible in time $\mathcal{O}(n)$ and space $\mathcal{O}(\log(n))$.

 \triangle The constant in the $\mathcal{O}(\cdot)$ may be huge!

Proof Idea

- ${\color{red} \bullet}$ Compute a tree decomposition of G of width κ
- 2 Run a tree automaton on the tree decomposition

Contents

- 1 Dynamic Complexity of Decision Problems
- 2 Courcelle's Theorem
- Making Courcelle's Theorem Dynamic

Check MSO satisfaction in low dynamic complexity

Check MSO satisfaction in LogSpace-DynFO

Check MSO satisfaction in LogSpace-DynFO

Too hard in general!

Look for restricted cases

Check MSO satisfaction in LogSpace-DynFO

- Too hard in general!
- Use a maximal graph $G_{\star} = (V, E_{\star})$?
- Still too hard in general!

Look for restricted cases Added edges belong to E_{*}

Look for further restricted cases

Check MSO satisfaction in LogSpace-DynFO

Too hard in general!

Look for restricted cases

• Use a maximal graph $G_{\star} = (V, E_{\star})$?

Added edges belong to E_{\star}

Still too hard in general!

Look for further restricted cases

• Do it for graphs G_{\star} with tree width at most $\kappa!$

Copy Courcelle

Check MSO satisfaction in LogSpace-DynFO

Too hard in general!

• Use a maximal graph $G_{\star} = (V, E_{\star})$?

• Still too hard in general!

Look for restricted cases Added edges belong to E_{*}

Look for further restricted cases

ullet Do it for graphs G_{\star} with tree width at most $\kappa!$

Copy Courcelle

Check MSO satisfaction in LogSpace-DynFO

Too hard in general!

• Use a maximal graph $G_{\star} = (V, E_{\star})$?

Still too hard in general!

Look for restricted cases

Added edges belong to E_{\star}

Look for further restricted cases

• Do it for graphs G_{\star} with tree width at most $\kappa!$

Copy Courcelle

Bonus: Compute witnesses of ∃ formulæ

Compute a nice tree decomposition from G

(linear-size, log-depth binary tree)

Compute a nice tree decomposition from G

(linear-size, log-depth binary tree)

2 Run a (bottom-up, deterministic) automaton

Compute a nice tree decomposition from G

(linear-size, log-depth binary tree)

- 2 Run a (bottom-up, deterministic) automaton sequentially
- 3 Identify its run with a path in an acyclic graph G

ØO

Compute a nice tree decomposition from G

(linear-size, log-depth binary tree)

- Run a (bottom-up, deterministic) automaton sequentially
- 3 Identify its run with a path in an acyclic graph G

- Compute a nice tree decomposition from G
 - (linear-size, log-depth binary tree)
- Run a (bottom-up, deterministic) automaton sequentially
- 3 Identify its run with a path in an acyclic graph G

Compute a nice tree decomposition from G

(linear-size, log-depth binary tree)

- Run a (bottom-up, deterministic) automaton sequentially
- 3 Identify its run with a path in an acyclic graph G'

- Compute a nice tree decomposition from G
 - (linear-size, log-depth binary tree)
- Run a (bottom-up, deterministic) automaton sequentially
- 3 Identify its run with a path in an acyclic graph G

- Compute a nice tree decomposition from G
 - (linear-size, log-depth binary tree)
- Run a (bottom-up, deterministic) automaton sequentially
- 3 Identify its run with a path in an acyclic graph G

- Compute a nice tree decomposition from G
 - (linear-size, log-depth binary tree)
- 2 Run a (bottom-up, deterministic) automaton sequentially
- 3 Identify its run with a path in an acyclic graph G

- Compute a nice tree decomposition from G
 - (linear-size, log-depth binary tree)
- 2 Run a (bottom-up, deterministic) automaton sequentially
- 3 Identify its run with a path in an acyclic graph G

- Compute a nice tree decomposition from G
 - (linear-size, log-depth binary tree)
- 2 Run a (bottom-up, deterministic) automaton sequentially
- 3 Identify its run with a path in an acyclic graph G'

- Compute a nice tree decomposition from G
 - (linear-size, log-depth binary tree)
- Run a (bottom-up, deterministic) automaton sequentially
- Identify its run with a Dyck path in an acyclic graph G'

Golden rule: 1 change in $G = \mathcal{O}(1)$ changes in G'

Dyck words = Well-parenthesized words

Are these words Dyck?

