Counting Braids and Laminations

Vincent Jugé

École des Mines de Paris & Université Paris Diderot (LIAFA)

10/06/2015

Contents

- Braids and Diagrams
 - Braid Groups
 - Complexity of a Braid
- 2 Band Laminations
- Radial Laminations
- 4 Conclusion

- Intertwined strands
- 2 Isotopy group of braid diagrams

- Intertwined strands
- 2 Isotopy group of braid diagrams

- Intertwined strands
- Isotopy group of braid diagrams
- $oldsymbol{\circ}$ Isotopy group of homeomorphisms of $\mathbb C$

- Intertwined strands
- 2 Isotopy group of braid diagrams
- **3** Isotopy group of homeomorphisms of \mathbb{C} that fix ∂D pointwise

- Intertwined strands
- Isotopy group of braid diagrams
- **③** Isotopy group of homeomorphisms of \mathbb{C} that fix ∂D pointwise and let P_n globally invariant

- Intertwined strands
- Isotopy group of braid diagrams
- 3 Isotopy group of homeomorphisms of \mathbb{C} that fix ∂D pointwise and let P_n globally invariant: $\mathcal{B}_n = \frac{\operatorname{Hom}(\mathbb{C}, P_n \leftrightarrow P_n, \operatorname{Id}_{\partial D})}{\operatorname{Hom}_0(\mathbb{C}, P_n \leftrightarrow P_n, \operatorname{Id}_{\partial D})}$.

What are braids?

- Intertwined strands
- 2 Isotopy group of braid diagrams
- ③ Isotopy group of homeomorphisms of \mathbb{C} that fix ∂D pointwise and let P_n globally invariant: $\mathcal{B}_n = \frac{\operatorname{Hom}(\mathbb{C}, P_n \leftrightarrow P_n, \operatorname{Id}_{\partial D})}{\operatorname{Hom}_0(\mathbb{C}, P_n \leftrightarrow P_n, \operatorname{Id}_{\partial D})}$.
- Finitely presented group

$$\mathcal{B}_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } \geqslant i+2 \rangle.$$

 σ_i : Artin Generators

What are braids?

- Intertwined strands
- 2 Isotopy group of braid diagrams
- ③ Isotopy group of homeomorphisms of \mathbb{C} that fix ∂D pointwise and let P_n globally invariant: $\mathcal{B}_n = \frac{\operatorname{Hom}(\mathbb{C}, P_n \leftrightarrow P_n, \operatorname{Id}_{\partial D})}{\operatorname{Hom}_0(\mathbb{C}, P_n \leftrightarrow P_n, \operatorname{Id}_{\partial D})}$.
- Finitely presented group

$$\mathcal{B}_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \sigma_i \sigma_j = \sigma_j \sigma_i \text{ if } \geqslant i+2 \rangle.$$

 σ_i : Artin Generators

Coxeter Group:

$$\mathfrak{S}_n = \langle \sigma_1, \dots, \sigma_{n-1} \mid \sigma_i^2 = 1, \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \sigma_i \sigma_j = \sigma_j \sigma_i \text{ si } j \geq i+2 \rangle.$$

What is a complex braid?

Idea #1: a braid with lots of crossings

What is a complex braid?

Idea #1: a braid with lots of crossings

simple

complex

complex?

- $\|\alpha\| = \text{minimal number of crossings}$
- $\|\alpha\| = \text{distance to } \varepsilon \text{ in a Cayley graph: } \|\alpha \cdot \beta\| \leqslant \|\alpha\| + \|\beta\|$

What is a complex braid?

Idea #1: a braid with lots of crossings

simple

complex

complex?

- $\|\alpha\| = \text{minimal number of crossings}$
- $\|\alpha\| = \text{distance to } \varepsilon \text{ in a Cayley graph: } \|\alpha \cdot \beta\| \leqslant \|\alpha\| + \|\beta\|$
- Computing $\|\alpha\|$: very hard

What is a complex braid?

Idea #1: a braid with lots of crossings

- $\|\alpha\| = \text{minimal number of crossings}$
- $\|\alpha\| = \text{distance to } \varepsilon \text{ in a Cayley graph: } \|\alpha \cdot \beta\| \leqslant \|\alpha\| + \|\beta\|$
- Computing $\|\alpha\|$: very hard (easy up to a multiplicative factor n!)

What is a complex braid?

Idea #1: a braid with lots of crossings

simple

complex

complex?

