Bloom filters

Approximate membership data structures
Bloom filters: generalities

- Bloom (1970)
- generalizes the bitmap representation of sets
- *approximate membership data structure*: supports INSERT and LOOKUP
- LOOKUP only checks for the presence, no satellite data
- produces false positives (with low probability)
- cannot iterate over the elements of the set
- DELETE is not supported (in the basic variant)
- very space efficient, keys themselves are not stored
- *Example*: forbidden passwords
Bloom filter: how it works

- U: universe of possible elements
- K: subset of elements, $|K| = n$
- m: size of allocated bit array

- Define d hash functions $h_1, \ldots, h_d: U \rightarrow \{0, \ldots, m - 1\}$

- INSERT(k): set $h_i(k) = 1$ for all i
- LOOKUP(k): check $h_i(k) = 1$ for all i

- False positives but no false negatives
Bloom filters: analysis

- $P[\text{specific bit of filter is 0}] = (1 - 1/m)^{dn} \approx e^{-dn/m} \equiv p$

- $P[\text{false positive}] = (1 - p)^d = (1 - e^{-dn/m})^d$

- Optimal number d of hash functions: $d = \ln 2 \cdot \frac{m}{n} \approx 0.693 \cdot \frac{m}{n}$

- Therefore, for the optimal number of hash functions,

$$P[\text{false positive}] = 2^{-\ln 2 \cdot \frac{m}{n}} \approx 0.6185^{\frac{m}{n}}$$

- E.g. with 10 bits per element, $P[\text{false positive}]$ is less than 1%

- To insure the FP rate ε: $m = \log_2 e \cdot n \cdot \log_2 \frac{1}{\varepsilon} \approx 1.44 \cdot n \cdot \log_2 \frac{1}{\varepsilon}$
Dependence on the nb of hash functs

Opt $d = 8 \ln 2 = 5.45 \ldots$

$m/n = 8$

n elements
m bits
d hash functions
Lower bound on the size of approximate membership data structures (AMD)

- Bloom filter takes $1.44 \cdot \log \frac{1}{\varepsilon}$ bits per key, is this optimal?

- How many AMDs are there to store all sets of size n drawn from universe U with FPP ε?
- Each AMD specifies a set of size $\varepsilon |U|$ (assuming $|U|$ large) containing a set of size n
- Any set of size n should be covered, and the number of such sets is $\geq \left(\frac{|U|}{n} \right) / \left(\frac{\varepsilon |U|}{n} \right) \approx \left(\frac{1}{\varepsilon} \right)^n$ (cf Erdős & Spencer 74, Rödl 85)
- \Rightarrow each FPP must take $\geq n \cdot \log \frac{1}{\varepsilon}$ bits
Bloom filter: properties/operations

- For the optimal number of hash function, about a half of the bits is 1 \([immedate\ from\ the\ formula]\)
- The Bloom filter for the union is the OR of the Bloom filters
- Is similar true for the intersection? \([explain]\)
- If a Bloom filter is sparse, it is easy to halve its size
Bloom filters: applications

- Bloom filters are very easy to implement
- Used e.g. for
 - spell-checkers (in early UNIX-systems)
 - unsuitable passwords, "approximate" unsuitable passwords (Manber&Wu 1994)
 - online applications (traffic monitoring, …)
 - distributed databases
 - malicious sites in Google Chrome
 - read articles in publishing systems (Medium)
 - Google Bigtable, Apache HBase, Bitcoin, bioinformatics, …
- Sometimes (when the set of possible queries is limited) it is possible to store the set of false positives in a separate data structure
Cuckoo filters

filters via Cuckoo hashing
Filters via MPHF

- Given a set $K \subseteq U$, build an MPHF $h: K \rightarrow [1..n]$
- Given ε, pick a hash function f mapping keys of K into fingerprints of $\log \frac{1}{\varepsilon}$ bits
- Build an array F of fingerprints: $F[h(k)] = f(k)$

$$P[f(x) = f(y)] = \frac{1}{2^{\log \frac{1}{\varepsilon}}} = \varepsilon \text{ (false positive proba)}$$

- Space: $n \cdot \log \frac{1}{\varepsilon} + \text{<size of MPFR>}$
- lower bound: size of MPFR $\geq 1.44n$
- K must be static, does not support insertions/deletions
Cuckoo filter: ideas

- Use Cuckoo hash table (e.g. (2,4)-table) instead of MPHF

- **Problem**: How to move a fingerprint? i.e. how to know its alternative bucket?
Cuckoo filter: ideas

- Use Cuckoo hash table (e.g. (2,4)-table) instead of MPHF

- **Problem**: How to move a fingerprint? i.e. how to know its alternative bucket?