Dyck words = Well-parenthesized words

Are these words Dyck?

Dyck words = Well-parenthesized words

Are these words Dyck?

Dyck paths = Paths labeled with Dyck words

 V_4

Dyck words = Well-parenthesized words

Are these words Dyck?

Dyck words = Well-parenthesized words

Are these words Dyck?

Dyck words = Well-parenthesized words

Are these words Dyck?

$$v_3 \xrightarrow{1} v_4 \xrightarrow{\bar{1}} v_2 \xrightarrow{0} v_3 \xrightarrow{1} v_4 \xrightarrow{\bar{1}} v_2 \xrightarrow{\bar{0}} v_1$$

Dyck words = Well-parenthesized words

Are these words Dyck?

Dyck paths = Paths labeled with Dyck words

$$v_3 \xrightarrow{1} v_4 \xrightarrow{\bar{1}} v_2 \xrightarrow{0} v_3 \xrightarrow{1} v_4 \xrightarrow{\bar{1}} v_2 \xrightarrow{\bar{0}} v_1$$

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)

Computing endpoints of Dyck paths in acyclic graphs is in DynFO and we can maintain such paths.

Dyck words = Paths on a pushdown graph

Memory update when reading the symbol ℓ_1

Dyck words = Paths on a pushdown graph

Memory update when reading the symbol ℓ_2


```
when reading \ell_1
```

 $\mathbf{m}_1 \rightarrow \mathbf{m}'_2$

 $\mathbf{m}_2 \rightarrow \mathbf{m}'_1$

 $\mathbf{m}_3 \rightarrow \mathbf{m}_2'$

Dyck words = Paths on a pushdown graph

Memory update when reading the symbol $\ell_{?}$


```
when reading \ell_1 \mathbf{m}_1 	o \mathbf{m}_2'
```

 $\mathbf{m}_2 \rightarrow \mathbf{m}_1'$ $\mathbf{m}_3 \rightarrow \mathbf{m}_2'$

when reading ℓ_2 $m_1 \rightarrow m_2'$ $m_2 \rightarrow m_3'$ $m_3 \rightarrow m_1'$

Dyck words = Paths on a pushdown graph

Memory update when reading the symbol ℓ_1


```
when reading \ell_1
```

 $\mathbf{m}_1 \rightarrow \mathbf{m}'_2$ $\mathbf{m}_2 \rightarrow \mathbf{m}'_1$

 $m_3 \rightarrow m_2'$

when reading ℓ_2 $m_1 \rightarrow m_2'$ $m_2 \rightarrow m_3'$ $m_3 \rightarrow m_1'$

Dyck words = Paths on a pushdown graph

Memory update when reading the symbol ℓ_2


```
when reading \ell_1
```

 $\mathbf{m}_1 \rightarrow \mathbf{m}'_2$

 $\mathbf{m}_2 \rightarrow \mathbf{m}_1'$

 $m_3 \to m_2^\prime$

when reading ℓ_2 $m_1 \rightarrow m_2'$ $m_2 \rightarrow m_3'$ $m_3 \rightarrow m_1'$

- Parity games with n priorities (\approx mean-payoff games)
- Nash equilibria with *n* players

- Parity games with n priorities (\approx mean-payoff games)
- Nash equilibria with *n* players
- Computing good path or tree decompositions in PTIME-DynFO

- Parity games with n priorities (\approx mean-payoff games)
- Nash equilibria with *n* players
- Computing good path or tree decompositions in PTIME-DynFO
- ullet Model checking MSO in **all** graphs of tree width κ (Datta et al. 17)

- Parity games with n priorities (\approx mean-payoff games)
- Nash equilibria with *n* players
- Computing good path or tree decompositions in PTIME-DynFO
- ullet Model checking MSO in **all** graphs of tree width κ (Datta et al. 17)