- $\|\alpha\| = \text{minimal number of crossings}$
- $\|\alpha\| = \text{distance to } \varepsilon \text{ in a Cayley graph: } \|\alpha \cdot \beta\| \leqslant \|\alpha\| + \|\beta\|$
- Computing $\|\alpha\|$: very hard (easy up to a multiplicative factor n!)
- Computing $N^{(k)} = \#\{\alpha : \|\alpha\| = k\}$: seems very hard

What is a complex braid?

Idea #2: distance to ε in another Cayley graph

What is a complex braid?

Idea #2: distance to ε in another Cayley graph

generated by simple braids

• $\|\alpha\|_2 = \text{distance to } \varepsilon \text{ in a Cayley graph: } \|\alpha \cdot \beta\|_2 \leqslant \|\alpha\|_2 + \|\beta\|_2$

What is a complex braid?

Idea #2: distance to ε in another Cayley graph

generated by simple braids

- $\|\alpha\|_2 = \text{distance to } \varepsilon \text{ in a Cayley graph: } \|\alpha \cdot \beta\|_2 \leqslant \|\alpha\|_2 + \|\beta\|_2$
- Computing $\|\alpha\|_2$: easy

What is a complex braid?

Idea #2: distance to ε in another Cayley graph

generated by simple braids

- $\|\alpha\|_2 = \text{distance to } \varepsilon \text{ in a Cayley graph: } \|\alpha \cdot \beta\|_2 \leqslant \|\alpha\|_2 + \|\beta\|_2$
- Computing $\|\alpha\|_2$: easy
- Computing $N_2^{(k)} = \#\{\alpha : \|\alpha\|_2 = k\}$: easy

What is a complex braid?

Idea #2: distance to ε in another Cayley graph

generated by simple braids

- $\|\alpha\|_2 = \text{distance to } \varepsilon \text{ in a Cayley graph: } \|\alpha \cdot \beta\|_2 \leqslant \|\alpha\|_2 + \|\beta\|_2$
- Computing $\|\alpha\|_2$: easy
- Computing $N_2^{(k)} = \#\{\alpha : \|\alpha\|_2 = k\}$: easy $(\sum_{k\geqslant 0} N_2^{(k)} z^k$ is rational)

Contents

- Braids and Diagrams
- 2 Band Laminations
 - What are Band Laminations?
 - Laminations and Complexity
- Radial Laminations
- 4 Conclusion

Braid Acting on a Band Lamination

Braid ≡ Band lamination

 \mathcal{B}_n acts faithfully and transitively on \mathcal{L}_n^b :

```
\mathcal{B}_n = \{n\text{-strand braids}\}\
\mathcal{L}_n^b = \{\text{band laminations with } n \text{ holes}\}
```

Braid Acting on a Band Lamination

Braid ≡ Band lamination

 \mathcal{B}_n acts faithfully and transitively on \mathcal{L}_n^b : $\mathcal{B}_n \equiv \mathcal{L}_n^b$ $\alpha \rightarrow \alpha(\mathbf{L}_{\varepsilon}^b)$

```
\mathcal{B}_n = \{n\text{-strand braids}\}\
\mathcal{L}_n^b = \{\text{band laminations with } n \text{ holes}\}\
\mathbf{L}_{\varepsilon}^b = \text{trivial band lamination}
```

Braid Acting on a Band Lamination

Braid ■ Band lamination

 \mathcal{B}_n acts faithfully and transitively on \mathcal{L}_n^b :

$$\begin{array}{ccc} \mathcal{B}_n & \equiv & \mathcal{L}_n^b \\ \alpha & \rightarrow & \alpha(\mathbf{L}_{\varepsilon}^b) \end{array}$$

 $\mathcal{B}_n = \{n\text{-strand braids}\}\$

 $\mathcal{L}_n^b = \{ \text{band laminations with } n \text{ holes} \}$ $\mathbf{L}_\varepsilon^b = \text{trivial band lamination}$

What is a complex braid?

What is a complex braid?

Complex braid

What is a complex braid?

Idea #3: a band lamination whose arcs often cross $\mathbb R$

Complex braid

• $\|\alpha\|_3 = \text{cardinality of } \alpha(\mathbf{L}_{\varepsilon}^c) \cap \mathbb{R}$

What is a complex braid?