 \[
 h_1: K \rightarrow 2^{\log |T|}, \quad h_2: 2^{\log \frac{1}{\varepsilon}} \rightarrow 2^{\log |T|}
 \]

 location 1: \(h_1(k) \)

 location 2: \(h_1(k) \oplus h_2(f(k)) \)

- Alternative location of a fingerprint \(\alpha \) at location \(i \) is \(i \oplus h_2(\alpha) \)
Remarks

- Two locations of a key are not fully independent. E.g. two keys sharing the same bucket and the same fingerprint have the same alternative location. (⇒ store multisets in b-element buckets)

- *Practical*: Cuckoo vs. Bloom: for small false positive rate ($< 3\%$) and $b = 4$, Cuckoo filter achieves the same performance as Bloom with smaller space

![Figure 4: False positive rate vs. space cost per element. For low false positive rates ($< 3\%$), cuckoo filters require fewer bits per element than the space-optimized Bloom filters. The load factors to calculate space cost of cuckoo filters are obtained empirically.](image)

[Fan et al. Cuckoo filter: practically better than Bloom, CoNEXT 2014]
Count-Min sketch (aka Spectral Bloom filter)

Storing count information
How to support deletions in Bloom filters?
How to support deletions in Bloom filters?

- **Counting Bloom filter**: Bloom filter that, instead of 0 and 1, stores (small) counters

 - **INSERT**(k): $B[h_i(k)] \leftarrow B[h_i(k)] + 1$ for all i
 - **LOOKUP**(k): check $B[h_i(k)] > 0$ for all i
 - **DELETE**(k): $B[h_i(k)] \leftarrow B[h_i(k)] - 1$ for all i

- Also works for multi-sets
- Analysis shows that

 $$P \left[\text{max counter} \geq 16 \right] < 1.37m \cdot 10^{-15}$$

 i.e. 4 bits/counter suffices for practical purposes

 [Fan et al. IEEE/ACM Trans. on Networking, 2000]
Count-Min sketch

- What if we want to estimate the multiplicities (number of occurrences) of elements of a multi-set stored in a counting Bloom filter?
- Streaming framework
- Example: $m = 8$, $C[0..7]$

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>h_2</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

b a d a e f c a ...

#a? #e? #f? #c? #e? #f?
Count-Min: operations

- **UPDATE**(k): $C[h_i(k)] \leftarrow C[h_i(k)] + 1$ for all i
- $\hat{f}(k) = \min_i h_i(k)$
Count-Min sketch: analysis

- **Theorem**: if \(d = \log_2 \frac{1}{\delta} \) and \(m = \frac{ed}{\epsilon} \), then

\[
P[\hat{f}(k) \geq f(k) + \epsilon n] \leq \delta,
\]

where \(d \) is the number of hash functions, \(f(k) \) is the true count of \(k \) and \(n \) is the total number of elements in the stream.

Proof: \(C[h_i(k)] = f(k) + X_i(k) \)

\[
E[X_i(k)] = \frac{1}{m} \sum_{l \neq k} f(l) + \sum_{j \neq i} \frac{1}{m} \sum_k f(k) \leq \frac{d}{m} n = \frac{\epsilon}{e} n
\]

\[
P[X_i(k) > \epsilon n] < \frac{1}{e}
\]

Since \(\hat{f}(k) = f(k) + \min_i X_i(k) \), we have

\[
P[\hat{f}(k) - f(k) \geq \epsilon n] \leq e^{-d} = \delta
\]
Count-Min: properties

- Total space $m = \frac{e}{\varepsilon} \log \frac{1}{\delta}$

- **Example (“Heavy Hitters”):** Assume we want to output all elements that occur $n/50$ of times. Set $\varepsilon = 1/100$, i.e. $m = 271 \cdot \log \frac{1}{\delta}$. Then we will output all desired elements, but also some elements occurring less, but not less than $n/100$, with $p = 1 - \delta$.

- Bound in Theorem is in terms of n

- CM-sketch also applies to increments > 1

- Decrements (“deletions”) are also supported provided that counters remain non-negatives

What if \(n \) is not known in advance?

- **Idea**: Maintain a min-heap of current frequent items, update after each element
- After processing each element \(x \), estimate \(\hat{f}(x) \)
- If \(\hat{f}(x) \geq \varepsilon n \) (\(n \) current stream size), insert \(x \) to the heap with value \(\hat{f}(x) \) (or update if it was already there)
- If the smallest value of the heap (computed in \(O(1) \)) is \(< \varepsilon m \), delete it from the heap
- At the end, output all elements of the heap