- $\|\alpha\|_3 = \text{cardinality of } \alpha(\mathbf{L}_{\varepsilon}^{\mathbf{c}}) \cap \mathbb{R}$
- $\|(\sigma_1 \sigma_2^{-1})^k\|_3 \approx 2^k$

What is a complex braid?

- $\|\alpha\|_3$ = cardinality of $\alpha(\mathbf{L}_{\varepsilon}^c) \cap \mathbb{R}$
- $\|(\sigma_1 \sigma_2^{-1})^k\|_3 \approx 2^k$: $\|\alpha \cdot \beta\|_3 \leqslant \|\alpha\|_3 + \|\beta\|_3$

What is a complex braid?

- $\|\alpha\|_3 = \text{cardinality of } \alpha(\mathbf{L}_{\varepsilon}^{\mathbf{c}}) \cap \mathbb{R}$
- $\|(\sigma_1 \sigma_2^{-1})^k\|_3 \approx 2^k$: $\|\alpha \cdot \beta\|_3 \leqslant \|\alpha\|_3 + \|\beta\|_3$
- Computing $\|\alpha\|_3$: easy

What is a complex braid?

- $\|\alpha\|_3 = \text{cardinality of } \alpha(\mathbf{L}_{\varepsilon}^c) \cap \mathbb{R}$
- $\|(\sigma_1 \sigma_2^{-1})^k\|_3 \approx 2^k$: $\|\alpha \cdot \beta\|_3 \leqslant \|\alpha\|_3 + \|\beta\|_3$
- Computing $\|\alpha\|_3$: easy
- Computing $N_3^{(k)} = \#\{\alpha : \|\alpha\|_3 = k\}$: not obvious...

Contents

- Braids and Diagrams
- 2 Band Laminations
- Radial Laminations
 - What are Radial Laminations?
 - Laminations and Complexity
 - Counting Laminations
- 4 Conclusion

Braid Acting on a Radial Lamination

Braid ≡ Radial lamination

 \mathcal{B}_n acts faithfully and transitively on \mathcal{L}_n^r :

```
\mathcal{B}_n = \{n\text{-strand braids}\}\
\mathcal{L}_n^r = \{\text{radial laminations with } n \text{ holes}\}
```

Braid Acting on a Radial Lamination

Braid ≡ Radial lamination

 \mathcal{B}_n acts faithfully and transitively on \mathcal{L}_n^r : $\mathcal{B}_n \equiv \mathcal{L}_n^r$ $\alpha \rightarrow \alpha(\mathbf{L}_{\varepsilon}^r)$

```
\mathcal{B}_n = \{n\text{-strand braids}\}\
\mathcal{L}_n^r = \{\text{radial laminations with } n \text{ holes}\}\
\mathbf{L}_{\varepsilon}^r = \text{trivial radial lamination}
```

Braid Acting on a Radial Lamination

Braid ≡ Radial lamination

 \mathcal{B}_n acts **faithfully** and **transitively** on \mathcal{L}_n^r :

$$\begin{array}{ccc} \mathcal{B}_n & \equiv & \mathcal{L}_n^r \\ \alpha & \rightarrow & \alpha(\mathbf{L}_{\varepsilon}^r) \end{array}$$

 $\mathcal{B}_n = \{n\text{-strand braids}\}\$

 $\mathcal{L}_{n}^{r} = \{ \text{radial laminations with } n \text{ holes} \}$

 \mathbf{L}_{s}^{r} = trivial radial lamination

What is a complex braid?

Idea #4: a lamination whose ray often crosses $\mathbf{L}^b_{\varepsilon}$

What is a complex braid?

Idea #4: a lamination whose ray often crosses $\mathbf{L}^b_{arepsilon}$

Complex braid

What is a complex braid?

Idea #4: a lamination whose ray often crosses $\mathbf{L}^b_{arepsilon}$

Complex braid

• $\|\alpha\|_4 = \text{cardinality of } \alpha(\mathsf{L}^r_{\varepsilon}) \cap \mathsf{L}^b_{\varepsilon}$

What is a complex braid?

Idea #4: a lamination whose ray often crosses $\mathbf{L}^b_{arepsilon}$

Complex braid

- $\|\alpha\|_4 = \text{cardinality of } \alpha(\mathsf{L}^r_{\varepsilon}) \cap \mathsf{L}^b_{\varepsilon}$
- Computing $N_4^{(k)} = \#\{\alpha : \|\alpha\|_4 = k\}$

What is a complex braid?

Idea #4: a lamination whose ray often crosses $\mathbf{L}^b_{arepsilon}$

Complex braid

- $\|\alpha\|_4 = \text{cardinality of } \alpha(\mathbf{L}^r_{\varepsilon}) \cap \mathbf{L}^b_{\varepsilon} = \|\alpha^{-1}\|_3$
- Computing $N_4^{(k)} = \#\{\alpha : \|\alpha\|_4 = k\} = N_3^{(k)}$: not so hard...

Why do we have $\|\alpha\|_4 = \|\alpha^{-1}\|_3$?

Pull α 's ray tight!

Why do we have $\|\alpha\|_4 = \|\alpha^{-1}\|_3$?

Pull α 's ray tight!

Why do we have $\|\alpha\|_4 = \|\alpha^{-1}\|_3$?

Pull α 's ray tight!

$$|\sigma_2\sigma_1^{-1}(\mathsf{L}^r_{arepsilon})\cap\mathsf{L}^b_{arepsilon}|$$

$$|\sigma_2\sigma_1^{-1}(\mathsf{L}^r_\varepsilon)\cap\mathsf{L}^b_\varepsilon| \quad \ \equiv \quad \ |\sigma_2^{-1}(\mathsf{L}^b_\varepsilon)\cap\sigma_1^{-1}(\mathsf{L}^r_\varepsilon)|$$

How can we count (radial) laminations?

How can we count (radial) laminations? Identify mirrors

How can we count (radial) laminations?

Identify mirrors and their periscopes

How can we count (radial) laminations?

Identify mirrors and their periscopes and transparent holes

How can we count (radial) laminations?

- Identify mirrors and their periscopes and transparent holes
- ② Check that the ray is connected!

How can we count (radial) laminations?

- Identify mirrors and their periscopes and transparent holes
- ② Check that the ray is connected!

Counting laminations: 1 or 2 strands

1-strand braids:

Counting laminations: 1 or 2 strands

1-strand braids:
$$N_4^{(k)} = \mathbf{1}_{k=0}$$

Counting laminations: 1 or 2 strands

1-strand braids:
$$N_4^{(k)} = \mathbf{1}_{k=0}$$

2-strand braids: $N_4^{(k)} = \mathbf{1}_{k=1}$

Counting laminations: 1 or 2 strands

1-strand braids:
$$N_4^{(k)} = \mathbf{1}_{k=0}$$

Counting laminations: 1 or 2 strands

1-strand braids:
$$N_4^{(k)} = \mathbf{1}_{k=0}$$

$$N_4^{(k)} = \mathbf{1}_{k=2} + 2\varphi(k/2+1) \cdot \mathbf{1}_{k \in 2\mathbb{N}+4}$$

$$N_4^{(k)} = \mathbf{1}_{k=2} + 2\varphi(k/2+1) \cdot \mathbf{1}_{k \in 2\mathbb{N}+4} - 2 \cdot \mathbf{1}_{k \in 4\mathbb{N}+6}$$

$$N_4^{(k)} = \mathbf{1}_{k=2} + 2\varphi(k/2+1) \cdot \mathbf{1}_{k \in 2\mathbb{N}+4} - 2 \cdot \mathbf{1}_{k \in 4\mathbb{N}+6} + 4\sum_{i=2}^{k/4} \varphi(k/2+4-2i) \cdot \mathbf{1}_{k \in 2\mathbb{N}+2}$$

$$\begin{array}{lcl} N_4^{(k)} & = & \mathbf{1}_{k=2} + 2\varphi(k/2+1) \cdot \mathbf{1}_{k \in 2\mathbb{N}+4} - 2 \cdot \mathbf{1}_{k \in 4\mathbb{N}+6} + \\ & & 4 \sum_{i=2}^{k/4} \varphi(k/2+4-2i) \cdot \mathbf{1}_{k \in 2\mathbb{N}+2} \\ N_4^{(k)} & \sim & (\mathbf{1}_{k \in 2\mathbb{N}} + \mathbf{1}_{k \in 4\mathbb{N}+2}) k^2/\pi^2 \end{array}$$

$$\begin{array}{lcl} N_4^{(k)} & = & \mathbf{1}_{k=2} + 2\varphi(k/2+1) \cdot \mathbf{1}_{k \in 2\mathbb{N}+4} - 2 \cdot \mathbf{1}_{k \in 4\mathbb{N}+6} + \\ & & 4 \sum_{i=2}^{k/4} \varphi(k/2+4-2i) \cdot \mathbf{1}_{k \in 2\mathbb{N}+2} \\ & & N_4^{(k)} & \sim & (\mathbf{1}_{k \in 2\mathbb{N}} + \mathbf{1}_{k \in 4\mathbb{N}+2}) k^2/\pi^2 \\ & \sum_{k \geqslant 0} N_4^{(k)} z^k & = & 2 \frac{1+2z^2-z^4}{z^2(1-z^4)} \left(\sum_{n \geqslant 3} \varphi(n) z^{2n} \right) + \frac{z^2(1-3z^4)}{1-z^4} \end{array}$$

3-strand braids:

$$N_4^{(k)} = \mathbf{1}_{k=2} + 2\varphi(k/2+1) \cdot \mathbf{1}_{k\in2\mathbb{N}+4} - 2 \cdot \mathbf{1}_{k\in4\mathbb{N}+6} + 4\sum_{i=2}^{k/4} \varphi(k/2+4-2i) \cdot \mathbf{1}_{k\in2\mathbb{N}+2}$$

$$N_4^{(k)} \sim (\mathbf{1}_{k \in 2\mathbb{N}} + \mathbf{1}_{k \in 4\mathbb{N}+2}) k^2 / \pi^2$$

$$\sum_{k\geqslant 0} N_4^{(k)} z^k = 2 \frac{1+2z^2-z^4}{z^2(1-z^4)} \left(\sum_{n\geqslant 3} \varphi(n) z^{2n} \right) + \frac{z^2(1-3z^4)}{1-z^4}$$

Typical cases:

•
$$N_4^{(k)} \neq 0 \Leftrightarrow k \in 2\mathbb{N} + n - 1$$

•
$$N_4^{(k)} \neq 0 \Leftrightarrow k \in 2\mathbb{N} + n - 1$$
 $\to M_\ell = N_4^{(n-1+2\ell)}$

- $N_4^{(k)} \neq 0 \Leftrightarrow k \in 2\mathbb{N} + n 1$ $\longrightarrow M_\ell = N_4^{(n-1+2\ell)}$
- $\bullet \ M_\ell = \mathcal{O}(\ell^{2n-4})$

•
$$N_4^{(k)} \neq 0 \Leftrightarrow k \in 2\mathbb{N} + n - 1$$
 $\rightarrow M_\ell = N_4^{(n-1+2\ell)}$

- $\bullet \ M_{\ell} = \mathcal{O}(\ell^{2n-4})$
- $\bullet \ \ell^{n-2} = \mathcal{O}(M_{\ell})$

- $N_4^{(k)} \neq 0 \Leftrightarrow k \in 2\mathbb{N} + n 1$ $\longrightarrow M_\ell = N_4^{(n-1+2\ell)}$
- $\bullet \ M_{\ell} = \mathcal{O}(\ell^{2n-4})$
- $\bullet \ \ell^{\lfloor (3n-5)/2\rfloor} = \mathcal{O}(M_\ell)$

n-strand braids:

- $N_4^{(k)} \neq 0 \Leftrightarrow k \in 2\mathbb{N} + n 1$ $\longrightarrow M_\ell = N_4^{(n-1+2\ell)}$
- $\bullet \ M_{\ell} = \mathcal{O}(\ell^{2n-4})$
- $\bullet \ \ell^{\lfloor (3n-5)/2\rfloor} = \mathcal{O}(M_{\ell})$

Conjecture

$$M_{\ell} = \Theta(\ell^{2n-4})$$

n-strand braids:

- $N_4^{(k)} \neq 0 \Leftrightarrow k \in 2\mathbb{N} + n 1$ $\rightarrow M_\ell = N_4^{(n-1+2\ell)}$
- $\bullet \ M_{\ell} = \mathcal{O}(\ell^{2n-4})$
- $\bullet \ \ell^{\lfloor (3n-5)/2\rfloor} = \mathcal{O}(M_{\ell})$

Conjecture

$$M_{\ell} = \Theta(\ell^{2n-4})$$

Is this permutation cyclic?

Contents

- Braids and Diagrams
- 2 Band Laminations
- Radial Laminations
- 4 Conclusion

Conclusion

Next goals

- Prove the conjecture
- Look at the combinatorial structure of laminations

Conclusion

Next goals

- Prove the conjecture
- Look at the combinatorial structure of laminations

Thank you!